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Summary. The aim of this work is to derive rate of convergence estimates
for the spectral approximation of a mathematical model which describes the
vibrations of a solid-fluid type structure. First, we summarize the main the-
oretical results and the discretization of this variational eigenvalue problem.
Then, we state some well known abstract theorems on spectral approxima-
tion and apply them to our specific problem, which allow us to obtain the
desired spectral convergence. By using classical regularity results, we are
able to establish estimates for the rate of convergence of the approximated
eigenvalues and for the gap between generalized eigenspaces.
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1 Mathematical knowledge of the eigenvalue problem

This section is devoted to the presentation of the mathematical model which
describes the physical problem and a summary of the most important results
of theoretical study. We also deduce its approximate problem. Firstly, the
physical hypotheses assumed for the system are established, and the peri-
odical mathematical model which this represents is set out. The differential
problem is then rigorously formulated and we summarize the theorem of
existence and location of eigenvalues and the theorem on the optimal bound
for the number of nonreal solutions. Finally, the problem is approximated
by the discretization of the Hilbert spaces involved. To this end, certain sim-
plifications are made in the geometry of the problem, which allow a more
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appropriate numerical approach. More details on the physical problem, de-
duction of the mathematical model, proofs of the theoretical results and
numerical analysis are available in the references given below.

1.1 The physical problem

The physical problem which interests us is the study of the vibrations of
a solid-fluid type structure. To be more exact, our purpose consists in de-
termining the vibratory eigenfrequencies and eigenmotions of a bundle of
metallic tubes immersed in an incompressible viscous fluid.

The fluid is assumed to be contained in a three-dimensional cavity with
rigid walls. It is assumed that they are parallel to each other, that they are
perfectly rigid (they do not allow deformations) and that they are elastically
mounted in such a way that they can only vibrate on a transverse plane,
perpendicular to the bundle. Furthermore, axial effects are not taken into
account, and it is assumed that the tubes are of infinite length. The problem
is then studied in two dimensions, restricting it to any of the sections of the
cavity which are perpendicular to the tubes. With respect to dynamics, it
is assumed that the solid-fluid system undergoes small vibrations around a
state of equilibrium.

1.2 Formulation of the eigenvalue problem

LetΩ0 be an open bounded subset ofR
2, with a locally Lipschitz continuous

boundaryΓ0 (see [16] Chap. I) and let{Θi}i=1,K be a family ofK open
subsets ofΩ0 which satisfy the following properties:

∀i = 1, . . . , K, Θi is a non-empty(1.1a)

connected open subset ofΩ0 .

∀i = 1, . . . , K, Θ̄i ⊂ Ω0 .(1.1b)

∀i 6= j, Θ̄i ∩ Θ̄j = φ .(1.1c)

EachΘi has a locally Lipschitz boundaryΓi .(1.1d)

Using the above notation we defineΩ as follows

Ω = Ω0 \
K⋃

i=1

Θ̄i .

It should be observed that the boundary ofΩ has(K + 1) connected com-
ponents which areΓ0, Γ1, . . . , ΓK .
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The periodical mathematical model which describes the solid-fluid in-
teraction is a differential eigenvalue problem with non-local boundary con-
ditions on the velocity. In this model, the tube sections are represented by
the perforations{Θi}i=1,K , and the domainΩ represents the area occupied
by the fluid. If the velocity of the fluid is denoted byu = u(x) and the
pressure byp = p(x) then(u, p) satisfies:

−2ν div e(u) + ∇p + ωu = 0 in Ω ,(1.2a)

div u = 0 in Ω ,(1.2b)

u = 0 onΓ0 ,(1.2c)

u =
−ω

ki + miω2


∫

Γi

σ(u, p)n ds


 onΓi, ∀i = 1, . . . , K ,(1.2d)

whereω ∈ C is the frequency,ν > 0 represents the kinematic viscosity
of the fluid,ki andmi, i = 1, . . . , K, are strictly positive given constants
associated with this system. They represent the mass per length unit of tube
i and the stiffness constant of the spring system supporting theith tube (see
[17]), e(u) is the linear strain tensor, defined by

2e(u) = ∇u + (∇u)t ,

and the termσ(u, p) represents the stress tensor of the system given by
Stokes’s law

(1.3) σ(u, p) = −p I + 2ν e(u) .

To obtain the mixed variational formulation of problem (1.2), on which
we develop the numerical analysis, the following Sobolev spaces are intro-
duced

H = {v ∈ H1(Ω)2 | v = 0 onΓ0 and

v is a constant vector onΓi, ∀i = 1, . . . , K} ,

L2
0(Ω) = {q ∈ L2(Ω) |

∫
Ω

q dx = 0} .

Clearly,H is a closed vector subspace ofH1(Ω)2 and therefore a Hilbert
space with the induced norm.

