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Abstract

This paper presents two methods for the numerical solution of the classical homogenization problem of elliptic

operators with periodically oscillating coefficients. The numerical solution of such problems is difficult because of the

presence of rapidly oscillating coefficients. The first method based on the classical one which consists of the homo-

genized solution, the first- and second-order correctors, whereas the second one is based on the Bloch wave approach.

Further, for the calculation of the homogenized coefficients and some auxiliary functions involved in this method, we

applied both methods and compared their accuracies. The Bloch approximation consists in determining an oscillating

integral, numerically. The Bloch method provides a better approximation to the exact solution than the classical first-

order corrector term in the smooth coefficients case. Moreover, we provided Taylor approximations for the Bloch

approximation function and implemented it numerically. In order to show the efficiency of these methods, exhaustive

numerical examples in both one and two-dimensional cases are presented.
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1. Introduction

Multi-scale problems in science and engineering are often described by partial differential equations

(PDEs) with highly oscillating coefficients. Typical examples include flows in porous media, and turbulent

transport problems. A complete analysis of these problems is extremely difficult. For example, the difficulty

in analyzing ground water transport is mainly caused by the heterogeneity of subsurface formations
spanning over many scales [3]. The heterogeneity is often represented by the multi-scale fluctuations in the

permeability of the media. For composite materials, the dispersed phases (particles or fibers), which may be

randomly distributed in the matrix give rise to fluctuations in the thermal or electrical conductivity;

moreover, the conductivity is usually discontinuous across the phase boundaries. In turbulent transport
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problems, the convective velocity field fluctuates randomly and contains many scales depending on the
Reynolds number of the flow.

A direct numerical solution of the multiple scale problems is difficult even with modern supercomputers.

The major difficulty of direct solutions is the scale of computation. For example, the numerical difficulties

arising in the ground water simulation has been explained in [13]. In [7], the authors provided the details

about the mixture of composite materials and the torsion of fiber-reinforced bars and their numerical

simulations. Moreover, from an engineering perspective it is often sufficient to predict the macroscopic

properties of the multiple-scale systems, such as the effective conductivity, elastic moduli, permeability, and

eddy diffusivity. Therefore, it is desirable to develop a method that captures the small scale effect on the
large scales, but which does not require resolving all the small scale features. For further applications of

homogenization theory in physics and mechanics one may refer to S�aanchez-Palencia [19].

For a nice introduction to homogenization, the reader is referred to the book of Bensoussan et al. [4]. The

main result conveys that the (weak) limit of such solutions resolves a suitable boundary value problem

which has constant coefficients that represent what is known as homogenized medium. There are many

ways to obtain the homogenized coefficients and there is a vast body of work in the literature which justifies

the limiting process. In [4], they used the method of multiple scale expansion to homogenization and their

technique is the easiest way to obtain the homogenized medium.
Conca and Vanninathan [12] gave a new proof of convergence using Bloch wave decomposition. Further,

they offered a non-traditional way of calculating the homogenized coefficients and more precisely, they

proved that the classical homogenized matrix coincides with one-half of the Hessian of the first (minimum)

Bloch eigenvalue at the origin. In a more recent paper [10], they introduced what they called the Bloch

approximation function he to the solution ue of the original problem. This function provides a sharp ap-

proximation in the sense that it contains implicitly both the homogenized solution and the classical first-

order corrector which were first obtained by Bensoussan et al. [4] by using a two-scale asymptotic expansion

for the solution. It is worth emphasizing that in the case of smooth coefficients, he also contains the classical
second-order corrector (see Theorem 1.11 in [10]). Further we would like to cite a recent work [1], in which

the Bloch–Floquet approach is used to provide new homogenization results and handles the boundary layer

terms for frequency-dependent problems.

In [8], the author studied the homogenization of a diffusion equation with drift. In order to study the

homogenization of an eigenvalue problem, he introduced a family of h-exponential periodic problems with

a real exponent h. When h is purely imaginary one can encounter the Bloch waves carried out in [11] which

will be implemented here numerically for the approximation. More details about the application of these

types of problems in neutronic models may be found in the book of Planchard [18]. Kesavan [14] and
Vanninathan [20] studied the behavior of the spectrum of elliptic differential operators under the ho-

mogenization process and predicted that the same operator which serves to homogenize the corresponding

static problem works well for the eigenvalue problem also. Further these authors studied the effect of

correctors. To determine some auxiliary functions involved in these methods (the so-called local periodic

functions denoted by vk) which are used for the calculation of the homogenized coefficients in the classical

sense, one can use the projection idea introduced here. And in addition, it is more convenient to use Bloch

waves for the determination of the homogenized coefficients and vk.

To solve elliptic PDEs with rapidly oscillating coefficients Avellaneda et al. [2] applied finite difference
method. Hou and Wu [13] introduced multi-scale finite element method for these types of problems. In [16],

the authors proposed a p-finite element method in order to approximate the solution numerically in the

one-dimensional case using a representation formula as given in [17].

Here, we obtain the numerical solution of the above mentioned problem by the classical way which

combines the homogenized solution, the first- and second-order classical correctors and by the Bloch ap-

proximation function he. Our main goal is to carry out a comparative analysis between the classical and

Bloch wave approach.
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It is well known that in the classical method, one is led to solve numerically several periodic elliptic
boundary value problems in the representative cell Y ¼ �0; 2p½N . The periodic boundary conditions in these

problems will be treated by using the conjugate gradient algorithm with projection. That is, we solve the

corresponding linear system by an iterative method and at each iteration we project the solution in such a

way that for the grid points on the boundary we take the average of the value on the opposite faces. Then,

one has to determine the homogenized coefficients and solve the homogenized equation. Also, we determine

the first- and second-order periodic correctors in order to get a more accurate numerical approximation.

Recall that by adding the first-order correctors to the homogenized solution yields an approximation in the

energy norm for all sufficiently small e. The second-order correctors provide an error estimate in the energy
norm of order OðeÞ.

To find the so-called Bloch waves one has to obtain an accurate approximation of a parameterized family

of spectral problems in Y with a generalized periodic boundary condition. The main difficulty here is the

numerical implementation of these generalized periodic boundary conditions. This is done by using the

projection idea as above. But, here the projection includes exponential complex weighted average between

the values on opposite faces. The details are given in Section 3.2. After discretization, each of these spectral

problems reduce to a generalized eigenvalue problem of the Sylvester�s type which can be solved numeri-

cally by standard algorithms. In order to find the homogenized coefficients, a fourth-order finite difference
formula is used to obtain the Hessian of the first Bloch eigenvalue at the origin. This involves the com-

putation of the first eigenvalue in a small ad hoc grid around the origin. To determine the function he we

have to calculate the first (minimum) Bloch eigenvector in a small neighborhood of the origin and then

apply a quadrature formula to approximate the integral numerically. The calculation of the first eigenvalue

and eigenvector is independent at each point of the dual cell Y 0 ¼ ½�1=2; 1=2½N (Brillouin zone) which opens

the door to utilize parallel computers.

In addition, it is known that the first Bloch mode /1ð�; gÞ is an analytic function of the Bloch variable g
(for small g) and one can therefore expand it in a Taylor series around the origin. Using this expansion in
the definition of he one can obtain some approximations for he which in its turn is an approximation of the

exact solution ue, too. Here, we have obtained the first- and second-order approximations, and the nu-

merical calculation of these terms are slightly simpler than the one of he.

To conclude our comparative analysis between the classical and Bloch methods for the homogenized

coefficients, and the determination of vk, we applied it to several two-dimensional test problems. Also, we

have showed the effects of first- and second-order correctors. From these examples one can justify the

theoretical results as well as the accuracy of the method. In order to show the efficiency of the Bloch ap-

proximation function he over the classical first-order corrector, we consider continuous and discontinuous
coefficients problem in one-dimension. Finally, for the same examples, we have applied the Taylor ap-

proximations of he and showed its accuracy. The computational results are presented in the forms of tables

and figures.

The rest of the paper is organized as follows. Some theoretical results are given in Section 2. Section 3

deals with the computation of homogenized coefficients by classical and Bloch methods. Computation of

the classical correctors are presented in Section 4. The numerical implementation and Taylor approxi-

mations of the Bloch approximation function he are given in Section 5. Numerical experiments are pre-

sented in Section 6.

2. Theoretical results

Consider the operator

A¼def � o

oyk
ak‘ðyÞ

o

oy‘

� �
; y 2 RN ; ð2:1Þ
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where the coefficients satisfy

ak‘ 2 L1
# ðY Þ; where Y ¼ �0; 2p½N ; i:e:; each ak‘ is a

Y -periodic bounded measurable function defined on RN ; and

9a > 0 such that ak‘ðyÞgkg‘ P ajgj2; 8g 2 RN ; y 2 Y a:e:;
ak‘ ¼ a‘k 8k; ‘ ¼ 1; . . . ;N :

8>><>>: ð2:2Þ

For each e > 0, we also consider the operator Ae where

Ae ¼def � o

oxk
ae
k‘ðxÞ

o

ox‘

� �
with ae

k‘ðxÞ ¼ ak‘
x
e

� �
; x 2 RN : ð2:3Þ

In homogenization theory, it is usual to refer to x and y the slow and the fast variables respectively. They

are related by y ¼ x=e. Associated with Ae, let us consider the following boundary-value problem

Aeue ¼ f in X; ue 2 H 1
0 ðXÞ; ð2:4Þ

which is posed in an arbitrary bounded domain X 2 RN and f is a given element in L2ðXÞ. The boundary of

X is denoted by C. It is classical that the above problem admits one and only one solution.

