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Abstract
This paper is devoted to a geometrical inverse problem associated with a fluid–
structure system. More precisely, we consider the interaction between a moving
rigid body and a viscous and incompressible fluid. Assuming a low Reynolds
regime, the inertial forces can be neglected and, therefore, the fluid motion
is modelled by the Stokes system. We first prove the well posedness of the
corresponding system. Then we show an identifiability result: with one measure
of the Cauchy forces of the fluid on one given part of the boundary and at some
positive time, the shape of a convex body and its initial position are identified.

(Some figures may appear in colour only in the online journal)

1. Introduction

The aim of this paper is to consider a geometrical inverse problem associated with a fluid–
structure system. More precisely, we want to identify the shape of a moving rigid body and
its initial position. Geometrical inverse problems are frequent models in several applied areas
such as medical imaging and non-destructive evaluation of materials.

In this work, we are interested in identifying an inaccessible solid structure, denoted by
S(t), which is moving in a viscous incompressible fluid occupying a region denoted by F (t).
We assume that both the fluid and the structure are contained in a bounded fixed domain (i.e.
connected and open set) � of R3 so that F (t) = � \ S(t).

We assume that the structure is a rigid body so that it can be described by its centre of
mass a(t) ∈ R3 and by its orientation Q(t) ∈ SO3(R) as follows:

S(t) := S(a(t), Q(t)),
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Figure 1. Domain of reference.

with

S(a, Q) := QS0 + a, (a, Q) ∈ R3 × SO3(R). (1)

Here, S0 is a smooth non-empty domain which is given and SO3(R) is the set of all rotation
real square matrices of order 3. We can assume, without loss of generality, that the centre of
mass of S0 is at the origin and in that case, a is the centre of mass of S(a, Q). We also assume
that there exists (a, Q) ∈ R3 × SO3(R) such that S(a, Q) ⊂ � and

F (a, Q) := � \ S(a, Q),

is a smooth non-empty domain (see figure 1). In what follows, we will write

F (t) := F (a(t), Q(t)).

To write the equations governing the motion of this fluid–structure system, it is natural to
model the fluid motion through classical Navier–Stokes equations and next apply Newton’s
laws to obtain the equations for the rigid body. The resulting system has been extensively
studied in the last few years (see e.g. [9, 10, 13, 16, 20, 23, 26–28, 31] for a non-exhaustive
list of articles on this subject). A large part of the literature associated with this system is
devoted to its well posedness and in particular, up to our knowledge, there is no result for
the geometrical inverse problems that we will consider in this paper. Indeed, this general case
is quite difficult to handle directly and we will therefore limit ourselves to consider only a
simplified version where it will be assumed that the Reynolds number is very small so that
inertial forces can be neglected. In that case, the dynamics of the whole fluid–rigid solid body
interaction writes as follows:

−div(σ(u, p)) = 0 in F (t), t ∈ (0, T ), (2)

div(u) = 0 in F (t), t ∈ (0, T ), (3)

u = � + ω × (x − a) on ∂S(t), t ∈ (0, T ), (4)

u = u∗ on ∂�, t ∈ (0, T ), (5)∫
∂S(t)

σ(u, p)n dγx = 0 t ∈ (0, T ), (6)
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∂S(t)

(x − a) × σ(u, p)n dγx = 0 t ∈ (0, T ), (7)

a′ = � t ∈ (0, T ), (8)

Q′ = S(ω)Q t ∈ (0, T ), (9)

a(0) = a0, (10)

Q(0) = Q0. (11)

Here, S(ω) is the skew symmetric matrix

S(ω) =
⎛⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞⎠ (ω ∈ R3)

which satisfies that S(ω)z = ω × z, for every z ∈ R3.
In the above system, (u, p) are the velocity and the pressure of the fluid, whereas � and

ω are respectively the linear and angular velocity of the solid. Moreover, we have denoted by
σ(u, p) the Cauchy stress tensor, which is defined by Stokes law

σ(u, p) = −pId + 2ν D(u),

where Id is the identity matrix of M3(R), with M3(R) being the set of all real square matrices
of order 3, and D(u) is the strain tensor defined by

[D(u)]kl = 1

2

(
∂uk

∂xl
+ ∂ul

∂xk

)
.

The positive constant ν is the kinematic viscosity of the fluid.
The velocity u∗ is a given velocity satisfying the compatibility condition∫

∂�

u∗ · n dγx = 0. (12)

Despite the fact that equations (2)–(11) are simpler than the more general system which
couples Navier–Stokes equations with Newton’s laws, they do not represent a particular case
of this one. Therefore, we first need to consider the well posedness of this system for a given
shape S0 of the rigid body (see theorem 1).

Let us now give a more detailed description of the inverse problem we consider in this
paper. Assume � is a non-empty open subset of ∂�, where we can measure σ(u, p) n|� at
some time t0 > 0. Is it possible to recover S0? In this paper, we show the identifiability of
S0, proving that to each measurement of the Cauchy forces on �, there is a corresponding
shape S0, which is unique up to a rotation matrix. More precisely, let us take two non-empty
open sets S (1)

0 and S (2)

0 . We prove that under certain assumptions on the rigid bodies and the
function u∗, we can identify the structure (see theorem 2).

Similar problems have been studied in the recent years. For example, in [1], the authors
proved an identifiability result for a fixed smooth convex obstacle surrounded by a viscous
fluid via the observation of the Cauchy forces on one given part of the boundary. Their method
of proof is based on the unique continuation property for the Stokes equations due to Fabre–
Lebeau [12]. They also obtained a weak stability result (directional continuity). In the case
of a perfect fluid, the authors of [7] proved, in the two-dimensional case, an identifiability
result when the obstacle is a ball which is moving around in an irrotational fluid by measuring
the velocity of the fluid on a given subregion of the boundary. Precise stability results (linear
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stability estimates) are proved for this case using shape differentiation techniques due to Simon
[29]. In [11] the authors considered the inverse problem of detecting the shape of a single rigid
obstacle immersed in a fluid governed by the stationary Navier–Stokes equations by assuming
that friction forces are known on one part of the outer boundary. They proved a uniqueness
result when the obstacle is a simply connected open set. In this paper, we obtain, under some
conditions, an identifiability result for moving obstacles in a viscous fluid. This is a first step
towards detection results for the same problem. In the case of fixed obstacle in a viscous
fluid, the authors of [17] gave a method to reconstruct obstacles. More precisely, using the
geometrical optics solutions due to Silvester and Uhlmann [30], they can estimate the distance
from a given point to an obstacle by means of boundary measurements. Another method was
considered in [2] where the authors used the shape differentiation in a numerical method in
order to recover a finite number of parameters of the obstacle.

