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ABSTRACT
A recent trend to improve the effectiveness of similarity
queries in multimedia databases is based on dynamic com-
binations of metric spaces. The efficiency issue when using
these dynamic combinations is still an open problem, espe-
cially in the case of binary weights. Our solution resorts
to the use of a set of indices. We describe a binary linear
program that finds the optimal set of indices given space
constraints. Because binary linear programming is NP-hard
in general, we also develop greedy algorithms that find good
set of indices quickly. The solutions returned by the approx-
imation algorithms are very close to the optimal value for
the instances where these can be calculated.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
analysis and indexing—indexing methods

Keywords
Multimedia databases, content-based retrieval, multi-metric
spaces

1. INTRODUCTION
Due to a rapidly growing amount of available multime-

dia data, the development of multimedia database systems
is becoming increasingly important. Multimedia databases
have applications in many fields such as molecular biology,
medicine, CAD/CAM applications, GIS, etc. The progress
in the acquisition, storage, and dissemination of various mul-
timedia formats, makes the application of effective and effi-
cient database management systems indispensable.
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One of the most important tasks in multimedia databases
is to implement effective and efficient similarity search algo-
rithms. Multimedia objects cannot be meaningfully queried
in the classical sense (exact search). Instead, the objects
in the multimedia domain are treated as objects in a metric
space, which can be compared with a metric function appro-
priately defined. A query in a multimedia database system
usually requests the most similar objects to a given query
object or a manually entered query specification. Note that
vector spaces (e.g., those obtained by using a feature extrac-
tion fuction on the multimedia objects) are a particular case
of metric spaces.

An example application of multimedia databases is 3D
model retrieval. 3D objects are an important multimedia
data type with many application possibilities. They can
present complex information, and content-based searching
in large 3D object repositories arise in many practical fields.
For example, in medicine detecting similar organ deforma-
tions is useful for diagnostic purposes. 3D object databases
also support CAD tools, which have many applications in in-
dustrial design and manufacturing: Reusing standard parts
can lead to reduced production costs. The main problem
is to assess the similarity between any pair of 3D objects
based on a suitable notion of similarity. The existence of
such similarity measures is an important precondition for
implementing effective search algorithms; it lets you query
a repository of 3D objects for specific content and facilitates
reusing 3D content. Also, similarity metrics let you organize
3D repositories by representing large object collections with
limited cluster prototypes, or visualize the content of large
databases by appropriate 2D mappings. A similarity notion
supports advanced automatic applications such as classify-
ing shapes in industrial screening.

In the standard approach for defining the similarity no-
tion, only one fixed metric distance (MD) is used within a
multimedia database for performing similarity queries. How-
ever, it is possible to map each multimedia domain into
many different metric spaces. For example, in the case of 3D
model retrieval there are more than 30 proposed mapping
techniques [3].

It has been shown that by using query dependent combi-
nations of MDs it is possible to significantly increase the
effectiveness of the similarity search [2]. The idea is to se-
lect a fixed number of the available MDs by using a query
processor, which identifies the best suited MDs for the given
query object, and then linearly combine them to perform the
similarity query. A binary weight (0 or 1) is used to define
which MDs will be taken into account for the combination.



We address the problem of indexing combinations of t
MDs from a given set of F metric spaces (t ≤ F ). An
ideal solution would be to build an index for each possible
combination, but in practice this is not possible due to space
constraints (the number of possible combinations is

(
F
t

)
). A

näıve solution to this problem is to use one of the indices
especially developed for multi-metric spaces [4, 5], where
the weights are not binary but positive real values, and to
index all available metric spaces with it. Unfortunately this
solution is not efficient, because the search algorithm needs
to read information about all the available metric spaces at
query time, including those not relevant for the given query.

Instead, it could be more efficient to use several multi-
metric indices with small sizes. It turns out that the most
efficient choice is to have one index per combination (cf.
Section 3.1). Unfortunately this is unrealistic, because the
available space for bulding indices is limited. Furthermore
we observed that, in real-world multimedia applications, the
query processor selects some MDs more often than others,
and therefore each combination has a certain probability of
being selected. This raises a natural question: Given a cer-
tain amount of available space, which is the set of indices
that minimizes the average search time over the combina-
tions selected by the query processor?