Bensoussan et al. [4] obtained an asymptotic expansion for the solution of (2.4) of the following form:

ueðxÞ ¼ u�ðxÞ þ e vkðyÞ
ou�

oxk
ðxÞ þ ~uu1ðxÞ

	 

þ e2 vk‘ðyÞ

o2u�

oxk ox‘
ðxÞ þ v‘ðyÞ

o~uu1
ox‘

ðxÞ þ ~uu2ðxÞ
	 


þ � � � ð2:5Þ

Here, vk is the unique solution of the cell problem

Avk ¼
oak‘
oy‘

in RN ;

vk 2 H 1
#ðY Þ;MY ðvkÞ ¼

def 1
jY j

R
Y vk dy ¼ 0:

8><>: ð2:6Þ

The function vk‘ is characterized as the unique solution of

Avk‘ ¼ ak‘ þ akm
ov‘

oym
� o

oym
ðamkv‘Þ �MY ðak‘Þ �MY akm

ov‘

oym

� �
in RN ;

vk‘ 2 H 1
#ðY Þ; MY ðvk‘Þ ¼ 0:

8<: ð2:7Þ

The first term in (2.5) satisfies the homogenized equation

A�u� ¼def �qk‘
o2u�

oxk ox‘
¼ f in X;

u� 2 H 1
0 ðXÞ;

8<: ð2:8Þ

where the homogenized coefficients qk‘ are given by

qk‘ ¼ MY ak‘ þ akm
ov‘

oym

� �
8k; ‘ ¼ 1; . . . ;N : ð2:9Þ

The above method also proves that ~uu1ðxÞ; ~uu2ðxÞ; . . . are independent of e and satisfy equations of the type

A�~uuj ¼ ~ggj in RN , where, for instance, ~gg1ðxÞ ¼ bjk‘ðo3u�=oxj oxk ox‘ÞðxÞ, where bjk‘ are constants:

bjk‘ ¼ MY ajm
ovk‘

oym
þ ak‘vj

� �
8 j; k; ‘ ¼ 1; . . . ;N :

In the present paper, we also consider the case of the whole space X ¼ RN . It is therefore natural to replace

the operator Ae by ðAe þ IÞ. In that case, if we satisfies
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ðAe þ IÞwe ¼ g in RN ;
we * w� in H 1ðRN Þ-weak;

	
ð2:10Þ

where g is a given function in L2ðRN Þ, then it can be proved (see Lemma 6.1 of [10]) that

we ! w� in L2ðRN Þ-strong: ð2:11Þ

In view of the above result, there is no concentration of L2-energy at infinity and therefore, we will consider

throughout this paper a sequence ue in H 1ðRN Þ and a function f in L2ðRN Þ satisfying

Aeue ¼ f in RN ;
ue * u� in H 1ðRN Þ-weak;
ue ! u� in L2ðRNÞ-strong:

8<: ð2:12Þ

Conca and Vanninathan [12] gave an alternative formula for the homogenized coefficients as defined in

(2.9). They have studied the spectral resolution of A in L2ðRNÞ. For this, they used the classical method of

Bloch [5] which consists of introducing a family of spectral problems parametrized by g 2 RN : find

k ¼ kðgÞ 2 R and w ¼ wðy; gÞ (not identically zero) such that

Awð�; gÞ ¼ kðgÞwð�; gÞ in RN ; wð�; gÞ is ðg; Y Þ-periodic; i:e:;
wðy þ 2pm; gÞ ¼ e2pim�gwðy; gÞ 8m 2 ZN ; y 2 RN :

	
ð2:13Þ

By using the following transformation

wðy; gÞ ¼ eig�y/ðy; gÞ;
/ð�; gÞ is Y -periodic;

	
ð2:14Þ

the problem (2.13) becomes

AðgÞ/ ¼ k/ in RN ; / is Y -periodic;

where the operator AðgÞ is defined by

AðgÞ ¼def � o

oyk
þ igk

� �
ak‘ðyÞ

o

oy‘
þ ig‘

� �� �
and it is referred to as the shifted operator. It is clear from (2.13) that the ðg; Y Þ periodicity condition is

unaltered if we replace g by ðg þ qÞ with q 2 ZN and g can therefore be confined to the dual cell

Y 0 ¼ ½�1=2; 1=2½N .
It is well known that, due to ellipticity and symmetry hypothesis, the above problem admits a unique

sequence of eigenvalues in the following spaces

L2
#ðY Þ ¼ / 2 L2

locðRN Þ / is Y -periodicj g;
�

H 1
#ðY Þ ¼ / 2 L2

#ðY Þ
o/
oyk

2 L2
#ðY Þ 8k ¼ 1; . . . ;N





 

:

	
They have the following properties

06 k1ðgÞ6 � � � 6 kmðgÞ6 � � � ! 1;
f/mð�; gÞg

1
m¼1 forms an orthonormal basis in L2

#ðY Þ:

	
In the literature, fkmðgÞgmP 1 are referred to as Bloch eigenvalues and f/mð�; gÞgmP 1 as Bloch eigenvectors

or Bloch waves.

The following theorem gives the relation between the above eigenvalues and the homogenized coeffi-

cients.
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Theorem 2.1. [12] We assume that ak‘ satisfy (2.2). Then there exists d > 0 such that the first eigenvalue k1ðgÞ
is an analytic function on Bd ¼

def fgj jgj < dg, and there is a choice of the first eigenvector /1ðy; gÞ satisfying

g ! /1ð�; gÞ 2 H 1
#ðY Þ is analytic on Bd;

/1ðy; 0Þ ¼ pð0Þ ¼ jY j�1=2 ¼ 1

ð2pÞN=2

� �
:

(

Moreover, we have the relations

k1ð0Þ ¼ 0; Dkk1ð0Þ ¼
def ok1

ogk
ð0Þ ¼ 0; 8k ¼ 1; . . . ;N :

Further, the Hessian of k1 at g ¼ 0 is given by

1

2
D2

k‘k1ð0Þ ¼
def 1

2

o2k1

ogk og‘

ð0Þ ¼ qk‘ 8k; ‘ ¼ 1; . . . ;N : ð2:15Þ

The derivatives of the first Bloch mode can also be calculated and they are as follows:

o/1

ogk
ðy; 0Þ ¼ ijY j�1=2vkðyÞ 8k ¼ 1; . . . ;N : ð2:16Þ

Let us consider the sequence ue satisfying the hypotheses as given in (2.12). The Bloch approximation of

ue is defined by the following formula:

heðxÞ ¼def 1

eN

Z
Y 0
ûu�

g
e

� �
eiðx=eÞ�g/1

x
e
; g

� �
dg; x 2 RN ; ð2:17Þ

where ûu� is the classical Fourier transform of the homogenized solution u�, and /1 is the first Bloch mode.

We conclude this section with the following two theorems of [10] which provide an estimate for the

difference between he, ue and the classical first- and second-order corrector terms.

Theorem 2.2. Assume that the coefficients ak‘ satisfy (2.2). Let ue be the sequence introduced in (2.12). Then if
f 2 L2ðRN Þ, we have

ðue � heÞ ! 0 in H 1ðRN Þ: ð2:18Þ
Furthermore, we have the estimate

jue � hejH1ðRN Þ 6 cekf kL2ðRN Þ: ð2:19Þ

Moreover, because of the analyticity of /1ð�; gÞ for jgj6 d and assuming smooth coefficients aklð�Þ in the

operator A (which ensure the smoothness of the auxiliary functions vk, vkl in (ii) and (iii) of Theorem 2.3),

we can expand it and this give rises to an asymptotic expansion of he which is as follows:

heðxÞ ¼ u�ðxÞ þ evk
x
e

� � ou�

oxk
ðxÞ � e2 vk‘

x
e

� ��
þ bk‘Þ

o2u�

oxk ox‘
ðxÞ þ � � � ;

where bkl are real constants (for details, see statement (iii) in Theorem 2.3 below).

Theorem 2.3. Assume that the hypotheses of Theorem 2.2 hold. Then the following statements hold true.

(i) If u� 2 H 1ðRN Þ, then

khe � u�kL2ðRN Þ 6 ceku�kH1ðRN Þ:
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(ii) If f 2 L2ðRN Þ and vk 2 W 1;1
# ðY Þ where vk is the solution of (2.6) and ve

kðxÞ ¼ vkðx=eÞ, then we have

he � u� � eve
k

ou�

oxk

���� ����
H1ðRN Þ

6 cekf kL2ðRN Þ:

(iii) If f 2 H 1ðRN Þ and vk, vk‘ 2 W 1;1
# ðY Þ, then

he � u� � eve
k

ou�

oxk
þ e2 ve

k‘ þ bk‘

� � o2u�

oxk ox‘

���� ����
H1ðRN Þ

6 ce2kf kH1ðRN Þ;

where ve
k‘ðxÞ ¼ vk‘ðx=eÞ, and bkl are constants given by

bk‘ ¼
1

2!

1

jY j

Z
Y

v‘vk dy:

3. Computation of the homogenized coefficients

3.1. Classical method

In this section, we determine the homogenized coefficients using the classical formula as given in (2.9).

Here, we consider the two-dimensional case (N ¼ 2). In all our test problems, we will distinguish in Y two

different regions Y0 and Y1, where the coefficients ak‘ take different values. In order to solve problem (2.6)

which gives the functions vk, we use the finite element method with Lagrange finite elements of degree one
on triangles. Though the computation does not require a fine mesh, we use a fine mesh in Y because the

homogenized coefficients qk‘ are obtained from the first derivatives of the functions vk. Here, one should

make sure that the triangulation is made in such a way that the discontinuities of the coefficients ak‘ co-
incide with the sides of the triangles.

