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Abstract. We study the asymptotic behaviour of the transition density of a Brownian mo-
tion in &, killed at 9%, whereZ* is a compact non polar set. Our main result concern
dimensiond = 2, where we show that the transition densi@(x, y) behaves, for large,
as2u(x)u(y)(r(logn)?~* for x, y € Z, whereu is the unique positive harmonic function
vanishing on(0%)", such that(x) ~ log|x|.

1. Introduction and main results

LetZ c R?, d > 2 be adomain with compact compleméht= Z°. In this work
we study the asymptotic behaviour of the transition density of a Brownian motion
in 2, killed at the boundary <.

Let us fix some notationsY, denotes a Brownian motion iiR¢ and P, the
probability distribution ofX, starting fromx. Forx,y € &, t > 0, p/(x,y)
denotes the transition density &f, killed ato 2 andT, = inf{z : X; € 0%} isthe
killing time. By . we mean the infinitesimal generator for the process killédzat
For smooth functiong vanishing at the boundary we ha#y = 3 A¢. Existence
and regularity of the transition density of killed Brownian motion are fully studied
in Chung and Zhao [CZ]. Also there is a large literature for killed diffusions. For
one dimensional diffusions see Mand| [M] and Collet et al. [CMS1]. For diffusions
constrained to compact domains see Pinsky [P], and for some planar domains with
finite volume see Bdielos and Davis [BD]. We have recently obtained ratio limit
results for a Brownian motion killed at the boundary on some unbounded domains
[CMS2], namely Benedicks’ domains.

If K is a polar set then RTy < oo} = 0 for all x € & (see [D] 2.IX.5)
and p/(x, y) is the density of a standard Brownian motion for 0,x,y € 2.
Therefore the problem is interesting only wh&ns non polar. Hence we assume
K is a compact non polar set and we call these type of doneitesior domains.

We denote byd2)" the regular points af & (for definition see [CZ], section 1.6).
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An important case in this work i% the complement of unit balg = {x € R :
|x| < 1} for dimensiond = 2 and 3, where explicit results are available.

Positive harmonic functions will play a major role in our study, in particular
their special behaviour at infinity. In general the set of positive harmonic functions
vanishing at the boundary is well known only for some special domains. For exam-
ple see the work of Ancona [A1,A2], Benedicks [Be] and the recent work of loffe
and Pinsky [IP]. For exterior domains harmonic functions can be well described, see
Brelot [Br]. In the next result we fix an harmonic function for each planar exterior
domain.

Lemma 1.1. LetZ be an exterior domain in the plane. Then there is a unique non
negative non trivial harmonic functiamtending to zero ond%)" and such that

u(x) _

|x|—00 Iog |x| -

Moreover any non negative non trivial harmonic functioriending to zero on
(02)" is proportional tou

(1.1)

Proof. For an exterior domair there is at least one non negative non trivial
harmonic functiontending to zero 82)" (see [D]). Moreover, each such function
behaves for large like alog|x|+ b + o(1) (see [Br]), where: > 0. Assumeuy
andu are harmonic functions satisfying (1.1). In particulae 1 for both of them.
Thenu* = u1 — uz is a bounded harmonic function tending to zero(o@)". We
havelP{X1, ¢ (09)", T, < oo} = 0 (see [C]), then

lu*(x)| < Ex(|u*(Xt)|» Ty > t) < [lu*loo Px(TFz > t) )

which converges to zero agends tooo, because is a Borel non polar set (see
[D] 2.1X.10). Uniqueness of: follows at once. Finally, leb be a non negative
non trivial harmonic function tending to zero ¢®<Z)". Thenv has the asymptotic
alog|x| + b + o(1) and the result follows by noticing thégtv satisfies the same
properties a&, and therefore = au. O

In dimensiond = 2, for each exterior domai we denote by:?, or simply
by u if there is no possible confusion, the unique function defined in the above
Lemma.

The asymptotic behaviour of the transition kerpél is described in the fol-
lowing result whose proof will be given in section 3.

