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SUMMARY

We study the existence and uniqueness of strong solutions for the equations of non-homogeneous
asymmetric �uids. We use an iterative approach and we prove that the approximate solutions constructed
by this method converge to the strong solution of these equations. We also give bounds for the rate of
convergence. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Asymmetric �uid models a particular class of �uids where microstructure is relevant. These
�uids are important in application and interesting in themselves. For example polymeric sus-
pensions, liquid cristals or animal blood can be represented as a viscous medium with indi-
viduals particles of di�erent shapes suspended in it. The general model for this kind of �uids
can be of great complexity [7]. However, in the particular case of a viscous �uid with rigid
spherical particles suspended that may rotate independently of the rotation and movement of
the �uid give rise to the asymmetric �uids, also called micropolar �uids, as has been estab-
lished by A.C. Eringen [6]. Mathematically, this is a signi�cant and a simple generalization
of the classical Navier–Stokes model.
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In this paper, we study the existence and uniqueness of strong solutions for the equations of
a non-homogeneous viscous incompressible asymmetric �uid. These equations are considered
in a bounded domain �⊂R3, with boundary �, in a time interval [0; T ]. Let u(x; t)∈R3,
w(x; t)∈R3, �(x; t)∈R and p(x; t)∈R, denote respectively, the velocity, angular velocity of
internal rotation, density and pressure at a point x∈� and at time t∈[0; T ]. Then, the governing
equations are given by

�
9u
9t + �(u · ∇)u− (�+ �r)�u+∇p = 2�r rotw + �f

div u = 0

�
9w
9t + �(u · ∇)w − (ca + cd)�w − (c0 + cd − ca)∇divw + 4�rw = 2�r rot u+ �g

9�
9t + (u · ∇)� = 0

(1)

in QT :=�× (0; T ), with the following boundary and initial conditions
u(x; t) = 0; w(x; t)=0 on �× (0; T )
u(x; 0) = u0(x); w(x; 0)=w0(x) in �
�(x; 0) = �0(x) in �

(2)

Here, f(x; t) and g(x; t) are respectively, the densities of the linear and angular momentum.
The conditions on u0; w0 and �0 are given in Section 2. The positive constants �; �r ; c0; ca; cd
characterize the isotropic properties of the �uid; � is the usual Newtonian viscosity; �r ; c0; ca; cd
are the new positive viscosities related to the asymmetry of the stress tensor resulting from
the presence of the �eld of internal rotation w; these constants satisfy c0 + cd¿ca. In this
paper, ∇, �, div and rot denote, the gradient, Laplacian, divergence and rotational operators
respectively (we also denote 9u=9t by ut); the ith component of (u · ∇)v in the Cartesian
co-ordinates is given by [(u · ∇)v]i=

∑3
j=1 uj(9vi=9xj).

For the derivation of equations (1)–(2), and for its physical interpretations, see Refer-
ences [1,2] and the recent book by Lukaszewicz [3]. We observe that this model of �uids
includes the classical Navier–Stokes equations as a particular case, which has been thoroughly
studied by several authors (see, for instance, the classical books of Ladyzhenskaya [7], Lions
[5] and Temam [6] and the references therein).
It also includes the reduced model of the non-homogeneous Navier–Stokes equations, which

has been less studied than the previous case (see, for instance, References [7–13]).
Concerning the generalized model of an asymmetric �uid as considered in this paper,

Lukaszewicz [14] established the existence of local weak solutions for (1)–(2) using lin-
earization and a �xed point theorem. In the same paper, Lukaszewicz mentioned the possibil-
ity of proving the existence of strong solutions (under the hypothesis that the initial density
is separated from zero) by the techniques used in References [15,16] (linearization and �xed
point theorems, under the assumption of constant density).
The �rst result on the existence and uniqueness of strong solution (local and global) for

problem (1)–(2) was proved by Boldrini and Rojas-Medar [17] using the spectral semi-
Galerkin method and compactness arguments. The rate of convergence of this method is also
established in Reference [17].
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In this paper, we use another approach to establish the existence and uniqueness of a strong
solution. We use here an iterative process, by considering a sequence of linear problems. For
each one of these problems it is easy to show the existence and uniqueness of a strong solution
(for instance, by using the spectral semi-Galerkin method as in Reference [17]). Then, we
obtain a priori estimates for the sequence generated by the iterative process. Also we show
that the sequence is a Cauchy sequence in an appropriate Banach space, and consequently, we
obtain the strong convergence. From these convergences, the existence of a strong solution
for the original non-linear problem (1)–(2) is easily obtained. The uniqueness of the solution
is also proved. Further, we obtain bounds for the rate of convergence.
We hope that the technique developed here can be adapted to the full discretization case.

This question is presently under investigation.
This paper is organized as follows: in Section 2, we state some well-known results that will

be used in the rest of the paper; and also describe the approximation method and state the result
of existence and uniqueness of a strong solution and the bounds for the rate of convergence.
In Section 3, we derive a priori estimates for the linearized systems. In Section 4, we establish
that the solutions of the sequence of linearized problems is a Cauchy sequence and we prove
our main result. Section 5 provides an existence and uniqueness result of the pressure.
Finally, as it is usual in this context, in order to simplify the notation we will denote by

C, C�, C1; : : : ; M , M1; : : : generic positive constants depending only on the domain and the
�xed data of the problem.

2. PRELIMINARIES

Let � be a bounded domain in R3 with a smooth boundary �; T¿0 be an arbitrary real
number. The functions going to be considered in this paper are either R or R3-valued, and
sometimes we will not distinguish between them in our notation. This will be clear from the
context itself. We will consider the usual Sobolev spaces

Wm;q(D)= {f∈Lq(�) | ‖9�f‖Lq(D)¡∞; |�|6m}
for m∈N; 16p¡∞, D=� or D=QT , with the usual norm. When q=2 we denote Hm(D)=
Wm;2(D) and Hm

0 (D)= closure of D(D) in Hm(D). We put

V(�) = {v∈D(�)3 | div v=0 in �}
H = closure of V(�) in L2(�)3

V = closure of V(�) in H 1(�)3

It is well-known that

V = {v∈H 1
0 (�) | div v=0 in �}

We denote by V ∗ the dual space of V and by H−1 the dual space of H 1
0 (�). We recall the

Helmholtz decomposition of vector �elds L2(�)=H ⊕G, where G= {� |�=∇p; p∈H 1(�)}.
Throughout this paper P denotes the orthogonal projection from L2(�) onto H . Then, the

operator A :D(A) ,→H →H given by A=−P� with domain D(A)=V ∩H 2(�) is called the
Stokes operator. It is well known that A is a positive de�nite, self-adjoint operator and is
characterized by the relation

(Aw; v)= (∇w;∇v); ∀w∈D(A); v∈V

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:1251–1280
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If � is of class C1;1, then the norms ‖u‖H 2 and ‖Au‖ are equivalent in D(A) (see Refer-
ence [18]). We assume the other known properties of A, as given in References [4,11,6]. The
same remark is also valid for the Laplacian operator B=−� with homogeneous Dirichlet
boundary conditions in the domain D(B)=H 1

0 (�)∩H 2(�).
Applying the orthogonal projection P to problem (1)–(2), we can rewrite it as follows:

Find u; w; � in suitable spaces (which will be de�ned later on), satisfying

P(�ut) + (�+ �r)Au+ P(�u · ∇u)=2�rP(rotw) + P(�f) (3)

�wt + (ca + cd)Bw + �u · ∇w − (c0 + cd − ca)∇ divw + 4�rw=2�r rot u+ �g (4)

�t + u · ∇�=0 (5)

u(x; 0)= u0(x); w(x; 0)=w0(x); �(x; 0)=�0(x) in � (6)

We consider the following iterative process for the approximate solution of problem (3)–
(6). Setting:

u1(t)= e−t(�+� r )Au0; w1(t)= e−t(ca+cd)Bw0; �1(x; t)=�0(x)

where e−t(�+� r )A and e−t(ca+cd)B are the semigroups generated by the Stokes and Laplace oper-
ators, respectively. And for given un; wn and �n, we de�ne un+1; wn+1 and �n+1 as the unique
solution of the following system of linear equations:

P(�nun+1
t ) + (�+ �r)Aun+1 + P(�nun · ∇un+1)=2�rP(rotwn) + P(�nf) (7)

�nwn+1
t + (ca + cd)Bwn+1 + �nun · ∇wn+1 − (co + cd − ca)∇ divwn+1 + 4�rwn+1

=2�r rot un + �ng (8)

�n+1
t + un+1 · ∇�n+1 =0 (9)

un+1(x; 0)= u0(x); wn+1(x; 0)=w0(x); �n+1(x; 0)=�0(x) in � (10)

Concerning the initial density �0, we assume that it is a continuously di�erentiable function
(�0∈C1), and that there exist �; � such that

