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Comment on ‘‘Symmetric path integrals for stochastic equations with multiplicative noise’’
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We recall our approach through discretizations for path integrals and its general results for representations of
probability densities. It is shown that the result of Arnold@P. Arnold, Phys. Rev. E61, 6099 ~2000!# is a
particular case of our work.
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In Ref. @1# the author comes back to the problem of t
determination of path integral representations for some p
ability densities. His central result is the Lagrangian in f
mula ~1.13! that corresponds to midpoint discretization. Th
result, which is certainly of interest, is a special case of g
eral results obtained by Langouche, Roekaerts, and Tirap
~LRT in what follows! in Ref. @2#, Sec. 7.6~1982!, where one
can also find references to the original papers of the aut
and to other previous works. We summarize the LRT wo
that concerns the study of Langevin equations of the fo
~sum from 1 ton over repeated indices should be understo
from now on!

dqn

dt
1an@q~ t !#5Ahsm

n @q~ t !#jm~ t !, n51,2, . . . ,n,

~1!

where@j9( l ), m51,2, . . . ,n# are Gaussian white noises wit
zero mean and correlations^jm(t)jn(t8)&5dmnd(t
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2t8) andh measures the intensity of the noise. A discretiz
version of Eq.~1! is

Dqj
n1«an~qj 21

~r ! !5Ahsm
n ~qj 21

~s! !Dwj
m , n51,2, . . . ,n,

j 51,2, . . . ,~N11!. ~2!

One considers the Markov process defined by Eqs.~1! and
~2! in the interval@ t0 ,T#; and we use the notationst j5t0

1 j «, j 51,2. . . . (N11); tN115T; qj
m5qm(t j ); andqj 21

(a)

5qj 211aDqj , where the numbera stands forr or s in Eq.
~2!; Dqj

m5qj
m2qj 21

m ; Dwj
m5wj

m2wj 21
m , andwj

m5wm(t j ),
where wm(t) is the Wiener process defined bydwm/dt
5jm(t). From Eq. ~2! and using three different method
~two of them are used in Ref.@1#! LRT obtained the func-
tional integral representation for the probability density
the limit P(Q,TuQ0 ,t0)5I NuN→` , with @formula ~7.83! in
Ref. @2##
I N5E 1

A~2p«h!n detgmn~qN
~s!!

)
j 51

j 5N

)
m51

m5n dqj
m

A~2p«h!n detgmn~qj 21
~s! !

expH 2« (
j 51

j 5N11 F 1

2h
gmn~qj 21

~s! !S Dqj
m

«
1am~qj 21

~r ! !D
3S Dqj

n

«
1an~qj 21

~r ! !D 2ssnr~qj 21
~s! !]nsgr~qj 21

~s! !S Dqj
g

«
1ag~qj 21

~r ! !D 2r ]mam~qj 21
~r ! !

1
1

2
hs2]msr

n~qj 21
~s! !]nsr

m~qj 21
~s! !G J , ~3!
where we have definedsmn(q), gmn(q), and gmn(q),
through sm

r(q)smn(q)5drn , gmn(q)5smrsnr , gmngnr

5dmr , and one has then thats r
n sgr5dng . The path inte-

gral for P(Q,TuQ0 ,t0) is written formally as

P~Q,TuQ0 ,t0!5E
g~r ,s!

DS q

Adetgmn
D expF2E dt Lg~r ,s!

3S q,
dq

dt D Gd@q~T!2Q#d@q~ t0!2Q0#, ~4!
whereLg(r ,s)(q,dq/dt) can be read from Eq.~3! which is the
definition of Eq. ~4!. After using the identitysr

n]nsgr5
2sgr]nsn

r , we have

Lg~r ,s!S q,
dq

dt D5
1

2h
qmnS dqm

dt
1am~q! D S dqn

dt
1an~q! D

1ssgr]nsnrS dqg

dt
1ag~q! D2r ]mam~q!