ConsideringH andL2
0(Ω) as complex Hilbert spaces, and multiplying

(1.2a) bȳv in H and (1.2b) bȳq in L2
0(Ω) (v̄, q̄ denote the complex conjugate

of v, q), integrating by parts inΩ, and using (1.2c,d) and (1.3), it follows
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that if the triplet(ω,u, p) is a solution of (1.2), then(ω,u, p) is a solution
of the following variational eigenvalue problem:

Findω ∈ C ,(1.4a)

(u, p) ∈ H ×L2
0(Ω) , (u, p) 6= (0, 0)(1.4b)

such that∀ (v, q) ∈ H × L2
0(Ω) ,

2ν

∫
Ω

e(u) : e(v̄) dx −
∫
Ω

p div v̄ dx(1.4c)

+ω

∫
Ω

u · v̄dx +
K∑

i=1

(
ki + miω

2

ω

)
γi(u) · γi(v̄) = 0 ,

∫
Ω

div u q̄ dx = 0 ,(1.4d)

where, in (1.4c),γi(u) denotes the trace ofu onΓi; it is a complex constant
vector. Conversely, it is straightforward to see that if(ω,u, p) is a solution
of (1.4), then(ω,u, p) is a solution of (1.2) in a weak sense.

1.3 Main results

Here we deal with an existence and a location result for the eigenfrequencies
of problem (1.4) and with an optimal bound for the number of nonreal
solutions. Even though the physical problem behind (1.4) is truely two-
dimensional, from a mathematical viewpoint there is no conceptual difficulty
in higher dimensions. Nevertheless, in view of the numerical approximation
of (1.4), we shall state all our theoretical results in the two-dimensional case
and we shall therefore continue in the framework of Sect. 1.2.

The proof of the following result can be found in [8]:

Theorem 1.1 The spectrum of(1.4) consists of a countable infinite quantity
of complex numbersω1, . . . , ω`, . . ., which converge in modulus to infinity,
i.e.,

(1.5a) lim
`→∞

1
|ω`| = 0.

Moreover, the eigenvalues have the following properties:
(i) Re(ωi) < 0 ∀i ≥ 1.
(ii) If Im(ωi) 6= 0 then

(1.5b) |ωi|2 < k/m ,

wherek/m denotes the quantitymax
1≤j≤K

{kj/mj}.
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It is interesting to observe in (ii) that the spectrum of (1.4) can only
contain a finite quantity of eigenvalues whose imaginary part is different
from zero. It should be noted that Theorem 1.1 does not provide an estimate
of the number of imaginary (non-real) eigenvalues. This is provided by the
following result, the proof of which can be referred to in [9].

Theorem 1.2 The spectrum of(1.4) admits a maximum of4K non-real
eigenvalues.

1.4 Discretization of the problem

We begin by setting out some simplifications on the geometry of the domain.
The first geometrical hypothesis adopted consists in assuming thatΩ is a
bounded polygonal domain inR2. That is,Γ0 (the exterior boundary) and
Γi ∀i = 1, . . . , K (the boundary of the holes) are polygonals. We associate
toΩ a regular family of triangulations{τh}h>0 (in the sense of [6], Chap. 2,
Sect. 2.1), which satisfies the classical condition

Ω̄ =
⋃

T∈τh

T ∀h > 0 ,

whereh is defined as themax{hT , T ∈ τh}; hT being the diameter of
triangleT . We also assume, by simplicity and without loosing generality,
that the constantski andmi, i = 1, . . . , K, have a single value, sayk and
m, respectively (the tubes are identical).

To approximateH andL2
0(Ω) by means of Lagrange type finite elements

on triangles, we introduce the finite dimensional spaces

Hh ≡ {vh ∈ C◦(Ω̄)2 | vh|T ∈ P2(T )2∀T ∈ τh, vh = 0 onΓ0(1.6a)

andvh is a constant vector onΓi , ∀i = 1, . . . , K} ,

L2
0h ≡ {qh ∈ C◦(Ω̄) | qh|T ∈ P1(T )(1.6b)

∀T ∈ τh and
∫
Ω

qh dx = 0} ,

where, in the above definitionsPn(T ), n ≥ 0, denotes the space of polyno-
mials of degree less than or equal ton. The positive integers2N andM are
defined as the dimensions of spacesHh andL2

0h, respectively.
In what follows we shall assume the following hypotheses of non-de-

generacy and regularity concerning the cardinality|τh| of the triangulations,
the integerK (number of tubes) and the degrees of freedom associated with
the velocity and pressure:

2N − M > 0 ∀h > 0 ,(1.7a)

2|τh| + K ≤ 2N ∀h > 0 .(1.7b)

Numerische Mathematik Electronic Edition
page 353 of Numer. Math. (1998) 79: 349–369



354 C. Conca et al.

In these conditions, we approximate problem (1.4) by

Findωh ∈ C(1.8a)

(uh, ph) ∈ Hh × L2
0h, (uh, ph) 6= (0, 0)(1.8b)

such that∀(vh, qh) ∈ Hh × L2
0h ,

a(uh,vh) + b(vh, ph) +
k

ωh
c(γ(uh), γ(vh))(1.8c)