In the papers cited above, both the obstacle and the fluid occupy a bounded domain, while
in [8], an identifiability result for the case of a rigid solid moving around in a potential fluid
filling R2 is proved. By assuming that the potential function is known at a given time, the
authors showed that when the solid has some symmetry properties, it is possible to detect
certain parameters of the solid: the angular velocity, the translational velocity, among others.

The paper is outlined as follows. In section 2, we state the main results of this paper given
by theorems 1–2. In section 3, we consider an auxiliary system which is used to prove the
well posedness of the system (2)–(11). More precisely, we can reduce the system (2)–(11) to
a system of ODE for the position. Therefore, we show in section 4 that the solutions of the
auxiliary system depend smoothly on the position, and by applying the Cauchy–Lipschitz–
Picard theorem we deduce theorem 1. Section 5 is devoted to the proof of theorem 2. The
method to prove the identifiability result is similar to the one developed in [1] for the case of
a ‘fixed’ body. In the last section, section 6, we tackle the problem of stability by using the
same approach as in [1].

2. Main results

The aim of this paper is to prove some results of identifiability for the system (2)–(11), but we
first need to consider its well posedness for a given shape S0 of the rigid body.

Theorem 1. Assume that u∗ ∈ H3/2(∂�) satisfies (12), S0 is a smooth non-empty domain and
(a0, Q0) ∈ R3 × SO3(R) is such that S(a0, Q0) ⊂ � and F (a0, Q0) is a smooth non-empty
domain. Then there exist a maximal time T∗ > 0 and a unique solution

(a, Q) ∈ C1([0, T∗); R3 × SO(3)), (�,ω) ∈ C([0, T∗); R3 × R3),

(u, p) ∈ C
(
[0, T∗); H2(F (a(t), Q(t))) × H1(F (a(t), Q(t)))/R

)
satisfying the system (2)–(11). Moreover, one of the following alternatives holds:

• T∗ = +∞;
• limt→T∗ dist (S(a(t), Q(t)), ∂�) = 0.

Now, let us take two smooth non-empty domains S (1)

0 and S (2)

0 . Let us also consider(
a(1)

0 , Q(1)

0

)
,
(
a(2)

0 , Q(2)

0

) ∈ R3 × SO3(R) such that

S (1)
(
a(1)

0 , Q(1)

0

) ⊂ � and S (2)
(
a(2)

0 , Q(2)

0

) ⊂ �.

Applying theorem 1, we deduce that for any u∗ ∈ H3/2(∂�) such that (12) holds, there
exist T (1)

∗ > 0 (respectively T (2)
∗ > 0) and a unique solution (a(1), Q(1), �(1),ω(1), u(1), p(1))
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(respectively (a(2), Q(2), �(2),ω(2), u(2), p(2))) of (2)–(11) in [0, T (1)
∗ ) (respectively in

[0, T (2)
∗ )).
Then we have the following result.

Theorem 2. With the above notation, assume that u∗ ∈ H3/2(∂�) satisfies (12) and u∗ is not
the trace of a rigid velocity on �. Assume also that S (1)

0 and S (2)

0 are convex. If there exists
0 < t0 < min(T (1)

∗ , T (2)
∗ ) such that

σ(u(1)(t0), p(1)(t0)) n|� = σ(u(2)(t0), p(2)(t0)) n|�,

then there exists R ∈ SO3(R) such that

RS (1)

0 = S (2)

0

and

a(1)

0 = a(2)

0 , Q(1)

0 = Q(2)

0 R.

In particular, T (1)
∗ = T (2)

∗ and

S (1)(t) = S (2)(t) (t ∈ [0, T (1)
∗ )).

We recall that v is a rigid displacement in � if there exist two vectors κ1, κ2 ∈ R3 such
that

v(x) = κ1 + κ2 × x, for all x ∈ �.

In particular, if v ∈ H1(�) and � is a bounded domain, we have that v is a rigid displacement
if and only if

D(v) = 0.

Remark 1. In the above theorem, the hypothesis of convexity for the obstacle is technical and
could probably be removed. The hypothesis t0 < min(T (1)

∗ , T (2)
∗ ) means that we observe our

data before any contact between the rigid body and the exterior boundary ∂�.
To avoid this hypothesis, we should first model what happens when there is a contact.

Unfortunately, this problem is quite complex: in particular, it can be proved (see [19, 21, 22])
that if � and S0 are balls, then T∗ = ∞, that is, there is no contact in finite time.

3. An auxiliary system

In this section, we consider and study an auxiliary system which is essential in the proof of
theorem 1.

Let us fix u∗ ∈ H3/2(∂�) satisfying (12) and consider S0 to be a non-empty smooth
domain and assume (a0, Q0) ∈ R3 × SO3(R) is such that S(a0, Q0) ⊂ � and F (a0, Q0) is a
non-empty smooth domain. Let us consider the subset A of admissible positions of the rigid
body in �,

A := {(a, Q) ∈ R3 × SO3(R);S(a, Q) ⊂ �}, (13)

where S(a, Q) is defined by (1).
For all (a, Q) ∈ A, the following problem is well posed:

−div(σ(u, p)) = 0 in F (a, Q), (14)

div(u) = 0 in F (a, Q), (15)

u = � + ω × (x − a) on ∂S(a, Q), (16)
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u = u∗ on ∂�, (17)∫
∂S(a,Q)

σ(u, p)n dγx = 0, (18)

∫
∂S(a,Q)

(x − a) × σ(u, p)n dγx = 0. (19)

More precisely, we have the following result.

Proposition 3. Assume u∗ ∈ H3/2(∂�) satisfying (12) and assume (a, Q) ∈ A. Then there
exists a unique solution (u, p, �,ω) ∈ H2(F (a, Q))×H1(F (a, Q))/R×R3×R3 of (14)–(19).