We tackle the problem of finding the most efficient set of
indices (iSet), considering the fact that the combinations are
selected according to certain (estimated) distribution. Our
measure of efficiency is the expected search cost of the iSet.
We show that this problem can be formulated as a binary
linear program (BLP), which is able to find the optimal iSet,
and use it to provide experimental evidence to validate our
approach. Unfortunately, the standard methods for solving
BLPs are not efficient (binary linear programming is NP-
hard). Thus, we also develop approximated algorithms to
find good iSets in short time.

2. BASIC CONCEPTS AND RELATED WORK
Multimedia databases can be modeled as a metric space

to implement similarity queries [7]. There is a universe X
of objects, and a nonnegative distance function δ defined
among them, which satisfies the properties of a metric (strict
positiveness, symmetry, and the triangle inequality). The
smaller the distance between two objects, the more similar
they are. We have a finite database U ⊂ X, which can be
preprocessed to build an index. Later, given a query object
q ∈ X, we must retrieve all similar elements found in U.

A particular case of this problem arises when the space
is Rd. There are effective methods for this case, such as
the kd-tree, R-tree, and X-tree, among others [1]. However,
there are many applications where the space cannot be re-
garded as d-dimensional (e.g., in string similarity problems
that appear in computational biology applications). We con-
centrate in this paper in general metric spaces, although the
solutions can be directly applied to d-dimensional spaces.

There are two basic types of similarity queries in multime-
dia databases: Range query, which reports all objects from
the database that are within a given tolerance radius to q;
and k nearest-neighbors (k-NN) query, which reports the k
objects from the database closest to q.

2.1 Combinations of metric distances
A recent trend to improve the effectiveness of similarity

queries (i.e., the quality of the answer returned by the simi-

larity search system) is based on using combinations of MDs.
The idea is to use not one but several metric spaces, thus ob-
taining a set of MDs. At query time, the MDs are combined
by using, for example, a linear combination (weighted sum)
of the distances with each MD. If the weights are positive
(as in our case of binary weights), the combined metric is
also a metric.

It has been observed [2] that a linear combination of all
MDs will not provide the optimal results, because if one of
the considered MDs has a very bad effectiveness for a given
query object, then it will spoil the final result. Recently, dy-
namic combination methods have been proposed [2], which
aim at avoiding this problem by combining only those MDs
that are most promising for the given query object. The
goodness of a MD is estimated against a training database,
selecting the MDs with highest goodness values.

In this paper, we assume that the similarity search engine
of the multimedia database implements a query processor,
which given a query object selects t MDs (from the set of
available MDs) that are used to perform the similarity query.

2.2 Related work
An index structure specifically designed for dynamically

combined MDs (also known as multi-metric spaces) is pre-
sented in [5]. The M3-tree is an adaptation of the original
M-tree, and stores partial distances (one for each MD be-
longing to the combination) to dynamically estimate, for
each performed query, the new covering radius of the space
regions and the new distances from parent to children nodes.
The index is built using a fixed combined metric (the index
distance) that is an upper-bounding distance function of the
query distance. For this index, the weights are values in
[0, 1], thus it needs to store information about all the avail-
able metric spaces to perform the queries (in contrast to our
problem, where we know that we only use t of the MDs).

Another index structure specially designed for dynami-
cally weighted combinations of MDs is presented in [4]. This
index consists of a set of pivot-based indices, one for each
MD. These can be used to compute the combined pivot table
(i.e., the pivot-based index for the combination of MDs) at
query time, when the weights for the dynamic combination
are known. For this index, the weights can be any positive
real value, thus it also needs to store information of all the
available MDs.

3. INDEXING COMBINATIONS OF MET-
RIC DISTANCES

Table 1 shows the notation used through the rest of the
paper. Let F be a set of MDs and let f ∈ F denote a specific
MD. A combination of MDs has the form c ⊆ F. To perform
similarity queries, the search system combines t of the MDs
(|c| = t), thus there are T =

(
F
t

)
possible combinations.

