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Abstract. We study the asymptotic behaviour of the transition density of a Brownian mo-
tion in D, killed at ∂D, whereDc is a compact non polar set. Our main result concern
dimensiond = 2, where we show that the transition densitypD

t (x, y) behaves, for larget ,
as 2

π
u(x)u(y)(t (log t)2)−1 for x, y ∈ D, whereu is the unique positive harmonic function

vanishing on(∂D)r , such thatu(x) ∼ log |x|.

1. Introduction and main results

LetD ⊂ IRd, d ≥ 2 be a domain with compact complementK = Dc. In this work
we study the asymptotic behaviour of the transition density of a Brownian motion
in D, killed at the boundary∂D.

Let us fix some notations.Xt denotes a Brownian motion inIRd and IPx the
probability distribution ofXt starting fromx. For x, y ∈ D, t ≥ 0, pD

t (x, y)

denotes the transition density ofXt , killed at∂D andTD = inf {t : Xt ∈ ∂D} is the
killing time. ByLwe mean the infinitesimal generator for the process killed at∂D.
For smooth functionsϕ vanishing at the boundary we haveLϕ = 1

21ϕ. Existence
and regularity of the transition density of killed Brownian motion are fully studied
in Chung and Zhao [CZ]. Also there is a large literature for killed diffusions. For
one dimensional diffusions see Mandl [M] and Collet et al. [CMS1]. For diffusions
constrained to compact domains see Pinsky [P], and for some planar domains with
finite volume see Bañuelos and Davis [BD]. We have recently obtained ratio limit
results for a Brownian motion killed at the boundary on some unbounded domains
[CMS2], namely Benedicks’ domains.

If K is a polar set then IPx{TD < ∞} = 0 for all x ∈ D (see [D] 2.IX.5)
andpD

t (x, y) is the density of a standard Brownian motion fort ≥ 0, x, y ∈ D.
Therefore the problem is interesting only whenK is non polar. Hence we assume
K is a compact non polar set and we call these type of domainsexterior domains.
We denote by(∂D)r the regular points of∂D (for definition see [CZ], section 1.6).

P. Collet: C.N.R.S., Physique Théorique, Ecole Polytechnique, 91128 Palaiseau Cedex,
France. e-mail:collet@pth.polytechnique.fr

S. Mart́ınez, J. San Martı́n: Universidad de Chile, Facultad de Ciencias Fı́sicas y Mateḿaticas,
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An important case in this work isU the complement of unit ballB = {x ∈ IRd :
|x| ≤ 1} for dimensiond = 2 and 3, where explicit results are available.

Positive harmonic functions will play a major role in our study, in particular
their special behaviour at infinity. In general the set of positive harmonic functions
vanishing at the boundary is well known only for some special domains. For exam-
ple see the work of Ancona [A1,A2], Benedicks [Be] and the recent work of Ioffe
and Pinsky [IP]. For exterior domains harmonic functions can be well described, see
Brelot [Br]. In the next result we fix an harmonic function for each planar exterior
domain.

Lemma 1.1. LetD be an exterior domain in the plane. Then there is a unique non
negative non trivial harmonic functionu tending to zero on(∂D)r and such that

lim
|x|→∞

u(x)

log |x| = 1 . (1.1)

Moreover any non negative non trivial harmonic functionv tending to zero on
(∂D)r is proportional tou

Proof. For an exterior domainD there is at least one non negative non trivial
harmonic function tending to zero on(∂D)r (see [D]). Moreover, each such function
behaves for largex like a log |x| + b + o(1) (see [Br]), wherea > 0. Assumeu1
andu2 are harmonic functions satisfying (1.1). In particulara = 1 for both of them.
Thenu∗ = u1 − u2 is a bounded harmonic function tending to zero on(∂D)r . We
haveIP x{XTD

/∈ (∂D)r , TD < ∞} = 0 (see [C]), then

|u∗(x)| ≤ IEx

(|u∗(Xt

)|, TD > t
) ≤ ‖u∗‖∞ IPx

(
TD > t

)
,

which converges to zero ast tends to∞, becauseK is a Borel non polar set (see
[D] 2.IX.10). Uniqueness ofu follows at once. Finally, letv be a non negative
non trivial harmonic function tending to zero on(∂D)r . Thenv has the asymptotic
a log |x| + b + o(1) and the result follows by noticing that1

a
v satisfies the same

properties asu, and thereforev = au. ut
In dimensiond = 2, for each exterior domainD we denote byuD, or simply

by u if there is no possible confusion, the unique function defined in the above
Lemma.

