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Summary. The aim of this work is to derive rate of convergence estimates
for the spectral approximation of a mathematical model which describes the
vibrations of a solid-fluid type structure. First, we summarize the main the-
oretical results and the discretization of this variational eigenvalue problem.
Then, we state some well known abstract theorems on spectral approxima-
tion and apply them to our specific problem, which allow us to obtain the
desired spectral convergence. By using classical regularity results, we are
able to establish estimates for the rate of convergence of the approximated
eigenvalues and for the gap between generalized eigenspaces.
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1 Mathematical knowledge of the eigenvalue problem

This section is devoted to the presentation of the mathematical model which
describes the physical problem and a summary of the most important results
of theoretical study. We also deduce its approximate problem. Firstly, the
physical hypotheses assumed for the system are established, and the peri-
odical mathematical model which this represents is set out. The differential
problem is then rigorously formulated and we summarize the theorem of
existence and location of eigenvalues and the theorem on the optimal bound
for the number of nonreal solutions. Finally, the problem is approximated
by the discretization of the Hilbert spaces involved. To this end, certain sim-
plifications are made in the geometry of the problem, which allow a more
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appropriate numerical approach. More details on the physical problem, de-
duction of the mathematical model, proofs of the theoretical results and
numerical analysis are available in the references given below.

1.1 The physical problem

The physical problem which interests us is the study of the vibrations of
a solid-fluid type structure. To be more exact, our purpose consists in de-
termining the vibratory eigenfrequencies and eigenmotions of a bundle of
metallic tubes immersed in an incompressible viscous fluid.

The fluid is assumed to be contained in a three-dimensional cavity with
rigid walls. It is assumed that they are parallel to each other, that they are
perfectly rigid (they do not allow deformations) and that they are elastically
mounted in such a way that they can only vibrate on a transverse plane,
perpendicular to the bundle. Furthermore, axial effects are not taken into
account, and it is assumed that the tubes are of infinite length. The problem
is then studied in two dimensions, restricting it to any of the sections of the
cavity which are perpendicular to the tubes. With respect to dynamics, it
is assumed that the solid-fluid system undergoes small vibrations around a
state of equilibrium.

1.2 Formulation of the eigenvalue problem

Let £25 be an open bounded subseR3t with a locally Lipschitz continuous
boundaryly (see [16] Chap. I) and I€t©; },—; x be a family of K open
subsets of2, which satisfy the following properties:

(1.1a) Vi=1,...,K, ©;isanon-empty
connected open subset @4 .

(1.1b) Vi=1,...,K, ©;C .

(1.1c) Vi£j, 6,N0;=6.

(1.1d) Each®; has a locally Lipschitz boundad; .

Using the above notation we defifizas follows
K
2=2\J6:.
=1

It should be observed that the boundarydhas(K + 1) connected com-
ponents which aréy, I, ..., k.
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Spectral approximation of an eigenvalue problem 351

The periodical mathematical model which describes the solid-fluid in-
teraction is a differential eigenvalue problem with non-local boundary con-
ditions on the velocity. In this model, the tube sections are represented by
the perforation§©; },—1 x, and the domaiti2 represents the area occupied
by the fluid. If the velocity of the fluid is denoted hy = u(z) and the
pressure by = p(z) then(u, p) satisfies:

(1.2a) —2vdive(u) + Vp+wu=10in {2,
(1.2b) divu=01in 2,
(1.2c)u=0o0nIiy,

(l.2d)uk+w2<“/a(u,p)nds onl;, Vi=1,...,K,
i m;w

k3

wherew € C is the frequencyy > 0 represents the kinematic viscosity

of the fluid, k; andm;, ¢ = 1,..., K, are strictly positive given constants
associated with this system. They represent the mass per length unit of tube
i and the stiffness constant of the spring system supportind'thebe (see

[17]), e(u) is the linear strain tensor, defined by

2e(u) = Vu+ (Vu)*,

and the termo(u, p) represents the stress tensor of the system given by
Stokes’s law

(1.3) o(u,p) =—pI+2ve(u).

To obtain the mixed variational formulation of problem (1.2), on which
we develop the numerical analysis, the following Sobolev spaces are intro-
duced

H={veH'(N)*|v=0o0nI,and
v is a constant vector ofy;, Vi = 1,..., K},

13(Q) = {g e IA(9) /qu—O}.
2

Clearly, H is a closed vector subspace Bt (£2)? and therefore a Hilbert
space with the induced norm.