= −ωh(d(uh,vh) + m c(γ(uh), γ(vh))),
b(uh, qh) = 0,(1.8d)

where, in (1.8c,d),γ(u) ≡ (γ1(u), . . . , γK(u)) ∈ C
2K and the sesquilinear

formsa(·, ·), b(·, ·), c(·, ·), d(·, ·) are defined by

a(u,v) = 2ν

∫
Ω

e(u) : e(v̄) dx ∀(u,v) ∈ H1(Ω)2 ,(1.9a)

b(u, p) = −
∫
Ω

p̄ div u dx ∀(u, p) ∈ H1(Ω) × L2(Ω) ,(1.9b)

c(s, t) =
K∑

i=1

si · t̄i ∀(s, t) ∈ C
2K × C

2K ,(1.9c)

d(u,v) =
∫
Ω

u · v̄ dx ∀(u,v) ∈ L2(Ω)2 .(1.9d)

As is shown in [7], under conditions (1.7), problem (1.8) is well posed.
Furthermore, several numerical experiments which were carried out in recent
years are consistent with all the abstract results of Sect. 1.3.

2 Rate of convergence estimates

Our aim in this section is to estimate the rate of convergence of the ap-
proximated eigenvalues and eigenvectors of problems (1.4). To this end, we
briefly present a well known general theoretical result on approximation of
eigenvalue problems in variational form and its application to the particular
case of a saddlepoint form eigenvalue problem. We will use some notations
of [15], where a general discussion of these theorems can be found. We
also refer to [3] for a more complete approach on numerical approxima-
tion of eigenvalue problems. Then, we prove that problem (1.4) and that the
discretized problem (1.8) can be put in the standard form of a saddlepoint

Numerische Mathematik Electronic Edition
page 354 of Numer. Math. (1998) 79: 349–369



Spectral approximation of an eigenvalue problem 355

eigenvalue problem. We show that these equivalent formulations satisfy the
hypotheses which allow the use of the results summarized previously, and
the desired estimations are thereby obtained.

2.1 A general result on spectral approximation

Firstly, we expound the fundamental theorem on error estimates of varia-
tionally posed eigenvalue problems. LetH1 andH2 be two complex Hilbert
spaces provided with norms‖ · ‖1 and‖ · ‖2, respectively. LetA andB be
two continuous sesquilinear forms defined onH1 × H2. We are interested
in studying the spectral approximation of

Find (λ, U) ∈ C × H1 , U 6= 0 such that(2.1a)

A(U, V ) = λB(U, V ) ∀V ∈ H2 .(2.1b)

In order to approximate problem (2.1), we consider the following prop-
erties onA(·, ·)

inf
U∈H1

‖U‖1=1

sup
V ∈H2

‖V ‖2=1

|A(U, V )| > 0 ,(2.2)

sup
U∈H1

‖U‖1=1

|A(U, V )| > 0 ∀V ∈ H2 , V 6= 0 ,(2.3)

and the linear operatorT defined by

T : H1 → H1(2.4a)

T U = W ∀U ∈ H1 ,(2.4b)

whereW is the unique solution of the following problem

FindW ∈ H1 such that(2.5a)

A(W, V ) = B(U, V ) ∀V ∈ H2 .(2.5b)

It is clear that properties (2.2) and (2.3) imply thatT is well defined. Also,
it is easy to see that if(λ, U) is a solution of (2.1), therefore(1/λ, U) is an
eigenpair ofT , and reciprocally.

It is worthwhile to note that the existence of solutions to (2.1), eigenvalues
of the operatorT , is not sure from the hypotheses stated above. Henceforth,
for the approximation, we will assume their existence. Let us introduce
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finite dimensional subspacesH1h ⊂ H1 andH2h ⊂ H2, h > 0, such that
dimH1h = dimH2h, then we can approximate problem (2.1) as follows

Find (λh, Uh) ∈ C × H1h , Uh 6= 0 such that(2.6a)

A(Uh, Vh) = λh B(Uh, Vh) ∀Vh ∈ H2h ,(2.6b)

and we consider the corresponding inf-sup condition

(2.7) inf
Uh∈H1h

‖Uh‖1=1

sup
Vh∈H2h

‖Vh‖2=1

|A(Uh, Vh)| ≥ α ,

whereα is a strictly positive real constant independent ofh.
With respect to the discretization of the spaceH1, we state the following

property of approximation

(2.8) lim
h→0

inf
Uh∈H1h

‖U − Uh‖1 = 0 ∀U ∈ H1 .

As in the continuous case, by using (2.7) and the fact that dimH1h =
dimH2h, we can define the family of linear operators

Th : H1 → H1(2.9a)

Th U = Wh ∀U ∈ H1 ,(2.9b)

whereWh is given like the unique solution of the following problem

FindWh ∈ H1h such that(2.10a)

A(Wh, Vh) = B(U, Vh) ∀Vh ∈ H2h .(2.10b)

It is clear that if(λh, Uh) is a solution of (2.6), then(1/λh, Uh) is an
eigenpair ofTh. Conversely, if(µh, Uh) ∈ C×H1 is an eigenpair ofTh and
if µh 6= 0, thenUh belongs toH1h and(1/µh, Uh) is a solution of (2.6).

It is well known that properties (2.7) and (2.8) imply that

lim
h→0

‖ΠhU − U‖H1 = 0 ∀U ∈ H1 ,

whereΠh : H1 → H1h ⊂ H1 is the usual projector operator defined by

A(U − ΠhU , Vh) = 0 ∀U ∈ H1, ∀Vh ∈ H2h .