The asymptotic behaviour of the transition kernelpD
t is described in the fol-

lowing result whose proof will be given in section 3.

Theorem 1.2. LetD be an exterior domain ofIR2. For x, y in D we have

lim
t→∞ t (log t)2pD

t (x, y) = 2

π
u(x) u(y).

The convergence is uniform on compact subsets ofD. ut
SinceK is non polar the Green functionGD(x, y) = ∫∞

0 pD
t (x, y)dt is finite

for everyx, y ∈ D. Moreover, from [PS] Proposition 4.4 the following limit exists
and defines a harmonic function

∀ x ∈ D lim
|y|→∞

GD(x, y) = WD(x) .
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This functionWD is also related to the asymptotic behaviour of the survival prob-
ability IPx

(
TD > t

)
. In fact, Theorem 4.16 in [PS] asserts that

lim
t→∞ log t IPx

(
TD > t

) = 2πWD(x) .

We shall give an elementary proof for the asymptotic behaviour of the survival
probability which also shows thatu(x) = πWD(x).

Proposition 1.3. LetD be an exterior domain ofIR2. For anyx ∈ D we have

lim
t→∞ log t IPx

(
TD > t

) = 2 u(x) .

The convergence is uniform on compact subsets ofD.

Proof. Using the behaviour ofu(y) for largey, for x ∈ D andt large enough it is
verified

u(x) =
∫
D

pD
t (x, y) u(y) dy ≥

∫
|y|>√

t/ log t

pD
t (x, y) u(y) dy

≥ (1 − o(1))(log
√

t − log logt)

∫
|y|>√

t/ log t

pD
t (x, y) dy

≥ (1 − o(1))(log
√

t − log logt)IPx

(
TD > t

)
−(1 − o(1))(log

√
t − log logt)

∫
|y|≤√

t/ log t

pD
t (x, y) dy

≥ (1 − o(1))(log
√

t − log logt)IPx

(
TD > t

)− o(1),

where the last inequality follows from the Gaussian boundpD
t (x, y) ≤ (2πt)−1

e− 1
2t

|x−y|2. We conclude that

lim sup
t→∞

log t IPx

(
TD > t

) ≤ 2 u(x) .

Similarly we get

u(x) ≤
∫

|y|<√
t log t

pD
t (x, y) u(y) dy + o(1)

≤ (1 + o(1)) log(
√

t log t)

∫
|y|<√

t log t

pD
t (x, y) dy + o(1)

≤ (1 + o(1)) log(
√

t log t)IPx

(
TD > t

)+ o(1) .

It follows at once that

lim inf
t→∞ log t IPx

(
TD > t

) ≥ 2 u(x) ,

and the assertion is proven. The uniform convergence on compact sets follows from
the uniformity of the Gaussian bounds. ut
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Ford ≥ 3 it is easy to see that

u(x) = lim
t→∞ IPx(TD > t)

is a non-trivial positive harmonic function, vanishing in(∂D)r and satisfying
lim

|x|→∞
u(x) = 1. Moreover it follows from [Br] that any bounded harmonic func-

tion has a constant limit at infinity. Thereforeu is the unique positive harmonic
function vanishing in(∂D)r and converging to 1 at infinite.u will denote this func-
tion for exterior domains inIRd for d ≥ 3. For the complement of the unit ball this
harmonic function isu(x) = (

1 − |x|2−d
)
. We shall prove the following result.

Theorem 1.4. LetD be an exterior domain ofIR2, d ≥ 3. For anyx, y ∈ D we
have

lim
t→∞ t

d
2 pD

t (x, y) = (2π)−
d
2 u(x)u(y) .

The convergence is uniform on compact subsets ofD. ut
Remarks.For planar exterior domains the conditional distribution ofXt has the
asymptotic behaviour (see Theorem 1.2 and Proposition 1.3)

∀ y ∈ D lim
t→∞ t log t IPx(Xt ∈ dy | TD > t) = WD(y)dy .