In order to prove the above proposition, we introduce for all (a, Q) ∈ A, the following
Stokes systems:⎧⎪⎪⎨⎪⎪⎩

−div
(
σ

(
u(i), p(i)

)) = 0 in F (a, Q)

div
(
u(i)

) = 0 in F (a, Q) (i = 1, 2, 3)

u(i) = e(i) on ∂S(a, Q)

u(i) = 0 on ∂�,

(20)

⎧⎪⎪⎨⎪⎪⎩
−div

(
σ

(
U (i), P(i)

)) = 0 in F (a, Q)

div
(
U (i)

) = 0 in F (a, Q) (i = 1, 2, 3)

U (i) = e(i) × (x − a) on ∂S(a, Q)

U (i) = 0 on ∂�,

(21)

where {e(i)}3
i=1 is the canonical basis of R3, and⎧⎪⎪⎨⎪⎪⎩

−div (σ(V∗, P∗ )) = 0 in F (a, Q)

div (V∗) = 0 in F (a, Q)

V∗ = 0 on ∂S(a, Q)

V∗ = u∗ on ∂�.

(22)

Using that for all i = 1, 2, 3,∫
∂S(a,Q)

e(i) · n dγx =
∫

∂S(a,Q)

[e(i) × (x − a)] · n dγx =
∫

∂S(a,Q)

u∗ · n dγx = 0,

it is well known (see, for instance, [14, theorem 6.1 page 231]) that the systems (20),
(21) and (22) admit unique solutions (u(i), p(i)), (U (i), P(i)), (V∗, P∗) ∈ H2(F (a, Q)) ×
H1(F (a, Q))/R.

To solve (14)–(19), we search (u, p) as

u :=
3∑

i=1

�iu(i) + ωiU (i) + V∗ (23)

p :=
3∑

i=1

�i p
(i) + ωiP

(i) + P∗. (24)

It is easy to check that (u, p) ∈ H2(F (a, Q)) × H1(F (a, Q))/R and satisfies⎧⎪⎪⎨⎪⎪⎩
−div(σ(u, p)) = 0 in F (a, Q),

div(u) = 0 in F (a, Q),

u = � + ω × (x − a) on ∂S(a, Q),

u = u∗ on ∂�.

6
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Thus, (u, p) is a solution of (14)–(19) if and only if (18)–(19) hold, i.e. if and only if (�,ω)

satisfies
3∑

i=1

�i

∫
∂S(a,Q)

σ(u(i), p(i))n dγx +
3∑

i=1

ωi

∫
∂S(a,Q)

σ(U (i), P(i))n dγx

+
∫

∂S(a,Q)

σ(V∗, P∗)n dγx = 0 (25)

and
3∑

i=1

�i

∫
∂S(a,Q)

(x − a) × σ(u(i), p(i))n dγx +
3∑

i=1

ωi

∫
∂S(a,Q)

(x − a) × σ(U (i), P(i))n dγx

+
∫

∂S(a,Q)

(x − a) × σ(V∗, P∗)n dγx = 0. (26)

We can rewrite the linear system (25)–(26) in (�,ω) in a matricial way. In order to do this, we
remark that from the boundary condition of (20),(∫

∂S(a,Q)

σ(u(i), p(i))n dγx

)
· e( j) =

∫
∂S(a,Q)

σ(u(i), p(i))n · u( j) dγx

= 2ν

∫
F (a,Q)

D(u(i)) : D(u( j)) dx (i, j = 1, 2, 3).

Similarly,(∫
∂S(a,Q)

(x − a) × σ(u(i), p(i))n dγx

)
· e( j) =

∫
∂S(a,Q)

σ(u(i), p(i))n · U ( j) dγx

= 2ν

∫
F (a,Q)

D(u(i)) : D(U ( j)) dx (i, j = 1, 2, 3).

These relations and their counterparts for (U (i), P(i)) and (V∗, P∗) allow us to write (25)–(26)
as

A
(

�

ω

)
= b,

where A ∈ M6(R) is defined by

Ai j =
∫
F (a,Q)

D(u(i)) : D(u( j)) dx, 1 � i, j � 3 (27)

Ai j =
∫
F (a,Q)

D(u(i−3)) : D(U ( j)) dx, 4 � i � 6, 1 � j � 3 (28)

Ai j =
∫
F (a,Q)

D(U (i)) : D(u( j−3)) dx, 1 � i � 3, 4 � j � 6 (29)

Ai j =
∫
F (a,Q)

D(U (i−3)) : D(U ( j−3)) dx, 4 � i, j � 6 (30)

and b ∈ R6 is defined by

b j = −
∫
F (a,Q)

D(V∗) : D(u( j)) dx, 1 � j � 3

b j = −
∫
F (a,Q)

D(V∗) : D(U ( j−3)) dx, 4 � j � 6.

7
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Lemma 4. The matrix A defined by (27)–(30) is invertible.

Proof. Since A is a symmetric matrix, it suffices to check that A is positive definite, i.e.〈
A

(
�

ω

)
,

(
�

ω

)〉
> 0, ∀

(
�

ω

)
	=

(
0
0

)
.

Here, 〈·, ·〉 denotes the canonical scalar product in R6. A short calculation shows that〈
A

(
�

ω

)
,

(
�

ω

)〉
=

∫
F (a,Q)

∣∣∣D (∑
�iu(i) + ωiU (i)

)∣∣∣2
dx � 0

((
�

ω

)
∈ R6

)
.

Suppose that
(

�
ω

) ∈ R6 satisfies∫
F (a,Q)

∣∣∣D (∑
�iu(i) + ωiU (i)

)∣∣∣2
dx = 0.

Then, from Korn’s inequality (see, for instance, [25, theorem 2.4–2, page 51]), we deduce
3∑

i=1

�iu(i) + ωiU (i) = 0 in F (a, Q).

From the boundary conditions in (20) and (21), it follows � + ω × (x − a) = 0 for all x ∈ ∂�.
Lemma 5 (see below) yields � = ω = 0. �

Lemma 5. Let O be a non-empty bounded open smooth subset of R3. Then

κ1 + κ2 × y = 0 (y ∈ ∂O) ⇒ κ1 = κ2 = 0.