BecauseTh = Πh T , it is well known that ifT is assumed to be compact,
then

lim
h→0

‖T − Th‖L(H1,H1) = 0 .
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It follows that if λ is an eigenvalue of (2.1) of algebraic multiplicitym > 0,
thus ash tends to zero, exactlym eigenvalues of (2.6), denotedλ1h, . . . , λmh

(including their algebraic multiplicity), converge toλ (see [13]). The next
result, whose proof can be found in [1], [10] or [14], provides us the desired
estimates.

In the following,λ̂h will denote the arithmetic mean of the approximated
eigenvalues{λjh}m

j=1; the quantitiesεh andε∗
h are defined by

εh = sup
U∈E

‖U‖1=1

inf
V ∈H1h

‖U − V ‖1 ,(2.11a)

ε∗
h = sup

U∈E∗
‖U‖2=1

inf
V ∈H2h

‖U − V ‖2 ,(2.11b)

whereE (andE∗ respectively) is the kernel of(1/λ − T )α ((1/λ̄ − T∗)α

respectively; whereT∗ is the formal adjoint ofT with respect toA(·, ·) );
the real constantα is the ascent of(1/λ − T ); Eh denotes the direct sum
of the generalized eigenspaces corresponding toλjh, ∀ j = 1, . . . , m; and
δ̂(E, Eh) represents the gap between the subspacesE andEh.

Theorem 2.1 Assume that(2.2), (2.3), (2.7) and (2.8) hold true. Also,
suppose that the operatorT , defined by(2.4), is compact and thatλ−1 is an
eigenvalue ofT with algebraic multiplicitym. Then there exist two strictly
positive real constantsC and h0, such that for allh ∈ ]0, h0[ there exist
exactlym eigenvaluesλ−1

1,h, λ−1
2,h, . . . , λ−1

m,h of Th converging toλ−1 and

|λ − λ̂h| ≤ C εhε∗
h ,(2.12a)

|λ − λjh| ≤ C (εhε∗
h)

1
α ∀ j = 1, . . . , m ,(2.12b)

δ̂(E, Eh) ≤ C εh .(2.12c)

Now we turn to the eigenvalue problems of saddlepoint form, that is,
problems of the following type

Find (λ, u, p) ∈ C × H × F , (u, p) 6= (0, 0) such that(2.13a)

a(u, v) + b(v, p) = λ r(u, v) ∀ v ∈ H ,(2.13b)

b(u, q) = λ s(p, q) ∀ q ∈ F ,(2.13c)

whereH andF are two complex Hilbert spaces provide with norms‖ · ‖H

and‖ · ‖F , respectively;a : H ×H → C, b : H ×F → C, r : H ×H → C

ands : F × F → C are continuous sesquilinear forms. If we have the finite
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dimensional spacesHh ⊂ H andFh ⊂ F , so we consider the approximation
of (2.13)

Find (λh, uh, ph) ∈ C × Hh × Fh ,(2.14a)

(uh, ph) 6= (0, 0) such that

a(uh, vh) + b(vh, ph) = λh r(uh, vh) ∀vh ∈ Hh ,(2.14b)

b(uh, qh) = λh s(ph, qh) ∀qh ∈ Fh .(2.14c)

In the sequel, we show that Theorem 2.1 can be applied to estimate the
rate of spectral convergence of the approximated problem (2.14). Below, we
state some properties which allow us to use this result. To this end, let us
consider the following coercivity hypothesis ona(·, ·)
(2.15a) Re a(u, u) ≥ α1 ‖u‖2

H ∀u ∈ H0 ,

whereα1 is a strictly positive constant and the spaceH0 is defined by

(2.15b) H0 = {v ∈ H | b(v, q) = 0 ∀ q ∈ F} ,

and its discretized version

(2.16a) Re a(uh, uh) ≥ α2 ‖uh‖2
H ∀uh ∈ H0h ,

whereα2 is a strictly positive constant independent ofh. The spaceH0h is
defined by

(2.16b) H0h = {vh ∈ Hh | b(vh, qh) = 0 ∀ qh ∈ Fh} .

Respect to the sesquilinear formb(·, ·), we take into account the condi-
tions

(2.17) inf
p∈F

p6=0

sup
u∈H
u 6=0

|b(u, p)|
‖p‖F ‖u‖H

≥ β1 > 0 ,

and

(2.18) inf
ph∈Fh

ph 6=0

sup
uh∈Hh

uh 6=0

|b(uh, ph)|
‖ph‖F ‖uh‖H

≥ β2 > 0 ,

whereβ2 is independent ofh.
Also, we state the following property of approximation

(2.19)
lim
h→0

inf
(uh,ph)∈Hh×Fh

‖(u, p) − (uh, ph)‖H×F = 0 ∀ (u, p) ∈ H × F .
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If we identify

H1 = H2 = H × F ,(2.20a)

U = (u, p) , V = (v, q) ,(2.20b)

A(U, V ) = a(u, v) + b(v, p) + b(u, q) ,(2.20c)