0¡�6�0(x)6� ∀x∈ 	�

In this paper, the external �elds f and g are assumed to be L2(QT ) functions, small enough
with respect to the viscosities coe
cients of the model �; �r ; ca and cd. More precisely, f and
g are assumed to satisfy

(‖f‖2L2(QT ) + ‖g‖2L2(QT ))
(

�
�+ �r

)3 [1
2
+

(
4
�
+
1
4

)
�r

ca + cd
eCT

]
6

�1=4�
160C2�

(11)

where �= min{�=4�; �5=�5}, C= max{8�2r =�(� + �r); 4�2r =�(ca + cd)} and � is the small-
est eigenvalue of the Laplace operator B=−� in � with homogeneous Dirichlet boundary
condition.
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Notice that this hypothesis is ful�lled either if f and g are small enough with respect to
the viscosities � and �r , or if the viscosities are su
ciently large with respect to the data f
and g.
In Reference [17], the authors used the Galerkin method to solve this linear system and

showed that the solutions (un; wn; �n) enjoy the following conditions concerning their
regularity:

un ∈ L∞(0; T ;V ) (12)

un
t ∈ L2(0; T ;H) (13)

Aun ∈ L2(0; T ;L2(�)) (14)

wn ∈ L∞(0; T ;H 1
0 (�)) (15)

wn
t ∈ L2(0; T ;L2(�)) (16)

Bwn ∈ L2(0; T ;L2(�)) (17)

We are going to prove on the one hand that these sequences are uniformly bounded in the
corresponding spaces. On the other hand, applying the method of characteristics to the conti-
nuity equation (9), it follows immediately that whenever �n exists, it satis�es 0¡�6�n6�.
In particular, we have that

{�n} is uniformly bounded in L∞(0; T ;L∞(�)) (18)

Furthermore, the hypotheses on the density �n make it possible to apply the Ladyzhenskaya-
Solonnikov’s results [20, see Lemma 1.3, p. 705]. In our case, we obtain that ∇�n and �n

t
are also uniformly bounded in L∞(0; T ;L∞(�)) as n→∞.
From now onwards we consider without loss of generality, u0(x)=0 and w0(x)=0 (the

general case can be treated by introducing an appropriate lifting of the initial conditions). Let
us �rst present the following results obtained for the approximate solutions. In this case, it is
clear that the �rst iterate is (u1; w1; �1)= (0; 0; �0).

Lemma 2.1
If f; g∈L2(0; T ;L2(�)) and satisfy the conditions as given in (11), then the unique solution
(un; wn; �n) of problem (7)–(10) are uniformly bounded in the respective spaces as given in
(12)–(17).

Lemma 2.2
If the hypotheses of Lemma 2.1 are veri�ed and assuming that f; g∈L2(0; T ;H 1(�)) and
ft; gt∈L2(0; T ;L2(�)), then the solution (un; wn; �n) of problem (7)–(10) satis�es the follow-
ing estimates uniformly in n:

sup
t
(‖un

t (t)‖2 + ‖wn
t (t)‖2)6C

∫ t

0
(‖∇un

t (�)‖2 + ‖∇wn
t (�)‖2) d�6C;

sup
t
(‖Aun(t)‖2 + ‖Bwn(t)‖2)6C

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:1251–1280
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∫ t

0
(‖∇un(�)‖2L∞ + ‖∇wn(�)‖2L∞) d�6C

sup
t

�(t)(‖∇un
t (t)‖2 + ‖∇wn

t (t)‖2)6C

∫ t

0
�(�)(‖un

tt(�)‖2 + ‖wn
tt(�)‖2) d�6C

∫ t

0
�(�)(‖Aun

t (�)‖2 + ‖Bwn
t (�)‖2) d�6C

for all t∈[0; T ], where C¿0 is a constant independent of n and �(t)= min{1; t}.
Theorem 2.3
Let the conditions of Lemmas 2.1 and 2.2 be satis�ed. Then the approximate solutions
(un; wn; �n) converge to the limiting element (u; w; �) in the following senses:

un → u strongly in L∞(0; T ;V )∩L2(0; T ;V ∩H 2(�))

wn →w strongly in L∞(0; T ;H 1
0 (�))∩L2(0; T ;H 1

0 (�)∩H 2(�))

un
t → ut strongly in L2(0; T ;H)

wn
t →wt strongly in L2(0; T ;L2(�))

un
t → ut weakly in L2(0; T ;V )∩L2(”; T ;V ∩H 2(�)); ∀”¿0

un
tt → utt weakly in L2(”; T ;H); ∀”¿0

wn
t →wt weakly in L2(0; T ;H 1

0 (�))∩L2(”; T ;H 1
0 (�)∩H 2(�)); ∀”¿0

wn
tt →wtt weakly in L2(”; T ;L2(�)); ∀”¿0

The limiting element (u; w; �) is the unique solution of problem (3)–(6) and

sup
t
{‖∇un(t)−∇u(t)‖2 + ‖∇wn(t)−∇w(t)‖2}6M

(M1T )n−1

(n− 1)!
∫ t

0
(‖un

t (�)− ut(�)‖2 + ‖wn
t (�)− wt(�)‖2) d�6M

(M1T )n−1

(n− 1)!
∫ t

0
(‖Aun(�)− Au(�)‖2 + ‖Bwn(�)− Bw(�)‖2) d�6M

(M1T )n−1

(n− 1)!

sup
t

‖�n(t)− �(t)‖2L∞ 6M
(M1T )n−1

(n− 1)!

sup
t

�(t)(‖un
t (t)− ut(t)‖2 + ‖wn

t (t)− wt(t)‖2)6M
(M1T )n−2

(n− 2)!

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:1251–1280
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∫ t

0
�(�)(‖∇un

t (�)−∇ut(�)‖2 + ‖∇wn
t (�)−∇wt(�)‖2) d�6M

(M1T )n−2

(n− 2)!

sup
t

�(t)(‖Aun(t)− Au(t)‖2 + ‖Bwn(t)− Bw(t)‖2)6M
(M1T )n−2

(n− 2)!

sup
t

�(t)(‖un(t)− u(t)‖2L∞ + ‖wn(t)− w(t)‖2L∞)6M
(M1T )n−2

(n− 2)!
∫ t

0
�(�)(‖∇un(�)−∇u(�)‖2L∞ + ‖∇wn(�)−∇w(�)‖2L∞) d�6M

(M1T )n−2

(n− 2)!

Moreover,

u ∈C1([0; T ];H)∩C([0; T ];D(A))

w ∈C1([0; T ];L2(�))∩C([0; T ];D(B))

�∈C1(QT )

3. A PRIORI ESTIMATES

In this section, we prove uniform a priori estimates in n for the approximate solutions.

3.1. Proof of Lemma 2.1

3.1.1. Uniform estimates for un and wn in L2(0; T ;V ). From (9), we have (�n
t v; v)=

−(div (�nun)v; v)=2(�nun · ∇v; v) and consequently

1
2
d
dt

‖√�nv‖2 = 1
2
(�n

t v; v) + (�
nvt ; v)= (�nun · ∇v; v) + (�nvt ; v); ∀v∈H 1

0 ; vt∈L2(�)

With this identity in mind, multiply (7) by un+1 and (8) by wn+1, to obtain, respectively:

1
2
d
dt

‖√�nun+1‖2 + (�+ �r)‖∇un+1‖2 = 2�r(rotwn; un+1) + (�nf; un+1) (19)

1
2
d
dt

‖√�nwn+1‖2 + (ca + cd)‖∇wn+1‖2 + (c0 + cd − ca)‖divwn+1‖2 + 4�r‖wn+1‖2

= 2�r(rot un; wn+1) + (�ng; wn+1) (20)

We recall that for u∈H 1
0 (�), we have

‖rot u‖6‖∇u‖; ‖u‖L4621=2‖u‖1=4‖∇u‖3=4 and ‖u‖26�−1‖∇u‖2 (21)

where � is the smallest eigenvalue of the Laplace operator B=−� (see, for instance, Refer-
ence [4]).