The variational formulation of (2.6) is to seek vk 2 V# ¼defH 1
#ðY Þ, such that

aðvk; fÞ ¼ f ðfÞ 8f 2 V#; ð3:1Þ

where

aðvk; fÞ ¼
Z
Y
ak‘

ovk

oy‘

of
oyk

dy and f ðfÞ ¼
Z
Y
ak‘

of
oy‘

dy:

It is easy to see that the bilinear form að�; �Þ is elliptic and continuous. A finite element method is obtained

by restricting the weak formulation (3.1) to a finite dimensional subspace of V#. For 06 h6 1, let Th be a
periodic partition of Y by a collection of triangles T with diameter less than or equal to h, such that

Y ¼
[

T2Th

T :

Let us define the discretization space Vh as

Vh ¼
def f/h 2 C0ðY Þ : /hjT 2 P1ðT Þ; 8T 2 Thg;

where P1ðT Þ is the space of polynomials of degree at most one. As usual, a basis for Vh is defined by

f/i; i ¼ 1; . . . ;Nhg; Nh being the number of nodes of the partition. Let ðxj; yjÞ 2 Y ðj ¼ 1; . . . ;NhÞ be a grid

point. In addition, we require /iðxj; yjÞ ¼ dij. Consider the following discretization subspace V#h of V# such

that
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V#h ¼
def f/h 2 Vhj/h is Y -periodicg:

In the following, we study the approximate solution vh
k 2 V#h of (3.1), which is defined to be the unique

solution of the discrete problem

aðvh
k ; f

hÞ ¼ f ðfhÞ 8fh 2 V#h: ð3:2Þ
It is difficult to use direct methods to solve the linear system (3.2) because the periodicity conditions

disturb the band structure of the matrix. Bourgat used the over relaxation method with an optimal pa-

rameter to solve the discretized system in [6]. The main drawback of this method is the selection of the

optimal parameter to obtain faster convergence. To overcome this difficulty, here, we apply the conjugate

gradient method to solve the linear system. In addition, theoretically, the conjugate gradient algorithm

converges to the exact solution in at most n iterations for an n� n system. The periodic boundary con-

ditions are treated by projecting the numerical solution at each iteration in the space of periodic functions.

In other words, the corresponding linear system is solved by an iterative method and the solution is pro-
jected in such a way that for the grid points on the boundary the average of the values on the opposite faces

is used as the common value.

More precisely, let us express vh
k as a linear combination of the basis functions, i.e,

vh
kðx; yÞ ¼

XNh

i¼1

Ui/iðx; yÞ; ð3:3Þ

where the coefficients Ui, for i ¼ 1; . . . ;Nh are to be determined.

Let us denote the discrete interior and discrete boundary of Y respectively by

IntYh ¼ fðxj; yjÞ 2 Y j0 < xj < 2p; 0 < yj < 2pg;
oYh ¼ fðxj; yjÞ 2 Y jxj ¼ 0 or 2p and yj ¼ 0 or 2pg:

If ðxj; yjÞ 2 oYh, we shall denote the corresponding opposite grid point by ðxj0 ; yj0 Þ which is well defined by

virtue of periodic triangulation. We introduce the projection operator Ph : Vh ! V#h as follows:

PhðvhÞ ¼ v#h;

where

v#hðxj; yjÞ ¼
vhðxj; yjÞ if ðxj; yjÞ 2 IntYh;
1
2
½vhðxj; yjÞ þ vhðxj0 ; yj0 Þ� if ðxj; yjÞ 2 oYh:

	
We will apply the above projection operator at each iteration of the conjugate gradient algorithm. From the

numerical examples provided in Section 6, one can see that this modified conjugate gradient algorithm

converges within a finite number of iterations.

3.2. Bloch wave method

In order to obtain the homogenized coefficients by the Bloch wave method and to determine the Bloch
approximation function he, we have to solve the elliptic problem (2.13) for each g 2 Y 0 ¼ ½�1=2; 1=2½N .
Thus, let us fix g 2 Y 0 and consider the following generalized periodic eigenvalue problem

� o

oyk
ak‘ðyÞ

o

oy‘

� �
wð�; gÞ ¼ kðgÞwð�; gÞ in Y ;

wð�; gÞ is ðg; Y Þ-periodic:

8<: ð3:4Þ

To obtain a weak formulation of (3.4), we introduce the following space of ðg; Y Þ-periodic functions
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H 1
#ðg; Y Þ ¼ w 2 L2

#ðg; Y Þ
ow
oyk

2 L2
#ðg; Y Þ 8k ¼ 1; . . . ;N





 
	
;

where L2
#ðg; Y Þ is the space of all L2

locðRN Þ-functions which are ðg; Y Þ-periodic.
The weak formulation of (3.4) is to find w 2 W# ¼defH 1

#ðg; Y Þ, such that

aðw; fÞ ¼ kðgÞgðfÞ 8f 2 W#; ð3:5Þ
where

gðfÞ ¼
Z
Y

wfdy:

Let us define the finite dimensional subspace W#h of W# by

W#h ¼ f/h 2 Vhj/h is ðg; Y Þ-periodicg:
The finite element approximation of (3.5) consists in finding wh 2 W#h such that

aðwh; fhÞ ¼ kðgÞgðfhÞ 8fh 2 W#h: ð3:6Þ
The ðg; Y Þ-periodic projection operator P g

h : Vh ! W#h is defined as

P g
h ðvhÞ ¼ wg

#h;

where

wg
#hðxj; yjÞ ¼ vhðxj; yjÞ if ðxj; yjÞ 2 IntYh

and if ðxj; yjÞ is on the boundary oYh, we shall distinguish the following cases:

wg
#hð0; yjÞ ¼ e�2pig1wg

#hð2p; yjÞ ¼
def 1

2
½vhð0; yjÞ þ e�2pig1vhð2p; yjÞ� ð3:7Þ

and

wg
#hðxj; 0Þ ¼ e�2pig2wg

#hðxj; 2pÞ ¼
def 1

2
½vhðxj; 0Þ þ e�2pig2vhðxj; 2pÞ�: ð3:8Þ

Observe that with this projection we have for the four corner points,

wg
#hð0; 0Þ ¼ 1

4
½vhð0; 0Þ þ e�2pig1vhð2p; 0Þ þ e�2piðg1þg2Þvhð2p; 2pÞ þ e�2pig2vhð0; 2pÞ�

and

e�2pig2wg
#hð0; 2pÞ ¼ e�2pig1wg

#hð2p; 0Þ ¼ e�2piðg1þg2Þwg
#hð2p; 2pÞ ¼ wg

#hð0; 0Þ:
For the sake of convenience, let us denote respectively by fvigNh

i¼1 and fwigN#h
i¼1 the standard finite element

basis of Vh and W#h. The approximate function wh can be expressed in two different ways, say

whðx; yÞ ¼
XN#h

i¼1

Tiwiðx; yÞ or whðx; yÞ ¼
XNh

i¼1

Siviðx; yÞ:

Let Q be the N#h � Nh matrix representing the projection operator P g
h . Therefore, one can write the problem

(3.6) in the following equivalent form:

Find S 2 RNh ; khðgÞ 2 R; such that

AS ¼ khðgÞBS and QtT ¼ S;

	
ð3:9Þ

where A and B are respectively the finite element matrices in the space Vh associated with að�; �Þ and gð�Þ as
defined in (3.6). In its turn, (3.9) can be reduced to the following generalized eigenvalue problem of Syl-

vester�s type:
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Find T 2 RN#h ; khðgÞ 2 R; such that

CT ¼ khðgÞDT ;

	
ð3:10Þ

where C ¼ QAQt and D ¼ QBQt.

From a computational point of view, matrix Q need not be stored in the memory, since matrices C and D
can be obtained respectively from matrices A and B by means of suitable elementary operations on rows

and columns corresponding to the boundary grid points. These elementary operations are nothing but
formulas (3.7) and (3.8) which define the ðg; Y Þ-projection operator P g

h in the case of boundary grid points.

In order to determine the homogenized coefficients, we have to find the first eigenvalue k1 of the above

Sylvester�s type problem in a small neighborhood of the origin in Y 0. After finding k1 in a small ad hoc grid

points around ð0; 0Þ, a fourth-order finite difference formula is used to calculate the second derivative of k1

at g ¼ ð0; 0Þ which provides the homogenized coefficients as given by (2.15).

4. Computation of classical first- and second-order correctors

This section deals with the computation of first- and second-order periodic correctors for the solution ue

of (2.4). The idea behind introducing correctors is to look for terms (called first-order correctors) which

when added to the homogenized solution u� provide an approximation in the energy norm for all suffi-

ciently small e. Second-order correctors yield an error estimate in the energy norm of order OðeÞ. The central
issue in the analysis of the first-order correctors is to obtain functions ue

1 2 H 1ðXÞ which can be easily

constructed and have the following characteristic property

kue � u� � eue
1kH1ðXÞ ! 0 as e ! 0: ð4:1Þ

By definition, second-order correctors ue
2 2 H 1ðXÞ would enjoy the property

kue � u� � eue
1 � e2ue

2kH1ðXÞ 6 ce2: ð4:2Þ

However, as far as the author�s knowledge goes existence of a second-order corrector satisfying such a

general and sharp error estimate even in the case of smooth coefficients is not proved in the literature at

least for a bounded domain. This may be due to the boundary layers effects arising from the boundary

conditions. In the unbounded domain case X ¼ RN or X ¼ RN
þ (the positive half-space) with constant

coefficients, sharp error estimates are proved by Lions [15]. For the second-order corrector term given by

the asymptotic expansion (2.5), Bourgat [6] suggests a rate of convergence in e3=2 (which is far from being

optimal), but the proof is not provided.

Under suitable assumptions on the smoothness of the coefficients ak‘ and if f 2 L2ðXÞ, then the classical

first-order corrector is defined by

ue
1ðxÞ ¼ vk

x
e

� � ou�

oxk
ðxÞ: ð4:3Þ

Furthermore, it is also given that the principal second-order term in the expansion (2.5) has been classically

considered a second-order corrector, we will denote it by

ue
2ðxÞ ¼ vk‘

x
e

� � o2u�

oxkx‘
ðxÞ: ð4:4Þ

The function vk‘ appeared in (4.4) is the solution of (2.7) which differs from (2.6) only in the right hand side.

So, one can compute vk‘ in a similar way as used in the calculation of vk.

For computation of the derivatives ou�=oxk and o2u�=oxk ox‘, which appear in the calculation of the

first- and second-order correctors ue
1, u

e
2 a fine discretization of X is needed. Here, we use more number of
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triangles in order to obtain a better approximation for the derivatives. If the triangles are not locally too
different and if the right hand side function f in (2.8) is smooth, we can approximate ou�=oxk at each node P
by

ou�

oxk
ðP Þ ¼def 1

NV ðP Þ
X

T2V ðPÞ

ou�

oxk

� �
T

; ð4:5Þ

where V ðPÞ is the set of triangles for which P is a common vertex, NV ðP Þ is the number of triangles of V ðP Þ,
½ou�=oxk�T is the value of the derivative ou�=oxk on triangle T . If the triangles are locally too different, then

the above interpolation rule can be generalized to a more consistent formula by weighting the sum (4.5) by

the volume of the cells. Using twice the formula as given in (4.5) one can obtain an approximation for

o2u�=oxk ox‘.