B(U, V ) = r(u, v) + s(p, q) ,(2.20d)

and the discretized spaces

(2.20e) H1h = H2h = Hh × Fh ,

we can easily see that (2.13) and (2.14) respectively, can be formulated in
the variational form (2.1) and (2.6), respectively. It is well known (see [2]
or [4]) that conditions (2.15) to (2.19) imply, with the identification (2.20),
the validity of (2.2),(2.3),(2.7) and (2.8). It follows that Theorem 2.1 can be
applied. To this end, we define the continuous linear operator

T : H × F → H × F(2.21a)

T (f, g) = (u, p) ∀ (f, g) ∈ H × F ,(2.21b)

by

a(u, v) + b(v, p) = r(f, v) ∀ v ∈ H ,(2.22a)

b(u, q) = s(g, q) ∀ q ∈ F ,(2.22b)

and we can conclude that if(λ, u, p) is a solution of (2.13), then(u, p) is an
eigenvector ofT corresponding to the eigenvalueλ−1. In a same way we
define the continuous linear operators

Th : H × F → Hh × Fh ⊂ H × F(2.23a)

Th (f, g) = (uh, ph) ∀ (f, g) ∈ H × F ,(2.23b)

by

a(uh, vh) + b(vh, ph) = r(f, vh) ∀ vh ∈ Hh ,(2.24a)

b(uh, qh) = s(g, qh) ∀ qh ∈ Fh ,(2.24b)

and if (λh, uh, ph) is a solution of (2.14), then(uh, ph) is an eigenvector of
Th corresponding to the eigenvalueλ−1

h . A direct consequence of Theorem
2.1, using the identification (2.18), is given in (see [15]):
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Theorem 2.2 Assume that hypotheses(2.15) to(2.19) hold. In addition, we
assume thatT is compact and thatλ−1 is an eigenvalue ofT with algebraic
multiplicity m. Then there exist two positive constantsC andh0 such that
if h ∈]0, h0[, then there exist exactlym eigenvaluesλ−1

1,h, λ−1
2,h, . . . , λ−1

m,h

(counted according to algebraic multiplicity) ofTh converging toλ−1 and
satisfiying

|λ − λ̂h| ≤ C εhε∗
h ,(2.25a)

|λ − λjh| ≤ C (εhε∗
h)

1
α ∀ j = 1, . . . , m ,(2.25b)

whereεhε∗
h are defined as above,α being the ascent of(λ−1−T ). Moreover,

for the gap between generalized eigenspaces we have

(2.25c) δ̂(E, Eh) ≤ C εh .

Remark that hypotheses neither in Theorem 2.1, nor in Theorem 2.2, are
enough to provide actually the existence of at least one non-zero eigenvalue
of operatorT and then the assumption of existence is needed.

2.2 Application of Theorem 2.2 to problem (1.4)

Let us henceforth establish the desired rate of convergence estimate. We
begin by showing that problem (1.4) and (1.8) respectively, can be put in the
standard form of a saddlepoint eigenvalue problem. Then, we will prove that
all the hypotheses of Theorem 2.2 are satisfied and that the corresponding
operatorT is compact. This will allow us to apply Theorem 2.2.

Let (ω,u, p) ∈ C × H × L2
0(Ω) be a solution of problem (1.4), where

here the spacesH andL2
0(Ω) are defined in Sect. 1.2. Lets ∈ C

2K be
defined by

(2.26) s =

√
k

ω
γ(u) ,

whereγ(u) = (γ1(u), . . . , γK(u)) ∈ C
2K is the vector trace onΓi, i =

1, . . . , K. It is straightforward to prove that(ω,u, p, s) is a solution of the
following variational eigenvalue problem

Find (ω,u, p, s) ∈ C × H × L2
0(Ω) × C

2K ,(2.27a)

(u, p, s) 6= (0, 0,0) such that

a(u,v) + b(v, p) +
√

k c(s, γ(v))(2.27b)

= −ω(d(u,v) + m c(γ(u), γ(v))) ∀v ∈ H ,

b(u, q) = 0 ∀q ∈ L2
0(Ω) ,(2.27c) √

k c(γ(u), t) = ω c(s, t) ∀ t ∈ C
2K .(2.27d)
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We use the notation for the sesquilinear forms defined in (1.9). Conversely,
it is direct to see that if(ω,u, p, s) is a solution of (2.27) then(ω,u, p) is
a solution of (1.4) and we have (2.26). Thus problems (1.4) and (2.27) are
equivalent. In order to obtain the rate of spectral convergence, this formu-
lation presents an improvement on the previous one, since problem (2.27)
can be posed like an eigenvalue problem of saddlepoint form. In fact, if we
consider the space

(2.28a) F = L2
0(Ω) × C

2K ,

provided with the induced norm, that is

(2.28b) ‖y‖F = (‖q‖2
0,Ω + |t|2) 1

2 ∀ y = (q, t) ∈ F ,

and if b̃(·, ·) denotes the sesquilinear form given by

b̃ : H × F → C(2.29a)

b̃(v,y) = b(v, q) +
√

k c(γ(v), t)(2.29b)

∀v ∈ H, ∀y = (q, t) ∈ F ,

then we can rewrite problem (2.27) equivalently as follows

Find (ω,u,x) ∈ C × H × F , (u,x) 6= (0,0) such that(2.30a)

a(u,v) + b̃(v,x) = ω r(u,v) ∀v ∈ H ,(2.30b)

b̃(u,y) = ω s(x,y) ∀y ∈ F ,(2.30c)

where the sesquilinear formsr(·, ·) ands(·, ·) are defined by

r(u,v) = −d(u,v) − m c(γ(u), γ(v)) ∀ u,v ∈ H ,

s(x,y) = c(s, t) ∀x = (p, s), y = (q, t) ∈ F .