A query processor selects at query time one of the com-
binations to perform the similarity search. That is, given
an object q ∈ X, the query processor selects combination
ci (1 ≤ i ≤ T ) with probability pci , where pci ≥ 0 and∑T

i=1 pci = 1. Without loss of generality, in what follows
we assume that pci ≥ pci+1 .

The similarity query can be solved by sequentially scan-
ning each of the metric spaces related to the selected com-
bination of MDs. The search cost of this sequental scan is
given by the function LS(t) (linear scan), which is O(tn).



Table 1: Summary of symbols.
Symbol Definition

X Set of valid objects
U ⊂ X Database
n = |U| Database size
q ∈ X Query object

F Set of metric distances (MDs)
F = |F| Number of MDs
f ∈ F A single MD
c ⊆ F A combination of MDs

t Number of combined MDs
T =

(
F
t

)
Total number of combinations

C Set of all combinations of t MDs
pc Probability of selecting combination c
I Set of indices (iSet)

idx ∈ I An index from the iSet
S Available space for building indices

E(I) Expected search cost of iSet I

Note that the sequential scan cannot be efficiently imple-
mented, because it is not known a priori which MDs will be
selected for the combination for a given query q. Thus, the
data files cannot be optimally arranged on the secondary
storage for a fast linear scan.

If there is enough available space to construct and save
indices, then one could take advantage of it to improve the
efficiency of the search. The idea is to build indices for the
most frequently used combinations of MDs, thus reducing
the expected search cost. We define an index of size k as an
index that stores k MDs. The space cost of an index of size k
is given by the function Space(k), and its search cost is given
by the function Search(k). Both cost functions depend on
the actually used index structure and on the data distribu-
tion for each metric space. We assume that the search cost
always increases with the index size.

3.1 An example: Indexing single combinations
Suppose that we are only allowed to build indices of size

t (these index only one combination of MDs and could be
any metric access method). Let I be the set of built indices
and let idx ∈ I denote a specific index. We refer to I as an
iSet. Given that there is an amount S of available space to
build indices, it follows that |I| ≤ bS/Space(t)c. The total
space cost R(I) is

R(I) = |I| · Space(t).

The expected search cost depends on which combinations
of MDs are indexed. If the query processor selects combi-
nation c to perform the query, the search engine checks if
there exists an index idx ∈ I that contains c. If this is the
case, idx is used to perform the similarity query. Otherwise,
the search engine resorts to a linear scan over the database.
Assume that combinations ci1 , ci2 , ci|I| are indexed, then the

expected search cost E(I) of the iSet is

E(I) =

|I|∑
j=1

pcij
· Search(t) +

1−
T∑

j 6∈{i1,...,iI}

pcj

 · LS(t).

Because pi ≥ pi+1, it follows that the optimal choice is
ij = j, j = 1, . . . , |I| = bS/Space(t)c. In particular, if T ·
Space(t) ≤ S, then the optimal solution is to build an index
for every possible combination of MDs.

3.2 The real problem: Indexing several com-
binations per index

If the indices of the iSet may contain more than t MDs
(for example, by using some of the structures mentioned in
Section 2.2), it may be possible to do better. An index of
size k (t ≤ k ≤ F ) contains

(
k
t

)
combinations of MDs. This

means that with only one index we can index simultaneously
many combinations of MDs. Note, however, that an index of
size greater than t requires more MDs than necessary to be
read to perform the similarity query, thus making the search
slower. Thus, there is a trade-off between search time and
number of indexed combinations. Note that an index of size
F contains all possible combinations of MDs.

The available space S may allow us to build many indices
of size t or larger (not necessarily all of the same size). As
indices may contain more than one combination of MDs,
a given combination could be contained in more than one
index. The best choice then is to use the index with smallest
search cost that contains c to perform the similarity query,
which is equivalent to select the smallest index. The function
msI(c) determines the size of this smallest index:

msI(c) =

 k if k is the size of the smallest index
in I that contains c,

∞ if no index in I contains c.