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:1251–1280
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By H�older and Young inequalities, and (21), we get from (19) and (20) the following
di�erential inequalities

d
dt

‖√�nun+1‖2 + (�+ �r)‖∇un+1‖26 8�2r
�+ �r

‖wn‖2 + 2�
2�−1

�+ �r
‖f‖2

d
dt

‖√�nwn+1‖2 + (ca + cd)‖∇wn+1‖2 + 2(c0 + cd − ca)‖divwn+1‖2

6
4�2r

ca + cd
‖un‖2 + �2

8�r
‖g‖2

Adding both inequalities and integrating both sides from 0 to t, we get the following integral
inequality (recall that u0 =w0 = 0):

�(‖un+1(t)‖2 + ‖wn+1(t)‖2) + (�+ �r)
∫ t

0
‖∇un+1(�)‖2 d�

+(ca + cd)
∫ t

0
‖∇wn+1(�)‖2 d�+ 2(c0 + cd − ca)

∫ t

0
‖divwn+1(�)‖2 d�

6
8�2r

�+ �r

∫ t

0
‖wn(�)‖2 d�+ 4�2r

ca + cd

∫ t

0
‖un(�)‖2 d�+ 2�

2 �−1

�+ �r
‖f‖2L2(QT ) +

�2

8�r
‖g‖2L2(QT )

Then, there exist constants M and C, choose for example

C= max
{

8�2r
�(�+ �r)

;
4�2r

�(ca + cd)

}
and M =

2�2�−1

�(�+ �r)
‖f‖2L2(QT ) +

�2

8��r
‖g‖2L2(QT )

such that

‖un+1(t)‖2 + ‖wn+1(t)‖2 + �+ �r
�

∫ t

0
‖∇un+1(�)‖2 d�+ ca + cd

�

∫ t

0
‖∇wn+1(�)‖2 d�

6C
∫ t

0
(‖un(�)‖2 + ‖wn(�)‖2) d�+M (22)

Thus, setting ’n(t)= ‖un(t)‖2 + ‖wn(t)‖2, the last inequality implies

’n+1(t)6M + C
∫ t

0
’n(�) d�

Observing that ’1(t)=0, a straightforward induction argument shows that, for all n,

’n(t)6M
n−1∑
k=0

(Ct)k

k!
6M exp(Ct)

Therefore, we conclude that for all n, we have

sup
t∈[0;T ]

(‖un(t)‖2 + ‖wn(t)‖2)6 sup
t∈[0;T ]

M exp(Ct)=M exp(CT )≡M1 (23)

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:1251–1280
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Notice that M1 does not depend on n. Combining (22) and (23), we get

‖un+1‖2L2(0;T ;V )6
�M1

�+ �r
and ‖wn+1‖2L2(0;T ;H 1

0 (�))
6

�M1

ca + cd
(24)

where the bounds are independent of n.

3.1.2. Uniform estimates for un and wn in L∞(0; T ;V ). Multiplying (7) by 	Aun+1, and then
by un+1

t and integrating in �, we obtain respectively

	(�+ �r)‖Aun+1‖2 =−	(�nun+1
t ; Aun+1) + 2�r	(rotwn; Aun+1)

+ 	(�nf; Aun+1)− 	(�nun:∇un+1; Aun+1) (25)

and

‖√�nun+1
t ‖2 + �+ �r

2
d
dt

‖∇un+1‖2 = 2�r(rotwn; un+1
t ) + (�nf; un+1

t )

− (�nun:∇un+1; un+1
t ) (26)

Then, using �6�n6�; we get

�‖un+1
t ‖2 + �+ �r

2
d
dt

‖∇un+1‖2 + 	(�+ �r)‖Aun+1‖2

6|	(�nun+1
t ; Aun+1)|+ |2�r	(rotwn; Aun+1)|+ |2�r(rotwn; un+1

t )|+ |(�nf; un+1
t )|

+ |	 (�nf; Aun+1)|+ |	(�nun:∇un+1; Aun+1)|+ |(�nun:∇un+1; un+1
t )| (27)

Now, using H�older and Young inequalities, and (21), we get

|	(�nun:∇un+1; Aun+1)|6 	�‖un‖L4‖∇un+1‖L4‖Aun+1‖
6 	�

√
2 ‖un‖1=4‖∇un‖3=4‖∇un+1‖L4‖Aun+1‖

6 	�
√
2 �−1=8‖∇un‖‖∇un+1‖L4‖Aun+1‖ (28)

Since H 2(�) ,→W 1;4(�), for u∈D(A), we have

‖∇u‖L46‖u‖W 1; 46C�‖u‖H 26C�‖Au‖ (29)

where C� is a positive constant, independent of u. Thus, from (28) and (29), we obtain

|	(�nun:∇un+1; Aun+1)|6	�
√
2 �−1=8C�‖∇un‖‖Aun+1‖2 (30)
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Similarly,

|(�nun:∇un+1; un+1
t )|6 �‖un‖L4‖∇un+1‖L4‖un+1

t ‖

6
√
2��−1=8C�‖∇un‖

(
	‖Aun+1‖2 + ‖un+1

t ‖2
4	

)
(31)

Using the above estimates for the last two terms and the classical estimates for the remaining
terms in (27), we obtain

(�+ �r)
d
dt

‖∇un+1‖2 + 2
(
�− 3
− �21=2�−1=8C�

4	
‖∇un‖

)
‖un+1

t ‖2

+ 2	
(
(�+ �r)− 3	�2

4

− �23=2�−1=8C�‖∇un‖

)
‖Aun+1‖2

6
(
8�2r

�2

+
2�2r



)
‖∇wn‖2 +

(
2
+

�2

2


)
‖f‖2

where 
 is any positive real number. Integrating the above inequality in [0; t] we have

(�+ �r)‖∇un+1(t)‖2 + 2
∫ t

0

(
�− 3
− �21=2�−1=8C�

4	
‖∇un(�)‖

)
‖un+1

t (�)‖2 d�

+2	
∫ t

0

(
(�+ �r)− 3	�2

4

− �23=2�−1=8C�‖∇un(�)‖

)
‖Aun+1(�)‖2 d�

6
(
8�2r

�2

+
2�2r



) ∫ t

0
‖∇wn(�)‖2 d�+

(
2
+

�2

2


)
‖f‖2L2(QT )

6
(
4

�2
+
1



)
2�2r�M1

ca + cd
+

(
2
+

�2

2


)
‖f‖2L2(QT )

Then, by choosing 
= �=4 and 	= �(�+ �r)=4�2, we have

(�+ �r)‖∇un+1(t)‖2 + 2
∫ t

0

(
�
4
− �321=2�−1=8C�

�(�+ �r)
‖∇un(�)‖

)
‖un+1

t (�)‖2 d�

+
�(�+ �r)
2�2

∫ t

0

(
�+ �r
4

− �23=2�−1=8C�‖∇un(�)‖
)
‖Aun+1(�)‖2 d�

62(�2 + 4�2)
�2r

�2(ca + cd)
M1 +

1
2�
(�2 + 4�2)‖f‖2L2(QT ) = ”2 (say) (32)

We use the method of induction to prove that
‖∇un(t)‖6 ”

(�+ �r)1=2
(33)
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Setting n=1 in (32) and using that u1 = 0, we get

(�+ �r)‖∇u2(t)‖2 + 2
∫ t

0

�
4
‖u2t (�)‖2 d�+

�(�+ �r)
2�2

∫ t

0

�+ �r
4

‖Au2(�)‖2 d�6”2

then, for all t∈[0; T ], we have
‖∇u2(t)‖6 ”

(�+ �r)1=2
(34)

We assume inequality (33) for n= k and prove for n= k + 1. From (32), it su
ces to show
that

�
4
− �321=2�−1=8C�”

�(�+ �r)3=2
¿0 and

�+ �r
4

− �23=2�−1=8C�”
(�+ �r)1=2

¿0

By using (11) one can prove the positivity of the above terms.
Therefore, for all n, we have proved that

sup
t∈[0;T ]

‖∇un(t)‖6 ”
(�+ �r)1=2

(35)

From (32) and (35), we have

2
∫ t

0

(
�
4
− �321=2�−1=8C�”

�(�+ �r)3=2

)
‖un+1

t (�)‖2 d�

+
�(�+ �r)
2�2

∫ t

0

(
�+ �r
4

− �23=2�−1=8C�”
(�+ �r)1=2

)
‖Aun+1(�)‖2 d�6”2

Therefore, we conclude that there exists a constant C, independent of n, such that∫ t

0
‖un+1

t (�)‖2 d�+
∫ t

0
‖Aun+1(�)‖2 d�6C (36)

Similarly, for all n, we obtain

(ca + cd)‖∇wn+1(t)‖2 + c2
∫ t

0
‖Bwn+1(�)‖2 d�+ �

∫ t

0
‖wn+1

t (�)‖2 d�6C (37)

and the proof of Lemma 2.1 is complete.

3.2. Proof of Lemma 2.2

3.2.1. Uniform estimates for un
t in the space L∞(0; T ;L2(�))∩L2(0; T ;V (�)) and Aun in

L∞(0; T ;L2(�)). Di�erentiating (7) with respect to t, we obtain

P(�n
t u

n+1
t ) + P(�nun+1

tt ) + (�+ �r)Aun+1
t

=2�rP(rotwn
t ) + P(�n

t f) + P(�nft)− P(�n
t u

n · ∇un+1)

−P(�nun
t · ∇un+1)− P(�nun · ∇un+1

t ) (38)
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Multiplying (38) by un+1
t and after some simple computations, we get

1
2
d
dt

‖√�nun+1
t ‖2 + (�+ �r)‖∇un+1

t ‖2

=−1
2
(�n

t u
n+1
t ; un+1

t ) + 2�r(rotwn
t ; u

n+1
t ) + (�n

t f; un+1
t ) + (�nft; un+1

t )

− (�n
t u

n · ∇un+1; un+1
t )− (�nun

t :∇un+1; un+1
t )− (�nun · ∇un+1

t ; un+1
t )

=
1
2
(div (�nun)un+1

t ; un+1
t ) + 2�r(wn

t ; rot u
n+1
t )− (div (�nun)f; un+1

t )

+ (�nft; un+1
t ) + (div (�nun)un:∇un+1; un+1

t )− (�nun
t · ∇un+1; un+1

t )

− (�nun · ∇un+1
t ; un+1

t ) (39)

since from (5), �n
t =−div (�nun).