Thanks to lemma 4, (u, p, �,ω) satisfies (14)–(19) if and only if (u, p) are defined by
(23), (24) and (�,ω) is given by(

�

ω

)
= A−1b. (31)

This ensures the existence and uniqueness of a solution (u, p, �,ω) satisfying (14)–(19) and
this ends the proof of proposition 3.

4. Proof of theorem 1

Using the auxiliary system (14)–(19) introduced in the previous section, we easily check that

(a, Q) ∈ C1([0, T∗); R3 × SO(3)), (�,ω) ∈ C([0, T∗); R3 × R3),

(u, p) ∈ C
(
[0, T∗); H2(F (a(t), Q(t))) × H1(F (a(t), Q(t)))/R

)
is the solution of the system (2)–(11) if and only if for all t ∈ (0, T ), (a(t), Q(t)) ∈ A,

(�(t),ω(t), u(t), p(t)) ∈ R3 × R3 × H2(F (a(t), Q(t))) × H1(F (a(t), Q(t)))/R

satisfies (14)–(19) and

a′ = �, Q′ = S(ω)Q in (0, T ),

a(0) = a0, Q(0) = Q0.

Therefore, to prove theorem 1, it suffices to prove that the solution
(
u[a,Q], p[a,Q]�[a,Q],ω[a,Q]

)
of (14)–(19) depends smoothly on a and Q. More precisely, the following proposition and the
Cauchy–Lipschitz–Picard theorem allow to conclude the proof of theorem 1.

8
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Proposition 6. The mapping

T : A → R6

(a, Q) → (
�[a,Q],ω[a,Q]

)
is of class C1.

In order to prove proposition 6, we use the following classical result introduced by Simon
(see [29]).

Assume that W is a Banach space, B and C are reflexive Banach spaces, and W is a non-
empty open subset of W . We also consider g1 : W × B → C, g2 : W → B and g3 : W → C
such that for all w ∈ W ,

g1(w, ·) ∈ L(B,C), g1(w, g2(w)) = g3(w).

Then we have the following result.

Theorem 7 (Simon). Assume that w → g1(w, ·) is C1 at w0 into L(B,C), g3 is C1 at w0 and
there exists α > 0 such that

‖g1(w0, x)‖C � α ‖x‖B ∀ x ∈ B.

Then g2 is C1 at w0.

Remark 2. Thanks to (31), proposition 6 is reduced to prove that the mappings

(a, Q) → A−1(a, Q) and (a, Q) → b(a, Q)

are of class C1.

4.1. Change of variables

In order to apply theorem 7, we first need to consider a local chart of A around an arbitrary
(a0, Q0) ∈ A.

Let us consider the skew-symmetric matrices

A1 =
⎛⎝0 0 0

0 0 −1
0 1 0

⎞⎠, A2 =
⎛⎝ 0 0 1

0 0 0
−1 0 0

⎞⎠, A3 =
⎛⎝0 −1 0

1 0 0
0 0 0

⎞⎠,

and for any given matrix R ∈ SO3(R), let us define the mapping

�R : U → SO3(R)

θ = (θ1, θ2, θ3) → exp(θ1A1) exp(θ2A2) exp(θ3A3)R

with U = (−π, π ) × (−π/2, π/2) × (−π, π ). It is easy to check that �R is an infinitely
differentiable diffeomorphism fromU onto a neighbourhood of R ∈ SO3(R) (see, for example,
[15, pages 150 and 603] and [24], for more details).

Let us fix an arbitrary (a0, Q0) ∈ A and let us consider the following C∞-diffeomorphism:

	(a0,Q0) : R3 × U → R3 × SO3(R)

(h, θ) → (
a0 + h,�Q0

(θ)
)
.

It satisfies

	(a0,Q0)(0, 0) = (a0, Q0)

and there exists r > 0 such that BR6 (0, r) ⊂ R3 × U and

	(a0,Q0) (BR6 (0, r)) ⊂ A. (32)

9
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Using the local chart introduced above, the proof of proposition 6 is reduced to prove that the
mapping

T̃ (a0,Q0) : BR6 (0, r) → R6

(h, θ) → (�[	(a0 ,Q0 ) (h,θ)],ω[	(a0 ,Q0 ) (h,θ)])
(33)

is C1 in (0, 0).
To prove this, we combine theorem 7 with a change of variables. More precisely, let us

construct a mapping X : � → � which transforms S(a0, Q0) onto S(	(a0,Q0)(h, θ)) and
F (a0, Q0) onto F (	(a0,Q0)(h, θ)). We use this change of variables to transform systems (20),
(21) and (22) into systems written in fixed domains. To construct our change of variables, we
start with the mapping ϕ : R3 → R3 defined by

ϕ(h, θ; y) = �Q0
(θ)Q−1

0 (y − a0) + (a0 + h)

= �Id(θ)(y − a0) + (a0 + h)

= exp(θ1A1) exp(θ2A2) exp(θ3A3)(y − a0) + (a0 + h).

It is easy to check that ϕ(h, θ; ·) mapsS(a0, Q0) ontoS(	(a0,Q0)(h, θ)) and, from the regularity
of 	(a0,Q0), we deduce that (h, θ) → ϕ(h, θ; ·) is a C∞-mapping from BR6 (0, r) into Ck(R3),
for all k � 0.

We fix two open subsets O1 and O2 of � such that

S(a0, Q0) ⊂ O1, O1 ⊂ O2, O2 ⊂ �

and we consider a function Z ∈ C∞
c (�),

Z ≡ 1 in O1, Z ≡ 0 in � \ O2.

Then we set for y ∈ R3

X(h, θ; y) := y + (ϕ(h, θ; y) − y)Z(y). (34)

For all y ∈ R3, we have

|X(h, θ; y) − y| = | (ϕ(h, θ; y) − y)Z(y)|
= |((�Id(θ) − Id)(y − a0) + h)Z(y)|
� C(�)|(h, θ)|.

Moreover, for all y ∈ R3

|∇y(X(h, θ; y)) − Id| � C(�)|(h, θ)|,
where Id is the identity matrix of M3(R) and where we have denoted by | · | the euclidean
norm of Rk for k = 3 or 6.