On the other hand, Theorem 1.4 can be written in the equivalent form

lim
t→∞

pD
t (x, y)

pIRd

t (x, y)
= IPx(TD = ∞)IPy(TD = ∞) .

As it was pointed out by the referee, this limit has the following probabilistic
interpretation: the probability that a bridge fromx to y in time t does not hit the
compact non polar setK in IRd (d ≥ 3) tends, ast goes to∞, to the probability
that two independent Brownian motions starting fromx andy do not hitK.

A similar interpretation can be made for planar exterior domains, but stated in
the ratio limit form

lim
t→∞

pD
t (x, y)/pIR2

t (x, y)

IPx(TD > t)IPy(TD > t)
= 1 .

2. Preliminary results

In the following lemmas we establish monotone properties and ratio limits for the
heat kernel. A basic tool we use is the parabolic Harnack’s inequality (see [T]) which
allows us to compare the kernel at different points of the domain. We state it in the
following form. For any compact setA ⊂ D there is a constantC = C(A) such
that for anyδ ≤ d(A, ∂D)/2, for any pointsz, z′, z′′ in A satisfyingd(z, z′) < δ

andd(z′, z′′) < δ, and for anyt > δ2 it is verified

pD
t (z, z′) ≤ CpD

t+δ2(z
′, z′) ≤ C3pD

t+3δ2(z, z
′′) .

The next technical lemma allows us to get convergence along subsequences.
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Lemma 2.1. Assumert (x) > 0 satisfies the heat equation in a domainD ⊆ IRd .
Letat > 0 satisfies sup

t≥t0,|s|≤2
at+s/at < ∞ for somet0 > 0 and such that(at rt (x) :

t ≥ t0) is bounded on compact sets. Then(at rt (x) : t ≥ t0 + 1) is equicontinuous
on compact sets.

Proof. Fix a compact setA contained inD. We takeA′ another compact set inD
whose interior containsA (A′ is a security region aroundA in the use of Harnack’s
inequality). Taket > t0 andm = [t ] the integer part oft . The functionamrs(x)

satisfies the heat equation for(s, x) ∈ (m − 1, m + 2) × D. On the other hand the
functiona[t ]rs(x) with (t, s, x) ∈ [t0 +1, ∞)× ([t ] − 1

2, [t ] + 3
2)×A′, is bounded,

with a bound only depending onA′. From [T] Theorem 2.2, we get the existence
of constantsC, δ ∈ (0, ∞) only depending onA′ such that

|amrt (x) − amrt (y)| ≤ C|x − y|δ ,

for anyx, y ∈ A and for anyt ≥ t0 + 1. From the hypothesis we conclude that
(at rt (x) : t ≥ t0 + 1) is Hölder continuous onA with constants only depending on
A′, from which the result follows. ut
Lemma 2.2. LetD be an exterior domain ofIRd . For x, y ∈ D the ratio
pD

t+s(y, y)/pD
t (y, y) increases towards1, ast tends to∞. In particular pD

t (y, y)

is decreasing witht . Also the ratiopD
t+s(x, y)/pD

t (x, y) converges to1, ast tends
to ∞.

Proof. We only give a sketch of the proof. For more details see [CSM2] Lemmas
2.1-4. Ifϕ is a nonnegative nonzero function belonging toC∞

0 (D), then the function
〈ϕ, etLϕ〉 is log-convex. In fact, from the spectral theorem for bounded self adjoint
semigroups, there is a positive finite measureµ (which depends onϕ) such that

〈ϕ, etLϕ〉 =
∫ 0

−∞
eλt dµ(λ) . (2.1)

Therefore

∂t 〈ϕ, etLϕ〉
〈ϕ, etLϕ〉 =

∫ 0
−∞ eλtλ dµ(λ)∫ 0
−∞ eλt dµ(λ)

and
∂2
t 〈ϕ, etLϕ〉
〈ϕ, etLϕ〉 =

∫ 0
−∞ eλtλ2 dµ(λ)∫ 0
−∞ eλt dµ(λ)

.