Using classical estimates, each of the seven terms in the right-hand side of (39) can be
bounded as follows. The �rst one:

1
2
(div (�nun)un+1

t ; un+1
t ) = −(�nun · ∇un+1

t ; un+1
t )

6 ‖�n‖L∞‖un‖L4‖∇un+1
t ‖‖un+1

t ‖L4
6 �‖∇un‖‖∇un+1

t ‖‖un+1
t ‖1=4‖∇un+1

t ‖3=4

6C‖∇un+1
t ‖7=4‖un+1

t ‖1=4

6C
‖un+1
t ‖2 + 
‖∇un+1

t ‖2

The second term is simply bounded by

2�r(wn
t ; rot u

n+1
t )6C
‖wn

t ‖2 + 
‖∇un+1
t ‖2 (40)

For the third one, integration by parts gives

−(div (�nun)f; un+1
t ) = (�nun:∇f; un+1

t ) + (�nun · ∇un+1
t ; f)

6 �‖un‖L4‖∇f‖‖un+1
t ‖L4 + �‖un‖L4‖∇un+1

t ‖‖f‖L4
6C‖f‖H 1‖∇un+1

t ‖6C
‖f‖2H 1 + 
‖∇un+1
t ‖2

For the fourth term, one can easily obtain

(�nft; un+1
t )6C
‖ft‖2 + 
‖∇un+1

t ‖2 (41)

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:1251–1280



NON-HOMOGENEOUS ASYMMETRIC FLUIDS 1263

Integrating by parts the �fth term gives

(div (�nun)un · ∇un+1; un+1
t )

=
∑
i; j; k

∫
�

9
9xi
(�nun

i )u
n
j

(
9
9xj

un+1
k

)
un+1
k; t dx

= −
∑
i; j; k

∫
�
�nun

i

(
9
9xi

un
j

)(
9
9xj

un+1
k

)
un+1
k; t dx −

∑
i; j; k

∫
�
�nun

i u
n
j

(
9
9xi

9
9xj

un+1
k

)
un+1
k; t dx

−
∑
i; j; k

∫
�
�nun

i u
n
j

(
9
9xj

un+1
k

)(
9
9xi

un+1
k; t

)
dx

6 C�‖un‖L6‖∇un‖L6‖∇un+1‖‖un+1
t ‖L6 + C�‖un‖2L6‖Aun+1‖‖un+1

t ‖L6

+C�‖un‖2L6‖∇un+1‖L6‖∇un+1
t ‖

6 C‖Aun‖‖∇un+1
t ‖+ C‖Aun+1‖‖∇un+1

t ‖

6 C
(‖Aun‖2 + ‖Aun+1‖2) + 2
‖∇un+1
t ‖2

The sixth and the seventh terms can be bounded, respectively, as

(�nun
t · ∇un+1; un+1

t )6 �‖un
t ‖‖∇un+1‖L3‖un+1

t ‖L6

6C‖un
t ‖‖Aun+1‖‖un+1

t ‖H 1

6C
‖un
t ‖2‖Aun+1‖2 + 
‖∇un+1

t ‖2

and

(�nun · ∇un+1
t ; un+1

t )6 �‖un‖L6‖∇un+1
t ‖‖un+1

t ‖L3

6C‖∇un+1
t ‖‖un+1

t ‖1=2‖∇un+1
t ‖1=2

6C
‖un+1
t ‖2 + 
‖∇un+1

t ‖2

Using all these bounds in (39) we obtain

1
2
d
dt

‖√�nun+1
t ‖2 + (�+ �r)‖∇un+1

t ‖2

6C
‖un+1
t ‖2 + C
‖wn

t ‖2 + C
‖f‖2H 1 + C
‖ft‖2 + C
‖Aun‖2

+C
‖Aun+1‖2 + C
‖un
t ‖2‖Aun+1‖2 + C
‖un+1

t ‖2 + 8
‖∇un+1
t ‖2
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By choosing 
=(�+ �r)=16, we get

d
dt

‖√�nun+1
t ‖2 + (�+ �r)‖∇un+1

t ‖2

6C‖un+1
t ‖2 + C‖wn

t ‖2 + C‖f‖2H 1 + C‖ft‖2 + C‖Aun‖2 + C‖Aun+1‖2

+C‖un
t ‖2‖Aun+1‖2 + C (42)

In order to get a bound for ‖Aun+1‖2, multiply (7) by Aun+1, we obtain

(�+ �r)‖Aun+1‖2 =−(�nun+1
t ; Aun+1) + 2�r(rotwn; Aun+1) + (�nf; Aun+1)

−(�nun:∇un+1; Aun+1) (43)

Consider the right-hand side of (43),

|(�nun:∇un+1; Aun+1)|6 �‖un‖L4‖∇un+1‖L4‖Aun+1‖
6C‖∇un+1‖1=4‖Aun+1‖7=46C	‖∇un+1‖2 + 	‖Aun+1‖2

Using the above result with classical estimates in (43), we get

(�+ �r)‖Aun+1‖26C	‖un+1
t ‖2 + C	‖∇wn‖2 + C	‖f‖2 + C	‖∇un+1‖2 + 4	‖Aun+1‖2

Then, taking 	¿0 su
ciently small, from the previous inequality, we obtain the bound:

‖Aun+1‖26C‖un+1
t ‖2 + C (44)

Thus, rewriting (42), we obtain

d
dt

‖√�nun+1
t ‖2 + (�+ �r)‖∇un+1

t ‖26C‖un+1
t ‖2 + C‖wn

t ‖2 + C‖f‖2H 1 + C‖ft‖2

+C ‖un
t ‖2‖un+1

t ‖2 + C‖un
t ‖2 + C

Integrating the above inequality from 0 to t, we get

�‖un+1
t (t)‖2 + (�+ �r)

∫ t

0
‖∇un+1

t (�)‖2 d�

6C
∫ t

0
(‖un+1

t (�)‖2 + ‖wn
t (�)‖2 + ‖f(�)‖2H 1 + ‖ft(�)‖2) d�

+C
∫ t

0
‖un

t (�)‖2‖un+1
t (�)‖2 d�+ C

∫ t

0
‖un

t (�)‖2 d�+ �‖un+1
t (0)‖2 + Ct

From Eq. (26), we can easily bound the rightmost term ‖un+1
t (0)‖2. In fact, d=dt‖∇un+1(t)‖2

is non-negative at t=0, since ∇un+1(0)=0. Applying (36), (37) and the hypotheses on f
and ft , we get

‖un+1
t (t)‖2 +

∫ t

0
‖∇un+1

t (�)‖2 d�6C + C
∫ t

0
‖un

t (�)‖2‖un+1
t (�)‖2 d�
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If we denote ’(t)= ‖un+1
t (t)‖2, the above inequality can be written as

’(t)6C + C
∫ t

0
‖un

t (�)‖2’(t) d�

By Gronwall’s lemma,

’(t)6C exp
(
C
∫ t

0
‖un

t (�)‖2 d�
)

Using (36) we conclude that

‖un+1
t (t)‖2 +

∫ t

0
‖∇un+1

t (�)‖2 d�6C (45)

Moreover, from (44) we have for all n

sup
t

‖Aun+1(t)‖26C (46)

Similarly, for all n, one can prove the following:

‖wn+1
t (t)‖2 +

∫ t

0
‖∇wn+1

t (�)‖2 d�6C and sup
t

‖Bwn+1(t)‖26C (47)

3.2.2. Uniform estimates for un in L2(0; T ;W 1;∞). Let us write (7) as

(�+ �r)Aun+1 =P(F) (48)

where
F =2�r rotwn + �nf − �nun+1

t − �nun · ∇un+1

From the estimates given in Lemma 2.1, together with estimates (45) and (46), we can prove
that F ∈ L2(0; T ;L6(�)) and consequently by the Amrouche–Girault’s results (1991), we
obtain uniform bounds for un in L2(0; T ;W 2;6(�)). Also, by using the Sobolev embedding,
one can show that un is uniformly bounded in L2(0; T ;W 1;∞(�)).