Remark 4.1. Here, we point out that vk and vk‘ have been computed only in the representative cell Y . But
they are in H 1

#ðY Þ, by periodicity one can extend it to the whole domain X in order to determine the values

of vk and vk‘ in the computations of correctors ue
1 and ue

2.

5. Numerical implementation of the Bloch approximation he

Here, in this section, we present the details of the numerical implementation of the Bloch approximation

function he. In addition, we provide first- and second-order Taylor approximations for he which are easier
to determine numerically than he and provides better approximations to the exact solution ue.

In the two-dimensional case, he as given in (2.17) can be rewritten in the following way:

heðxÞ ¼ e�2

Z
Y 0
ûu�

g
e

� �
eiðx=eÞ�g/1

x
e
; g

� �
dg; ð5:1Þ

where /1 is the first (minimum) eigenvector of the Sylvester�s type eigenvalue problem (3.10). In order to
obtain ûu�ðg=eÞ explicitly, we shall write the homogenized equation in the Fourier space

qk‘nkn‘ûu
�ðnÞ þ ûu�ðnÞ ¼ f̂f ðnÞ 8n 2 R2:

More precisely, we have

ðqk‘gkg‘ þ e2Þûu� g
e

� �
¼ e2f̂f

g
e

� �
: ð5:2Þ

Using (5.2) in (5.1), we obtain

heðxÞ ¼
Z
Y 0

f̂f g
e

� �
ðqk‘gkg‘ þ e2Þ e

ix�ðg=eÞ/1

x
e
; g

� �
dg 8x 2 R2: ð5:3Þ

We would like to recall that the first Bloch eigenvalue k1ðgÞ and the first Bloch eigenvector /1ð�; gÞ depend
analytically on g in a small neighborhood Bd of g ¼ 0. To compute these two terms, we solve the generalized

Sylvester�s type eigenvalue problem (3.10) in a small ad hoc grid points around ð0; 0Þ in Y 0 ¼ ½�1=2; 1=2½.
The obtained eigenvectors w1ð�; gÞ are ðg; Y Þ-periodic. By using the transformation as given in (2.14), we

obtain the Y -periodic eigenvectors /1ð�; gÞ. Further, we make the following normalizations on these ei-

genvectors /1ð�; gÞ:
k/1ð�; gÞkL2ðY Þ ¼ 1 8g 2 Bd;

Im

Z
Y

/1ðy; gÞdy ¼ 0 8g 2 Bd:
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From the eigenvalues k1ðgÞ we determine the homogenized coefficients as mentioned in Section 3.2. These

Bloch eigenvalues and eigenvectors are independent of e, as an outcome it is not necessary to compute these

for each value of e. In other words, the calculation is once for ever in the computation of heðxÞ. Now, each

term in the integrand of heðxÞ is known explicitly, by the use of a quadrature formula one can compute, in

practice, the integral (5.3) numerically, here we apply the classical Simpson�s rule.
In this paper, we have numerically determined he only in the one-dimensional case in Section 6.2.1. This is

a first attempt to compare the Bloch method with the classical one and the authors are working on the

numerical implementation of he in the two-dimensional case [9]. The numerical implementation of the Bloch
method is not straightforward in the two-dimensional case, because the cell eigenvalue problems involved

are much bigger than the one-dimensional case. This large-scale computations have some difficulties in the

implementation not only in the determination of eigenvalues but also in the quadrature formula.

5.1. Taylor approximations of he

In this section, we propose two approximations for he based on Taylor series expansion for the first Bloch

mode /1 with respect to g. To this end, we utilize the properties of /1 as stated in Theorem 2.1. Since /1 is

an analytic function in the Bloch variable g, one can suggest to replace it in formula (5.3) by its linear affine

and its quadratic approximations at g ¼ 0. At a first glance this may seem to be little audacious since such

approximations are only accurate in a small neighborhood of g ¼ 0, where /1 is indeed analytic. However,

it is well known (see [10]) that the contribution of the components of /1 for values of g far away from the
origin are not important, i.e., they do not play any important role in the computation of the integral over

Y 0.

5.1.1. First-order approximation

More exactly, we propose the following linear affine approximation for he:

~hhe
ð1ÞðxÞ ¼

Z
Y 0

f̂f g
e

� �
ðqk‘gkg‘ þ e2Þ e

iðx=eÞ�g /1ð�; 0Þ þ
o/1

ogk
ð�; 0Þgk

� �
dg 8x 2 R2: ð5:4Þ

If we use the explicit formulas for the first two terms in the right hand side of (5.4) given in Theorem 2.1,

then we can rewrite ~hhe
ð1Þ as follows:

~hhe
ð1ÞðxÞ ¼

1

2p

Z
Y 0

f̂f g
e

� �
ðqk‘gkg‘ þ e2Þ e

iðx=eÞ�g 1þ ivk
x
e

� �
gk

h i
dg 8x 2 R2: ð5:5Þ

It is more easy to implement the above formula numerically than he because the auxiliary function vk is

much easier to compute numerically than /1. The computation of vk can be done either by solving problem

(2.6) directly or by evaluating the left hand side of (2.16) numerically.

5.1.2. Second-order approximation

The second-order approximation for the Bloch approximation function heðxÞ is given by

~hhe
ð2ÞðxÞ ¼

Z
Y 0

f̂f g
e

� �
ðqk‘gkg‘ þ e2Þ e

iðx=eÞ�g /1ð�; 0Þ þ
o/1

ogk
ð�; 0Þgk

�
þ 1

2!

o2/1

ogk og‘

ð�; 0Þgkg‘

�
dg: ð5:6Þ

As mentioned earlier, either one can replace the first derivative of /1 by its explicit forms or determine it

numerically from the first eigenvectors computed in the mesh points adjacent to the origin. In the same way,

one can compute the second partial derivatives of /1 too. In particular, with the same eigenvectors used for

the determination of o/1=ogk, one can calculate the second derivative in the case of symmetric periodic

cells. More precisely, one uses a second-order finite difference formula to obtain the second derivatives of
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/1ð�; 0Þ (see Section 6.2.2 for more details), then its value at the origin is known explicitly from Theorem 2.1

and with the eigenvectors at the adjacent points to the origin one can easily determine this term, without

any additional computational cost.

We will see later in Section 6.2.2 that the first-order approximation of he performs very similar to the

classical first-order corrector term and the second-order approximation ~hhe
ð2Þ produces almost the same result

as the Bloch approximation function he and far better than the first-order classical corrector.

Remark 5.1. The Bloch wave method described above is more suitable for parallel computers. More
precisely, we have to determine the first eigenvalue k1ðgÞ and the first eigenvector /1ð�; gÞ of the generalized
eigenvalue problem (3.10) in a small ad hoc grid around the origin ð0; 0Þ in Y 0. But the eigenvalue problems

are independent for each g 2 Y 0. This independence allows to use parallel computers for the determination

of the eigenvalues, eigenvectors and consequently one can reduce the computation time.

6. Numerical examples

In this section, we present exhaustive numerical examples supporting our earlier claims in this paper.

More precisely, we applied the above methods to both one and two-dimensional problems. First, we

compare the homogenized coefficients and the auxiliary functions vk obtained by both methods, and then

we deal with the classical first- and second-order correctors. Finally, we make a comparative study between

the Bloch approximation function he and their Taylor approximations with the classical first-order cor-

rector.

6.1. Two-dimensional case

6.1.1. Comparison of homogenized coefficients and functions vk by classical and Bloch methods

Example 6.1. Consider the representative cell as given in Fig. 1 with

ak‘0 ¼ dk‘ ðthe Kronecker’s indexÞ in Y0;
ak‘1 ¼ kdk‘ in Y1;

	
where ak‘0 and ak‘1 represent the coefficients belonging to the regions Y0 and Y1, respectively.

In order to determine the homogenized coefficients, we have to solve (2.6) with the coefficients as given

above. Here, we solve the above equation for five different values of k, ð1000; 10; 1=18; 1=114; 1=1000Þ which
arise from the physical problem of torsion of fiber-reinforced bars as studied by Bourgat and Lanchon [7].

In order to predict the accuracy of the Bloch method, we have applied it for different number of finite

elements in the domain Y ¼ �0; 2p½2. The computed homogenized coefficients are given in Tables 1 and 2,

respectively for k ¼ 10 and 1=18.
In a first glance, one can imagine that the Bloch method needs the computations of many cell eigenvalue

problems for different values of g. This is not exactly the real situation, because the homogenized coeffi-

cients are obtained from the Hessian of k1 at the origin. In order to obtain an accurate approximation of the

Hessian, we have to use a very simple finite difference formula containing only a few grid points around the
origin. More precisely, to determine qk‘ by the classical method a system of two elliptic PDEs have to be

solved, in the Bloch method one has to solve two cell eigenvalue problems in the symmetric periodic cell

case, whereas six eigenvalue problems in the non-symmetric periodic cell case. Here we utilize the symmetric

property of the problem with respect to g, and make the calculations in only one side of the domain. Then,

C. Conca, S. Natesan / Comput. Methods Appl. Mech. Engrg. 192 (2003) 47–76 59



by using a fourth-order centered difference formula we determine qk‘. For a function f ðx; yÞ, the fourth-
order finite difference formula for its second partial derivatives are given by:

o2f
ox2

¼ 1

12h2
½�fiþ2;j þ 16fiþ1;j � 30fi;j þ 16fi�1;j � fi�2;j�;

o2f
oxoy

¼ 1

144h2
½ðfi�2;j�1 � fiþ2;j�2 � fi�2;jþ2 þ fiþ2;jþ2Þ � 8ðfi�1;j�2 � fiþ1;j�2 � fi�1;jþ2 þ fiþ1;jþ2Þ

� 8ðfi�2;j�1 � fiþ2;j�1 � fi�2;jþ1 þ fiþ2;jþ1Þ þ 64ðfi�1;j�1 � fiþ1;j�1 � fi�1;jþ1 þ fiþ1;jþ1Þ�;

o2f
oy2

¼ 1

12h2
½�fi;jþ2 þ 16fi;jþ1 � 30fi;j þ 16fi;j�1 � fi;j�2�;

Fig. 1. Square representative cell Y .