Now, we shall prove that problem (2.30) satisfies (2.15) to (2.19). Let
us begin by characterizing the subspaceH0 defined in (2.15b), when we
replace the sesquilinear formb(·, ·) by b̃(·, ·).
Lemma 2.3 The spaceH0 is given by

H0 = {v ∈ H1
0 (Ω)2 | div v = 0 in Ω } .

Its proof is left to the reader. We deduce

Corollary 2.4 The sesquilinear forma(·, ·) is H0-elliptic.
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Proof. It is straigtforward by virtue of Poincaré and Korn’s first inequalities.
ut

The discretized coercivity condition ofa(·, ·) can be proved in the same
way. In fact, taking the finite dimensional spacesHh andL2

0h, as defined by
(1.6) in Sect. 1.4, and approximating the spaceF by

Fh = L2
0h × C

2K ,

we deduce thatH0h is nothing but

H0h = {vh ∈ Hh ∩ H1
0 (Ω)2 |

∫
Ω

qh div vh dx = 0 ∀ qh ∈ L2
0h} ,

from which we can directly establish the uniform coercivity condition of
a(·, ·) onH0h. Then (2.15) and (2.16) hold.

Let us next prove the inf-sup condition onb̃(·, ·). To this effect, we state
the two previous results that we will use after.

Lemma 2.5 There exists a strictly positive constantη1 such that for all
p ∈ L2

0(Ω) there is a functionu1 ∈ H1
0 (Ω)2 satisfying

‖ur
1‖1,Ω = 1 and‖ui

1‖1,Ω = 1 ,(2.31a)

Re b(u1, p) ≥ η1 ‖p‖0,Ω ,(2.31b)

whereur
1 andui

1 are the real and imaginary parts ofu1, respectively.

Proof. If we take the real part in the definition of the sesquilinear form
b(·, ·), we obtain

Re b(v, p) = −
∫
Ω

pr div vr dx

−
∫
Ω

pi div vi dx ∀v ∈ H1
0 (Ω)2 , ∀p ∈ L2

0(Ω) .

By virtue of the classical inf-sup condition for real-valued functions in the
spacesH1

0 (Ω)2 andL2
0(Ω) (see [11], Chap. 1, Sect. 5.1 or [5], Chap. 4,

Sect. 2), we deduce the existence ofη1 > 0 such that for all real-valued func-
tionspr, pi ∈ L2

0(Ω) there exist two real-valued vector functionsv1,v2 ∈
H1

0 (Ω)2 satisfying

−
∫
Ω

pr div v1 dx ≥ η1 ‖pr‖0,Ω ‖v1‖1,Ω ,(2.32a)

−
∫
Ω

pi div v2 dx ≥ η1 ‖pi‖0,Ω ‖v2‖1,Ω .(2.32b)
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Then, if we define

ur
1 =

v1

‖v1‖1,Ω
and ui

1 =
v2

‖v2‖1,Ω
,

we see that:u1 ≡ ur
1 + iui

1, fulfils (2.31a) and the inequality

Re b(u1, p) ≥ η1 ‖p‖0,Ω ,

which proves (2.31b) and completes the proof.ut
Lemma 2.6 There exists a strictly positive constantη2 such that for all
s ∈ C

2K there is a functionu2 ∈ H1(Ω)2 satisfying

div u2 = 0 and ‖u2‖1,Ω = 1 ,(2.33a)

c(γ(u2), s) ≥ 1
η2

|s| .(2.33b)

Proof. Since ∫
Γi

si · n ds = 0 ∀ i = 1, . . . , K,

we can conclude that there exists a unique pair(v, q) ∈ H1(Ω)2 × L2
0(Ω),

solution of the following system of equations (see [11], Chap. 1, Sect. 5.1,
Theorem 5.1)

−2ν div e(v) + ∇q = 0 in Ω ,(2.34a)

div v = 0 in Ω ,(2.34b)

v = 0 onΓ0 ,(2.34c)

v = si onΓi, ∀i = 1, . . . , K.(2.34d)

Moreover, we have
‖v‖1,Ω + ‖q‖0,Ω ≤ η |s| ,

whereη is a constant independent ofs,v andq. If we define

u2 =
v

‖v‖1,Ω
,

it is clear thatu2 satisfies (2.33a) and

c(γ(u2), s) =
1

‖v‖1,Ω
c(s, s) ≥ η2 |s| ,

whereη2 = 1/η. This proves (2.33b). ut
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Once the previous Lemmata have been established, we are in a position
to set out the inf-sup condition oñb(·, ·).
Proposition 2.7 There exists a strictly positive real constantβ1 such that

(2.35) inf
x∈F
x6=0

sup
u∈H
u6=0

|b̃(u,x)|
‖x‖F ‖u‖1,Ω

≥ β1 .