Theorem 1.2. Let Z be an exterior domain aR?. For x, y in Z we have

t[}rgot (logn)?p? (x,y) = ; u(x) u(y).

The convergence is uniform on compact subsef. of O

SinceK is non polar the Green functiod” (x, y) = [y~ p{ (x, y)dt is finite
for everyx, y € 2. Moreover, from [PS] Proposition 4.4 the following limit exists
and defines a harmonic function

VxeZ lm GZ(x,y) =) .
[y|—o00
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This function¥"4 is also related to the asymptotic behaviour of the survival prob-
ability P (7 > 1). In fact, Theorem 4.16 in [PS] asserts that

lim logt P, (Ty > 1) =27 4 (x) .
—>00

We shall give an elementary proof for the asymptotic behaviour of the survival
probability which also shows thatx) = 7% 4 (x).

Proposition 1.3. Let Z be an exterior domain aRk?. For anyx € & we have
lim logr P, (Ty > t) =2 u(x) .
—>0o0

The convergence is uniform on compact subsefg. of

Proof. Using the behaviour ai(y) for largey, for x € & andt large enough it is
verified

u(x)=/ pfj(x,y)u(y)dyZ/ p (x, y)u(y)dy
7 lyl>+/7/logt
> (1—o(1))(log~/t — log logr) py(x. y)dy
ly|>+/7/ logt

> (1—o(1)(log+/t — loglogt)P, (T > t)
—(1-o0(1))(log v — log logr) / pi (x, y)dy
lyl<+/7/logt
> (1—o(1)(log/t —loglogn)Px(T5 > 1) — o(1),

where the last inequality follows from the Gaussian bopﬁcﬂx, y) < 2nt)~t
¢ %= We conclude that

limsup logz Py (75 > 1) < 2u(x) .

t—0o0

Similarly we get
u(x) < / p? (e, y) u(y) dy +o(1)
lyl<+/1logt

< (1+0(1)) log(+/ log1) p/ (x.y)dy +o(d)
[yl<+/tlogt

< (1+ o) log(v/tlog)Py(Ty > t) + o(1) .
It follows at once that

liminf logs Py (T > 1) > 2u(x) ,
11— 00

and the assertion is proven. The uniform convergence on compact sets follows from
the uniformity of the Gaussian bounds. O
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Ford > 3itis easy to see that

u(x) = t&moo P.(Ty > 1)

is a non-trivial positive harmonic function, vanishing {8%)" and satisfying
lim u(x) = 1. Moreover it follows from [Br] that any bounded harmonic func-

|x]—00

tion has a constant limit at infinity. Thereforeis the unique positive harmonic
function vanishing ind%)" and converging to 1 at infinita.will denote this func-
tion for exterior domains ifR? for d > 3. For the complement of the unit ball this
harmonic function i« (x) = (1 — |x|2_d). We shall prove the following result.

Theorem 1.4. Let Z be an exterior domain alk?, d > 3. For anyx, y € 4 we
have

lim t%p?(x, y) = (2n)_%u(x)u(y) .
—00
The convergence is uniform on compact subsefs. of O

RemarksFor planar exterior domains the conditional distributionXgfhas the
asymptotic behaviour (see Theorem 1.2 and Proposition 1.3)

Vyeg tlim tlogt Py(X; €dy | Tg > t) = Wa(y)dy .
—> 00
On the other hand, Theorem 1.4 can be written in the equivalent form

pl(x,y)
d
PR (x, y)

As it was pointed out by the referee, this limit has the following probabilistic
interpretation: the probability that a bridge fromnto y in time ¢ does not hit the
compact non polar set in IRY (d > 3) tends, as goes tooo, to the probability
that two independent Brownian motions starting frerandy do not hitK .