Schwarz’s inequality implies that∂2
t log

(〈ϕ, etLϕ〉) ≥ 0 . From the equality

∂t log

(
〈ϕ, e(t+s)Lϕ〉

〈ϕ, etLϕ〉

)
=
∫ t+s

t

∂2
τ log

(〈ϕ, eτLϕ〉) dτ ,

we get that the ratio〈ϕ, e(t+s)Lϕ〉/〈ϕ, etLϕ〉 increases int for any fixeds ≥ 0.
From (2.1) it is deduced that this ratio is bounded by 1. It is easy to see that
the limit of this ratio is of the forme−λ0s for someλ0 ≥ 0, which may depend
on ϕ. Using Harnack’s inequality one proves that in factλ0 does not depend on
ϕ. Since the spectral measure charges any small interval to the left of zero, it
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is deduced thatλ0 = 0. Taking a sequence of smooth functions tending to the
Dirac measure concentrated ony, we prove that the ratiopD

t+s(y, y)/pD
t (y, y) is

monotone increasing. Again by Harnack’s inequality we conclude that the limit of
this ratio is 1. The second limit follows by a polarization argument. ut

Observe that our theorems imply lim
t→∞ pD

t (x, y)/pD
t (y, y) = u(x)/u(y), for

anyx andy in D and uniformly on compact sets. Since we need this result for the
proof of Theorem 1.2, we establish it in this special case.

Lemma 2.3. LetD be an exterior domain ofIR2. For x, y ∈ D we have

lim
t→∞ pD

t (x, y)/pD
t (y, y) = u(x)/u(y) .

The convergence is uniform on compact subsets ofD.

Proof. Fix y0 ∈ D large enough such that there exists an hyperplaneL separating
y0 andK. We assumey0 is to the right ofL. For anyx on the left ofL we denote
by x̄ its reflected point with respect toL. We putx̄ = x for pointsx at the right or
onL. By a reflection argument (see Figure 1) for allt > 0

pD
t (x, y0) ≤ pD

t (x̄, y0) .

Applying Harnack’s inequality several times if necessary, we get

pD
t (x, y) ≤ C1p

D
t+δ(x, y0) ≤ C1p

D
t+δ(x̄, y0) ,

Fig. 1. Reflection used to have a control up to the boundary
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whereC1, δ > 0 only depend ony, y0. Another use of Harnack’s inequality allow
us to obtain

pD
t (x, y) ≤ C1C

|x̄|+1
2 pD

t (y0, y0) ≤ C1C3C
|x̄|+1
2 pD

t (y, y) , (2.2)

whereC2, C3 only depend ony, y0. Notice that in the last inequalities we have
used the monotonicity of the heat kernel along the diagonal. Since|x| and|x̄| are
of the same order we conclude that

∀ t ≥ t0(y), pD
t (x, y) ≤ C

|x|+1
4 pD

t (y, y) , (2.3)

for some constantC4 which only depends ony. Hence, the family of functions, on

the ‘x’ variable,
(
pD

t (x, y)/pD
t (y, y) : t > t0(y)

)
is bounded on compact subsets

of D, and therefore from Lemma 2.1 it is equicontinuous. We get that any sequence
converging to∞ contains a subsequencetn ↗ ∞ such that

lim
tn→∞

pD
tn
(x, y)

pD
tn
(y, y)

= V (y, x)

for some continuous functionV (y, •), where the convergence is uniform on com-
pact subsets ofD. Notice thatV (y, y) = 1 and thereforeV (y, •) is non trivial.

From the semigroup property we get for anys > 0,

pD
tn+s(x, y)

pD
tn
(y, y)

= pD
tn
(x, y)

pD
tn
(y, y)

pD
tn+s(x, y)

pD
tn
(x, y)

=
∫
D

pD
tn
(z, y)

pD
tn
(y, y)

pD
s (x, z)dz .

Using (2.3), the Gaussian bound onpD, the Dominated Convergence Theorem and
Lemma 2.2 we obtain

V (y, x) =
∫
D

V (y, z)pD
s (x, z)dz .

It follows thatV (y, •) is a non trivial harmonic and positive function vanishing at
(∂D)r . Therefore, from Lemma 1.1V (y, •) is proportional tou, that isV (y, x) =
a(y)u(x). SinceV (y, y) = 1 we getV (y, x) = u(x)/u(y). We conclude the limit
does not depend on the particular subsequence, then the result follows. ut

3. Proof of Theorem 1.2

In this section we use properties of special functions. We refer to [GR] and the
notation therein for the formulas and properties of these functions.