Table 1

Homogenized coefficients for k ¼ 10

No. of elements Bloch method ðq11Þ Classical method ðq11Þ Error

288 1.22490061044764 1.22490060876042 1.6872e)09
648 1.21947541934180 1.21947541576959 3.5722e)09
1152 1.21809582502003 1.21809583037969 2.5895e)09
1800 1.21585526726769 1.21585527835938 1.1092e)08

Table 2

Homogenized coefficients for k ¼ 1=18

No. of elements Bloch method ðq11Þ Classical method ðq11Þ Error

288 0.81776545330035 0.81776545245266 8.4769e)10
648 0.81357789343615 0.81357789226366 1.1725e)09
1152 0.81170785322255 0.81170785128808 1.9345e)09
1800 0.81068319516579 0.81068319469725 4.6854e)10
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where fi;j ¼ f ðxi; yjÞ. The above fourth-order formula is for the general case. The symmetry with respect to

g significantly reduce the number of determination of k1. In the periodic cells case, one can enjoy the

symmetry of y too.

To show that the accuracy between the classical and Bloch methods in the contrast of k (stiff case), we

performed the test for several values of k as well as for various number of finite elements in the square

periodic cell as given in Fig. 1 and presented the results in Table 3. From these results one can conclude that

the accuracy is independent of the contrast of k.

Remark 6.2. The CPU time is almost the same for both classical and Bloch methods in the symmetric

periodic cell case and for the non-symmetric periodic cell case the Bloch method takes little more CPU time

than the classical one. Further, the CPU time is not an important factor in the calculation of the qk‘, which
are obtained almost in a real time computation.

Example 6.3. In this example, we state an interesting property of the homogenized coefficients. If the

coefficients ak‘ are such that

akk is symmetric with respect to the middle hyper planes

Diði ¼ 1; . . . ;NÞ of the representative cell ðsee Fig: 2Þ;

	
ð6:1Þ

then we have the following result:

qk‘ ¼ 0 for k 6¼ ‘: ð6:2Þ
If we consider the representative cell as given in Fig. 3 with

Table 3

Homogenized coefficients for the stiff case

k Bloch method ðq11Þ Classical method ðq11Þ Error

103 1.28346598635829 1.28346598933957 2.9813e)09
10�3 0.78981742620378 0.78982093144148 3.5052e)06

Fig. 2. Symmetric representative cell with respect to the middle hyper planes.
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ak‘ ¼
dk‘ in Y0;
kdk‘ in Y1;

	
then, the assumption as given in (6.1) is not fulfilled. The homogenized coefficients obtained are not satisfy

the result as given in (6.2), i.e., qk‘ 6¼ 0 for k 6¼ ‘. The homogenized coefficients obtained by the classical and

Bloch methods are given in Tables 4 and 5 respectively for k ¼ 10, 1=114. Therefore, an heterogeneous

medium made of two isotropic materials can be homogenized into an effective non-isotropic medium which
is a well known fact among mathematicians and engineers.

Example 6.4. Let us consider the rhombus representative cell as given in Fig. 4 with the coefficients ak‘ as
defined in Example 6.3.

Fig. 3. Non-symmetric representative cell.

Table 4

Homogenized coefficients for k ¼ 10

No. of elements Bloch method Classical method

q11 ¼ q22 q12 ¼ q21 q11 ¼ q22 q12 ¼ q21

288 1.4407055686 )0.0530067090 1.4407055683 )0.0530067077
512 1.4338541675 )0.0529771794 1.4338541611 )0.0529771805
800 1.4301258470 )0.0529388604 1.4301258453 )0.0529388584
1152 1.4278362419 )0.0529059499 1.4278362455 )0.0529059519

Table 5

Homogenized coefficients for k ¼ 1=114

No. of elements Bloch method Classical method

q11 ¼ q22 q12 ¼ q21 q11 ¼ q22 q12 ¼ q21

288 0.6513966796 )0.0427392436 0.6513966483 )0.0427392262
512 0.6467155635 )0.0427134690 0.6467155279 )0.0427134497
800 0.6441183367 )0.0426752552 0.6441182991 )0.0426752343
1152 0.6424950912 )0.0426422131 0.6424950540 )0.0426421954
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In this example, we consider a different shape of the periodic cell which is given in Fig. 4. Here, the shape

of Y1 is a rhombus instead of a square as considered in Example 6.1. The triangulation is made such that the

discontinuities of the coefficients ak‘ coincide with the sides of the triangles. Tables 6 and 7 show the ho-

mogenized coefficients obtained by the classical and Bloch methods respectively for k ¼ 1=18, 1=114.

Remark 6.5. From the numerical results presented in Tables 1–7, one can find out the accuracy of the Bloch

method in comparison with the classical one. The homogenized coefficients obtained by the Bloch and

classical methods coincide with at most eight digits. Further, from the above numerical results, one can

notice that the homogenized coefficients strongly depend on the chosen shape of Y1.

From the above test problems we verified that the formula as given in (2.15) produces more than eight

digits accurate results for the homogenized coefficients obtained from the classical formula (2.9). Further,

we found that the formulas for vk as given in (2.16) produces the same results as the classical one defined to
be the solution of the problem (2.6). For this, we have applied it to all the above test problems and pre-

dicted that both coincide up to eight digits accuracy. In Fig. 5 we show v1, v2 obtained by both the classical

(v1, v2 defined to be the solutions of (2.6)) by solid line and Bloch methods (v1, v2 defined to be the left hand

Fig. 4. Rhombus representative cell.

Table 6

Homogenized coefficients for k ¼ 1=18

No. of elements Bloch method ðq11Þ Classical method ðq11Þ Error

512 0.79242012651417 0.79242012579792 7.1625e)10
1152 0.78910981068346 0.78910980779788 2.8856e)09

Table 7

Homogenized coefficients for k ¼ 1=114

No. of elements Bloch method ðq11Þ Classical method ðq11Þ Error

512 0.77233355955759 0.77233350607510 5.3482e)08
1152 0.76820226431582 0.76820220708207 5.7234e)08
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side in (2.16)) by dot-line restricted along the diagonal y2 ¼ y1 of Y as indicated in Fig. 6 (since both

perfectly coincide, it is not easy to distinguish them in the plots).

6.1.2. Homogenized solution

Example 6.6. Consider the following boundary value problems. Let ue and u� be respectively the solutions

of the following problems:

Aeue ¼ f in X;
ue ¼ 0 on oX

	
ð6:3Þ

and

�qk‘
o2u�

oxkox‘
¼ f in X;

u� ¼ 0 on oX:

8<: ð6:4Þ

Fig. 5. Comparison of vk �s obtained by classical and Bloch methods for the non-symmetric representative cell as given in Fig. 3 for

k ¼ 1=18.

Fig. 6. Diagonal section.
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Let us consider a representative cell similar to the one as given in Fig. 1 with Y ¼ �0; 1½2 instead of �0; 2p½2
and

ak‘ ¼
dk‘ in Y0;
kdk‘ in Y1:

	
In this example, we take X ¼ �0; 1½2; f ¼ 10; e ¼ 1=2, 1=4, 1=8, and k ¼ 10, 1=18, 1=144.

This model situation occurs in the study of torsion of a cylindrical elastic bar with reinforcing fibres. The

region Y1 indicates the cross-section of a fibre and Y0 that of the ‘‘matrix’’. The elastic constants are thus

different in two regions. By e ! 0 it is meant that the number of periodically distributed reinforcing fibres is

steadily increased but the ratio of the volume occupied by the fibres to that occupied by the matrix is kept

constant, for example, in this case, it is 1=9 (see [7]).
The homogenized solution which is the solution of a second-order elliptic equation with constant co-

efficients (6.4) is obtained without any difficulty. On the other hand the computation of ue needs a trian-

gulation which must be very fine as e becomes small. We now examine the convergence of ue towards u�. It
is well known that

ue * u� in H 1
0 ðXÞ ðweaklyÞ

and, if the coefficients ak‘ are sufficiently smooth (see [4]) one has

kue � u�kC0ðXÞ 6Ce:

In this section, we show numerical results on the convergence of ue towards u� and the figures presented

are representations of the solutions ue and u� restricted along a diagonal of X as indicated in Fig. 6. One can

see in Figs. 7–10 that ue converges towards u� as e ! 0 but also that the difference between ue and u� be-
comes greater whenever k < 1. In Figs. 7–10, red and blue colors respectively stand for the exact and

homogenized solutions. Moreover, we have indicated in Tables 8–10 the error ðue � u�Þ in the norms of

spaces L1ðXÞ, L2ðXÞ, and H 1
0 ðXÞ, respectively for k ¼ 10, 1=18, 1=114.

Remark 6.7. From the numerical errors given in Tables 8–10, we see that kue � u�kH1
0
ðXÞ does not converge

but kue � u�kL2ðXÞ and kue � u�kL1ðXÞ converge to zero as we can see in Figs. 7–10. We also find that the

values of supX jue � u�j have a linear decrease as e ! 0 though the coefficients ak‘ are discontinuous.

6.1.3. First-order corrector

Let us denote by ve
1 the corrected solution obtained by the first-order corrector term, that is,

ve
1 ¼ u� þ eue

1:

Fig. 7. Comparison of ue with u� for (a) k ¼ 10, e ¼ 1=2 and (b) k ¼ 10, e ¼ 1=4.
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Let us consider the case k ¼ 10 in the problem as given in Example 6.6. Here, we add the first-order periodic

corrector to the homogenized solution in order to improve the rate of convergence. The partial derivatives

Fig. 8. Comparison of ue with u� for (a) k ¼ 10, e ¼ 1=8 and (b) k ¼ 1=18, e ¼ 1=2.