Consideringd and L3({2) as complex Hilbert spaces, and multiplying
(1.2a) byvin H and (1.2b) byjin L3(£2) (¥, g denote the complex conjugate
of v, ¢), integrating by parts if2, and using (1.2c,d) and (1.3), it follows
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that if the triplet(w, u, p) is a solution of (1.2), thefw, u, p) is a solution
of the following variational eigenvalue problem:
(1.4a) Findw € C,
(1.4b) (w,p) € H xL§(£2), (u,p) # (0,0)
suchthat (v,q) € H x L3(12),

(1.4c) 2V/e(u) ce(V) dr — /pdivx_/dac

9] 2
K
_ ki + m;w? N
+w/u-vd:€+z <w> vi(a) - %(¥v) =0,
o) =1
(1.4d) /div ugde =0,
2

where, in (1.4¢)y;(u) denotes the trace ef on I;; it is a complex constant
vector. Conversely, it is straightforward to see thdt.ifu, p) is a solution
of (1.4), then(w, u, p) is a solution of (1.2) in a weak sense.

1.3 Main results

Here we deal with an existence and a location result for the eigenfrequencies
of problem (1.4) and with an optimal bound for the number of nonreal
solutions. Even though the physical problem behind (1.4) is truely two-
dimensional, from a mathematical viewpoint there is no conceptual difficulty
in higher dimensions. Nevertheless, in view of the numerical approximation
of (1.4), we shall state all our theoretical results in the two-dimensional case
and we shall therefore continue in the framework of Sect. 1.2.

The proof of the following result can be found in [8]:

Theorem 1.1 The spectrum dfl.4) consists of a countable infinite quantity

of complex numbersy, . .., wy, ..., which converge in modulus to infinity,
ie.,

1.5a im — =0.

( ) £—00 |WK|

Moreover, the eigenvalues have the following properties:
(i) Re(w;) <0 Vi>1.
(i) If Im(w;) # 0 then

(1.5Db) |wil? < k/m,

wherek /m denotes the quantit%gljzi%{kj/mj}.
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It is interesting to observe in (ii) that the spectrum of (1.4) can only
contain a finite quantity of eigenvalues whose imaginary part is different
from zero. It should be noted that Theorem 1.1 does not provide an estimate
of the number of imaginary (non-real) eigenvalues. This is provided by the
following result, the proof of which can be referred to in [9].

Theorem 1.2 The spectrum of1.4) admits a maximum of K non-real
eigenvalues.

1.4 Discretization of the problem

We begin by setting out some simplifications on the geometry of the domain.
The first geometrical hypothesis adopted consists in assumingtisat
bounded polygonal domain iR2. That is, I} (the exterior boundary) and
I;vi=1,..., K (the boundary of the holes) are polygonals. We associate
to (2 a regular family of triangulationgr, } .~ (in the sense of [6], Chap. 2,
Sect. 2.1), which satisfies the classical condition

0= U T Yh>0,
TeTy

whereh is defined as thenax{hr, T € 7}; hr being the diameter of
triangleT. We also assume, by simplicity and without loosing generality,
that the constants; andm;, i = 1,..., K, have a single value, sayand
m, respectively (the tubes are identical).

To approximate? andL2(2) by means of Lagrange type finite elements
on triangles, we introduce the finite dimensional spaces

(1.6a) Hy, = {v), € C°(2)% | vi|r € Po(T)™T € 1, vi, =00nTy
andvy, is a constant vector ofy;, Vi=1,...,K},
(1.6b)L5;, = {qn € C°(2) | gl € Pi(T)

VTeThand/qhdx:()},
(0]

where, in the above definitiorf3,(7"), n > 0, denotes the space of polyno-
mials of degree less than or equaktor he positive integeraN andM are
defined as the dimensions of spaéﬁgandLgh, respectively.