We start by proving the result forU, the complement of the unit ball. For this
purpose let us consider the transition densityqt (r, s) of (|Xt |) killed at ∂U, with
respect to the measuresds in (1, ∞). Thus, for|x0| = r > 1 ands > 1,

qt (r, s)s ds = IPx0(|Xt | ∈ ds, TU > t) .

We have

qt (r, s) =
∫ 2π

0
pU

t (r, eiθ s)dθ .
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Observe that
∫ 2π

0 pU
t (r, eiθ s)dθ = ∫ 2π

0 pU
t (x, eiθ s)dθ for x ∈ U such that|x| = r.

qt is symmetric in its argumentsqt (r, s) = qt (s, r) for all r, s > 1, therefore the
associated semigroup is self-adjoint inL2((1, ∞), r dr).qt is the kernel of the semi-
groupetL0 with L0 = 1

2(∂2
r + 1

r
∂r ), and Dirichlet boundary condition atr = 1.

Let us prove that the kernelqt has the following asymptotic behaviour

lim
t→∞ t (log t)2qt (r, s) = 4 logr logs . (3.1)

From [CJ] formula 8, page 378, we have

qt (r, s) =
∫ ∞

0
e−ρ2t/2ϕ(ρ, r, s)ρ dρ , (3.2)

where
ϕ(ρ, r, s) = U0(ρr)U0(ρs)

J 2
0 (ρ) + N2

0(ρ)
, (3.3)

andU0(ρr) = J0(ρr)N0(ρ)−J0(ρ)N0(ρr). HereJ0, N0 are the Bessel functions
of first and second kind. We separate the integration

∫∞
0 in (3.2) into three pieces∫∞

0 = ∫ t
− 1

2−δ

0 + ∫ t
− 1

2+δ

t
− 1

2−δ
+ ∫∞

t
− 1

2+δ
, for δ > 0 small. Observe thatϕ(ρ, r, s) is a

bounded function, then the third piece iso(1/t (log t)2). For the first and the second
piece we need to find the dominant contribution of the integrand nearρ = 0. Using
formulas 8.402, 8.403 of [GR] and some algebra left to the reader, we get the
following estimate

ρϕ(ρ, r, s) = ρ
logr logs

(logρ)2
+ O

(
ρ/(logρ)3) .

Hence the first piece behaves likeo(1/t (log t)2), and the second piece like
4 logr logs(1/t (log t)2), proving (3.1).

Let us prove the corresponding limit forpU. Since qt (r, s) = ∫ 2π

0
pU

t (x, seiθ )dθ , we deduce from Harnack’s inequality and Lemma 2.1 that for any
sequence converging to∞ there exists some subsequencetn ↗ ∞ such that

lim
n→∞ tn(log tn)

2pU
tn
(x, y) = V (x, y) ,

for some continuous strictly positive functionV . From Harnack’s inequality we
also get that forx fixedV (x, y) is comparable to log|y|. As in the proof of Lemma
2.3 it follows thatV (x, y) is harmonic iny, it is not trivial and it vanishes at
(∂D)r . ThereforeV (x, y) = a(x) log |y|. Due to the symmetry of the problem
we haveV (x, y) = H log |x| log |y|, for some constantH > 0 which may de-
pend on the subsequence. Integration on the angle gives lim

n→∞ tn(log tn)
2qtn(r, s) =

2πH logr logs. From (3.1) we obtainH = 2/π . Then the limit does not depend
on the subsequence and we conclude

lim
t→∞ t (log t)2pU

t (x, y) = 2

π
log |x| log |y| ,

which proves Theorem 1.2 for the unit ball.
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For proving Theorem 1.2 in its full generality we need the asymptotic behaviour
of ∂t IP y(TU > t), which is given in the next result.

Lemma 3.1. For y ∈ U we have

lim
t→∞ t (log t)2∂t IP y(TU > t) = −2 log|y| .

Proof. From the equalityIP y(TU > t) = ∫∞
1 qt (|y|, r)r dr and the Dominated

Convergence Theorem we get

∂t IP y(TU > t) =
∫ ∞

1
∂tqt (|y|, r)r dr

= 1

2

∫ ∞

1
(∂2

r + 1

r
∂r )qt (|y|, r)r dr = −1

2
∂rqt (|y|, r)|r=1+ .