3.2.3. Three estimates on the second order derivatives. Now, multiplying (38) by un+1
tt , and

using (18), (19), Lemma 2.1, the estimates for �n
t in L∞(0; T ;L∞(�)), and H�older and Young

inequalities, we obtain

�‖un+1
tt ‖2 + �+ �r

2
d
dt

‖∇un+1
t ‖26C”‖un+1

t ‖2 + C”‖∇wn
t ‖2 + C”‖f‖2 + C”‖ft‖2

+C”‖Aun+1‖2 + C”‖∇un
t ‖2‖Aun+1‖2

+C”‖∇un+1
t ‖2 + 7”‖un+1

tt ‖2

Choosing ”= �=14 and observing (45)–(46), we have

�‖un+1
tt ‖2 + (�+ �r)

d
dt

‖∇un+1
t ‖26C‖∇wn

t ‖2 + C‖f‖2 + C‖ft‖2 + C ‖∇un
t ‖2

+C ‖∇un+1
t ‖2 + C
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and multiplying by �(t)= min{1; t}, results

��(t)‖un+1
tt ‖2 + (�+ �r)

d
dt
(�(t)‖∇un+1

t ‖2)

6(�+ �r)�′(t)‖∇un+1
t ‖2 + C�(t)(‖∇un

t ‖2 + ‖∇wn
t ‖2)

+C�(t)(‖f‖2 + ‖ft‖2) + C�(t)(‖∇un+1
t ‖2 + 1) (49)

As a consequence of (45), there exists a sequence ”k → 0, such that ”k‖∇un+1
t (”k)‖26C. Since

�(t)61 and �′(t)61 a.e. in [0; T ], applying (45)–(47) and integrating (49) from ”k to t, we
obtain

�
∫ t

”k

�(�)‖un+1
tt (�)‖2 d�+ (�+ �r)�(t)‖∇un+1

t (t)‖26C + C(�+ �r)�(”k)‖∇un+1
t (”k)‖2 + C

Taking limit as ”k → 0, for all n, reduces the previous inequality to∫ t

0
�(�)‖un+1

tt (�)‖2 d�+ �(t)‖∇un+1
t (t)‖26C

Analogously, for all n, ∫ t

0
�(�)‖wn+1

tt (�)‖2 d�+ �(t)‖∇wn+1
t (t)‖26C

To prove the last estimate given in Lemma 2.2, we observe from (38) that

(�+ �r)
∫ t

0
�(�)‖Aun+1

t (�)‖2 d�6
∫ t

0
�(�)‖Gn(�)‖2 d�

where

Gn = 2�r rotwn
t + �n

t f + �nft − �n
t u

n+1
t − �nun+1

tt − �n
t u

n · ∇un+1 − �nun
t :∇un+1 − �nun · ∇un+1

t

All the above estimates imply that �1=2(t)Gn is uniformly bounded in L2(0; T ;L2(�)).
Analogously, one can prove the estimates for wn.

Remark
Using arguments of compactness and the estimates given in Lemmas 2.1 and 2.2, it is possible
to prove that the approximate solutions (un; wn; �n) converge to a strong solution of the
problem (1)–(2). This can be done in exactly the same way as in Reference [17].

4. PROOF OF THEOREM 2.3

4.1. Convergence analysis

In this subsection we show that un, wn and �n are Cauchy sequences. Let us introduce the
following notation for the di�erence of two terms of a sequence. For n; s¿1;

un; s(t)= un+s(t)− un(t); wn; s(t)=wn+s(t)− wn(t) and �n; s(t)=�n+s(t)− �n(t)
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With these notations, we observe that un; s; wn; s and �n; s satisfy the following equations:

P(�n−1+sun; s
t ) + (�+ �r)Aun; s

= 2�rP(rotwn−1; s) + P(�n−1; sf)− P(�n−1; sun
t )− P(�n−1+sun−1+s · ∇un; s)

−P(�n−1+sun−1; s · ∇un)− P(�n−1; sun−1 · ∇un) (50)

�n−1+swn; s
t + (ca + cd)Bwn; s − (c0 + cd − ca)∇ divwn; s + 4�rwn; s

=2�r(rot un−1; s) + �n−1; sg− �n−1; swn
t − �n−1+sun−1+s · ∇wn; s

−�n−1+sun−1; s · ∇wn − �n−1; sun−1 · ∇wn (51)

�n; s
t + un; s · ∇�n+s + un · ∇�n; s=0 (52)

The following lemma, which can be easily proven, is fundamental in order to obtain error
estimates.

Lemma 4.1
Let 06�1(t)6M for all t∈[0; T ] and assume that for all n¿2; n∈N , we have the following
inequality:

06�n(t)6C
∫ t

0
�n−1(�) d�

where C¿0 is a constant independent of n. Then,

�n(t)6M
(Ct)n−1

(n− 1)!6M
(CT )n−1

(n− 1)!
for all t∈[0; T ] and n¿2. Therefore, �n(t)→ 0 as n→∞; ∀t ∈ [0; T ]

4.1.1. Bounding the error of the density sequence. The density sequence can be bounded in
terms of the velocity sequence, as stated in the following lemma.

Lemma 4.2
Under the hypotheses of Lemma 2.2, we have

‖�n; s(t)‖2L66C
∫ t

0
‖∇un; s(�)‖2 d�

Proof
Multiplying (52) by (�n; s)5 and integrating over �, we obtain

1
6
d
dt

∫
�
|�n; s|6 dx = −

∫
�
un; s · ∇�n+s(�n; s)5 dx − 1

6

∫
�
un · ∇(�n; s)6 dx

6
∫
�
|un; s||∇�n+s||�n; s|5 dx + 1

6

∫
�
div un(�n; s)6 dx
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6 ‖∇�n+s‖L∞(0;T ;L∞(�))

∫
�
|un; s||�n; s|5 dx

6C
(∫

�
|un; s|6 dx

)1=6(∫
�
|�n; s|6 dx

)5=6

This implies

1
6
d
dt

‖�n; s‖6L66C‖un; s‖L6‖�n; s‖5L6

but,

1
6
d
dt

‖�n; s‖6L6 = ‖�n; s‖5L6
d
dt

‖�n; s‖L6

then, since H 1(�) ,→L6(�), we obtain

d
dt

‖�n; s‖L66C‖∇un; s‖

Integrating the last inequality from 0 to t and applying the Cauchy–Schwarz inequality, we
conclude that

‖�n; s(t)‖L66C
∫ t

0
‖∇un; s(�)‖ d�6C

(∫ t

0
‖∇un; s(�)‖2 d�

)1=2
(53)

4.1.2. Convergence of un and wn in L∞(0; T ;H 1
0 (�)). Multiplying (50) by 	Aun; s, integrating

over � and estimating as usual, we obtain

	(�+ �r)‖Aun; s‖26 
‖un; s
t ‖2 + 
‖∇wn−1; s‖2 + 
‖�n−1; s‖2L6‖f‖2L3

+ 
‖�n−1; s‖2L6‖∇un
t ‖2 + 
‖∇un; s‖2

+ 
‖∇un−1; s‖2 + 
‖�n−1; s‖2L6 +
1
4


	2C‖Aun; s‖2 (54)

where 
 is a positive parameter and C is a constant independent of n. Similarly, multiplying
(50) by un; s

t , we get

�‖un; s
t ‖2 + �+ �r

2
d
dt

‖∇un; s‖2

6C
‖∇wn−1; s‖2 + C
‖�n−1; s‖2L6‖f‖2L3 + C
‖�n−1; s‖2L6‖∇un
t ‖2

+C
‖∇un; s‖2 + C
‖∇un−1; s‖2 + C
‖�n−1; s‖2L6 + 6
‖un; s
t ‖2 (55)

where C
 is a constant independent of n.
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Adding (54) and (55), we get

�‖un; s
t ‖2 + �+ �r

2
d
dt

‖∇un; s‖2 + 	(�+ �r)‖Aun; s‖2

62C
‖∇wn−1; s‖2 + 2C
‖�n−1; s‖2L6‖f‖2L3 + 2C
‖�n−1; s‖2L6‖∇un
t ‖2 + 2C
‖∇un; s‖2

+ 2C
‖∇un−1; s‖2 + 2C
‖�n−1; s‖2L6 + 6
‖un; s
t ‖2 + C	2

4

‖Aun; s‖2

By choosing 
= �=12 and 	¿0 such that (� + �r)	 − C	2=4
¿0, we reduce the previous
inequality to

�‖un; s
t ‖2 + (�+ �r)

d
dt

‖∇un; s‖2 + C1‖Aun; s‖2

6C‖∇wn−1; s‖2 + C‖�n−1; s‖2L6‖f‖2L3 + C‖�n−1; s‖2L6‖∇un
t ‖2

+C‖∇un; s‖2 + C‖∇un−1; s‖2 + C‖�n−1; s‖2L6 (56)

with positive constants C1; C independent of n.
From (51), we have

�n−1+swn; s
t + Lwn; s + 4�rwn; s

=2�r(rot un−1; s) + �n−1; sg− �n−1; swn
t − �n−1+sun−1+s · ∇wn; s

−�n−1+sun−1; s · ∇wn − �n−1; sun−1 · ∇wn (57)

where Lwn; s=(ca + cd)Bwn; s − (c0 + cd − ca)∇divwn; s. Since L is a strongly elliptic operator,
see Reference [20, p. 70], there exists a positive constant N0 depending exclusively on ca +
cd ; c0 + cd − ca and � such that