In particular, for r small enough, for all (h, θ) ∈ BR6 (0, r), X(h, θ; ·) is a C∞-
diffeomorphism from � onto � such that

X(h, θ;S(a0, Q0)) = S(	(a0,Q0)(h, θ)).

Furthermore, the mapping

BR6 (0, r) → Ck(�)

(h, θ) → X(h, θ; ·)
is of class C∞ for all k � 0.

It is well known that

X → X−1

is a C∞ mapping from the Ck-diffeomorphisms of � onto itself.

10
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Consequently, if we denote for all (h, θ) ∈ BR6 (0, r), Y (h, θ; ·) the inverse of X(h, θ; ·),
then

BR6 (0, r) → Ck(�)

(h, θ) → Y (h, θ; ·)
is also of class C∞ for all k � 0.

Now, we use the change of variables constructed above to write the systems of
equations (20), (21) and (22) in fixed domains. In fact, we only detail this transformation
for systems (20); the calculation is similar for systems (21) and (22).

Since e(i) ∈ H3/2(∂�) satisfies∫
∂�

e(i) · n dγ = 0,

there exists �(i) ∈ H2(�) (see, for instance [5]) such that

(1) �(i) = −e(i) on ∂�,
(2) div�(i) = 0 in �,
(3) �(i)(x) = 0 if x ∈ [�]ε := {z ∈ � : dist (z, ∂�) � ε},
for some ε > 0 such that O2 ⊂ [�]ε .

Let us set

ũ(i) := u(i) − e(i) − �(i); (35)

then (u(i), p(i)) satisfies (20) if and only if (̃u(i), p(i)) satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
−div(σ (̃u(i), p(i))) = −ν��(i) in F (	(a0,Q0)(h, θ))

div(̃u(i)) = 0 in F (	(a0,Q0)(h, θ))

ũ(i) = 0 on ∂S(	(a0,Q0)(h, θ))

ũ(i) = 0 on ∂�.

(36)

We set

v(i)(h, θ; y) = det(∇X(h, θ; y)) (∇X(h, θ; y))−1 ũ(i)(h, θ; X(h, θ; y)), (37)

q(i)(h, θ; y) = det(∇X(h, θ; y))p(i)(h, θ; X(h, θ; y)). (38)

Let us remark that we do not use the change of variables

v(i)(h, θ; y) = ũ(i)(h, θ; X(h, θ; y))

because of the divergence equation in (20). More precisely, we have the following result.

Lemma 8. Assume v(i) is defined by (37). Then

(div v(i))(h, θ; y) = det(∇X(h, θ; y))(div ũ(i))(h, θ; X(h, θ; y)).

The proof can be found in [4] (see lemma 3.1).
Now, we calculate the transformation of the gradient of ũ(i). Here, we do not write the

dependence on the variables h and θ:

∂ ũ(i)
m

∂x j
= (det ∇Y )

∂v(i)
m

∂y j
(Y ) + Em j[v

(i)] (39)

11
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with

Em j
[
v(i)

] =
3∑

k=1

[
∂

∂x j

(
(det ∇Y )

∂Xm

∂yk
(Y )

)
v

(i)
k (Y ) + det ∇Y

(
∂Xm

∂yk
(Y ) − δmk

)
∂v

(i)
k

∂y j
(Y )

+ (det ∇Y )
∂Xm

∂yk
(Y )

3∑
l=1

∂v
(i)
k

∂yl
(Y )([(∇X )−1]l j(Y ) − δl j)

]
. (40)

Then,

∂2ũ(i)
m

∂x2
j

= (det ∇Y )
∂2v(i)

m

∂y2
j

(Y ) + (det ∇Y )

3∑
l=1

∂2v(i)
m

∂y j∂yl
(Y )([(∇X )−1]l j(Y ) − δl j)

+ ∂

∂x j
(det ∇Y )

∂v(i)
m

∂y j
(Y ) + ∂

∂x j
(Em j[v

(i)]). (41)

On the other hand, from (38) we have

∂ p(i)

∂xm
= ∂

∂xm
(det ∇Y ) q(i)(Y ) + (det ∇Y )

∂q(i)

∂ym
(Y )

+ (det ∇Y )

3∑
l=1

∂q(i)

∂yl
(Y )([(∇X )−1]lm(Y ) − δlm). (42)

Thereby, (u(i), p(i)) satisfies (20) if and only if (v(i), q(i)) satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ν[Lv(i)] + [Gq(i)] = −ν��(i) in F (a0, Q0)

div(v(i)) = 0 in F (a0, Q0)

v(i) = 0 on ∂S(a0, Q0)

v(i) = 0 on ∂�

(43)

with

[Lv(i)]m :=
3∑

j=1

[
∂2v(i)

m

∂y2
j

+
3∑

l=1

∂2v(i)
m

∂y j∂yl
([(∇X )−1]l j − δl j)

+ (det ∇X )
∂

∂x j
(det ∇Y )(X )

∂v(i)
m

∂y j
+ (det ∇X )

∂

∂x j
(Em j[v

(i)])(X )

]
, (44)

and

[Gq(i)]m := (det ∇X )
∂

∂xm
(det ∇Y )(X )q(i) + ∂q(i)

∂ym
+

3∑
l=1

∂q(i)

∂yl
([(∇X )−1]lm − δlm). (45)

Let us remark that the right-hand side of the first equation of (43) is the same as in (36) since
in �\O2, X(h, θ; ·) = id (see (34)) and by definition, the support of �(i) is included in �\O2

(see property 3). In particular, this right-hand side is independent of h and θ.

4.2. Proof of proposition 6

We are now in position to prove proposition 6. We recall that proposition 6 yields theorem 1.

Proof of proposition 6. We apply theorem 7; let us take

W = R3 × R3, W = BR6 (0, r),

B = (
H2(F (a0, Q0)) ∩ H1

σ (F (a0, Q0))
) × H1(F (a0, Q0))/R,

C = L2(F (a0, Q0)),

12
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where

H1
σ (F (a0, Q0)) = {

w ∈ H1
0(F (a0, Q0)) : div(w) = 0

}
and r is small enough (see (32) and the construction of X).