In what follows we shall assume the following hypotheses of non-de-
generacy and regularity concerning the cardinatity of the triangulations,
the integer’k (number of tubes) and the degrees of freedom associated with
the velocity and pressure:

(1.7a) 2N—-M >0 Vh >0,
(2.7b) 2|t + K <2N Vh>0.
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In these conditions, we approximate problem (1.4) by

(1.8a) Findw, € C

(1.8b) (wp,pn) € Hy, x L2, (. pp) # (0,0)
such that/(vy,, q,) € Hy, x L,

(1.80) a(un, va) + B(vm pn) + uf“hcwuh),fy(vh))

= —wp(d(up, vi) + me(y(un),v(vn))),
(1.8d) b(un, qn) = 0,

where, in (1.8¢,d)y(u) = (y1(u),...,vx(u)) € C2X and the sesquilinear
formsa(-,-), b(-,-), ¢(+,-), d(-, ) are defined by

(1.9a) a(u,v)= QV/e(u) ce(¥)dr Y(u,v) e HY(02)?,

2
(1.9b) b(u,p) = —/pdivudm Y(u,p) € H'(2) x L*(12),
n

S; - E,L V(S,t) S C2K % CQK,

] >

(1.9¢) (s, t) =
1

(1.9d) d(u,v)= de V(u,v) e L*(0)%.

<l

u .

As is shown in [7], under conditions (1.7), problem (1.8) is well posed.
Furthermore, several numerical experiments which were carried outin recent
years are consistent with all the abstract results of Sect. 1.3.

2 Rate of convergence estimates

Our aim in this section is to estimate the rate of convergence of the ap-
proximated eigenvalues and eigenvectors of problems (1.4). To this end, we
briefly present a well known general theoretical result on approximation of
eigenvalue problems in variational form and its application to the particular
case of a saddlepoint form eigenvalue problem. We will use some notations
of [15], where a general discussion of these theorems can be found. We
also refer to [3] for a more complete approach on numerical approxima-
tion of eigenvalue problems. Then, we prove that problem (1.4) and that the
discretized problem (1.8) can be put in the standard form of a saddlepoint
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eigenvalue problem. We show that these equivalent formulations satisfy the
hypotheses which allow the use of the results summarized previously, and
the desired estimations are thereby obtained.

2.1 A general result on spectral approximation

Firstly, we expound the fundamental theorem on error estimates of varia-
tionally posed eigenvalue problems. Lt and H- be two complex Hilbert
spaces provided with nornfls ||; and|| - ||2, respectively. Letd and B be

two continuous sesquilinear forms definedi@n x Hs. We are interested

in studying the spectral approximation of

(2.1a) Find(A\,U) € C x Hy, U # 0 such that
(2.1b) AU, V)= AB(U,V) VV € H,.

In order to approximate problem (2.1), we consider the following prop-
erties onA(-, -)

2.2 inf sup |[A(U, V)| >0,
@2 ot sup AUV
IUI=1 ||v|,=1
(2.3) sup |A(U, V)| >0 VYV €Hy, V#0,
UeH;
1Ull=1

and the linear operatdr defined by

(2.4a) T:Hy — H;
(2.4b) TU=W YUE€H,,

whereW is the unique solution of the following problem

(2.5a) FindW € H; such that
(2.5b) AW, V)=B(U,V) VYV € Hs.

Itis clear that properties (2.2) and (2.3) imply tifais well defined. Also,
it is easy to see that {f\, U) is a solution of (2.1), thereford /A, U) is an
eigenpair ofl’, and reciprocally.
Itis worthwhile to note that the existence of solutionsto (2.1), eigenvalues
of the operatoff, is not sure from the hypotheses stated above. Henceforth,
for the approximation, we will assume their existence. Let us introduce
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finite dimensional subspacés,, C H; andHy, C Hs, h > 0, such that
dim Hy;, = dim H,y,, then we can approximate problem (2.1) as follows

(2.6a) Find (A, Up,) € C x Hyp , Uy # 0 such that
(2.6b) A(Un, Vi) = Ay B(Up, Vi) VVi, € Hoy,

and we consider the corresponding inf-sup condition

(2.7) inf sup |A(Up, V)| > «a,
Un€Hin Vi,cH,y,
[URI=1 ||V}, ||l2=1

whereq is a strictly positive real constant independeni.of
With respect to the discretization of the spdtg we state the following
property of approximation

(2.8) im inf ||U-Uly =0 VUE€H,.
h—0 Up€H1p

As in the continuous case, by using (2.7) and the fact thatiflim=
dim Hyj,, we can define the family of linear operators

(2.9a) Ty : H — Hy
(29b) WU =W, VUe€H;,

wherelV}, is given like the unique solution of the following problem

(2.10a) Find W}, € Hy such that
(210b) A(Wh, Vh) = B([]7 Vh) vV, € Hyp, .