It follows that t ≤ msI(c) ≤ F if there exists an index in
the iSet that contains c. Thus, the expected search cost for
the iSet I is

E(I) =
∑

c:msI(c)<∞

pc · Search(msI(c)) +
∑

c:msI(c)=∞

pc · LS(t).

The space constraint must be respected. If size(idxi) is
the number of MDs that idxi contains, then

R(I) =

|I|∑
i=1

Space(size(idxi)) ≤ S.

Once the functions Search(k) and Space(k) are appropri-
ately defined (see Section 7 for an example), the question
is, what is the optimal iSet to build, given the probabilities
of selecting each combination of MDs and the space con-
straints? To find the optimal solution, we have to take into
account that: (a) There is a trade-off between index size
and search cost. An index that contains more MDs indexes
more combinations, but its search time will be longer than
the search time of a smaller index; (b) A combination may
be indexed by many indices, but the search system must
use the one with smallest search cost; (c) We have a limited
space S available.

The problem can be formalized as the next optimization
problem: Given a set of combinations of MDs, their proba-
bilities of being selected, the search and space cost functions
for the index structures, and the available space for building
indices, find the optimal iSet so that the expected search cost
is minimized.

3.3 This is NOT a classical packing problem
Notice that the problem of minimizing the expected search

time does not correspond to a classical packing problem [8].
Indeed, in a packing problem we have objects and boxes.



Objects use some space (if packed) and produce certain ben-
efit (again if packed). Boxes provide only a limited capacity.
The goal in a packing problem is to maximize the benefit of
the packed objects. Notice that (a) the benefit of an object
depends only on the decision to pack it or not, and (b) the
sizes of the boxes are given in advance.

In the case of minimizing the expected search cost, we may
think of objects (either MDs or combinations) and boxes
(indices), but the similarities stop there. In regards to (b)
we observe that in our problem only the total amount of
space is global while we can choose the size of our boxes to
match the size of the contained objects (there is no wasted
space per box). Respecting (a), we can observe that the
benefit obtained when packing a MD depends on the fact
that a given MD (or combination) is packed or not, and on
which index we put the MD (or combination). Roughly, the
larger the index, the higher the expected search cost.

In any case, it turns out that minimizing the expected
search cost does not correspond to a packing problem or, at
least, if any correspondence exists, it is not direct.

4. A BINARY LINEAR PROGRAM FOR THE
OPTIMIZATION PROBLEM

We model the optimization problem as a binary linear
program (BLP), which allows us to find the optimal iSet
using an integer linear programming optimization package
(e.g., GLPK or CPLEX).

Let C be the set of combinations of t MDs. Let us define
the set of all possible indices

(K, L) =

{
(k, `) : t ≤ k ≤ F, 1 ≤ ` ≤ min

[⌊
S

Space(k)

⌋
,

(
F

k

)]}
,

so (k, `) is the `th index of size k. Figure 1 illustrates an
example of a set (K, L) with F = 6, t = 2, S = 9, and
Space(k) = k. Note that (K, L) enumerates all the possi-
ble indices of different sizes that fit in the available space.
We still need to decide which MDs will be inserted on the
actually constructed indices.

3

4

5

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3)

(4,1) (4,2)

(5,1)

(6,1)F=6

t=2

S

Figure 1: Example of set (K, L).

We extend (K, L) with a special index (∞, `) that con-
tains non-indexed combinations of MDs (i.e., if k = ∞ then
Search(∞) = LS(t)) and uses no space. We also introduce
some binary variables (see Figure 2). Variable xf,k,` asso-
ciates MDs and indices, i.e., this variable equals 1 if we insert
MD f into index (k, `). Variable yc,k,` indicates which of the

constructed indices is the cheapest one to perform a similar-
ity query for a given combination c. Variable zk,l indicates
which indices from (K, L) are constructed.

xf,k,` =

{
1 if f belongs to (k, `),
0 if not.

yc,k,` =

{
k if (k, `) is the cheapest

index s.t. c ∈ (k, `)
0 if not.

zk,` =

{
1 if index (k, `) exists,
0 if not.