A similar interpretation can be made for planar exterior domains, but stated in
the ratio limit form

lim

—0o0

= Pu(Ty = 00)Py(Ty = ) .

o 2
im i N/PEy)
t=00 Py (Tg > )Py(Tg > 1)

2. Preliminary results

In the following lemmas we establish monotone properties and ratio limits for the
heatkernel. A basic tool we use is the parabolic Harnack’s inequality (see [T]) which
allows us to compare the kernel at different points of the domain. We state it in the
following form. For any compact set C & there is a constar@ = C(A) such

that for anys < d(A, 89)/2, for any pointg, 7/, z” in A satisfyingd(z,z’) < §
andd(z',z") < &, and for anyr > 82 it is verified

9 / 9 o 3,9 "
P (2.2) =Cp (7)) = C°p) 50(2.2") .

The next technical lemma allows us to get convergence along subsequences.
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Lemma 2.1. Assume (x) > O satisfies the heat equation in a domainc IR<.

Leta; > Osatisfies sup a;15/a; < oo forsomeg > 0and such thata,r; (x) :
t>10,|s|<2

t > to) is bounded on compact sets. Thepr;(x) : t > ro + 1) is equicontinuous

on compact sets.

Proof. Fix a compact sefi contained inz. We takeA’ another compact set i
whose interior containd (A’ is a security region aroundl in the use of Harnack'’s
inequality). Take > to andm = [¢] the integer part of. The functiona,,r,(x)
satisfies the heat equation 1@t x) € (m — 1, m + 2) x 2. On the other hand the
functionagrs (x) with (7, s, x) € [0+ 1, 00) x ([1] — 3, [1]+ 3) x A’, is bounded,
with a bound only depending o&'. From [T] Theorem 2.2, we get the existence
of constant<”, § € (0, oo) only depending om’ such that

|amre(x) — amre(y)| < Clx — y|°

foranyx,y € A and for anytr > 19 + 1. From the hypothesis we conclude that
(a;ri(x) :t > to+ 1) is Holder continuous or with constants only depending on
A’, from which the result follows. O

Lemma 2.2. LetZ be an exterior domain aR?. For x, y €  the ratio

pits(v, ¥)/pi (v, y) increases towards, as: tends tooo. In particular py’ (y, y)
is decreasing with. Also the ratiOp;‘fﬂ (x,¥)/p? (x,y) converges td, ast tends
to oco.

Proof. We only give a sketch of the proof. For more details see [CSM2] Lemmas
2.1-4.1fp is a nonnegative nonzero function belonging'f (), then the function

(@, ¢'Z ) is log-convex. In fact, from the spectral theorem for bounded self adjoint
semigroups, there is a positive finite measur@vhich depends op) such that

0
(p, e p) = / HMdu(h) . (2.1)
—0o0
Therefore
dlp. o) oM rdu) ang ke ee) S22 du(n)
tg - /0 1% = 0 .
(@, e o) [oao @ dp(h) (g, "7 p) Jo @ dp(r)

Schwarz's inequality implies thaf log ((¢, ¢’ ¢)) > 0 . From the equality

(@, e ) o 2
vioa( % gt = [ ati e

we get that the ratidg, et ¢)/(p, ¢'? ¢) increases in for any fixeds > 0.

From (2.1) it is deduced that this ratio is bounded by 1. It is easy to see that
the limit of this ratio is of the forme=0¢ for someig > 0, which may depend

on ¢. Using Harnack’s inequality one proves that in fagtdoes not depend on

@. Since the spectral measure charges any small interval to the left of zero, it
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is deduced thaty = 0. Taking a sequence of smooth functions tending to the
Dirac measure concentrated gnwe prove that the rati@ﬁs (v, ¥)/p? (y,y)is
monotone increasing. Again by Harnack’s inequality we conclude that the limit of
this ratio is 1. The second limit follows by a polarization argument. O

Observe that our theorems imptlxoLim?(x, W/ pZ (., y) = u(x)/u(y), for

anyx andy in 2 and uniformly on compact sets. Since we need this result for the
proof of Theorem 1.2, we establish it in this special case.