It is clear that if(\,, Uy) is a solution of (2.6), theiil/\y, Uy,) is an
eigenpair off},. Conversely, if un, Up,) € C x H; is an eigenpair of ;, and
if up, # 0, thenUy, belongs toH,, and(1/uy, Uy) is a solution of (2.6).

Itis well known that properties (2.7) and (2.8) imply that

lim ||HhU—UHH1 =0 VYUeH,
h—0

wherell, : Hy — Hy, C H; is the usual projector operator defined by
A(U*HhU,Vh) =0 VYUe€eH, VYV, e Hy,.

Becausel), = I1, T, it is well known that ifT" is assumed to be compact,
then

lim IT — Thllz(ey,m) = O-
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It follows that if A is an eigenvalue of (2.1) of algebraic multiplicity > 0,
thus ash tends to zero, exactly. eigenvalues of (2.6), denoteg,, . . ., Amp
(including their algebraic multiplicity), converge fo(see [13]). The next
result, whose proof can be found in [1], [10] or [14], provides us the desired
estimates.

In the following, \;, will denote the arithmetic mean of the approximated
eigenvalued \;;, }7 ;; the quantities;, ande;, are defined by

2.11a e, = Su inf ||U—-V|1,

( ) h Ueg it | 1
IU]l1=1

2.11b € = su inf ||U—-V]|2,

(2.11b) = supinf U=V
U]l2=1

whereE (and E* respectively) is the kernel d@fl /A — T)* ((1/X — T,)®
respectively; wherd’, is the formal adjoint ofl” with respect toA(-, ) );
the real constant is the ascent ofl/\ — T'); Ej, denotes the direct sum
of the generalized eigenspaces correspondingfoVj = 1,...,m; and

A~

)(E, Ey,) represents the gap between the subspacasd £}, .

Theorem 2.1 Assume that2.2), (2.3), (2.7) and (2.8) hold true. Also,
suppose that the operat@r, defined by2.4), is compact and that~! is an
eigenvalue of”” with algebraic multiplicitym. Then there exist two strictly
positive real constant§’ and kg, such that for allh € ]0, ho[ there exist

exactlym eigenvalues\;;, A, ;. ..., A, of T, converging to\~* and
(2.12a) A=Al < Cepel,

(2.12b) A= Mn| < Clenel)s Vi=1,...,m,

(2.12¢) O(E,Ep) <Cep.

Now we turn to the eigenvalue problems of saddlepoint form, that is,
problems of the following type

(2.13a) Find(\,u,p) € Cx H x F, (u,p) # (0,0) such that

(2.13b) a(u,v) + b(v,p) = Ar(u,v) VveH,
(2.13c) b(u,q) = As(p,q) VYqeF,

whereH andF are two complex Hilbert spaces provide with noring| i
and|| - ||, respectivelyp : HxH - C,b: HxF - C,r: HxH - C
ands : F' x F' — C are continuous sesquilinear forms. If we have the finite
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dimensional spacdg, C H andF;,, C F',sowe considerthe approximation
of (2.13)

(2.14a) Find (M\p,up,pp) € Cx Hy, x Fy,

(up, pr) # (0,0) such that
(2.24b)  a(up,vp) + b(vp, pr) = Apr(up,vy) Vo, € Hy,
(2.14c)  b(un,qn) = An8(phsqn) Van € Fh.

In the sequel, we show that Theorem 2.1 can be applied to estimate the
rate of spectral convergence of the approximated problem (2.14). Below, we
state some properties which allow us to use this result. To this end, let us
consider the following coercivity hypothesis aft, -)

(2.15a) Rea(u,u) > a1 ||lul|?; Yu € Hy,

whereq; is a strictly positive constant and the spdégis defined by
(2.15b) Hy ={ve H|bv,q) =0 Vqge F},

and its discretized version

(2.16a) Rea(up,up) > oo ||up|% Yun € Hop,

whereqs is a strictly positive constant independentofThe spacddyy, is
defined by

(2.16b) Hy, = {vh € Hy, | b(vh,qh) =0 Vg€ Fh} .