Figure 2: Binary variables for the model.

Given these variables and parameters, we describe the
constraints of the problem. Firstly, the space constraint:

∑
k,l

Space(k) · zk,l ≤ S. (1)

We ask that every combination is indexed (notice that, in
the worst case, this happens in the special index (∞, `)):

(∀c)
∑
k,`

yc,k,` = 1. (2)

Note that this only guarantees that exactly one index is
considered in the search cost of the combination, but not
that this index has the minimum search cost. We will show
that the actual cost will be associated to the cheapest index.

Now, we set the relation between a combination and MDs.
A combination belongs to an index if all the MDs in the
combination are in the index:

(∀c, k, `) yc,k,` ≤ 1

t

∑
f∈c

xf,k,`. (3)

The right-hand size of the equation is strictly smaller than
1 (thus it forces yc,k,` = 0) unless the t MDs in combination
c are present in the index (k, `).

We need to fix the capacity of an index in number of MDs.
If a feasible solution contains an index of size k, then this
index contains at most k MDs:

(∀k, `)
∑

f

xf,k,` ≤ k · zk,`. (4)

Finally, we write the target function (to be minimized),
which is the expected search cost:

E =
∑
c,k,`

pc · Search(k) · yc,k,`. (5)

At this point we can show that, as long as the search cost
increases with the size of the indices, the cost of a com-
bination c is counted only in the cheapest index. Indeed,
if the MDs of a combination c are present in two indices
(k, `), (k′, `′) such that k < k′ and yc,k′,`′ = 1, then setting
yc,k,` = 1, yc,k′,`′ = 0 is a feasible solution with a strictly
smaller cost, i.e., in the optimum, for any fixed c, the vari-
able yc,k,` equals 1 if and only if index (k, l) contains com-
bination c and Search(k) is minimum.



We observe that the size of the above described BLP is
polynomial in the input of the problem. The number of
variables is |F||(K, L)|+|C||(K, L)|+|(K, L)| and the number
of constraints is 1 + |C|+ |C||(K, L)|+ |(K, L)|. Our model
shows that finding the optimum iSet is NP. However, BLPs
are NP-Hard [8, 10] to be solved in the general case, so
having this formulation does not provide an efficient way to
find the optimum. Nevertheless, standard methods such as
the Branch and Bound [9] can be used for small instances
or to obtain an approximation of the optimal solution.

Also note that our model is general in the sense that it can
be used with any index structure that supports multi-metric
spaces. One only needs to define the Search and Space cost
functions appropriately, depending on which index structure
is used. It is even possible to use different index structures
for different index sizes: The BLP ensures that the opti-
mal solution will be found, given the set of parameters (cost
functions, available space, and probabilities for the combi-
nations). Thus, if more efficient index structures for multi-
metric spaces are created, our proposed model can always
take advantage of them, finding the optimal use of the avail-
able space for building indices.

5. BOUNDS FOR THE OPTIMAL SOLUTION
Now we analyze upper and lower bounds for the mini-

mum expected search cost. Let P (S) =
∑bS/Space(t)c

i=1 pi

and M(t, S) = min{Search(t + 1), LS(t)}.

Theorem 1. Assume that Search(t) < LS(t), Search(t+
1) > Search(t). Let OPT (S) be the minimum expected
search cost when there is space S for indexing. Then, upper
and lower bounds for the minimum expected search cost are
given by

OPT (S) ≤ Search(t) · P (S) + LS(t) · (1− P (S)), (6)

OPT (S) ≥ Search(t) · P (S) + M(t, S) · (1− P (S)). (7)

Proof. To prove inequality (6), consider the iSet I con-
sisting of bS/Space(t)c indices of size t indexing the combi-
nations with highest probabilities, and that does not index
any other combination. Then E(I) = Search(t) · P (S) +
LS(t) · (1− P (S)), but OPT (S) ≤ E(I), so we are done.