Proof. We will show that there existsβ1 > 0 such that

(2.36) sup
u∈H
u6=0

Re b̃(u,x)
‖u‖1,Ω

≥ β1 ‖x‖F ∀x ∈ F ,

which clearly implies (2.35).
Let x = (p, s) be a fixed element of F. Letu1,u2 be the functions given

by Lemma 2.5 and Lemma 2.6 associated withp ands, respectively. If we
defineu ≡ u1 + u2, then the pair(u,x) satisfies

b̃(u,x) = b(u1, p) +
√

k c(γ(u2), s) ,

and this yields

(2.37) Re b̃(u,x) ≥ β‖x‖F ,

whereβ denotes the quantity min{η1,
√

k η2} > 0 andu satisfies:‖u‖1,Ω ≤
3.

Let us consider the identity

(2.38) sup
u∈H
u6=0

Re b̃(u,x)
‖u‖1,Ω

=
1
3

sup
u∈H

‖u‖1,Ω≤ 3

Re b̃(u,x) ∀x ∈ F .

Then, combining (2.37) and (2.38), we infer that

sup
u∈H
u6=0

Re b̃(u,x)
‖u‖1,Ω

≥ 1
3

β‖x‖F ∀x ∈ F ,

that is (2.36), withβ1 = β/3, which completes the proof.ut
It is worth remarking that all the results used to prove the inf-sup con-

dition of b̃(·, ·) on the spaceH × F can also be established for the discrete
eigenvalue problems, with all the constants involved independent of the pa-
rameterh > 0. In fact, one can show that (2.32) is still true in the discrete
version when we choose the spacesHh andL2

0,h as above. Below, we state
the discretized version of Proposition 2.7, whose proof we shall omit.
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Proposition 2.8 There exists a strictly positive real constantβ2, indepen-
dent ofh > 0, such that

(2.39) inf
xh∈Fh

xh 6=0

sup
uh∈Hh

uh 6=0

|b̃(uh,xh)|
‖xh‖F ‖uh‖1,Ω

≥ β2 ∀h > 0 .

The last two propositions ensure the validity of the hypotheses (2.17)
and (2.18). The corresponding approximation property (2.19) of the spaces
Hh andL2

0h is classical. We refer to [18] for the proof of the following
convergence results

lim
h→0

inf
uh∈Hh

‖u − uh‖1,Ω = 0 ∀u ∈ H ,(2.40a)

lim
h→0

inf
ph∈L2

0h

‖p − ph‖0,Ω = 0 ∀ p ∈ L2
0(Ω) .(2.40b)

It must be noted that hypotheses (2.15) to (2.19) hold for the problem
(2.30). In what follows, we characterize the linear operatorT (defined by
(2.21)) corresponding to (2.30) and we prove its compactness. We define
the following continuous linear operator

T : H × F → H × F(2.41a)

T (v,y) = (u,x) ∀ (v,y) ∈ H × F ,(2.41b)

by

−2ν div e(u) + ∇p = −v in Ω ,(2.42a)

div u = 0 in Ω ,(2.42b)

u = 0 onΓ0 ,(2.42c)

u =
1√
k

ti onΓi, ∀i = 1, . . . , K ,(2.42d)

and

(2.42e) si =
−1√

k
(m γi(v) +

∫
Γi

σ(u, p)n ds) ∀i = 1, . . . , K ,

wherex = (p, s), y = (q, t) . It is interesting to note thatT is not a
selfadjoint, injective operator. In fact, the spectrum ofT admits non-real
eigenvalues and the fonctions inL2

0(Ω) are not used to define the operator,
i.e., we have

T (v,y) = T (v,y′) ∀ y = (q, t), y′ = (q′, t) ∈ F .
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Proposition 2.9 The operatorT defined above, corresponds to the one as-
sociated with problem (2.30). In addition, it is compact.

Proof. A direct computation shows that operatorT is effectively the one
associated to (2.30). It remains to prove the compactness ofT . Let
{(vn,yn)}n∈N be a sequence ofH × F such that

‖(vn,yn)‖H×F ≤ C yn = (q, tn), ∀n ≥ 1 ,

whereq ∈ L2(Ω) is any fixed element andC is a strictly positive constant
independent ofn. By using the compact imbedding, we deduce the existence
of v ∈ L2(Ω) andt ∈ C

2K such that

vn′ → v in L2(Ω) ,

yn′ → y = (q, t) in F .

Hence, if we take the subsequence{(un′ ,xn′)} ⊂ H×F solutions of (2.42)
with data{(vn′ ,yn′)}, we have

un′ → u in H ,(2.43a)

xn′ = (pn′ , sn′) → x = (p, s) in F ,(2.43b)

where(u,x) is the solution of (2.42) lying to(v,y). Moreover, we can
suppose

(2.43c) σ(un′ , pn′) → σ(u, p) in L2(Ω) × L2
0(Ω) ,

which implies

T (vn′ ,yn′) → T (v,y) in H × F ,

and complete the proof.ut
Since the hypotheses concerning the spectral approximation are assumed

to hold, we can apply Theorems 2.1 and 2.2 to our original problem (1.4).
Before that, we set out the following regularity proposition about the gen-
eralized eigenspaces{E`}∞

`=1, associated to problem (1.4). It will allow us
to estimate the rate of convergence.