Lemma 2.3. Let Z be an exterior domain aR2. For x, y € Z we have
lim p (e, y)/p/ (v, y) = u(x)/u(y) .
11— 00

The convergence is uniform on compact subsets. of

Proof. Fix yo € & large enough such that there exists an hyperplaseparating
yo andK . We assumey is to the right ofL. For anyx on the left of L we denote
by x its reflected point with respect to. We putx = x for pointsx at the right or
on L. By a reflection argument (see Figure 1) forza# 0

p7(x, y0) < pY (X, yo) .

Applying Harnack’s inequality several times if necessary, we get

py (x,y) < C1plis(x, o) < C1plis(¥, yo) .

h |
S\ s x

Yo

Fig. 1. Reflection used to have a control up to the boundary



Asymptotic behaviour of a Brownian motion on exterior domains 309

whereC1, § > 0 only depend o1y, yg. Another use of Harnack’s inequality allow
us to obtain

P (x,y) < C1CE T p7 (o, yo) < C1C3CY 7 (v, y) (2.2)

whereC,, C3 only depend ory, yo. Notice that in the last inequalities we have
used the monotonicity of the heat kernel along the diagonal. Sin@nd|x| are
of the same order we conclude that

Vi), plny) <Citplony) (2.3)

for some constant, which only depends on. Hence, the family of functions, on
the ‘x’ variable, (p (x, y)/pt (v, y) it > to(y)) is bounded on compact subsets

of 2, and therefore from Lemma 2.1 it is equicontinuous. We get that any sequence
converging taco contains a subsequenge, ” oo such that

. pZ( y)
lim —2—

=V, x)
=00 p(y, y)

for some continuous functiovi(y, e), where the convergence is uniform on com-
pact subsets a¥. Notice thatV (y, y) = 1 and thereforé/ (y, e) is non trivial.
From the semigroup property we get for any O,

Plas (e y) PO, Y) il (X, y) _/ Pz, y) 9(x. 2dz
Py plO.y) pl(x.y) PR ACE)

Using (2.3), the Gaussian bound pfi, the Dominated Convergence Theorem and
Lemma 2.2 we obtain

vmm=/vmmﬁumﬁ.
7

It follows that V (y, ) is a non trivial harmonic and positive function vanishing at
(02)". Therefore, from Lemma 1.¥ (y, o) is proportional tat, that isV (y, x) =
a(y)u(x). SinceV (y, y) = 1 we getV (y, x) = u(x)/u(y). We conclude the limit
does not depend on the particular subsequence, then the result follows. 0O

3. Proof of Theorem 1.2

In this section we use properties of special functions. We refer to [GR] and the
notation therein for the formulas and properties of these functions.

We start by proving the result fa#, the complement of the unit ball. For this
purpose let us consider the transition densgjty, s) of (| X;|) killed at 9%, with
respect to the measusés in (1, co). Thus, for|xg| = r > 1 ands > 1,

qr(r,s)sds = Py, (I1X/| €ds, Ty > t) .
We have

2 ) .
%mw=/ pll(r, e%s)do .
0
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Observe tha}p0 pl(r, e?s)do = fO pl(x, e'?s)do for x € % suchthatx| = r.

q; is symmetric in its argumentg (r, s) = ¢q,(s,r) for all r,s > 1, therefore the

associated semigroup is self-adjoinLif((1, cc), r dr). ¢, is the kernel of the semi-

groupe’ 0 with Zo = 3(32 + 19,), and Dirichlet boundary condition at= 1.
Let us prove that the kerng} has the following asymptotic behaviour

timoot(logt)qu(r, s) = 4logrlogs . (3.1)
From [CJ] formula 8, page 378, we have
® 2
q(r,s) = / e P 2p(p, 1 5)pdp (3.2)
0
where
o(p.r.5) = Uo(pr)Uo(ps) (3.3)

J§() + N§(p)
andUg(pr) = Jo(pr)No(p) — Jo(p) No(pr). HereJy, Ng are the Bessel functions
of first and second kind. We separate the integrafﬁnin (3.2) into three pieces

N 1,
=+ :*12*5 +f 1.,» for 8 > 0 small. Observe tha(p. 1. s) is a

bounded function, then the third pieceid/r (logr)?). For the first and the second
piece we need to find the dominant contribution of the integrandmeag. Using

formulas 8.402, 8.403 of [GR] and some algebra left to the reader, we get the

following estimate

logrlogs
(log p)2

Hence the first piece behaves likel/z(logr)?), and the second piece like
4logrlogs(1/t(logt)?), proving (3.1).

p9(p,r,5) = p 0(p/(logp)?) .