Respect to the sesquilinear foir, -), we take into account the condi-
tions

: b(u,
(2.17) inf sup UGS > 1 >0,
peF wep |lpllF llullg
p#0 w0
and
. b
(2.18) it sup WPl g g
Ph€Fh w,ery, |PnllF llunlla
Pr#0 4y £0

whereg, is independent of.
Also, we state the following property of approximation
(2.19)

lim inf ,D) — , —0 VY(up) eHxEF.
h—0 (un,pn)EHp x Fi |(w, p) = (wn, )| ExF (u, p)
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If we identify
(2.20a) Hi =Hy,=HXF,
(2.20b) U= (u,p),V=(v,q),
(2.20c) A(U, V) = a(u,v) + b(v, p) + b(u, ),
(220d) B(U7 V) = (U, /U) + 8(])7 Q) )
and the discretized spaces
(2.20e) Hyp = Hop = Hp, X Fy,

we can easily see that (2.13) and (2.14) respectively, can be formulated in
the variational form (2.1) and (2.6), respectively. It is well known (see [2]
or [4]) that conditions (2.15) to (2.19) imply, with the identification (2.20),
the validity of (2.2),(2.3),(2.7) and (2.8). It follows that Theorem 2.1 can be
applied. To this end, we define the continuous linear operator

(2.21a) T-HxF - HxF

(2.21b) T(f,9)=(uwp) V(fg)eHXF,
by

(2.22a) a(u,v) + b(v,p) = r(f,v) VveH,
(2.22b) b(u,q) = s(g.q) Vq€eF,

and we can conclude that(ik, u, p) is a solution of (2.13), thefu, p) is an
eigenvector ofl" corresponding to the eigenvalue®. In a same way we
define the continuous linear operators

(2.23a) Ty :H X F — Hp, x F, CH X F
(223b) Th (f7g) = (uh7ph) v (f7 g) € H x Fa
by

(2.243) a(up,vn) +b(vn,pr) = r(f,vn) Yup € Hp,
(2.24b) b(un,qn) = s(g,qn) Van € Fi,

and if (A, up, pr) is a solution of (2.14), thefwy, py,) is an eigenvector of
T}, corresponding to the eigenvalugl. A direct consequence of Theorem
2.1, using the identification (2.18), is given in (see [15]):
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Theorem 2.2 Assume that hypothes@s15) to (2.19) hold. In addition, we
assume thal is compact and thax—! is an eigenvalue df’ with algebraic
multiplicity m. Then there exist two positive constattand i such that
if h €]0, hol, then there exist exactly: eigenvalues\; ;, A, 1, ..., A},

(counted according to algebraic multiplicity) @f, converging toA~! and

satisfiying

(2.25a) IX—Ap| < Cepel,
(2.25b) A= Nn| < Clenel)a Vi=1,....m,

whereep,e; are defined as above,being the ascent ¢A ' —T'). Moreover,
for the gap between generalized eigenspaces we have

(2.25¢) S(E,Ep) < Cep.

Remark that hypotheses neither in Theorem 2.1, nor in Theorem 2.2, are
enough to provide actually the existence of at least one non-zero eigenvalue
of operator]” and then the assumption of existence is needed.

2.2 Application of Theorem 2.2 to problem (1.4)

Let us henceforth establish the desired rate of convergence estimate. We
begin by showing that problem (1.4) and (1.8) respectively, can be putin the
standard form of a saddlepoint eigenvalue problem. Then, we will prove that
all the hypotheses of Theorem 2.2 are satisfied and that the corresponding
operator]’ is compact. This will allow us to apply Theorem 2.2.

Let (w,u,p) € C x H x L3(£2) be a solution of problem (1.4), where
here the space# and L3({2) are defined in Sect. 1.2. Letc C2X be
defined by

(2.26) s = ff y(u),
wherey(u) = (v1(u),...,vx(u)) € C?K is the vector trace offij, i =
1,..., K. Itis straightforward to prove thdt, u, p, s) is a solution of the
following variational eigenvalue problem
(2.27a) Find (w,u,p,s) € C x H x L3(£2) x C*,
(u,p,s) # (0,0,0) such that

(2.27b) a(u,v) + b(v,p) + VE c(s,v(v))

= —w(d(u,v) + me(y(u),y(v))) VveH,
(2.27c) blu,q) =0 Vg€ Li(92),
(2.27d) VE e(y(u),t) =we(s,t) Vte CH.
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We use the notation for the sesquilinear forms defined in (1.9). Conversely,
it is direct to see that ifw, u, p, s) is a solution of (2.27) the(w, u, p) is

a solution of (1.4) and we have (2.26). Thus problems (1.4) and (2.27) are
equivalent. In order to obtain the rate of spectral convergence, this formu-
lation presents an improvement on the previous one, since problem (2.27)
can be posed like an eigenvalue problem of saddlepoint form. In fact, if we

consider the space

(2.28a) F = L}(0) x C?K

provided with the induced norm, that is

1
(2.28b) Iyllir = (lgl5.c + 62 Yy =(at)e F,
and ifB(-, -) denotes the sesquilinear form given by