We also set

g1 : W × B → C

(h, θ, v, q) → −ν [L(h, θ)v] + [G(h, θ)q] ,

g2 : W → B

(h, θ) → (
v(i)(h, θ), q(i)(h, θ)

)
,

and

g3 : W → C

(h, θ) → −ν��(i).

Thus thanks to the regularity of the mappings X and Y we have that (h, θ) → g1(h, θ; ·) is C1

at (0, 0) into L(B,C). Moreover, since g3(h, θ) does not depend on (h, θ), we deduce that g3
is C1 at (0, 0). Lastly, if

g1(0, 0; (u, p)) = −ν�u + ∇p, ∀(u, p) ∈ B,

then, thanks to the ellipticity regularity for Stokes systems (see, for instance, [5]), we have

‖g1(0, 0; (u, p))‖C � K0‖(u, p)‖B,

where the constant K0 depends on ν and the geometry of the domain.
Therefore, applying theorem 7 we conclude that the mapping

g2 : BR6 (0, r) → (
H2(F (a0, Q0)) ∩ H1

σ (F (a0, Q0))
) × H1(F (a0, Q0))/R

(h, θ) → (v(i), q(i))

is C1 in (0, 0).
From the definition of ũ(i) (see (35)), the theorem of change of variables and (39)–(40),

we can rewrite (27) as follows:

Ai j =
∫
F (a0,Q0)

[D(̃u(i) + �(i))(X )] : [D(̃u( j) + �( j))(X )](det ∇X ) dy

=
∫
F (a0,Q0)

T (i)(v(i),�(i), X,Y ) : T ( j)(v( j),�( j), X,Y )(det ∇X ) dy,

where T (i) is given by

T (i)(v(i),�(i), X,Y ) := 1

det ∇X
D(v(i)) + 1

2
(E[v(i)] + E[v(i)]t )(X ) + D(�(i)).

This proves that for 1 � i, j � 3, the mappings

BR6 (0, r) → R

(h, θ) → Ai j = Ai j(	(a0,Q0)(h, θ))

are C1 in (0, 0). By similar calculations we obtain that for all 1 � i, j � 6, the previous
mappings are C1 in (0, 0). Likewise, for all 1 � j � 6, the mappings

BR6 (0, r) → R

(h, θ) → b j = b j
(
	(a0,Q0)(h, θ)

)
are C1 in (0, 0).

13
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Since the mapping

Gl3(R) → Gl3(R)

A → A−1

is of class C1 and thanks to remark 2, we deduce that the mapping T̃ defined by (33) is C1 in
(0, 0). Here, Gl3(R) denotes the set of all real invertible matrices of order 3. This concludes
the proof of proposition 6. �

5. Proof of theorem 2

First, we recall a key result. We prove it for the sake of completeness.

Proposition 9. Assume S (1) and S (2) are two convex smooth non-empty open sets such that

S (1) ⊂ � and S (2) ⊂ �. (46)

Suppose u∗ ∈ H3/2(∂�) satisfies (12) and consider

(u(1), p(1)) ∈ H2(� \ S (1)) × H1(� \ S (1))/R,

(u(2), p(2)) ∈ H2(� \ S (2)) × H1(� \ S (2))/R

satisfying ⎧⎪⎨⎪⎩
−div σ

(
u(i), p(i)

) = 0 in � \ S (i)

div
(
u(i)

) = 0 in � \ S (i) (i = 1, 2)

u(i) = u∗ on ∂�.

(47)

If � is a non-empty open subset of ∂� and

σ(u(1), p(1))n|� = σ(u(2), p(2))n|�, (48)

then

u(1) ≡ u(2) in � \ (S (1) ∪ S (2)). (49)

Proof. We write

u := u(1) − u(2)

p := p(1) − p(2).

Combining (47) and (48), we deduce that (u, p) satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−div(σ(u, p)) = 0 in � \ (S (1) ∪ S (2))

div(u) = 0 in � \ (S (1) ∪ S (2))

u = 0 on ∂�

σ(u, p)n = 0 on �.

Applying the unique continuation property for the Stokes equations due to Fabre and Lebeau
[12], (see also [1]), we deduce u ≡ 0 in the connected component of ∂�. Since � is connected

14



Inverse Problems 28 (2012) 015005 C Conca et al

Ω

S

S

(t )

(t )
(1)

(2)

0

0

Ω

S
S

(t )
(t )

(1)

(2)

0

0

Ω

S

S

(t )
(t )

(1)

(2)
0

0

Figure 2. The intersection of the boundaries is contained in a straight line.

and S (1) and S (2) are convex and satisfy (46), we have that � \ (S (1) ∪ S (2)) is connected and
thus

u(1) = u(2) in � \ (S (1) ∪ S (2)). �

Proof of theorem 2. In order to prove theorem 2, we reason by contradiction and we assume
that there exists 0 < t0 < min(T (1)

∗ , T (2)
∗ ), such that

σ(u(1)(t0), p(1)(t0)) n|� = σ(u(2)(t0), p(2)(t0)) n|�
and S (1)(t0) 	= S (2)(t0).

In that case, since S (1)(t0) and S (2)(t0) are convex sets, we have

• ∂S (1)(t0) ∩ ∂S (2)(t0) is included in a line,
• ∂S (1)(t0) ∩ ∂S (2)(t0) contains three noncollinear points.

The first case can be split into the three following subcases (see figure 2):

S (1)(t0) ∩ S (2)(t0) = ∅ or S (1)(t0) � S (2)(t0) or S (2)(t0) � S (1)(t0).

We will show that neither of these four cases are possible.

Case 1.1. S (1)(t0) ∩ S (2)(t0) = ∅. Then, from (49), we deduce that in S (2)(t0) ⊂ F (1)(t0), we
have ⎧⎪⎨⎪⎩

−div(σ(u(1)(t0), p(1)(t0))) = 0 in S (2)(t0)

div
(
u(1)(t0)

) = 0 in S (2)(t0)

u(1)(t0) = �(2)(t0) + ω(2)(t0) × (
x − a(2)(t0)

)
on ∂S (2)(t0).