Fig. 9. Comparison of ue with u� for (a) k ¼ 1=18, e ¼ 1=4 and (b) k ¼ 1=18, e ¼ 1=4.

(a)

Fig. 10. Comparison of ue with u� for (a) k ¼ 1=144, e ¼ 1=4 and (b) k ¼ 1=144, e ¼ 1=8.
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of the homogenized solution, first-order corrector and the exact solution restricted along the diagonal of X
are plotted respectively in blue, black and red colors in Fig. 11(a) and (b).

One can see in Fig. 11(a) that the first-order corrector gives a good approximation to the slopes of the

partial derivatives of ue (that is, to its second-order partial derivatives). Also one can notice from Fig. 11(b)

that the first-order periodic corrector does not give any correction to the peaks. Tables 11–13 show the

error ðue � ve
1Þ in the norms of spaces L1ðXÞ, L2ðXÞ and H 1

0 ðXÞ.

Table 8

Convergence of the error ðue � u�Þ for k ¼ 10

e supX jue � u�j kue � u�kL2ðXÞ

ku�kL2ðXÞ

kue � u�kH1
0
ðXÞ

ku�kH1
0
ðXÞ

1=2 0.1249 0.1169 0.3249

1=4 0.0682 0.0599 0.3684

1=8 0.0396 0.0299 0.3858

Table 10

Convergence of the error ðue � u�Þ for k ¼ 1=114

e supX jue � u�j kue � u�kL2ðXÞ

ku�kL2ðXÞ

kue � u�kH1
0
ðXÞ

ku�kH1
0
ðXÞ

1=2 1.1955 0.4822 3.1637

1=4 0.4780 0.1299 1.5059

1=8 0.1195 0.0401 0.7243

Fig. 11. The partial derivative of ue, u�, ve
1 for (a) k ¼ 10, e ¼ 1=2 and (b) k ¼ 1=144, e ¼ 1=4.

Table 9

Convergence of the error ðue � u�Þ for k ¼ 1=18

e supX jue � u�j kue � u�kL2ðXÞ

ku�kL2ðXÞ

kue � u�kH1
0
ðXÞ

ku�kH1
0
ðXÞ

1=2 0.2536 0.1131 0.3721

1=4 0.0979 0.0482 0.2738

1=8 0.0585 0.0228 0.2790
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6.1.4. Second-order corrector

Let ve
2 be the corrected solution obtained with the first- and second-order correctors given by

ve
2 ¼ u� þ eue

1 þ e2ue
2:

Here also we consider the same problem as given in Example 6.6. Fig. 12 shows the partial derivatives of the

solutions ue, u�, ve
1 and ve

2 for k ¼ 1=114, e ¼ 1=4. Here blue, rose, black (dot-lines) and red colors re-

spectively denote the partial derivatives of u�, ve
1, v

e
2 and ue restricted along the diagonal of X. Actually, the

second-order corrector provides better approximation to the exact solution ue it is difficult to distinguish

both of them in the plot as given in Fig. 12. The partial derivatives of ve
2 (black dot-line) is exactly plotted on

the partial derivatives of ue (red solid line).
If we compare Figs. 11(b) and 12, we see that the second-order periodic corrector gives the correction of

the peaks of the partial derivatives of ue in the case k < 1.

The error ðue � ve
2Þ is presented in Tables 14 and 15. One can compare these results with those of Tables

12 and 13 to see the effect of the second-order correctors in the energy norm (H 1-strong convergence). We

note from Table 15 that the results obtained for e ¼ 1=8 are worse than those obtained for e ¼ 1=4. This is
due to the error made in the computation of ue, that is, we use only eight triangles in Y1 (the region

mentioned in the periodic cell in Fig. 1), which is not enough to capture the original behavior of ue there.

Therefore, if k < 1 and e is small, even if the direct computation of ue is possible, homogenization gives
better results in a symmetric context.

Remark 6.8. In the stiff cases (when k ¼ 103 or 10�3), there is a boundary layer which arises from the

boundary condition and becomes more and more complicate for the numerical study. These results in the

loss of accuracy for both first- and second-order correctors. This interesting phenomena is under study in

our forthcoming paper [9].

Table 11

Convergence of the error ðue � ve
1Þ for k ¼ 10

e supX jue � ve
1j kue � ve

1kL2ðXÞ

kve
1kL2ðXÞ

kue � ve
1kH1

0
ðXÞ

kve
1kH1

0
ðXÞ

1=2 0.0539 0.0334 0.0775

1=4 0.0303 0.0132 0.0629

1=8 0.0225 0.0042 0.0486

Table 12

Convergence of the error ðue � ve
1Þ for k ¼ 1=18

e supX jue � ve
1j kue � ve

1kL2ðXÞ

kve
1kL2ðXÞ

kue � ve
1kH1

0
ðXÞ

kve
1kH1

0
ðXÞ

1=2 0.2531 0.0710 0.4343

1=4 0.0625 0.0202 0.1840

1=8 0.0198 0.0057 0.0900

Table 13

Convergence of the error ðue � ve
1Þ for k ¼ 1=114

e supX jue � ve
1j kue � ve

1kL2ðXÞ

kve
1kL2ðXÞ

kue � ve
1kH1

0
ðXÞ

kve
1kH1

0
ðXÞ

1=2 1.1955 0.4645 3.2657

1=4 0.4780 0.1135 1.5408

1=8 0.1195 0.0283 0.7595
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6.2. One-dimensional case

The purpose of this section is to present the numerical accuracy of the Bloch approximation function he

and its Taylor approximations to ue and the classical first-order corrector. To simplify matters, we consider

the one-dimensional problems for illustration. We apply the Bloch approximation for both the smooth and

discontinuous coefficient cases. The examples are given below.

Example 6.9 (The discontinuous coefficients case). Consider the following problem:

� d

dx
a

x
e

� � due

dx
ðxÞ

� �
þ ueðxÞ ¼ f ðxÞ; x 2 X ¼ ��2p; 2p½;

ueð�2pÞ ¼ 0; ueð2pÞ ¼ 0;

8<: ð6:5Þ

where aðx=eÞ is the oscillating coefficient and f ðxÞ ¼ sinðxÞ=x. In this example the coefficient aðyÞ for

y 2 Y ¼ �0; 2p½ is defined as

Table 14

Convergence of the error ðue � ve
2Þ for k ¼ 1=18

e supX jue � ve
2j kue � ve

2kL2ðXÞ

kve
2kL2ðXÞ

kue � ve
2kH1

0
ðXÞ

kve
2kH1

0
ðXÞ

1=2 0.0548 0.0500 0.0729

1=4 0.0531 0.0107 0.0637

1=8 0.0312 0.0027 0.0447

Table 15

Convergence of the error ðue � ve
2Þ for k ¼ 1=114

e supX jue � ve
2j kue � ve

2kL2ðXÞ

kve
2kL2ðXÞ

kue � ve
2kH1

0
ðXÞ

kve
2kH1

0
ðXÞ

1=2 0.0605 0.0504 0.1242

1=4 0.0583 0.0123 0.0368

1=8 0.0342 0.0031 0.0375

Fig. 12. The partial derivative of ue, u�, ve
1, v

e
2 for k ¼ 1=114, e ¼ 1=4.
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aðyÞ ¼
k in Y1 ¼

def

�
2p
3
;
4p
3

�
1 in Y0 ¼

def Y n Y1:

8<:
We consider two different values for k as k ¼ 1=18 and 1=114 which were obtained from physical appli-

cations for the two-dimensional case in [6].

Example 6.10 (The continuous coefficient case). Consider the problem as given in Example 6.9 with the
following smooth coefficients

aðyÞ ¼ 2þ cosðyÞ or aðyÞ ¼ 2þ sinðyÞ:

6.2.1. Comparison of he with ue and the first-order corrector

In this section, we make a comparative study between the Bloch approximation function he, the exact
solution ue, and the classical first-order corrector term ve

1 defined by

ve
1ðxÞ ¼ u�ðxÞ þ ev

x
e

� � du�

dx
ðxÞ;

where u� is the homogenized solution and v ¼ vk corresponds to the one-dimensional version of vk.

To check the accuracy of he, we applied it to different values of k in the discontinuous coefficients case

and also for the continuous coefficients for several number of finite elements in the domain X. For the

computation of he, we determine the first eigenvalue /1ð�; gÞ of the generalized eigenvalue problem dis-

cretized by 48 and 96 points in the periodic cell Y ¼ �0; 2p½ for g 2 Y 0 ¼ ½�1=2; 1=2�. We divide the domain

Y 0 into 80 and 160 points. We recall that the eigenvectors are independent of e and it is enough to determine

it once and store for the calculations of different values of e. From these results, we have selected a few and

plotted he, ue and ve
1 respectively in blue, red and black colors in Figs. 13 and 14. These figures plot he, ue and

ve
1, inside a peak which was obtained by zooming in small different intervals around the origin. From these

plots one can easily identify that the Bloch approximation he is more closer to ue than the classical first-

order corrector ve
1 which reflects our claim in Section 5.

Further, we have indicated in Tables 16 and 17 the errors ðue � heÞ, ðue � ve
1Þ and ðhe � ve

1Þ in the norms of

the spaces L2ðxÞ and H 1ðxÞ, where x ¼ ½�p; p�. Here, we have compared these differences only in x instead

of the full domain X ¼ ��2p; 2p½. This is because the Bloch approximation function he is theoretically valid

in the absence of boundaries. Therefore, a fair comparison between he and ve
1 should consist in comparing a

local norm or semi-norm for ðue � heÞ and ðue � ve
1Þ, and this has been done by computing the above norm/

–0.5 0 0.5

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

–1 –0.5 0 0.5 1
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
(a) (b)

Fig. 13. Plots of ue, he and ve
1 (Example 6.9) for (a) k ¼ 1=18, e ¼ 1=16 and (b) k ¼ 1=144, e ¼ 1=8.
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semi-norm in a compactly supported domain x in X. In addition, the above mentioned errors are also
presented inside the main peak of ue. They are denoted by ð�Þ in Table 18. Here, the above norm/semi-norm

measures the relative errors in a variable local sub-domain which depends on e (in fact, it decreases as

e ! 0).