1
1

2
hs2]msn

r]nsmr. ~5!
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The indexg(r ,s) in Eq. ~4! stands for the discretizatio
involved in the definition of the path integral that depen
here on two parameters~r,s! and is completely specified b
Eq. ~3!. The Lagrangian is also labeled withg since it obvi-
ously depends on the discretization, one is using to define
functional integral@2#. Expression~5! reduces forr 5s5 1

2

~midpoint discretization! to the result in Ref.@1#. We make
now several remarks that are important in a paper dea
with discretization problems in path integrals:

~1! The Markov process defined by Eqs.~1! and ~2! de-
pends ons but not onr @the reason for this is the well-know
relation (Dqj )

2'O(e) of diffusion processes#. This means
that when one calculates the functional integral in Eq.~4! all
dependence inr must cancel. This property can be verified
each order in a perturbation expansion of Eq.~4! ~see, Ref.
@3#! and rigorous results confirming the work of LRT can
found in Ref.@4#. This means that, we can putr 50 in the
discretized form~3! of Eq. ~4! and the result will be the
conditional probability density of the Markov process d
fined by Eqs.~1!,~2! with sn

r(q) discretized inqj 21
(s) . We

recall that s50 and s5 1
2 correspond to the Ito and Sta

tonovic interpretation, respectively~see Ref.@5#!.
~2! The discretization dependence, of functional integra

was exhaustively studied by LRT~see, Ref.@2#! and, in par-
ticular, the relation to the ordering of operators@6# when one
introduces an operator formalism as it is done for exampl
quantum mechanics.

~3! It is stated in Ref.@1# that the midpoint discretization
is ‘‘natural’’ since it allows the use of standard calculus in t
action. This is true for a term linear in the derivativesdqm/dt
of a path but not in the dominant term that is quadratic in
derivatives. Once again this is due to (Dqj )

2'O(e) that is
also related to the fact that nondifferentiable paths h
probability one. If one looks to point transformations in t
action*Lg(q,dq/dt)dt, one immediately concludes that on
cannot use the usual rules of calculus in the action@2,7,8,9#
and that the transformation must be done in the discrete
sion ~see, Chap. VI of Ref.@2# and, especially, Sec. 6.4 fo
covariant discretizations!. One has in general that a discre
zation associated with a correspondence rule cannot be
same before and after a formal change of variables in
path integral, a statement that is a translation of the w
known result of quantization theory that states that the r
tion between an operator theory and ac-number theory can-
not be given by one and the same correspondence rule b
and after a nonlinear canonical transformation is done. F
.
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this last point of view there is nothing ‘‘natural’’ in the mid
point discretization~see Ref.@8# for a discussion of this spe
cific point!, and this is also the case of perturbation expa
sions where the prepoint discretization gives often simp
ways of calculation@10#.

~4! Functional integrals are calculated in most cases
interest as perturbative expansions. These expansions ar
well defined since the value of some equal time contracti
is not defined@2,3,11,12#. The solution of this problem is the
use of the concept of discretization as defined by LRT t
tells us how to give definite values to the ambiguous qu
tities.

~5! Covariant definitions of path integrals, which are n
based on discretizations, have been proposed by Feyn
@13,14# and by Graham@15#. However, if one wants to make
perturbative calculations it follows from the work of LR
@2,3# that it is necessary to determine the discretization t
corresponds to the Lagrangian appearing in the configura
space path integral~the problems of undefined quantities th
appear in configuration space are solved in Chap. X of R
@2#!. We remark that a related problem, which also leads t
Lagrangian, is the determination of the most probable p
for a diffusion process@16,17#. This Lagrangian, sometime
called the Onsager-Machlup function, is such that its Eu
Lagrange equations determine the most probable path a
is known to coincide with the Lagrangian of Graham’s de
nition of path integrals that is different from the Feynm
Lagrangian in curved spaces by a factor1

6 R, whereR is the
curvature determined by the metricgmn(q) defined after Eq.
~3!.

~6! The preference for a given discretization can be d
tated by the simplifications obtained for a given proble
this is the case of the exact calculation by LRT of the pro
gator on the sphereS3 ~Chap. XII of Ref. @2#!. It is also
important to recall that the use of the discretization appro
allowed LRT to calculate for the first time the higher ord
corrections to the WKB approximation in curved spac
@18#. We finally point out that the use of Fourier series
calculate functional integrals as it has been proposed in R
@19# does not eliminate the discretization problems that j
appear in a different form@20#.
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