(Lwn; s; Bwn; s)¿(ca + cd)‖Bwn; s‖2 − N0‖∇wn; s‖2 (58)

Multiplying (57) by �Bwn; s, using (58) and estimating as usual, we have

�(ca + cd)‖Bwn; s‖26 �C�‖∇wn; s‖2 + �‖wn; s
t ‖2 + �‖∇un−1; s‖2 + �‖�n−1; s‖2L6‖g‖2L3

+ �‖�n−1; s‖2L6‖∇wn
t ‖2 + �‖∇wn; s‖+ �‖∇un−1; s‖

+ �‖�n−1; s‖2L6 +
�2C
4�

‖Bwn; s‖2 (59)
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Multiplying (51) by wn; s
t , standard estimates yield

�‖wn; s
t ‖2 + ca + cd

2
d
dt

‖∇wn; s‖2 + c0 + cd − ca
2

d
dt

‖divwn; s‖2 + 2�r ddt ‖w
n; s‖2

6C�‖∇un−1; s‖2 + C�‖�n−1; s‖2L6‖g‖2L3 + C�‖�n−1; s‖2L6‖∇wn
t ‖2

+C�‖∇wn; s‖2 + C�‖∇un−1; s‖2 + C�‖�n−1; s‖2L6 + 6�‖wn; s
t ‖2 (60)

Adding (59) and (60), we get

�‖wn; s
t ‖2 + ca + cd

2
d
dt

‖∇wn; s‖2 + �(ca + cd)‖Bwn; s‖2

+
c0 + cd − ca

2
d
dt

‖divwn; s‖2 + 2�r ddt ‖w
n; s‖2

64C�‖∇un−1; s‖2 + 2C�‖�n−1; s‖2L6‖g‖2L3 + 2C�‖�n−1; s‖2L6‖∇wn
t ‖2

+ (�+ 1)C�‖∇wn; s‖2 + 2C�‖�n−1; s‖2L6 + 6�‖wn; s
t ‖2 + C�2

4�
‖Bwn; s‖2

Now, choosing �= �=12 and �=(ca + cd)�=25�2, and setting C2 = (ca + cd)2�=(25�)2,
we get

�‖wn; s
t ‖2 + (ca + cd)

d
dt

‖∇wn; s‖2 + C2‖Bwn; s‖2 + (c0 + cd − ca)
d
dt

‖divwn; s‖2

+ 4�r
d
dt

‖wn; s‖26C‖∇un−1; s‖2 + C‖�n−1; s‖2L6‖g‖2L3 + C‖�n−1; s‖2L6‖∇wn
t ‖2

+C‖∇wn; s‖2 + C‖�n−1; s‖2L6 (61)

Adding (56) and (61), and integrating the result from 0 to t, we obtain

(�+ �r)‖∇un; s(t)‖2 + (ca + cd)‖∇wn; s(t)‖2 + �
∫ t

0
(‖un; s

t (�)‖2 + ‖wn; s
t (�)‖2) d�

+C1
∫ t

0
‖Aun; s(�)‖2 d�+ C2

∫ t

0
‖Bwn; s(�)‖2 d�+ (c0 + cd − ca)‖divwn; s(t)‖2

6C
∫ t

0
(‖∇un−1; s(�)‖2 + ‖∇wn−1; s(�)‖2) d�

+C
∫ t

0
‖�n−1; s(�)‖2L6 (‖f(�)‖2L3 + ‖g(�)‖2L3) d�

+C
∫ t

0
‖�n−1; s(�)‖2L6 (‖∇un

t (�)‖2 + ‖∇wn
t (�)‖2) d�

+C
∫ t

0
(‖∇un; s(�)‖2 + ‖∇wn; s(�)‖2) d�+ C

∫ t

0
‖�n−1; s(�)‖2L6 d� (62)
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From (53), ∀�∈(0; t); 0¡t¡T , we have

‖�n−1; s(t)‖2L66C
∫ �

0
‖∇un−1; s(�)‖2 d�6C

∫ t

0
‖∇un−1; s(�)‖2 d�

and replacing this last inequality in (62), we obtain

C3(‖∇un; s(t)‖2 + ‖∇wn; s(t)‖2) + C3
∫ t

0
(‖un; s

t (�)‖2 + ‖wn; s
t (�)‖2) d�

+C3
∫ t

0
(‖Aun; s(�)‖2 + ‖Bwn; s(�)‖2) d�+ C3‖divwn; s(t)‖2

6C
∫ t

0
(‖∇un−1; s(�)‖2 + ‖∇wn−1; s(�)‖2) d�

+C
∫ t

0
‖∇un−1; s(t1)‖2 dt1

∫ t

0
(‖f(�)‖2L3 + ‖g(�)‖2L3) d�

+C
∫ t

0
‖∇un−1; s(t1)‖2 dt1

∫ t

0
(‖∇un

t (�)‖2 + ‖∇wn
t (�)‖2) d�

+C
∫ t

0
(‖∇un; s(�)‖2 + ‖∇wn; s(�)‖2) d�+ CT

∫ t

0
‖∇un−1; s(�)‖2 d�

where C3 = min{�+ �r ; ca + cd ; �; c1; c2}. Then,

‖∇un; s(t)‖2 + ‖∇wn; s(t)‖2 +
∫ t

0
(‖un; s

t (�)‖2 + ‖wn; s
t (�)‖2) d�

+
∫ t

0
‖Aun; s(�)‖2 d�+

∫ t

0
‖Bwn; s(�)‖2 d�

6C
∫ t

0
(‖∇un−1; s(�)‖2 + ‖∇wn−1; s(�)‖2) d�

+C
∫ t

0
(‖∇un; s(�)‖2 + ‖∇wn; s(�)‖2) d�

Applying Gronwall’s inequality see Reference [21, Lemma 3.10, p. 122], we get

‖∇un; s(t)‖2 + ‖∇wn; s(t)‖2 +
∫ t

0
(‖un; s

t (�)‖2 + ‖wn; s
t (�)‖2) d�+

∫ t

0
‖Aun; s(�)‖2 d�

+
∫ t

0
‖Bwn; s(�)‖2 d�6M1

∫ t

0
(‖∇un−1; s(�)‖2 + ‖∇wn−1; s(�)‖2) d� (63)

Thus, we have

‖∇un; s(t)‖2 + ‖∇wn; s(t)‖26M1

∫ t

0
(‖∇un−1; s(�)‖2 + ‖∇wn−1; s(�)‖2) d�
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Since ‖∇un; s(t)‖2 + ‖∇wn; s(t)‖26M; ∀n; s and t∈[0; T ], using Lemma 4.1, we obtain

‖∇un; s(t)‖2 + ‖∇wn; s(t)‖26M
(M1t)n−1

(n− 1)! 6M
(M1T )n−1

(n− 1)! (64)

We observe that

M1

∫ t

0
(‖∇un−1; s(�)‖2 + ‖∇wn−1; s(�)‖2) d�6M1

∫ t

0
M
(M1�)n−2

(n− 2)! d�6M
(M1t)n−1

(n− 1)! (65)

Therefore, from (63) and (65), we have
∫ t

0
(‖Aun; s(�)‖2 + ‖Bwn; s(�)‖2) d�6M

(M1t)n−1

(n− 1)! 6M
(M1T )n−1

(n− 1)! (66)

from which we obtain the convergence in L2(0; T ;H 2(�)), and
∫ t

0
(‖un; s

t (�)‖2 + ‖wn; s
t (�)‖2) d�6M

(M1t)n−1

(n− 1)! 6M
(M1T )n−1

(n− 1)! (67)

which gives the convergence of un
t and wn

t in L2(0; T ;L2(�)).