In particular,

v = u(1)(t0) − (�(2)(t0) + ω(2)(t0) × (x − a(2)(t0)))

satisfies the following Stokes system:⎧⎪⎨⎪⎩
−div(σ(v, p(1)(t0))) = 0 in S (2)(t0)

div (v) = 0 in S (2)(t0)

v = 0 on ∂S (2)(t0).
Multiplying by v the first equation of the above system, we deduce∫

S (2) (t0)

|D(v)|2 dx = 0

and thus v = 0 in S (2)(t0). Consequently, since v satisfies the Stokes system in F (1)(t0),
we can apply again the result of Fabre and Lebeau [12] and we obtain

v ≡ 0 in F (1)(t0).

This yields that

u∗(x) = �(2)(t0) + ω(2)(t0) × (x − a(2)(t0)) (x ∈ ∂�)

which contradicts that u∗ is not the trace of a rigid velocity on �.
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Case 1.2. S (1)(t0) � S (2)(t0) (case 1.3. S (2)(t0) � S (1)(t0) is identical).
Then, we have in S (2)(t0) \ S (1)(t0) ⊂ F1(t0),{

−div(σ(u(1)(t0), p(1)(t0))) = 0 in S (2)(t0) \ S (1)(t0)

div(u(1)(t0)) = 0 in S (2)(t0) \ S (1)(t0)

and using (49),{
u(1)(t0) = �(1)(t0) + ω(1)(t0) × (x − a(1)(t0)) on ∂S (1)(t0)

u(1)(t0) = �(2)(t0) + ω(2)(t0) × (x − a(2)(t0)) on ∂S (2)(t0).

Let us write v = u(1)(t0) − (�(2)(t0) + ω(2)(t0) × (x − a(2)(t0))); then

− div(σ(v, p(1)(t0))) = 0 in F (1)(t0), (50)

div (v) = 0 in F (1)(t0), (51)

v = u∗ − (�(2)(t0) + ω(2)(t0) × (x − a(2)(t0))) on ∂�, (52)

v = ã + b̃ × (x − a(1)(t0)) on ∂S (1)(t0), (53)

∫
∂S (1)(t0)

σ(v, p(1)(t0))n dγx = 0, (54)

∫
∂S (1)(t0)

(x − a(1)(t0)) × σ(v, p(1)(t0))n dγx = 0, (55)

where

ã = (�(1)(t0) − �(2)(t0)) + ω(2)(t0) × (a(1)(t0) − a(2)(t0)) (56)

and

b̃ = (ω(1)(t0) − ω(2)(t0)). (57)

Also, thanks to proposition 9, we have

v = 0 on ∂S (2)(t0). (58)

Let us multiply the first equation, (50), by v

0 = −
∫
S (2) (t0)\S (1)(t0)

div(σ(v, p(1)(t0))) · v dx

= 2ν

∫
S (2)(t0 )\S (1)(t0)

|D(v)|2 dx −
∫

∂(S (2)(t0)\S (1) (t0))

σ(v, p(1)(t0))n · v dγx

= 2ν

∫
S (2)(t0 )\S (1)(t0)

|D(v)|2 dx −
∫

∂S (2)(t0)

σ(v, p(1)(t0))n · v dγx

+
∫

∂S (1)(t0 )

σ(v, p(1)(t0))n · v dγx.

From (58) and (53)–(55), we have∫
∂S (2) (t0)

σ(v, p(1)(t0))n · v dγx = 0 and
∫

∂S (1)(t0 )

σ(v, p(1)(t0))n · v dγx = 0,

16
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Figure 3. The intersection of the boundaries contains at least three noncollinear points.

respectively. Thereby, we deduce

2ν

∫
S (2)(t0 )\S (1)(t0)

|D(v)|2 dx = 0.

Consequently, D(v) ≡ 0 in S (2)(t0) \ S (1)(t0); this implies that there exist two vectors
κ1, κ2 ∈ R3 such that

v = κ1 + κ1 × y in S (2)(t0) \ S (1)(t0). (59)

In particular, from (58) and lemma 5, we deduce

κ1 = κ2 = 0. (60)

Therefore, we have v ≡ 0 in S (2)(t0) \ S (1)(t0) and thus using again [12],

v ≡ 0 in F (1)(t0).

The above equation and (52) contradict that u∗ is not the trace of a rigid velocity on �.

Case 2. ∂S (1)(t0) ∩ ∂S (2)(t0) ⊃ {z0, z1, z2} where z0, z1, z2 are three noncollinear points (see
figure 3).
From proposition 9, we have

u(1) ≡ u(2) in � \ (S (1)(t0) ∪ S (2)(t0))

and

�(1)(t0) + ω(1)(t0) × (x − a(1)(t0)) ≡ �(2)(t0) + ω(2)(t0)

× (x − a(2)(t0)) on ∂S (1)(t0) ∩ ∂S (2)(t0),

or equivalently

ã + b̃ × (x − a(1)(t0)) = 0 on ∂S (1)(t0) ∩ ∂S (2)(t0)

with ã and b̃ defined by (56)–(57). But, if (̃a, b̃) 	= (0, 0), the set

{y : ã + b̃ × y = 0}
is included in a straight line and since ∂S (1)(t0) ∩ ∂S (2)(t0) is not included in a straight
line, we deduce

(�(1)(t0) − �(2)(t0)) + ω(2)(t0) × (a(1)(t0) − a(2)(t0)) = (ω(1)(t0) − ω(2)(t0)) = 0. (61)

Then, from (49) and (61), the function defined by

v = u(1)(t0) − (�(2)(t0) + ω(2)(t0) × (x − a(2)(t0)))
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satisfies the following Stokes system:⎧⎪⎪⎨⎪⎪⎩
−div

(
σ

(
v, p(1)(t0)

)) = 0 in S (2)(t0) \ S (1)(t0)

div (v) = 0 in S (2)(t0) \ S (1)(t0)

v = 0 on ∂(S (2)(t0) \ S (1)(t0)).

Arguing as in case 1.1 we obtain a contradiction. Gathering cases 1.1, 1.2, 1.3 and 2, we
deduce that

S (1)(t0) = S (2)(t0).

The above relation and (1) imply

a(1)(t0) = a(2)(t0)

and

Q(1)(t0)S (1)

0 = Q(2)(t0)S (2)

0 . (62)

We set

R = [Q(2)(t0)]
−1Q(1)(t0) (63)

and

Q(t) = Q(2)(t)R, a(t) = a(2)(t).