(2.29a) b:HxF—C
(2.29b) b(v,y) =b(v,q) + VEc(y(v),t)
Vv € H, Vy = (¢q,t) € F,

then we can rewrite problem (2.27) equivalently as follows
(2.30a) Find(w,u,x) € Cx H x F,(u,x) # (0,0) such that

(2.30b) a(u,v)+b(v,x) = wr(u,v) VYveH,
(2.30c) b(u,y) = ws(x,y) VyeF,

where the sesquilinear forms-, -) ands(-, -) are defined by

r(u,v) = —d(u,v) —mec(y(u),v(v)) VuveH,
s(x,y) =c(s,t) Vx=(p,s),y=(¢,t) € F.

Now, we shall prove that problem (2.30) satisfies (2.15) to (2.19). Let
us begin by characterizing the subspdég defined in (2.15b), when we
replace the sesquilinear forbfy, -) by b(-, -).

Lemma 2.3 The spaceH is given by
Hy ={ve H}(2)?|dvv=0in22}.
Its proof is left to the reader. We deduce

Corollary 2.4 The sesquilinear form(-, -) is Hy-elliptic.
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Proof. Itis straigtforward by virtue of Poincarand Korn’s firstinequalities.
0

The discretized coercivity condition af-, -) can be proved in the same
way. In fact, taking the finite dimensional spadé@andLgh, as defined by
(1.6) in Sect. 1.4, and approximating the spatky

F, = L3, x C?K |

we deduce thakly, is nothing but

Hoh:{VhGHhﬁH&(Q)2’/qhdiVVhd:L’ =0 thEL%h},
2

from which we can directly establish the uniform coercivity condition of
a(-,-) on Hoy. Then (2.15) and (2.16) hold.

Let us next prove the inf-sup condition o, -). To this effect, we state
the two previous results that we will use after.

Lemma 2.5 There exists a strictly positive constamt such that for all
p € LE(02) there is a function; € H}(2)? satisfying
(2.31a) |ul]l1.o = 1and|ul]1o =1,
(2.31b) Reb(ui,p) > m [|p

0,2

whereu} andu are the real and imaginary parts af;, respectively.

Proof. If we take the real part in the definition of the sesquilinear form
b(-,-), we obtain

Reb(v,p) = —/pr divv' dx
0

—/pidivvi dr Vv e H&(Q)Q, Vp € L%(Q)-
9]

By virtue of the classical inf-sup condition for real-valued functions in the
spacesH} (£2)? and L3(£2) (see [11], Chap. 1, Sect. 5.1 or [5], Chap. 4,
Sect. 2), we deduce the existencepf> 0 such that for all real-valued func-
tionsp®,p! € L3(£2) there exist two real-valued vector functions vs €
HE(92)? satisfying

(2.32a) — /pr divvidr > ||p'fo,0 (|Villi,e.
2

(2.32b) — /pi divvedr >m ||pi| 0,2 [vall1,0-
2

Numerische Mathematik Electronic Edition
page 362 of Numer. Math. (1998) 79: 349—-369



Spectral approximation of an eigenvalue problem 363

Then, if we define
r Vi V2

u =
P vilhe

and u} = ,
[vall1,0

we see thatu; = u + iul, fulfils (2.31a) and the inequality

Reb(ur,p) > mpllo,e,

which proves (2.31b) and completes the prodfl

Lemma 2.6 There exists a strictly positive constamt such that for all
s € C*X there is a functiony € H'(2)? satisfying

(2.33a) divug =0 and |lusl1o =1,
1

(2.33b) e(1(us),8) > — s
2

Proof. Since

/si~nds =0 Vi=1,..., K,
I;
we can conclude that there exists a unique paiy) € H'(2)? x L3(12),

solution of the following system of equations (see [11], Chap. 1, Sect. 5.1,
Theorem 5.1)

(2.34a) —2vdive(v)+Vg=0 in{2,
(2.34b) divv=0 in{2,

(2.34c) v=0 only,

(2.34d) v=s;, onl; Vi=1,..., K.