4.1.3. Convergence of the density sequence in L∞(0; T ;L∞(�)). Now, from (52), we have

�n; s
t + un:∇�n; s =−un; s · ∇�n+s

�n; s(0) = 0

Let zn(x; t; �) be the solution of the Cauchy problem

znt = un(zn; �)

zn = x for �= t

Then, using the characteristic method, we have

�n; s(x; t)=−
∫ t

0
un; s(zn(�); �):∇�n+s(zn(�); �) d�

Bearing in mind the properties of zn, see Reference [10, pp. 93–96], we get

‖�n; s(t)‖L∞6‖∇�n+s‖L∞(0; T ;L∞(�))

∫ t

0
‖un; s(�)‖L∞ d�6C

∫ t

0
‖Aun; s(�)‖ d�

Hence, applying the Cauchy–Schwarz inequality and observing (66), we have

‖�n; s(t)‖2L∞6c
∫ t

0
‖Aun; s(�)‖2 d�6M

(M1t)n−1

(n− 1)! 6M
(M1T )n−1

(n− 1)! (68)
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4.1.4. Convergence of un and wn in L2(”; T ;W 1;∞(�)). The following bounds in the lemma
require some technical manipulation. Let us di�erentiate (50) with respect to t, and multiply
the result by un; s

t and integrate the resultant on �. We get

1
2
d
dt

‖
√

�n−1+sun; s
t ‖2 + (�+ �r)‖∇un; s

t ‖2

=−1
2
(�n−1+s

t un; s
t ; un; s

t ) + 2�r(rotw
n−1; s
t ; un; s

t ) + (�
n−1; sft ; un; s

t )

− (�n−1; sun
tt ; u

n; s
t )− (�n−1+s

t un−1+s · ∇un; s; un; s
t )

− (�n−1+sun−1+s
t :∇un; s; un; s

t )− (�n−1+sun−1+s · ∇un; s
t ; un; s

t )

− (�n−1+s
t un−1; s · ∇un; un; s

t )− (�n−1+sun−1; s
t · ∇un; un; s

t )

− (�n−1+sun−1; s · ∇un
t ; u

n; s
t )− (�n−1; sun−1

t :∇un; un; s
t )

− (�n−1; sun−1 · ∇un
t ; u

n; s
t ) + (�

n−1; s
t f; un; s

t )

− (�n−1; s
t un

t ; u
n; s
t )− (�n−1; s

t un−1 · ∇un; un; s
t )

Let us group the terms containing �n−1; s
t , namely

h2 = (�n−1; s
t f; un; s

t )− (�n−1; s
t un

t ; u
n; s
t )− (�n−1; s

t un−1 · ∇un; un; s
t )

and denote the remaining terms by h1. Then, we have

d
dt

‖
√

�n−1+sun; s
t ‖2 + 2(�+ �r)‖∇un; s

t ‖2 = 2h1 + 2h2
Multiplying this equation by �(t)= min{1; t} and integrating the result from 0 to t, we get

�(t)‖
√

�n−1+s(t)un; s
t (t)‖2 + 2(�+ �r)

∫ t

0
�(�)‖∇un; s

t (�)‖2 d�

=
∫ t

0
�′(t)‖

√
�n−1+s(�)un; s

t (�)‖2 d�+ 2H1(t) + 2H2(t) (69)

where H1(t)=
∫ t
0 �(�)h1(�) d� and H2(t)=

∫ t
0 �(�)h2(�) d�.

Now, we estimate the right-hand side of the above equation. From the fact that 06�′(t)61
a.e. in t∈[0; T ], we have

∫ t

0
�′(t)‖

√
�n−1+s(�)un; s

t (�)‖2 d�6�
∫ t

0
‖un; s

t (�)‖2 d�6�M
(M1T )n−1

(n− 1)! (70)

as a consequence of (67). It is easy to show that

H1(t)6C
(M1T )n−2

(n− 2)! +
�+ �r
4

∫ t

0
�(�)‖∇un; s

t (�)‖2 d� (71)
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For each term in h2(t), using (52) and integrating by parts, we can obtain the same kind
of bound. In fact,

(�n−1; s
t  ; un; s

t ) = −((un−1; s · ∇�n−1+s) ; un; s
t )− ((un−1 · ∇�n−1; s) ; un; s

t )

= −((un−1; s · ∇�n−1+s) ; un; s
t ) + (�

n−1; sun−1 · ∇ ; un; s
t )

+ (�n−1; sun−1 · ∇un; s
t ;  )

6 ‖un−1; s‖L4‖∇�n−1+s‖L∞‖ ‖‖un; s
t ‖L4

+ ‖�n−1; s‖L6‖un−1‖L∞‖∇ ‖‖un; s
t ‖L3

+ ‖�n−1; s‖L6‖un−1‖L∞‖∇un; s
t ‖‖ ‖L3

6C‖∇un−1; s‖‖ ‖‖∇un; s
t ‖+ C‖�n−1; s‖L6‖ ‖H 1‖∇un; s

t ‖
6C
‖∇un−1; s‖2‖ ‖2 + C
‖�n−1; s‖2L6‖ ‖2H 1 + 2
‖∇un; s

t ‖2 (72)

Taking, respectively,  =f,  = un
t and  = un−1 · ∇un

t , choosing 
=(�+ �r)=24, we have

H2(t)6C
∫ t

0
‖∇un−1; s(�)‖2‖f(�)‖2 d�+ C

∫ t

0
‖�n−1; s(�)‖2L6‖f(�)‖2H 1 d�

+C
∫ t

0
‖∇un−1; s(�)‖2 d�+ C

∫ t

0
‖�n−1; s(�)‖2L6‖∇un

t (�)‖2 d�

+C
∫ t

0
‖�n−1; s(�)‖2L6 d�+

�+ �r
4

∫ t

0
�(�)‖∇un; s

t (�)‖2 d�

Now, using (53), (64) and (65), we obtain

H2(t)6M
(M1T )n−2

(n− 2)! +
�+ �r
4

∫ t

0
�(�)‖∇un; s

t (�)‖2 d� (73)

Therefore, carrying (69) and (71) in (73), we obtain

�(t)‖un; s
t ‖2 +

∫ t

0
�(�)‖∇un; s

t (�)‖2 d�6M
(M1T )n−2

(n− 2)! (74)

which proves the convergence for un
t . For w

n; s
t the arguments are similar.

The sixth rate of convergence in the Theorem is directly obtained from (54). Similarly,
the seventh rate of convergence is consequence of the previous bound, thanks to the Sobolev
embedding L∞(�)⊆H 2(�).
Finally, the last rate of convergence of Theorem 2.3 is obtained by repeating the same

arguments used in Lemma 2.2 (see equation (47)). That is, write (50) as

(�+ �r)Aun; s=P(F)
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where

F =2�rrotwn−1; s + �n−1; sf − �n−1; sun
t − �n−1+s · ∇un; s

−�n−1+sun−1; s · ∇un − �n−1; sun−1 · ∇un − �n−1+sun; s
t

The remaining step consists in showing that F∈L2(0; T ;L6(�)) and in applying the
Amrouche–Girault result [18].

4.2. Passage to the limit

Once the convergences have been established, the passage to the limit is a standard procedure.
We obtain

∫ T

0
〈�ut + �u · ∇u− �f − 2�r rotw − (�+ �r)�u; v〉�(t) dt=0

∫ T

0
〈�wt + �u · ∇w − �g− 2�r rot u+ 4�rw − (ca + cd)�w

− (c0 + cd − ca)∇divw; z〉 (t) dt=0

for all z; v∈L2(�) and �;  ∈L∞(0; T ).
These equalities together with the Du Bois–Reymond Theorem imply

〈�ut + �u · ∇u− �f − 2�r rotw − (�+ �r)�u; v〉 = 0

〈�wt + �u · ∇w − �g− 2�r rotu+ 4�rw − (ca + cd)�w − (c0 + cd − ca)∇divw; z〉 = 0
a.e. in [0; T ], for every v∈H; z∈L2(�). These last two equalities imply

P(�ut + �u · ∇u− �f − 2�r rotw − (�+ �r)�u) = 0 and

�wt + �u · ∇w − �g− 2�r rot u+ 4�rw − (ca + cd)�w − (c0 + cd − ca)∇divw = 0
For the density, we proved that

un → u strongly in L2(0; T ;L2(�))

�n
t →�t; and ∇�n →∇� weakly in L2(0; T ;L2(�))

Thus, when n→∞ in the approximated continuity equation, we obtain

�t + u · ∇�=0 in the L2(0; T ;L2(�))− sense
Now, we prove the continuity established in Theorem 2.3 for the solution (u; w; �). Firstly,

given that u∈L∞(0; T ;D(A)) and ut ∈L2(”; T ;D(A)), by interpolation (see Reference [6,
p. 260]) u is a.e. equal to a continuous function from [”; T ] into D(A), i.e.,

u∈C([”; T ];D(A)) ∀ ”¿0

On the other hand, since ut∈L2(”; T ;D(A)); utt ∈L2(”; T ;H), by interpolation we have

ut∈C([”; T ];V ); ∀ ”¿0
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Therefore,

u∈C1([”; T ];V )∩C([”; T ];D(A)); ∀ ”¿0

Analogously, we prove that

w∈C1([”; T ];H 1
0 (�)) ∩ C([”; T ];D(B)); ∀”¿0

To prove the continuity at t=0, we proceed as follows. It is easy to show that

lim
t→0+

‖u(t)− u(0)‖=0; lim
t→0+

‖∇u(t)−∇u(0)‖=0
To prove that

lim
t→0+

‖Au(t)− Au(0)‖=0
it is su
cient to show that

lim
t→0+

sup ‖Au(t)‖6‖Au0‖

since we already know that u(t)→ u0 in H 1(�).
Multiplying (7) by Aun+1

t and integrating in �, we have

�+ �r
2

d
dt

‖Aun+1‖2 + ‖√�n∇un+1
t ‖2

= − (�nun · ∇un+1; Aun+1
t ) + 2�r(rotwn; Aun+1

t ) + (�nf; Aun+1
t )