It is not difficult to see that

(a(t0), Q(t0)) = (a(1)(t0), Q(1)(t0)). (64)

Moreover, (62) and (63) yield

RS (1)

0 = S (2)

0

and thus

S (2)(t) = Q(2)(t)S (2)

0 + a(2)(t)

= Q(t)S (1)

0 + a(t)

= S (1) (a(t), Q(t))

and

F (2)(t) = F (1) (a(t), Q(t)) .

In particular, since

−div
(
σ

(
u(2), p(2)

)) = 0 in F (1)(a(t), Q(t)),

div
(
u(2)

) = 0 in F (1)(a(t), Q(t)),

u(2) = �(2) + ω(2) × (x − a) on ∂S (1)(a(t), Q(t)),

u(2) = u∗ on ∂�,∫
∂S (1)(a(t),Q(t))

σ(u(2), p(2))n dγx = 0,∫
∂S (1)(a(t),Q(t))

(x − a) × σ(u(2), p(2))n dγx = 0,

we deduce that

�(2) = �
(1)

[a,Q] and ω(2) = ω
(1)

[a,Q].
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Consequently, (a, Q) is a solution of{
a′ = �

(1)

[a,Q]

Q′ = S
(
ω

(1)

[a,Q]

)
Q

and from (64) and the Cauchy–Lipschitz–Picard theorem, we deduce

a(0) = a(1)(0), Q(0) = Q(1)(0).

The above relation implies{
a(1)

0 = a(2)

0

Q(1)

0 = Q(2)

0 R.

This concludes the proof of theorem 2.
�

6. Discussions and stability results

From the identifiability result we have obtained in theorem 2, it is possible to deduce several
stability results. More precisely, with the notation of theorem 2, we would like to estimate
from the difference

‖σ(u(1)(t0), p(1)(t0)) n − σ(u(2)(t0), p(2)(t0)) n‖H1/2(�),

the differences between RS (1)

0 , a(1)

0 , Q(1)

0 and S (2)

0 , a(2)

0 , Q(2)

0 R.

Following the method of [1] and the classical theory on shape differentiation (see, for
instance, [18]), in order to estimate the difference between the domains, one can consider
particular deformations of S0 as follows: let us consider � ∈ C2(R3) so that � ≡ 0 in a
neighbourhood of ∂� and � 	≡ 0 in S0. Then, for τ small, the mappings �τ = id + τ� are
C2-diffeomorphism and one can consider the domains S0,τ := �τ (S0). By fixing a0 and Q0,
one can then consider the mapping

�τ : τ → σ (uτ (t0), pτ (t0)) n|�,

where (uτ , pτ ) are the solutions of (2)–(11) associated with S0,τ .
Using the change of variables introduced in subsection 4.1 (with X = �τ ), and the

implicit function theorem for analytic functions (see, for instance, [3]), one can show that
τ ∈ (0, τ1) → �τ ∈ H1/2(�) is analytic. Then the idea is to use theorem 2 to get that it
is a non-constant mapping. However, we need in that case that S0,τ is convex which implies
imposing some conditions on �. Under these conditions and theorem 2, we can obtain as
in [1] the existence of a positive constant c and of an integer m � 1 such that for all
τ ∈ (0, τ1),

‖�τ − �0‖H1/2(�) � c|τ |m.

In what follows, we consider another alternative to the above one: we fix the shape of the
rigid body S0 and use the difference

‖σ(u(1)(t0), p(1)(t0)) n − σ(u(2)(t0), p(2)(t0)) n‖H1/2(�)

to estimate the difference of the centres of mass a(1)

0 − a(2)

0 and the difference of orientations
Q(1)

0 − Q(2)

0 . In order to achieve this, we first note that we can improve the result of
proposition 6.
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Proposition 10. The mapping

T : A → R6

(a, Q) → (�[a,Q],ω[a,Q])

is analytic.

In order to prove the above proposition, we can follow the proof of proposition 6. More
precisely, for a fix (a0, Q0) ∈ A, we can consider the local chart (h, θ) → 	(a0,Q0)(h, θ) of
A. Using this chart, we can construct the change of variables X introduced in subsection 4.1
and note that

BR6 (0, r) → Ck(�)

(h, θ) → X(h, θ; ·)

is analytic for all k � 0. Then, we can transform the solutions (u(i), p(i)) of (20) by using this
change of variables and consider (v(i), q(i)) defined by (37)–(38). Then instead of applying
theorem 7, we use the implicit function theorem for analytic functions (see, for instance, [3])
and deduce that

g2 : BR6 (0, r) → (
H2(F (a0, Q0)) ∩ H1

σ (F (a0, Q0))
) × H1(F (a0, Q0))/R

(h, θ) → (v(i), q(i)) (65)

is analytic which implies proposition 10.
From proposition 10 and classical results on ordinary differential equations (see, for

instance, [6]), we deduce that the trajectory (a, Q) of the rigid body is analytic in time.
Moreover, using the analytic dependence on the initial conditions, we also obtain that

(a0, Q0) → (a(t0), Q(t0))

is analytic. Combining this with proposition 10 and with the analyticity of the mapping m
defined in (65), we deduce that the mappings

(a0, Q0) → (�(t0),ω(t0)) ∈ R6, (a0, Q0) → σ(u(i), p(i))n|�(t0) ∈ H1/2(�)

are also analytic. Using that the solution (u, p) of (2)–(11) can be decomposed as in (23) and
(24), we deduce that

� : (a0, Q0) ∈ A → σ(u, p)n|�(t0) ∈ H1/2(�)

is analytic. In the above definition of �, (u, p) is the solution of (2)–(11) associated with
the initial conditions (a0, Q0). Then, we can proceed as in the beginning of this section; let
us fix h ∈ R3. Then for τ small enough, τ → �(a0 + τh, Q0) is well defined, analytic and
non-constant by using theorem 2. Consequently, there exist a positive constant c and an integer
m � 1 such that for all τ ∈ (0, τ1),

‖�(a0 + τh, Q0) − �(a0, Q0)‖H1/2(�) � c|τ |m.

Similar calculations allow us to estimate the difference between the orientations Q(1)

0 and Q(2)

0 .
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