Apart from the comparison of the accuracy between the Bloch function and the classical first-order

corrector to the exact solution, we determine the CPU time for each of these two terms. Here, we exclude

the CPU time for the computations of the auxiliary function v (in the classical method) and the first

eigenvector /1ð�; gÞ (in the Bloch method) and the computed CPU times are given in Table 19 (in seconds).

The number of mesh points used in the domain ½�2p; 2p� for each case is 24=e. This is mainly because to

–0.5 0 0.5

0.67

0.68

0.69

0.7

–0.2 0 0.2 0.4

0.685

0.69

0.695

0.7
(a) (b)

Fig. 14. Plots of ue, he and ve
1 (Example 6.10) for (a) aðyÞ ¼ 2þ cosðyÞ, e ¼ 1=4 and (b) aðyÞ ¼ 2þ sinðyÞ, e ¼ 1=8.

Table 16

Convergence of the errors for k ¼ 1=18 (Example 6.9)

e kue � hekL2ðxÞ

kuekL2ðxÞ

kue � ve
1kL2ðxÞ

kuekL2ðxÞ

khe � ve
1kL2ðxÞ

kuekL2ðxÞ

jue � hejH1ðxÞ

juejH1ðxÞ

jue � ve
1jH1ðxÞ

juejH1ðxÞ

jhe � ve
1jH1ðxÞ

juejH1ðxÞ

1=2 0.1724 0.1560 0.0761 0.4691 0.5269 0.2268

1=4 0.0280 0.0282 0.0224 0.1619 0.1670 0.1084

1=8 0.0037 0.0063 0.0052 0.0400 0.0563 0.0480

1=16 6.2142e)04 0.0016 0.0013 0.0098 0.0253 0.0235

1=32 1.2833e)04 3.9213e)04 3.2160e)04 0.0025 0.0121 0.0116

1=64 2.8916e)05 9.7805e)05 8.2675e)05 6.2251e)04 0.0059 0.0057

1=128 1.2331e)05 2.4456e)05 2.5430e)05 1.5841e)04 0.0029 0.0029

Table 17

Convergence of the errors for Example 6.10

e kue � hekL2ðxÞ

kuekL2ðxÞ

kue � ve
1kL2ðxÞ

kuekL2ðxÞ

khe � ve
1kL2ðxÞ

kuekL2ðxÞ

jue � hejH1ðxÞ

juejH1ðxÞ

jue � ve
1jH1ðxÞ

juejH1ðxÞ

jhe � ve
1jH1ðxÞ

juejH1ðxÞ

1=2 0.0454 0.0148 0.0470 0.1407 0.0956 0.1321

1=4 0.0029 0.0047 0.0062 0.0250 0.0462 0.0524

1=8 4.4291e)04 0.0013 0.0013 0.0057 0.0224 0.0235

1=16 9.2924e)05 3.3298e)04 3.3210e)04 0.0017 0.0119 0.0120

1=32 9.0173e)05 1.1839e)04 1.1907e)04 0.0010 0.0062 0.0061

1=64 9.0708e)05 8.0293e)05 8.9194e)05 0.0010 0.0032 0.0031

C. Conca, S. Natesan / Comput. Methods Appl. Mech. Engrg. 192 (2003) 47–76 71



handle the discontinuous coefficients aðx=eÞ in the numerical calculation of ue. From this table one can
notice that the difference between both methods is significant for bigger values of e, whereas it starts to

decrease as e ! 0, which is really the interesting case. The computations are carried out in a Pentium III

processor machine with 64 MB RAM and 500 MHz speed by using MATLAB.

6.2.2. Comparison of the Taylor approximations of he with ue and ve
1

This section reports a comparative analysis between the Taylor approximation functions ~hhe
ð1Þ and

~hhe
ð2Þ of

he, the exact solution ue, and the classical first-order corrector ve
1 in terms of figures and numerical tables.

For the calculation of ~hhe
ð1Þ, we determine the first Bloch mode at g ¼ �0:005, 0.005 and using a second-

order finite difference formula we compute the first derivative of /1. We made a wide variety of compar-

isons between all these terms and presented some selected results for the readers. As mentioned earlier the

first-order Taylor approximation function ~hhe
ð1Þ provides almost the same approximate value as the first-

order corrector term ve
1 to ue. So it is difficult to distinguish between both ~hhe

ð1Þ and ve
1 in the plots. In order to

make it easy to the readers, the solution and the difference between both functions are plotted in Fig. 15. In

Fig. 15(a) the blue, red, black (dot-line) respectively stand for ~hhe
ð1Þ; u

e and ve
1. The black dot-line ve

1 is exactly

on the blue solid line ~hhe
ð1Þ. The error is plotted in Fig. 15(b). Further, we have compared both functions with

ue in different local norms and presented the relative errors in Tables 20 and 21.
By using the two eigenvalues as determined for the function ehhe

ð1Þ and the value of /1ð�; 0Þ ¼ 1=
ffiffiffiffiffiffi
2p

p
we

determine its second derivate which is used in the approximation function ~hhe
ð2Þ. To compare the second-

order Taylor approximation function ~hhe
ð2Þ with the exact solution and the classical first-order corrector, as

usual we performed several numerical tests for different values of k in the discontinuous coefficients case,

and the continuous coefficients case. From these results, we conclude that ~hhe
ð2Þ gives a better approximation

to the exact solution ue than the classical first-order corrector ve
1 as well as

~hhe
ð1Þ. The error between the partial

derivatives of the exact solution and the first- and second-order Taylor approximation functions are plotted

Table 18

Convergence of the errors for k ¼ 1=114 inside a peak (Example 6.9)

e kue � hekL2ð�Þ
kuekL2ð�Þ

kue � ve
1kL2ð�Þ

kuekL2ð�Þ
khe � ve

1kL2ð�Þ
kuekL2ð�Þ

jue � hejH1ð�Þ

juejH1ð�Þ

jue � ve
1jH1ð�Þ

juejH1ð�Þ

jhe � ve
1jH1ð�Þ

juejH1ð�Þ

1=2 0.1236 0.1641 0.0771 0.7088 0.9154 0.4080

1=4 0.0277 0.0365 0.0277 0.7951 0.8082 0.4597

1=8 0.0051 0.0084 0.0068 0.2894 0.3713 0.3336

1=16 0.0013 0.0022 0.0017 0.0460 0.2533 0.2888

1=32 2.0441e)04 5.7547e)04 4.5110e)04 0.0258 0.2362 0.2413

1=64 4.0874e)05 1.3370e)04 1.0832e)04 0.0070 0.2573 0.2473

1=128 6.4592e)07 4.1580e)05 4.1012e)05 8.6563e)04 0.4704 0.4685

Table 19

CPU time (in seconds) for the Classical and Bloch methods

e Classical method Bloch method

1=2 0.0455 0.6086

1=4 0.0810 1.1532

1=8 0.1687 2.3392

1=16 0.3852 4.4615

1=32 1.0117 9.1412

1=64 3.0656 18.2195

1=128 10.6353 37.3967
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in Fig. 16(a) and (b). The difference between the partial derivatives of ue and the first-order corrector ve
1 is

very similar to the plot as given in Fig. 16(a). As usual the compared errors in different norms are provided

in Tables 22 and 23.

With these above numerical experiments one can easily conclude the facts mentioned earlier in this paper

namely, that (i) the Bloch approximation function he produces better approximations for the exact solu-
tion ue than the first-order corrector ve

1 at least in the smooth coefficient case, and provide a similar

approximation as ve
1 in the discontinuous case, (ii) the first-order Taylor approximation function ~hhe

ð1Þ
performs in a very similar way as ve

1, and (iii) the second-order Taylor approximation function ~hhe
ð2Þ gives a

Fig. 15. For k ¼ 1=114 and e ¼ 1=8 (Example 6.9). Plot of (a) ue, ~hhe
ð1Þ and ve

1 and (b) the difference j~hhe
ð1Þ � ve

1j.

Table 20

Convergence of the errors for k ¼ 1=18 (Example 6.9)

e kue � ~hhe
ð1ÞkL2ðxÞ

kuekL2ðxÞ

kue � ve
1kL2ðxÞ

kuekL2ðxÞ

k~hhe
ð1Þ � ve

1kL2ðxÞ

kuekL2ðxÞ

jue � ~hhe
ð1ÞjH1ðxÞ

juejH1ðxÞ

jue � ve
1jH1ðxÞ

juejH1ðxÞ

j~hhe
ð1Þ � ve

1jH1ðxÞ

juejH1ðxÞ

1=2 0.1560 0.1560 4.5212e)05 0.5270 0.5269 1.2364e)04
1=4 0.0282 0.0282 4.9738e)05 0.1671 0.1670 9.4410e)05
1=8 0.0062 0.0063 4.8679e)05 0.0563 0.0563 8.9808e)05
1=16 0.0016 0.0016 1.5296e)05 0.0253 0.0253 2.9192e)05
1=32 3.8831e)04 3.9213e)04 1.3413e)05 0.0121 0.0121 2.7509e)05
1=64 9.4968e)05 9.7805e)05 1.3193e)05 0.0059 0.0059 2.7486e)05
1=128 2.4568e)05 2.4456e)05 1.3002e)05 0.0029 0.0029 2.7657e)05

Table 21

Convergence of the errors for Example 6.10

e kue � ~hhe
ð1ÞkL2ðxÞ

kuekL2ðxÞ

kue � ve
1kL2ðxÞ

kuekL2ðxÞ

k~hhe
ð1Þ � ve

1kL2ðxÞ

kuekL2ðxÞ

jue � ~hhe
ð1ÞjH1ðxÞ

juejH1ðxÞ

jue � ve
1jH1ðxÞ

juejH1ðxÞ

j~hhe
ð1Þ � ve

1jH1ðxÞ

juejH1ðxÞ

1=2 0.0148 0.0148 1.0264e)04 0.0958 0.0956 1.0522e)04
1=4 0.0047 0.0047 9.7128e)05 0.0461 0.0462 1.2175e)04
1=8 0.0013 0.0013 9.5238e)05 0.0225 0.0224 1.2706e)04
1=16 3.2466e)04 3.2410e)04 8.6594e)05 0.0119 0.0120 1.3339e)04
1=32 1.2558e)04 1.1839e)04 8.6315e)05 0.0061 0.0062 1.3406e)04
1=64 9.4903e)05 8.0293e)05 8.6207e)05 0.0032 0.0032 1.3431e)04
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better approximation to the exact solution ue, without further computational cost from the calculation of
~hhe
ð1Þ.