Let us prove the corresponding limit fop”. Since ¢;(r,s) = fOZ”
pl(x,se'®)do, we deduce from Harnack’s inequality and Lemma 2.1 that for any
sequence converging te there exists some subsequence” oo such that

Ilm tn(|09tn)2p7/(x »=Vx,y ,

for some continuous strictly positive functidn. From Harnack’s inequality we
also get that fox fixed V (x, y) is comparable to logy|. As in the proof of Lemma
2.3 it follows thatV (x, y) is harmonic iny, it is not trivial and it vanishes at
(02)". ThereforeV (x, y) = a(x)log|y|. Due to the symmetry of the problem
we haveV(x, y) = Hlog|x|log|y|, for some constant/ > 0 which may de-
pend on the subsequence. Integration on the angleﬁq_i\)/oeosrn lilmg t,,)zq;n (r,s) =

27 H logrlogs. From (3.1) we obtairH = 2/7. Then the limit does not depend
on the subsequence and we conclude

2 U

2
lim_r(logn)®p/’ (x. y) = ;|OQIXI|09|y| ;

which proves Theorem 1.2 for the unit ball.
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For proving Theorem 1.2 inits full generality we need the asymptotic behaviour
of 8;IP ,(Ty > t), which is given in the next result.

Lemma 3.1. For y € % we have
lim 1(10g1)28,IP (T > t) = —2log|y| .
—00

Proof. From the equalitylP (T > t) = ff" q:(ly|, r)r dr and the Dominated
Convergence Theorem we get

o0
0 IP(Ty > 1) = / diarlyl. o dr
1

1 (> , 1 1
=5 | @+ Taa iyl dr = ~Saay s
2 1 r 2
From formula (3.3) and the functional relations for the Bessel functigns —Jx,
N{ = —N1 we obtain
_ p(1(pr)No(p) — Jo(p)N1(pr))Uo(ps)
JE(p) + NE(p)

Using as before formulas 8.402 and 8.403 combined with 8.441.2 and 8.444.2 in
[GR], we obtain

ar(p()o»r, S) =

logs 3
0,00, 1, 8) |t = ——— 1/1 .
(P, 1, 8)|r=1+ (l0g )2 + 0((1/log p))
Then, by integrating oves and making analogous computations as above we find
that

lim ¢(1ogt)?d.q |y, r)l,—1+ = 4log|y| ,
11— o0
and the result follows. O

Let & be an exterior planar domain. We consider a ball large enough to contain
the compact sek = Z°¢ in its interior. By scaling and translation we can assume
that this is the unit balfs. The strong Markov property implies that for anyand
y in % and for anyr > 0 the following relation betweep” and p” holds

_ p 4 9
pl(x, ) — pl(x,y) =f0 ds/d pl(x, )Py (X7, €dz, Ty €d(t —s)) .
o
(3.4)
In the following steps of the proof we assume thais large enough. This
assumption will be removed after obtaining estimate (3.7) below. We remind that
u is the unigue harmonic function given by Lemma 1.1 for the dontairLet

u* = maxeyy u(z). From the growth condition on, we can assume is large
enough such that* /u(y) < 1/4. We also assume thgt| > 2. From (3.4) we have

t .
Py . y) =p"0.y) +f0 / P, (X7, €dz, Ty € d(t —9)) p](z. ) .
U
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Lemmas 2.2 and 2.3 give the following estimates for large
t pu
/ 2 / Py (X, € dz, Ty € d(t — )p? (2, y)
/2 Jou

=< Cl(t y) ( )pt/z(y y) P} (T/]/ < f/Z) < Cl(f y)

whereC1(¢, y) can be chosen such th@t(z, y) — 1.