Moreover, we have
IvllLe + llalloe < nls|,
wheren is a constant independentsfv andq. If we define
v

vihe”

uz

it is clear thatu,, satisfies (2.33a) and
1

1vilie

c(y(uz),s) = c(s,8) = m2s|,

wherens = 1/n. This proves (2.33b). O
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Once the previous Lemmata have been established, we are in a position
to set out the inf-sup condition ar-, -).

Proposition 2.7 There exists a strictly positive real constafitsuch that

, b

(2.35) inf sup [b(w, )| > (3.
xeF ueH ‘X”FHUHLQ
x#0 u#0

Proof. We will show that there exist8; > 0 such that

Reb

(2.36) sup 2L o g le YxeF,

wer [l

u#0
which clearly implies (2.35).

Letx = (p,s) be afixed element of F. Let;, us be the functions given

by Lemma 2.5 and Lemma 2.6 associated witlnds, respectively. If we
defineu = u; + uy, then the paifu, x) satisfies

b(u,x) = b(ur,p) + Vk c(v(uz),s),
and this yields
(2.37) Reb(u,x) > 8|x||F,

whereg denotes the quantity mfm;, vk 72} > 0 andu satisfies||u|; o <
3.
Let us consider the identity

Reb 1 -
(2.38) supm =- sup Reb(u,x) VxeF.
uceH ||uH1,Q 3 ueH
u#0 lull1,e<3

Then, combining (2.37) and (2.38), we infer that

Reb 1
supie (u, x) > - f[lx||lr VxeF,
werr |lufle T3
u#0

that is (2.36), with3; = /3/3, which completes the proof.0

It is worth remarking that all the results used to prove the inf-sup con-
dition of b(-, -) on the spacé] x F can also be established for the discrete
eigenvalue problems, with all the constants involved independent of the pa-
rameterh > 0. In fact, one can show that (2.32) is still true in the discrete
version when we choose the spaésandL? , as above. Below, we state
the discretized version of Proposition 2.7, whose proof we shall omit.
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Proposition 2.8 There exists a strictly positive real constat indepen-
dent ofh > 0, such that

| by,
(2.39) inf sup M >3y, Yh>0.
xneF, unel, |XnllF [[unll1,0
xp 70 up#0

The last two propositions ensure the validity of the hypotheses (2.17)
and (2.18). The corresponding approximation property (2.19) of the spaces
H;, and Lgh is classical. We refer to [18] for the proof of the following
convergence results

2.40a lim inf — = H

( ) hl—>0 uhIGHh Hu uhHLQ 0 Vuce s

(2.40b) lim inf |lp—palloe=0 VpeL(12).
h—0 2h

J23S Oh

It must be noted that hypotheses (2.15) to (2.19) hold for the problem
(2.30). In what follows, we characterize the linear operdtqdefined by
(2.21)) corresponding to (2.30) and we prove its compactness. We define
the following continuous linear operator

(2.41a) T:-HxF—-HxF
(2.41b) T(v,y)=(u,x) V(v,y) € HXF,
by
(2.42a) —2vdive(u)+Vp=—v in{2,
(2.42b) divu=0 in{2,
(2.42c) u=0 onlp,

1
2.42d u=—=¢t;, onl; Vi=1,..., K,
( ) 7k
and

-1

2.42e si = — (m~y;(v Jr/o*u7 nds) Vi=1,..., K,
(2.42¢) \/E( (V) (u,p)nds)

I;

wherex = (p,s), y = (gq,t). It is interesting to note thdl’ is not a
selfadjoint, injective operator. In fact, the spectrumiofidmits non-real
eigenvalues and the fonctions i (£2) are not used to define the operator,
i.e., we have

T(v,y)=T(v,y') Vy=(qt),y =(¢,t)cF.
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Proposition 2.9 The operatofl” defined above, corresponds to the one as-
sociated with problem (2.30). In addition, it is compact.