From formula (3.3) and the functional relations for the Bessel functionsJ ′
0 = −J1,

N ′
0 = −N1 we obtain

∂rϕ(ρ, r, s) = −ρ(J1(ρr)N0(ρ) − J0(ρ)N1(ρr))U0(ρs)

J 2
0 (ρ) + N2

0(ρ)
.

Using as before formulas 8.402 and 8.403 combined with 8.441.2 and 8.444.2 in
[GR], we obtain

∂rϕ(ρ, r, s)|r=1+ = logs

(logρ)2
+ O((1/ logρ)3) .

Then, by integrating overρ and making analogous computations as above we find
that

lim
t→∞ t (log t)2∂rqt (|y|, r)|r=1+ = 4 log|y| ,

and the result follows. ut
LetD be an exterior planar domain. We consider a ball large enough to contain

the compact setK = Dc in its interior. By scaling and translation we can assume
that this is the unit ballB. The strong Markov property implies that for anyx and
y in U and for anyt > 0 the following relation betweenpD andpU holds

pD
t (x, y) − pU

t (x, y) =
∫ t

0
ds

∫
∂U

pD
s (x, z)IP y

(
XTU

∈ dz, TU ∈ d(t − s)
)

.

(3.4)

In the following steps of the proof we assume thaty is large enough. This
assumption will be removed after obtaining estimate (3.7) below. We remind that
u is the unique harmonic function given by Lemma 1.1 for the domainD. Let
u∗ = maxz∈∂U u(z). From the growth condition onu, we can assumey is large
enough such thatu∗/u(y) < 1/4. We also assume that|y| > 2. From (3.4) we have

pD
t (y, y) = pU

t (y, y) +
∫ t

0

∫
∂U

IPy

(
XTU

∈ dz, TU ∈ d(t − s)
)

pD
s (z, y) .
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Lemmas 2.2 and 2.3 give the following estimates for larget∫ t

t/2

∫
∂U

IPy(XTU
∈ dz, TU ∈ d(t − s))pD

s (z, y)

≤ C1(t, y)
u∗

u(y)
pD

t/2(y, y) IPy(TU < t/2) ≤ C1(t, y)
u∗

u(y)
pD

t/2(y, y) ,

whereC1(t, y) can be chosen such thatC1(t, y) −−→
t→∞

1.

Now we study the integral over the range [0, t/2]. From the standard Gaussian
bound we obtain that the heat kernelpD

s (z, y) is bounded on the range 0≤ s ≤
1, z ∈ ∂U, |y| > 2. Hence Lemma 3.1 gives

∫ 1

0

∫
∂U

IPy

(
XTU

∈ dz, TU ∈ d(t − s)
)

pD
s (z, y)

≤ C2

∫ 1

0

(−∂ζ IP y(TU > ζ)|ζ=t−s

)
ds ≤ C3(t, y)

log |y|
t (log t)2

,

whereC2 is an absolute constant, andC3(t, y)can be chosen such thatC3(t, y) −−→
t→∞

C2. On the other hand from the Harnack’s inequality we deduce the existence of
some finite absolute constantsC4, δ > 0 such that for anyz∗ ∈ ∂U the following
estimate holds∫ t/2

1

∫
∂U

IPy

(
XTU

∈ dz, TU ∈ d(t − s)
)
pD

s (z, y)

≤ C4

∫ t/2

1
pD

s+δ(z
∗, y)

∫
∂U

IPy

(
XTU

∈ dz, TU ∈ d(t − s)
)

= C4

∫ t/2

1
pD

s+δ(z
∗, y)

(−∂ζ IP y(TU > ζ)|ζ=t−s

)
ds .

Using again Lemma 3.1 we get the existence ofC5(t, y) satisfying C5(t, y) −−→
t→∞

2

and∫ t/2

1

∫
∂U

IPy

(
XTU

∈ dz, TU ∈ d(t − s)
)
pD

s (z, y)

≤ C4C5(t, y)
log |y|

t (log t)2

∫ ∞

0
pD

s (z∗, y)ds = C4C5(t, y)
log |y|

t (log t)2
GD(z∗, y) .