For inequality (7), we distinguish two cases: (i) Either
Search(t+1) ≥ LS(t), in which case no index of size t+1 is
created, so we find ourselves in the case of Section 3.1 (one
can build only indices of size t) and the result follows; or (ii)
Search(t + 1) < LS(t), and therefore the optimum solution
may use indices of different sizes.

Let A∗ = {ci : ci ∈ idx, size(idx) = t in the optimal
solution}, so |A∗| ≤ bS/Space(t)c, and let B = C − A∗.
Recall that msI(ci) is the size of the smallest index that
contains combination ci. If p(A∗) =

∑
ci∈A∗ pci , then

OPT (S) =
∑
ci∈C

Search(msI(ci)) · pi

=
∑

ci∈A∗

Search(t) · pci +
∑

ci∈B

Search(msI(ci)) · pci

≥
∑

ci∈A∗

Search(t) · pci +
∑

ci∈B

Search(t + 1) · pci

= Search(t) · p(A∗) + Search(t + 1) · (1− p(A∗))

Because Search(t + 1) > Search(t), the right side is min-
imized when p(A∗) is maximum. But |A∗| ≤ bS/Space(t)c,
therefore the maximum value of p(A∗) is attained when
|A∗| = bS/Space(t)c, i.e., p(A∗) = P (S), which concludes
the proof.

6. ALGORITHMS FOR SOLVING THE OP-
TIMIZATION PROBLEM

We propose three algorithms to find good solutions for
the optimization problem. In Section 7, we show that our
algorithms find solutions close to the optimum.

Algorithm A.
It starts with I = ∅. On each iteration, the algorithm

decides the best to do between: (a) Adding a new index of
size t (if there is enough available space), and (b) adding a
MD to one of the indices already in I. From both possible
actions, the algorithm selects the one that minimizes the
expected search cost. The algorithm iterates until there is
no more available space or none of the actions improves the
expected search cost.

Algorithm B.
It starts with an iSet that contains indices of size t for all

combinations of t MDs. Then, the algorithm searches two
indices to merge, such that the ratio of the increasement
on the expected search cost and the amount of saved space
is minimal. The merge operation frees some of the space
used by the indices. The algorithm iterates until the used
space for the iSet is equal or smaller than S. Note that
this algorithm only works if S ≥ Space(F ). When S =
Space(F ), it simply returns one index that contains all MDs.
Thus, it is not possible to save space by merging indices as
soon as this solution is reached.

Algorithm C.
This is a slight modification of Alg. A. Instead of starting

with an empty iSet, Alg. C starts with an iSet that con-
tains bS/Space(t)c indices of size t for the most frequently
used combinations. Then, while there is available space, it
tries to expand the indices if this further decreases the ex-

pected search cost. Recall that P (S) =
∑bS/Space(t)c

i=1 pi and
M(t, S) = min{Search(t + 1), LS(t)}.

Theorem 2. Algorithm C finds an iSet whose expected
search cost is at most

Search(t) · P (S) + LS(t) · (1− P (S))

Search(t) · P (S) + M(t, S) · (1− P (S))

times the minimum expected search cost.

Proof. It follows from Theorem 1 and the fact that if it
is not convenient to expand any of the indices of size t, the
algorithm will return as solution bS/Space(t)c indices of size
t for the most probable combinations. This solution has an
expected search cost equal to the upper bound (eq. (6)) of
the optimal solution. Thus, any solution returned by Alg.
C which includes an index of size greater than t must have
an expected search cost lower than the upper bound.

Note that if M(t, s) = LS(t) then Alg. C finds the optimal
solution, and that Theorem 2 holds for an algorithm that



returns the iSet that has minimum expected search cost
value between those returned by Alg. A, B, and C.

7. EXPERIMENTAL EVALUATION
We used a real dataset to compare the iSets obtained by

the BLP and the proposed algorithms. The database used
for our experiments consists of 1,838 3D objects that we col-
lected from the Internet1. This set of 3D objects represents
an heterogeneous mix of models, including several kinds of
animals, planes, cars, plants, chairs, human bodies, and so
on. From this set, 472 objects were manually classified by
shape similarity into 55 different model classes. The rest of
the objects were left as unclassified. Each classified object
of each model class was used as a query object. The objects
belonging to the same model class, excluding the query, were
taken as the relevant objects.