Proof. A direct computation shows that operafBris effectively the one
associated to (2.30). It remains to prove the compactness lodt
{(Vn,¥n) Inen be a sequence df x F such that

H(an}’n)HHXF <C Yn = (q,tn), Vn>1,

whereq € L?(2) is any fixed element an@ is a strictly positive constant
independent of.. By using the compactimbedding, we deduce the existence
of v € L?(2) andt € C?X such that

V! — V in LQ(Q) ,

Yo =y =1(gt) inF.
Hence, if we take the subsequer¢a,,/, x,/)} C H x F solutions of (2.42)
with data{(v,, y./)}, we have

(2.43a) u,y —u inH,
(2.43b) Xp = (P, Sp) = x = (p,s) InF,

where (u, x) is the solution of (2.42) lying tdv,y). Moreover, we can
suppose

(2.43c¢) (W, po) — o(u,p) in L2(02) x L3(2),
which implies

TV, yn) = T(v,y) in HxF,
and complete the proof.O

Since the hypotheses concerning the spectral approximation are assumed
to hold, we can apply Theorems 2.1 and 2.2 to our original problem (1.4).
Before that, we set out the following regularity proposition about the gen-
eralized eigenspacgd’, }7° |, associated to problem (1.4). It will allow us
to estimate the rate of convergence.

Proposition 2.10 Letw, be the eigenvalues of problerm4) given by The-
orem 1.1 and letuy, p,) be the corresponding eigenfunctions. We denote by
E, the generalized eigenspace related4o Then there exists € (0, 1],
which depends only on the re-entrant corners of the domain, such that
E, Cc H™(02)2 x H"(£2), V¢ € N.
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Proof. For the sake of simplicity, we restrict our proof to the eigenfunctions,
becauseitis easy to verify that the general case have the same property. Given
¢ € Nthere exists alifting functiong € H'(£2)? (see[11], Chap. 1, Sect. 2,
Lemma 2.2 ) satisfying

(2.44a) divug =0 in {2,
(2.44b) u =0 only,

(2.44c) uR = %(/O‘(Ug,pg)nds)onpi, Vi=1,...,K.
k+mw;j
r;

Moreover, this function can be chosen(fi°(£2)? becauseir can be con-
structed to be constant valued in a regular neighborhood ofi€aahd then
amore precise result for smoother lifting functions holds (see [11], Chap. 1,
Sect. 3, Lemma 3.2). Therefore, the functiaf = u, + ug verifies the
following classical Stokes system

(2.45a) —2vdive(ug) + Vp,=£f in (2,
(2.45b) divup =0 in{2,
(2.45¢) uy=0 onl; Vi=0,...,K,

wheref € L2(§2)?% is given by
f=—-wuwy —vAug.

Itis well known thatug € H'*"(£2)? for somen € (0, 1] (see for example
[12], Chap. 6, Sect. 2, Theorem 6.2.3) and we conclude (thatp,) <
H1(02)2 x H'(2). O

Proposition 2.11 The spectral approximation of problefh.4) is conver-
gent, i.e.,

(2.46a) lim |wy—wep| =0 VLeN.
h—0

Moreover, there exist two strictly positive constahtsand C such that,
Vv h < hg we have

(2.46b) we — e p| < CHM,
(2.46c¢) |we — wen| < Che )
(2.46d) 5(Eg, Epp) < Ch",

wherew, ;, represents the arithmetic mean of the approximated eigenvalues
of wy andn is given by Proposition 2.10.
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Proof. The convergence (2.46a) ensues immediately by virtue of Theorem
2.2. On the other hand, using the Lagrange elements (1.6), to discretize the
functional spaces, and a classical interpolation property between Sobolev
spaces of positive order (see for example [19], Sect. 4) we deduce that there
exist strictly positive constants andh, such thatvh < hg, V(u,p) € Ey

|nf ]_]_’ — (Vv R
o 0) = (e

< CQ|[(a,p)|| grren(2y2xmn(2)

where the existence of at least one number (0, 1] is given by Proposi-
tion 2.10. From this last inequality, we may straightforward to conclude the
desired estimates.O

Remark that if, for all € N, the space#/, of generalized eigenvectors
and E; of generalized adjoint eigenvectors associated with the eigenvalue
wy satisfy: By C H*(2)? x HY(2) N H x L3(2) andE; C H*(2)? x
HY(2)Nn H x L%($2), then the following inequality holds

1w, p) = In(u,p)ll w22y < Chll(a,p)llr2)2xm () ;

thatisn = 1. Also, itis important to note that we have not proved optimality
of the inequalities (2.46b,c,d).

Several open question are left. The operatois not selfadjoint, nor
normal, however numerical experiments suggest that the ascehi’ is
one, which seems not obvious to prove. It is also interesting to study the
asymptotic behaviour of the spectrum as the physical paraniétéhe
number of tubes in the structure) goes to infinity. This question is not trivial
because we do not have the spectral decomposition associated to the operator
T.
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