—00
Now we study the integral over the range {@2]. From the standard Gaussian
bound we obtain that the heat kerngf(z, y) is bounded on the range @ s <
1,z € 0%, |yl > 2. Hence Lemma 3.1 gives

pres )P;}z(y, )

1 .
/O / P, (X1, €dz, Ty €d(t —)) pj(z.y)
U

log|y|

1
< Cz/(; (—S;Py(Ty/ > {)I;:r—s) ds < Ca(t, y)—t(logt)z )

whereC>is an absolute constant, a@g(¢, y) canbe chosensuchtt@i(z, y) —

r—
C>. On the other hand from the Harnack’s inequality we deduce the existence of
some finite absolute constartg, § > 0 such that for any™ € 9% the following
estimate holds

12 |
/ / P, XT,/ edz, Ty ed(t —S)) pf(z,y)
ou
t/
< C4/ plis (@, y)/ v (X1, €dz, Ty €d(t —5))
1
t/
=C4/1 Pis @ 3) (0 Py (Ty > ©)le=i—s) ds .

Using again Lemma 3.1 we get the existenc€sit, y) satisfying Cs(¢, y) —> 2
—00

and
t/2 .
f / P, (X7, €dz, Ty €d(t —5)) p{ (2, y)
U

logly| [ _ gyl o, «
[og )2 py (&, y)ds = CaCs(1, y)t(logt)ZG @y

< CaCs(t, y)

Since lim G7(z*, y) = W 4(z*) < oo, we obtainthe existence of an absolute

|y]—o00

constantCg such that for every large enoughand large enough( ¢ > 1(y)) itis
verified

Pl y) <Py + Calt, y)—— p[/z(y y)

log|y|
t(logn)? ’

u(y)
+ (CeCs(t, y) + C3(z,y))
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then

t(logn)?py (y,y) < t(logt)zp”(y y)

t(logr)? 9
(S t0g 37 g,)z Cat o )) (109 5)2p5(3, )
+(CeCs(t, y) + Ca(t, ) logy] - (3.5)
Given that Z'1(z, y) -~ u(}) 2;;” < 1/2, we obtain the upper bound
; 2 9 u*
lim supt (log )2 p; (y,y)(l— ) = Zaogiyn? + Crloglyl . (36)
—00 ( )

where for exampl&C; = 2Cg + C2 will be enough. Fronp/ (y,y) > p/(y,y)
we get the lower bound

2
liminf £(log#)®p/ (y, y) = =(log|y)? . (3.7)
t—00 T

Now we fix someyg verifying the above requirements. Using Harnack’s inequality
and the reflection principle as in the proof of Lemma 2.3 (see (2.2)), it is easy to
see that for some constafig = Cg(y) the following inequality holds

p? (v, x) < CEp7 (vo, yo) forany x € 7

Using (3.5) (withyp instead ofy) we obtain that the family of functions(log)? p;

(y,®) :t > tg) is bounded on compact sets. From Lemma 2.1 we deduce that this
family is equicontinuous on compact sets. Hence for any sequence increasing to
there exists a subsequenge” oo such that

tn(|09tn) pln (y X) — V(y x)
n— oo
uniformly on compacts sets 1 x 2.
From the Dominated Convergence Theorem we get

V(y, x) =/p?(x,z)V(y,z)dz .

Sincep? > p” necessarily/ (y, y) > %(Iog|y|)2 > 0. We conclude that (y, x)
is harmonic inx, it does not vanish, and goes to 0 wheapproache$ %)". From
Lemma 1.1,V(y,x) = m(y)u(x) for some functiorm(y). Symmetry implies
V(y,x) = Hu(y)u(x) for some constan# > 0 (which may depend on the
subsequenceg;,)).