Proposition 2.10 Letω` be the eigenvalues of problem(1.4) given by The-
orem 1.1 and let(u`, p`) be the corresponding eigenfunctions. We denote by
E` the generalized eigenspace related toω` . Then there existsη ∈ (0, 1],
which depends only on the re-entrant corners of the domain, such that
E` ⊂ H1+η(Ω)2 × Hη(Ω), ∀ ` ∈ N .
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Proof. For the sake of simplicity, we restrict our proof to the eigenfunctions,
because it is easy to verify that the general case have the same property. Given
` ∈ N there exists a lifting functionuR ∈ H1(Ω)2 (see [11], Chap. 1, Sect. 2,
Lemma 2.2 ) satisfying

div uR = 0 in Ω ,(2.44a)

uR = 0 onΓ0 ,(2.44b)

uR =
ω`

k + m ω2
`

(
∫
Γi

σ(u`, p`)n ds)onΓi, ∀i = 1, . . . , K .(2.44c)

Moreover, this function can be chosen inC∞(Ω̄)2 becauseuR can be con-
structed to be constant valued in a regular neighborhood of eachΓi, and then
a more precise result for smoother lifting functions holds (see [11], Chap. 1,
Sect. 3, Lemma 3.2). Therefore, the functionu0 ≡ u` + uR verifies the
following classical Stokes system

−2ν div e(u0) + ∇p` = f in Ω ,(2.45a)

div u0 = 0 in Ω ,(2.45b)

u0 = 0 onΓi, ∀i = 0, . . . , K ,(2.45c)

wheref ∈ L2(Ω)2 is given by

f = −ω` u` − ν ∆uR .

It is well known thatu0 ∈ H1+η(Ω)2 for someη ∈ (0, 1] (see for example
[12], Chap. 6, Sect. 2, Theorem 6.2.3) and we conclude that(u`, p`) ∈
H1+η(Ω)2 × Hη(Ω). ut
Proposition 2.11 The spectral approximation of problem(1.4) is conver-
gent, i.e.,

(2.46a) lim
h→0

|ω` − ω`,h| = 0 ∀ ` ∈ N .

Moreover, there exist two strictly positive constantsh0 and C such that,
∀h ≤ h0 we have

|ω` − ω̂`,h| ≤ C h2η ,(2.46b)

|ω` − ω`,h| ≤ C h
2η
α ,(2.46c)

δ̂(E`, E`,h) ≤ C hη ,(2.46d)

whereω̂`,h represents the arithmetic mean of the approximated eigenvalues
of ω` andη is given by Proposition 2.10.
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Proof. The convergence (2.46a) ensues immediately by virtue of Theorem
2.2. On the other hand, using the Lagrange elements (1.6), to discretize the
functional spaces, and a classical interpolation property between Sobolev
spaces of positive order (see for example [19], Sect. 4) we deduce that there
exist strictly positive constantsC andh0 such that∀h ≤ h0, ∀(u, p) ∈ E`

inf
(vh,qh)∈Hh×L2

0h

‖(u, p) − (vh, qh)‖H×L2
0(Ω)

≤ C hη ‖(u, p)‖H1+η(Ω)2×Hη(Ω) ,

where the existence of at least one numberη ∈ (0, 1] is given by Proposi-
tion 2.10. From this last inequality, we may straightforward to conclude the
desired estimates.ut

Remark that if, for all̀ ∈ N, the spacesE` of generalized eigenvectors
andE∗

` of generalized adjoint eigenvectors associated with the eigenvalue
ω` satisfy:E` ⊂ H2(Ω)2 × H1(Ω) ∩ H × L2

0(Ω) andE∗
` ⊂ H2(Ω)2 ×

H1(Ω) ∩ H × L2
0(Ω), then the following inequality holds

‖(u, p) − Πh(u, p)‖H×L2
0(Ω) ≤ C h ‖(u, p)‖H2(Ω)2×H1(Ω) ,

that isη = 1. Also, it is important to note that we have not proved optimality
of the inequalities (2.46b,c,d).

Several open question are left. The operatorT is not selfadjoint, nor
normal, however numerical experiments suggest that the ascentα of T is
one, which seems not obvious to prove. It is also interesting to study the
asymptotic behaviour of the spectrum as the physical parameterK (the
number of tubes in the structure) goes to infinity. This question is not trivial
because we do not have the spectral decomposition associated to the operator
T .
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aux d́erivées partielles. Masson, Paris
19. Scott, R. (1979): Applications of Banach space interpolation to finite element theory.

Functional analysis methods in numerical analysis. Lecture notes in Mathematics701,
pp. 298–318, Springer-Verlag, Berlin

Numerische Mathematik Electronic Edition
page 369 of Numer. Math. (1998) 79: 349–369