Remark 6.11. In all the tables corresponding to the one-dimensional examples we have given the error only

up to e ¼ 1=128 except in the smooth coefficient case (Example 6.10) where we were not able to go up to this

threshold and merely treat e ¼ 1=64. This is because the coefficients are variables here and the oscillations in

the exact solution ue could not be capture for e < 1=128. The round off error increases abruptly for small

values of e in the calculation of ue.

Fig. 16. For aðyÞ ¼ 2þ cosðyÞ and e ¼ 1=8 (Example 6.9). Plot of (a) j due

dx �
d~hhe

ð1Þ
dx j and (b) j due

dx �
d~hhe

ð2Þ
dx j.

Table 23

Convergence of the errors for Example 6.10

e kue � ~hhe
ð2ÞkL2ðxÞ

kuekL2ðxÞ

kue � ~hhe
ð1ÞkL2ðxÞ

kuekL2ðxÞ

k~hhe
ð2Þ � ve

1kL2ðxÞ

kuekL2ðxÞ

jue � ~hhe
ð2ÞjH1ðxÞ

juejH1ðxÞ

jue � ~hhe
ð1ÞjH1ðxÞ

juejH1ðxÞ

j~hhe
ð2Þ � ve

1jH1ðxÞ

juejH1ðxÞ

1=2 0.0097 0.0148 0.0184 0.0305 0.0958 0.0960

1=4 6.3622e)04 0.0047 0.0050 0.0056 0.0461 0.0478

1=8 1.9503e)04 0.0013 0.0013 0.0013 0.0255 0.0231

1=16 7.2026e)05 3.2466e)04 3.2802e)04 5.6092e)04 0.0119 0.0121

1=32 9.0001e)05 1.2558e)04 1.1884e)04 9.9506e)04 0.0061 0.0061

1=64 9.0702e)05 9.4903e)05 1.3505e)04 0.0010 0.0032 0.0031

Table 22

Convergence of the errors for k ¼ 1=114 (Example 6.9)

e kue � ~hhe
ð2ÞkL2ðxÞ

kuekL2ðxÞ

kue � ~hhe
ð1ÞkL2ðxÞ

kuekL2ðxÞ

k~hhe
ð2Þ � ve

1kL2ðxÞ

kuekL2ðxÞ

jue � ~hhe
ð2ÞjH1ðxÞ

juejH1ðxÞ

jue � ~hhe
ð1ÞjH1ðxÞ

juejH1ðxÞ

j~hhe
ð2Þ � ve

1jH1ðxÞ

juejH1ðxÞ

1=2 0.2100 0.2198 0.0750 0.6350 0.7741 0.2075

1=4 0.0501 0.0498 0.0250 0.4044 0.3941 0.1053

1=8 0.0085 0.0098 0.0063 0.1493 0.1437 0.0504

1=16 0.0012 0.0022 0.0016 0.0391 0.0478 0.0235

1=32 2.0991e)04 5.1461e)04 3.9362e)04 0.0088 0.0166 0.0117

1=64 3.8435e)05 1.1998e)04 1.0064e)04 0.0022 0.0068 0.0059

1=128 1.4163e)05 2.7089e)05 2.9802e)05 6.3216e)04 0.0031 0.0030
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7. Discussion

Two numerical methods are reported in this paper to solve elliptic PDEs with rapidly oscillating coef-

ficients. The first method is based on the asymptotic approximation, which includes the determination of

the homogenized solution, the classical first- and second-order correctors, numerically. To obtain an ap-

proximate solution to the multi-scale problems, one has to solve the homogenized equation and to improve

the accuracy and the rate of convergence, it is essential to add classical correctors. We have computed all

these terms numerically by using the classical approach in our first method. In addition to that we have
used the Bloch approach to determine the homogenized coefficients, and some auxiliary functions appear in

the calculation. The accuracy of both methods are compared for different kinds of problems. From the

numerical examples one can see that the homogenization method is an effective one to solve these types of

problems when the number of cells is large.

The second method consists of determining an oscillating integral involving the homogenized coefficients,

the classical Fourier transform of the right hand side function f and the first eigenvector /1ð�; gÞ of the

generalized Sylvester�s type eigenvalue problem. This Bloch approximation function provides better ap-

proximations to ue than the classical first-order corrector in the smooth coefficients case. In addition, we
have provided first- and second-order Taylor approximations of he. The numerical implementation of these

two terms are much easier than the Bloch approximation function and provides better approximations to

the exact solution. An issue which can be seen as a merit of the Bloch method over the classical one is the

fact that the former method is better adapted to parallel computation. Because the computations of the

eigenvalue k1ð�Þ and eigenvector /1ð�; gÞ are independent for each g 2 Y 0. Moreover, since they are inde-

pendent of e, the calculation needs only to be done once for ever in the computation of he.

Acknowledgements

This work has been partially supported by FONDAPFONDAP through its Programme on Mathematical-Me-

chanics. The authors gratefully acknowledge the Chilean and French Governments through the Scientific

Committee Ecos-Conicyt.

The authors express their sincere thanks to the referees whose incisive comments allowed us not only to

improve the presentation of our numerical results but also to strengthen and add a section to the earlier

version of the paper.

References

[1] M. Avellaneda, L. Berlyand, J.-F. Clouet, Frequency-dependent acoustics of composites with interfaces, SIAM J. Appl. Math. 60

(2000) 2143–2181.

[2] M. Avellaneda, T. Hou, G. Papanicolaou, Finite difference approximations for partial differential equations with rapidly

oscillating coefficients, Math. Modell. Numer. Anal. 25 (1991) 693–710.

[3] J. Bear, Use of models in decision making, in: T. Dracos, F. Stauffer (Eds.), Transport and Reactive Process in Aquifers, Balkema,

Rotterdam, 1994, pp. 3–9.

[4] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978.

[5] F. Bloch, €UUber die quantenmechanik der electronen in kristallgittern, Z. Phys. 52 (1928) 555–600.

[6] J. Bourgat, Numerical experiments of the homogenization method for operators with periodic coefficients, Technical Report 277,

Institut de Recherche d�Informatique et d�Automatique, Le Chesnay, France, 1978.

[7] J. Bourgat, H. Lanchon, Application of the homogenization method to composite materials with periodic structures, Technical

Report 208, Institut de Recherche d�Informatique et d�Automatique, Le Chesnay, France, 1976.

[8] Y. Capdeboscq, Homogenization of a diffusion equation with drift, C.R. Acad. Sci. Paris S�eerie I 327 (1998) 807–812.

[9] C. Conca, S. Natesan, M. Vanninathan, Numerical experiments with the Bloch–Floquet approach in homogenization, Working

Paper, 2002.

C. Conca, S. Natesan / Comput. Methods Appl. Mech. Engrg. 192 (2003) 47–76 75



[10] C. Conca, R. Orive, M. Vanninathan, Bloch approximation in homogenization and applications, SIAM J. Math. Anal. 33 (2002)

1166–1198.

[11] C. Conca, J. Planchard, M. Vanninathan, Fluids and Periodic Structures, No. 38 in Research in Applied Mathematics, John

Wiley/Masson, New York/Paris, 1995.

[12] C. Conca, M. Vanninathan, Homogenization of periodic structures via Bloch decomposition, SIAM J. Appl. Math. 57 (1997)

1639–1659.

[13] T. Hou, X. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput.

Phys. 134 (1997) 169–189.

[14] S. Kesavan, Homogenization of elliptic eigenvalue problems: Part 2, Appl. Math. Optim. 5 (1979) 197–216.

[15] J.-L. Lions, Some Methods in the Mathematical Analysis of Systems and Their Control, Gordon and Breach, Beijing, New York,

1981.

[16] A. Matache, I. Babu
sska, C. Schwab, Generalized p-fem in homogenization, Numer. Math. 86 (2000) 319–375.

[17] R. Morgan, I. Babu
sska, An approach for constructing families of homogenized equations for periodic media I: Integral

representation and its consequences, SIAM J. Math. Anal. 22 (1991) 1–15.

[18] J. Planchard, M�eethodes Math�eematiques en Neutronique, Collection de la Direction des �EEtudes et Recherches d�EEDF, Eyrolles,

Paris, 1995.

[19] E. S�aanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127, Springer-Verlag,

Berlin, 1980.

[20] M. Vanninathan, Homogenization and eigenvalue problems in perforated domains, Proc. Indian Acad. Sci. Math. Sci. 90 (1981)

239–271.

76 C. Conca, S. Natesan / Comput. Methods Appl. Mech. Engrg. 192 (2003) 47–76


	Numerical methods for elliptic partial differential equations with rapidly oscillating coefficients
	Introduction
	Theoretical results
	Computation of the homogenized coefficients
	Classical method
	Bloch wave method

	Computation of classical first- and second-order correctors
	Numerical implementation of the Bloch approximation theta&epsiv;
	Taylor approximations of theta&epsiv;
	First-order approximation
	Second-order approximation


	Numerical examples
	Two-dimensional case
	Comparison of homogenized coefficients and functions chik by classical and Bloch methods
	Homogenized solution
	First-order corrector
	Second-order corrector

	One-dimensional case
	Comparison of theta&epsiv; with u&epsiv; and the first-order corrector
	Comparison of the Taylor approximations of theta&epsiv; with u&epsiv; and v1&epsiv;


	Discussion
	Acknowledgements
	References