Since lim
|y|→∞

GD(z∗, y) = WD(z∗) < ∞, we obtain the existence of an absolute

constantC6 such that for every large enoughy and large enought ( t > t0(y)) it is
verified

pD
t (y, y) ≤ pU

t (y, y) + C1(t, y)
u∗

u(y)
pD

t/2(y, y)

+ (C6C5(t, y) + C3(t, y))
log |y|

t (log t)2
,
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then

t (log t)2pD
t (y, y) ≤ t (log t)2pU

t (y, y)

+ ( t (log t)2

t
2(log t

2)2
C1(t, y)

u∗

u(y)

) t

2
(log

t

2
)2pD

t/2(y, y)

+ (C6C5(t, y) + C3(t, y)) log |y| . (3.5)

Given that 2C1(t, y) u∗
u(y)

−−→
t→∞

2 u∗
u(y)

≤ 1/2, we obtain the upper bound

lim sup
t→∞

t (log t)2pD
t (y, y)

(
1 − 2u∗

u(y)

)
≤ 2

π
(log |y|)2 + C7 log |y| , (3.6)

where for exampleC7 = 2C6 + C2 will be enough. FrompD
t (y, y) ≥ pU

t (y, y)

we get the lower bound

lim inf
t→∞ t (log t)2pD

t (y, y) ≥ 2

π
(log |y|)2 . (3.7)

Now we fix somey0 verifying the above requirements. Using Harnack’s inequality
and the reflection principle as in the proof of Lemma 2.3 (see (2.2)), it is easy to
see that for some constantC8 = C8(y) the following inequality holds

pD
t (y, x) ≤ C

|x|+1
8 pD

t (y0, y0) for any x ∈ D .

Using (3.5) (withy0 instead ofy) we obtain that the family of functions(t (log t)2pD
t

(y, •) : t > t0) is bounded on compact sets. From Lemma 2.1 we deduce that this
family is equicontinuous on compact sets. Hence for any sequence increasing to∞
there exists a subsequencetn ↗ ∞ such that

tn(log tn)
2pD

tn
(y, x) −−→

n→∞
V (y, x)

uniformly on compacts sets inD × D.
From the Dominated Convergence Theorem we get

V (y, x) =
∫

pD
s (x, z)V (y, z)dz .

SincepD ≥ pU necessarilyV (y, y) ≥ 2
π
(log |y|)2 > 0. We conclude thatV (y, x)

is harmonic inx, it does not vanish, and goes to 0 whenx approaches(∂D)r . From
Lemma 1.1,V (y, x) = m(y)u(x) for some functionm(y). Symmetry implies
V (y, x) = Hu(y)u(x) for some constantH > 0 (which may depend on the
subsequence(tn)).

Using this expression in (3.6) and (3.7), we obtain for largey

2

π
(log |y|)2 ≤ H(u(y))2 ≤ 2

π

(
(log |y|)2 + C7 log |y|

)(
1 − 2u∗

u(y)

)−1
.

Sinceu(y) behaves asymptotically as log|y|, we obtainH = 2
π

. Therefore it
follows the convergence oft (log t)2pD

t (x, y) to 2
π
u(x)u(y), uniformly on compacts

sets inD × D. ut
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4. Proof of Theorem 1.4

First, we prove the result for the unit ballB. We reason by induction on the dimen-
siond ≥ 3 and we start by proving it ford = 3.

Denote byBt a one dimensional Brownian motion and putτL = inf {t : Bt =
L}. From Lemma 5.2.8 in [K], we have forA ∈ σ(|X•|)

IP(A | |X0| = r, |Xt | = s) = IP(A | B0 = r, Bt = s, τ0 > t) .

SinceTU = inf {t : |Xt | = 1} we find forx ∈ U, |x| = r ands > 1

IPx(TU > t | |Xt | = s) = IP(TU > t | |X0| = r, |Xt | = s)

= IP(τ1 > t |B0 = r, Bt = s, τ0 > t)

= IP(τ0 > t |B0 = r − 1, Bt = s − 1)

IP(τ0 > t |B0 = r, Bt = s)

= sinh((r − 1)(s − 1)t−1)

sinh(rst−1)
.