We implemented 16 different types of descriptors to per-
form experiments [3], which includes: statistical descriptors
(3D moments), geometry based descriptors (principal curva-
ture, shape distribution, ray-based, ray-based with spherical
harmonics, shading, complex valued shading, cords-based,
segment volume occupation, voxel based, 3DDFT, rotation
invariant spherical harmonics), image based descriptors (depth
buffer, silhouette), and other approaches (rotation invariant
point cloud descriptor).

We pre-processed the implemented descriptors before com-
puting the combinations. First, we applied a PCA-based
dimensionality reduction that all descriptors have the same
dimensionality, keeping the 32 principal axes of each de-
scriptor. Then, we normalized the coordinate values of all
descriptors in the range [0, 1]. As MDs, we used the Man-
hattan distance on the spaces defined by each descriptor.

To compute the probabilities of using a given combina-
tion of MDs, we used the entropy impurity method [2]. This
method uses a reference dataset, classified in object classes,
to compute the entropy impurity of a MD given a query ob-
ject. For each MD, a similarity query is performed on the
reference dataset. Then, the entropy impurity is computed
looking at the model classes of the retrieved objects: The
entropy impurity is zero if all objects belong to the same
model class, and it has a maximum value if each object be-
longs to a different model class. The t MDs with smallest
entropy impurity values are selected for the combination.
We run our set of queries and let the query processor se-
lect the best combination, storing which combination was
selected for each query. We used the frequency of selection
of each combination as its probability of being selected.

We used a VA-File [12] as index structure. Its associated
space (in bits) and search cost are Space(k) = knb and
Search(k) = O(knb), where b is the number of bits used
for each dimension. For simplicity, we used Search(F ) = 1
(which implies that Search(k) = k

F
if the same number of

bits per dimension is used, as the cost of the VA-File is
linearly dependent on the number of indexed descriptors),
Space(F ) = F (which also implies that Space(k) = k), and
LS(t) = K · Search(t), i.e., to search using a sequential
scan is K times slower than using an index of size t for the
selected combination of MDs. For our computations, we
used K = 10 [12, 6, 11]. These selections were only done
to facilitate the computation of the search cost, and other

1Konstanz 3D model search engine. http://-
merkur01.inf.uni-konstanz.de/CCCC/
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Figure 3: Expected search cost of the optimal iSet,
F = 6, t = 2.

values can be used without affecting the behavior of the iSet
(though, the optimal solution may be different).

We considered two sets of MDs (F = 6 and F = 16)
and two combination sizes (t = 2 and t = 3). For all the
values of F and t, we run our algorithms, calculated the
bounds of Theorem 1, and solved the BLP over different
values of S. Finally, we normalized the results by the search
cost of a single index of size F . To solve the BLP, we used
CPLEX linear optimization solver v. 7.5. Our machine had
two Pentium IV 3.7 Ghz processors running Fedora Linux
4, with 1Gb of RAM.

7.1 Experimental results
Figure 3 shows the results for the BLP in the case F =

6, t = 2 (S = 6, . . . , 12), as well as the search cost of a
single index containing all MDs, the general lower and up-
per bound, and the search cost when each combination is
indexed in its own index of size t (feasible only if S ≥(
6
2

)
· Space(t) = 30). The reduction in the search cost was

noticeable: two times by having twice the space of the näıve
solution (one index of size 6).

Figures 4 and 5 show the solutions obtained by the al-
gorithms for the case F = 6, t = 2 and t = 3, and S =
6, . . . , 12, as well as the optimum value (from the BLP) and
the bounds of Theorem 1. Even though Alg. C did not find
good iSets, it paid off well to have indices of size larger than
t. Indeed, this the reason of the drastic reductions in the
search cost obtained by Alg. C when S is not divisible by t.
The results of the Alg. A for the case t = 3 were optimal in
the whole range of S values.