− (∇�n · ∇un+1
t ; un+1

t )

Then, integrating from 0 to t, we get

‖Aun+1(t)‖26 ‖Au0‖2 + 2
�+ �r

[(−�n(t)un(t) · ∇un+1(t) + 2�r rotwn(t)

+�n(t)f(t); Aun+1(t))− (−�n
0u

n(0) · ∇un+1
0 + 2�r rotwn

0

+�n
0f(0); Au

n+1
0 )] +

2
�+ �r

N (t)

uniformly in n and where

N (t) =
∫ t

0
|(�n

t u
n · ∇un+1 + �nun

t · ∇un+1 + �nun · ∇un+1
t − 2�r rotwn

t

−�n
t f − �nft; Aun+1)| d�+

∫ t

0
|(∇�n · ∇un+1

t ; un+1
t )| d�

6 c
∫ t

0
(‖∇un+1‖+ ‖∇un

t ‖+ ‖∇un+1
t ‖+ ‖∇wn

t ‖+ ‖f‖+ ‖ft‖) d�6ct1=2

by virtue of H�older inequality and the estimates as given in Lemma 2.2.
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From this, we conclude that

‖Au(t)‖26 ‖Au0‖2 + c[(−�(t)u(t) · ∇u(t) + 2�r rotw(t) + �(t)f(t); Au(t))

− (−�0u(0) · ∇u0 + 2�r rotw0 + �0f(0); Au0)] + Ct1=2

Since �(t)u(t) ·∇u(t)→�0u0 ·∇u0; �(t)f(t)→�0f(0), rotw(t)→ rotw0 in L2(�) and Au(t)→
Au0 weakly in L2(�) as t→ 0+, we obtain the desired result. From this, it is easy to show

lim
t→0+

‖ut(t)− ut(0)‖=0
The results for w are proved in the same way.

4.3. Uniqueness of the strong solution

To prove uniqueness, let us assume that (u; w; �) and (u1; w1; �1) be two solutions of (1)–(2)
with the same regularity as stated in Theorem 2.3. Now, de�ne

U = u1 − u; W =w1 − w and R=�1 − �

These auxiliary functions verify a set of equations similar to (50)–(52). If we multiply the
�rst equation by U , the second by W and the third by R and repeat the argument as given
in the proof of Lemma 2.1 in 3.1.1, we obtain for ’(t)= ‖U (t)‖2 + ‖W (t)‖2 + ‖R(t)‖2 an
inequality of the following type:

’(t)6C
∫ t

0
’(�) d�

which, by Gronwall’s inequality, is equivalent to assert U =0, W =0 and R=0. The proof
of Theorem 2.3 is completed.

5. EXISTENCE AND UNIQUENESS OF THE PRESSURE

Lemma 5.1
With the hypotheses of Lemma 2.1, for each n, there exists pn∈L2(0; T ;H 1(�)=R) such that
(un; wn; �n; pn) is an approximate solution of problem (1)–(2), where (un; wn; �n) are given
by Lemma 2.1. In addition, with the hypotheses of Lemma 2.2, pn is uniformly bounded in
L∞(0; T ;H 1(�)=R).

Proof
One can prove this lemma from (47) and the Amrouche–Girault’s results (1991).

Lemma 5.2
Under the hypotheses of Lemma 2.2, we have∫ t

0
‖pn+s(�)− pn(�)‖2H 1(�)=R d�6M

(M1T )n−1

(n− 1)!

sup
t

�(t)‖pn+s(t)− pn(t)‖2H 1(�)=R6M
(M1T )n−2

(n− 2)!
for all t∈[0; T ].
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Proof
We denote pn; s=pn+s − pn; ∀n¿1. Then, from (7) and (50), we have

−(�+ �r)�un; s +∇pn; s= J (75)

where

J =2�r rotwn−1; s + �n−1; sf − �n−1; sun
t − �n−1+sun−1+s · ∇un; s

−�n−1+sun−1; s · ∇un − �n−1; sun−1 · ∇un − �n−1+sun; s
t (76)

Moreover,

‖J‖26C‖∇wn−1; s‖2 + C‖�n−1; s‖2L6‖f‖2L3 + C‖�n−1; s‖2L6‖un
t ‖2L3 + C‖∇un; s‖2

+C‖∇un−1; s‖2 + C‖�n−1; s‖2L6‖∇un‖2L3 + C‖un; s
t ‖2 (77)

Now, (75)–(77) and the Amrouche–Girault’s results [18], imply

‖pn; s‖2H 1(�)=R6C‖J‖2 (78)

and integrating it from 0 to t, we get

∫ t

0
‖pn; s(�)‖2H 1(�)=R d�6CM

[
(M1T )n−1

(n− 1)! +
(M1T )n−1

(n− 1)!
∫ t

0
‖f(�)‖2L3 d�

+
(M1T )n−1

(n− 1)!
∫ t

0
‖∇un

t (�)‖2 d�+
(M1T )n

n!

+
(M1T )n−1

(n− 1)!
∫ t

0
‖Aun(�)‖2 d�+ (M1T )n−1

(n− 1)!
]

by virtue of (53), (65) and (67). Therefore,∫ t

0
‖pn; s(�)‖2H 1(�)=R d�6M

(M1T )n−1

(n− 1)!
Also, from (76) and (78), with �(t)= min{1; t}, we have

�(t)‖pn; s‖2H 1(�)=R6 ‖∇wn−1; s‖2 + C‖�n−1; s‖2L∞‖f‖2 + C‖�n−1; s‖2L∞

+C‖∇un; s‖2 + C‖∇un−1; s‖2 + C‖�n−1; s‖2L6 + C�(t)‖un; s
t ‖2

6CM
(M1T )n−2

(n− 2)! + CM
(M1T )n−2

(n− 2)! ‖f‖2 + CM
(M1T )n−1

(n− 1)!

+CM
(M1T )n−1

(n− 1)! + CM
(M1T )n−1

(n− 1)! + CM
(M1T )n−2

(n− 2)!
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by virtue of (53), (64), (67) and (68). Therefore, by interpolation, f∈C([0; T ];L2(�)). From
the last inequality, we conclude

�(t)‖pn; s(t)‖2H 1(�)=R6M
(M1T )n−2

(n− 2)! (79)

Theorem 5.3
Under the hypotheses of Lemma 2.2, the approximate pressure pn converge to the limiting
element p in L2(0; T ;H 1(�)=R) and (u; w; �; p) is the unique solution of (1)–(2), where
(u; w; �) is the solution given in the Theorem 2.3.
Moreover, we have the following error estimate:∫ t

0
‖pn(�)− p(�)‖2H 1(�)=R d�6M

(M1T )n−1

(n− 1)!
Also, pn converges to p in L∞(”; T ;H 1(�)=R), for all ”¿0 and satisfy the following error
estimate

sup
t

�(t)‖pn(t)− p(t)‖2H 1(�)=R6M
(M1T )n−2

(n− 2)!
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13. Lions P-L. Mathematical Topics in Fluid Mechanics, vol. 1 Incompressible Models. Clarendon Press: Oxford,
1996.

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:1251–1280



1280 C. CONCA ET AL.

14. Lukaszewicz G. On nonstationary �ows of incompressible asymmetric �uids. Mathematical Methods in Applied
Science 1990; 13(3):219–232.

15. Lukaszewicz G. On nonstationary �ows of asymmetric �uids. Rend. Accad. Naz. Sci. XL Mem. Mat. 1988;
12:83–97.

16. Lukaszewicz G. On the existence, uniqueness and asymptotic properties for solutions of �ows of asymmetric
�uids. Rendiconti Accademia Nazionale della Scienze detta dei XL, Memorie di Matematica 1989; 13:
105–120.

17. Boldrini J, Rojas-Medar M. On the convergence rate of spectral approximations for the equations for
nonhomogeneous asymmetric �uids. Mathematical Modelling and Numerical Analysis 1996; 30(2):123–155.

18. Amrouche C, Girault V. On the existence and regularity of the solutions of Stokes problem in arbitrary
dimension. Proceedings of the Japan Academic Series A Mathematical Science 1991; 67:171–175.

19. Lions J-L. Quelques M�ethodes de R�esolution des Probl�emes aux Limites Non Lin�eaires. Dunod Gauthier-
Villars: Paris, 1969.

20. Ladyzhenskaya O, Solonnikov V, Uralceva N. Linear and quasi-linear equations of parabolic type. Translation
of Mathematical Monograph. vol. 23. Revised edn, 1988, 1968.

21. Varnhorn W. The Stokes Equations. Mathematical Research, vol. 76, Akademie-Verlag, Berlin, 1994.

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:1251–1280