The latter converges to(1 − r−1)(1 − s−1) ast → ∞. Then

qt (|x|, s)s2 =
∫

S2
pU

t (x, sσ )s2dσ = IPx(|Xt | = s, TU > t)

= sinh((|x| − 1)(s − 1)t−1)

sinh(|x|st−1)
s2
∫

S2
pIR3

t (x, sσ )dσ . (4.1)

Since lim
t→∞ pIR3

t (x, y)/pIR3

t (0, 0) = 1, Harnack’s inequality implies the existence

of C > 0, such that fort large enough and(x, y) in a compact subset ofU × U

C ≤ pU
t (x, y)

pIR3

t (0, 0)
≤ 1 .

Lemma 2.1 asserts that any sequence increasing to∞ has a subsequencetn ↗ ∞
for which there exists a constantH > 0 such that

lim
tn→∞

pU
tn
(x, y)

pIR3

tn
(0, 0)

= Hu(x)u(y) .

This last equality holds because the limiting function is a bounded harmonic func-
tion in x andy, vanishing at∂U. Integrating this relation onS2 and using (4.1)
givesH = 1. Then there is no dependence on the subsequence and we conclude
lim

t→∞ pU
t (x, y)/pIR3

t (0, 0) = u(x)u(y), from which the result holds for the unit ball

in IR3.
Now we make the induction ond ≥ 3. We denotexd ∈ IRd , Xd

t the Brownian
motion inIRd ,Ud the complement of the unit ball inIRd, T d = TUd

andpd = pUd .
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As for dimensiond + 1 we putxd+1 = (xd, x) ∈ IRd+1 andXd+1
t = (Xd

t , Bt ),
whereBt is a one dimensional Brownian motion. We have

pd+1
t ((xd, x), (yd, y)) = IP(xd ,x)(X

d
t = yd, Bt = y, T d+1 > t)

≥ IP(xd ,x)(X
d
t = yd, Bt = y, T d > t)

= IPxd (X
d
t = yd, T d > t)IPx(Bt = y) (4.2)

= pd
t (xd, yd)pIR

t (x, y)

By induction, there existsC > 0 such that

C ≤ pd+1
t ((xd, x), (yd, y))

pIRd+1

t ((xd, x), (yd, y))
≤ 1

Again by Lemma 2.1, any sequence converging to∞ has a subsequencetn ↗ ∞
for which there existsH , which may depend on the subsequence, such that

lim
n→∞

pd+1
tn

((xd, x), (yd, y))

pIRd+1

tn
((xd, x), (yd, y))

= H
(
1 − |(xd, x)|1−d

)(
1 − |(yd, y)|1−d

)
.

But (4.2) implies this limit is at least(1 − |xd |2−d)(1 − |yd |2−d). Letting |xd | →
∞, |yd | → ∞ we find H ≥ 1. ObviouslyH ≤ 1, thenH = 1. As above we
deduce that

lim
t→∞

pd+1
t ((xd, x), (yd, y))

pIRd+1

t ((xd, x), (yd, y))
= (

1 − |(xd, x)|1−d
)(

1 − |(yd, y)|1−d
)

.

Therefore the induction is verified. By scaling and translation the result holds for
the complement of any ball.

Now we complete the proof for any exterior domain. LetB(R) be a ball of
radiusR, centered at the origin, containing the compact setDc. We denoteU(R) =
(B(R))c. Then

pU(R) ≤ pD ≤ pIRd

(4.3)

By the same arguments as before any sequence increasing to∞ contains a subse-
quencetn ↗ ∞ for which there existsH > 0 such that

lim
n→∞

pD
tn
(x, y)

pIRd

tn
(x, y)

= Hu(x)u(y) .

Since

lim
n→∞

p
U(R)
tn

(x, y)

pIRd

tn
(x, y)

=
(
1 − Rd−2

|x|d−2

)(
1 − Rd−2

|y|d−2

)
,

we concludeH = 1 after (4.3) and making|x| → ∞, |y| → ∞. ut

Acknowledgements.We thank the referee for his/her valuable comments. The authors ac-
knowledge support from project ECOS-CONICYT and FONDAP in Applied Mathematics.
S.M. and J.S.M. are also funded by FONDECYT and Cátedra Presidencial fellowship.
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