Using this expression in (3.6) and (3.7), we obtain for large

2 2 2u* -1

Z(loglyD? = H(u()? < =((ogly)? + Clog|yl) (1~ =)

g T u(y)
Sinceu(y) behaves asymptotically as lpg, we obtainH = % Therefore it

follows the convergence oflog t)2p?(x, y)to %u(x)u(y), uniformly on compacts
sets inZ x 9. O
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4. Proof of Theorem 1.4

First, we prove the result for the unit ba#l. We reason by induction on the dimen-
siond > 3 and we start by proving it faf = 3.

Denote byB, a one dimensional Brownian motion and pit = inf{r : B, =
L}. From Lemma 5.2.8 in [K], we have fo¥ € o (| X,.|)

P/ | |Xol=r|X|=5)=P(Z | Bo=r,B, =5,10>1) .
SinceTy, = inf{t : |X,| = 1} we find forx € %, |x| = r ands > 1
Py (Tu > t| |Xi| =s) = P(Ty > t]| | Xol =1, |X¢| = 5)
= P(tl >t|Bop=r, B =s, A t)
_PE%>¢Bo=r—1,B =5-1)
P(z0 > ¢|Bg=r, B; =)
_sinh((r — 1)(s — Dr Y
B sinh(rst—1)

The latter converges td — r—1)(1 — s~1) ast — oo. Then

qr (x|, s)s% = /2 pl(x,s0)s%do = Py (|X,| =5, Ty > 1)
S

. (s — 1)1
- e 2 [ oo . ()

Since lim pF(x, y)/pR(0,0) = 1, Harnack’s inequality implies the existence
—00
of C > 0, such that for large enough angk, y) in a compact subset &f x %

U
< P (x,y) <

< <1.
pt (07 O)

Lemma 2.1 asserts that any sequence increasing las a subsequengg ' oo
for which there exists a constat > 0 such that

w
lim M = Hu(x)u(y) .

ty—>00 Ptﬂfg (0, 0)

This last equality holds because the limiting function is a bounded harmonic func-
tion in x andy, vanishing aB7. Integrating this relation o5 and using (4.1)
givesH = 1. Then there is no dependence on the subsequence and we conclude
tango pl(x, y)/pth3(0, 0) = u(x)u(y), from which the result holds for the unit ball
in IR3.

Now we make the induction ash > 3. We denote? € IR, X¢ the Brownian
motioniniR?, %, the complement of the unitballi®?, 79 = Ty, andp? = p”d.
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As for dimensiond + 1 we putxdt! = (x?, x) € R andx?*! = (x4, B)),
whereB;, is a one dimensional Brownian motion. We have

P ), (64, 3)) = P (X4 = y4, B =y, T > 1)
> P (X! =y, B =y, T > 1)
=Pu(X{ =y, T">DP(B,=y)  (4.2)
=, yHpR(x, y)
By induction, there exist§' > 0 such that
““((x 0, 0% )

(@, x), (y4, y))

Again by Lemma 2.1, any sequence convergingddias a subsequengg / co
for which there exist$7, which may depend on the subsequence, such that

im p;f,“«x" x), (4, )
n=oo pRIL(xd ), (4, )

But (4.2) implies this limit is at leagtl — [x¢|2~9)(1 — |y¢|>~9). Letting |x?| —
o0, |y?| — oo we find H > 1. ObviouslyH < 1, thenH = 1. As above we
deduce that

C<

=H@1 - 0 )1 — 1% It .

fm 2D, 00 g aeay
100 PR (xd | x), (v, y))

Therefore the induction is verified. By scaling and translation the result holds for
the complement of any ball.

Now we complete the proof for any exterior domain. I2¢tR) be a ball of
radiusR, centered at the origin, containing the compactgetWe denote (R) =
(#(R))°. Then

1— 1% »r) .

p 9 d
p"® < p? < pk (4.3)

By the same arguments as before any sequence increasiagtmtains a subse-
guence, ' oo for which there exist#/ > 0 such that

lim M = Hu(x)u(y) .
n—00 ptn (X y)
Since R
Py RI-2 R-2
oY 2y P E i
n=00 plRY(x, y) | x| [yl
we concludef = 1 after (4.3) and makingx| — oo, |y| — oo. ]
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