For the case F = 16, neither the BLP nor Alg. B (for the
case t = 3) output a solution within reasonable time, so we
present results only regarding Alg. A, B (for t = 2), and C,
as well as the theoretical bounds. Figures 6 and 7 show the
results for t = 2 and t = 3 when S = 12, . . . , 24. Here it be-
comes clear that in some important cases the only practical
way to get a good solution is by resorting to approximation
algorithms.

Finally, Table 2 presents the run time of the algorithms
and the BLP for F = 6 and t = 2. The first column shows
the available space S. The second, third, and fourth columns
show the run time for Alg. A, B, and C, respectively. The
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Figure 4: Expected search cost of the iSets returned
by the algorithms, F = 6, t = 2.
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Figure 5: Expected search cost of the iSets returned
by the algorithms, F = 6, t = 3.

fifth column shows the run time of the BLP. It follows that
the timed needed by the BLP increased steeply with S, and
that the algorithms are many orders of magnitude faster
than the BLP.

7.2 Analysis of the results
Among Alg. A, B, and C, the best overall was Alg. A. It

was fast to compute and returned nearly optimal solutions:
About 4% in average from the optimum in the cases where
we could calculate the optimum using the BLP. Alg. B also
returned good iSets (often better than A), but it became
too slow when the total number of combinations T became
large (when F = 16, t = 3, then T =

(
16
3

)
= 560). This is

because the initial solution for Alg. B contains exactly one
index per combination and it is O(T 2) on each iteration.
Also, Alg. B does not work when S < Space(F ). Alg. C
was the fastest, but it produced the worst results compared
to the other algorithms. Its only advantage is that we can
prove a guarantee (Theorem 2) on the relative error of its
output. A good compromise could be to use the iSet with
minimum expected search cost between the outputs of Alg.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 12  14  16  18  20  22  24

E
xp

ec
te

d 
se

ar
ch

 c
os

t

S

Expected search cost, F=16, t=2

Algorithm A
Algorithm B
Algorithm C

Lower bound
Upper bound

Figure 6: Expected search cost of the iSets returned
by the algorithms, F = 16, t = 2.
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Figure 7: Expected search cost of the iSets returned
by the algorithms, F = 16, t = 3.

A and C.
Finally, notice that in Figure 7 Alg. A produced a better

solution for S = 19 than for S = 20. This may happen
when the algorithm does not have more space for building
a new index of size t and therefore it expands an existing
index (S = 19). When more available space is allowed (S =
20), the greedy algorithm may decide to create a new index,
missing a chance to expand afterwards.

8. CONCLUSIONS
We presented methods for finding the set of indices (iSet)

that minimizes the expected search cost of similarity queries
that use dynamic combinations of metric distances. We
modeled the problem as a binary linear program, which
provides us with a tool to find the optimal iSet for small
instances of the problem. We also proposed fast algorithms
that are able to find good sets of indices.

The applicability of the proposed model is not restricted
to the particular cases that we presented in this paper. Our
approach is very flexible in the sense that is not restricted to
a particular index structure or to specific cost functions. The



Table 2: Time (in seconds) needed for the algo-
rithms and the BLP to find the solution (F = 6).

S A B C BLP
6 0.037 0.379 0.052 0.13
7 0.038 0.344 0.028 1.41
8 0.042 0.346 0.025 3.15
9 0.046 0.349 0.030 16.51
10 0.054 0.350 0.025 76.83
11 0.060 0.344 0.032 451.70
12 0.066 0.347 0.025 765.95

model can be used to evaluate different indexing schemas:
It suffices to define the cost functions, available space, and
probabilities of using the combinations, and the model will
return the optimal solution for that setup. Should LS be
replaced by more efficient techniques, our model can still be
applied to find the best indexing. It suffices to change the
corresponding parameter in the model. The same applies if
more efficient index structures become available.

In our future work, we plan to study the complexity of
finding the optimal iSet. We have shown that the problem
is NPO, but its complexity is still unknown. We presume
that finding the optimal iSet is NPO-hard, but we still need
to prove it formally. We also want to improve the proposed
algorithms, by analyzing their weaknesses, and to improve
the presented lower bound for the optimal solution.
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