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An unbiased strategy to search for the global and local mini-

mal energy structures of free standing nanoclusters is pre-

sented. Our objectives are twofold: to find a diverse set of low

lying local minima, as well as the global minimum. To do so,

we use massively the fast inertial relaxation engine algorithm

as an efficient local minimizer. This procedure turns out to be

quite efficient to reach the global minimum, and also most of

the local minima. We test the method with the Lennard–Jones

(LJ) potential, for which an abundant literature does exist, and

obtain novel results, which include a new local minimum for

LJ13, 10 new local minima for LJ14, and thousands of new local

minima for 15 � N � 65. Insights on how to choose the initial

configurations, analyzing the effectiveness of the method in

reaching low-energy structures, including the global minimum,

are developed as a function of the number of atoms of the

cluster. Also, a novel characterization of the potential energy

surface, analyzing properties of the local minima basins, is pro-

vided. The procedure constitutes a promising tool to generate

a diverse set of cluster conformations, both two- and three-

dimensional, that can be used as an input for refinement by

means of ab initio methods. VC 2013 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23419

Introduction

The first and crucial step in the description and understanding

of nanostructures, like clusters, is the precise determination of

the geometrical structure that their constituent atoms do

adopt. This was lucidly formulated by Goedecker et al.[1]:

“Determining the structure of a molecule, cluster, or crystal is

one of the most fundamental and important tasks in solid

state physics and chemistry. Practically, all physical properties

depend on its structure.” During the last years, a variety of

techniques such as Monte Carlo,[2,3] Big-Bang,[4] genetic algo-

rithm (GA),[5–7] conformational space annealing,[8–10] Basin

Hopping (BH),[11] among others, have been used to determine

minimum energy cluster configurations, with varying degree

of success. Many variations and alternative procedures have

been put forward, like the one by Goedecker[12] who focuses

on obtaining the global minimum by means of an interesting

and ingenious method, which reduces repeated visits to the

same attraction basin by “flooding” it. Goedecker also coupled

his methodology with electronic structure codes.

Our objective is twofold: to develop a method which allows

to obtain a large amount (presumably a majority) of the local

minima, and which also has the capability of efficiently finding

the global minimum. Most procedures focus their interest on

the global minimum, while we try to generate a set of minima

which includes both the global minimum, and a large diversity

of local minima. In this context, we develop a simple strategy,

based on the fast inertial relaxation engine (FIRE) minimizer, to

satisfy both objectives. FIRE is a novel and efficient algorithm

put forward by Bitzek et al.,[13] who describe it as a method

based on conventional molecular dynamics, with additional

velocity modifications and adaptive time steps. FIRE is a simple

local atomic structure optimization algorithm, which is quite

efficient and has been widely used in several closely related

contexts, and by various authors. Most recently by

Machado,[14] the Goedecker group,[15,16] and by Ishii et al.,[17]

who in addition provide a critical discussion on the procedure

and extensive references. However, while our implementation

has much in common with the work just mentioned, and with

older papers that can be found in the literature, it also has sig-

nificant differences which will be detailed below.

We focus our interest on the Lennard–Jones (LJ) potential,

for which there is a wide literature and many well-established

results. However, the procedure is by no means restricted to

LJ-type interactions between atoms. In fact, it seems to be

transferable, and to this effect we will also provide results

obtained, by means of our strategy, for another well-

established potential: the one due to Morse.[18,19] Moreover,

the procedure is not restricted to classical potentials, to which

we limit ourselves for the time being, but we have obtained

some preliminary results for small clusters using it in combina-

tion with ab initio calculations.

This article is organized as follows: in section Methodology,

we describe the computational methods implemented in our

study. In section Results, we report on specific issues such as

the global minima, number of local minima, volumetric and

planar minima, minima distributions, and the size of the
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attraction basins. And finally, in section Discussion and Conclu-

sion, we draw conclusions and close this article.

Methodology

The purpose of the strategy we develop here is to obtain a

set of local minima, as complete as possible, which is expected

to include the global minimum. We use the words “global

minimum” as the established one, but do not exclude the pos-

sibility that a lower one can eventually be found. The proce-

dure also allows to determine how often a particular local

minimum is reached, which yields information on the relative

basin size of that minimum of the potential energy surface

(PES). Even though it is not possible to be certain that all the

minima of a PES have been found, the use of a variant of the

rarefaction plot[20–23] provides an estimate on how many seeds

should be minimized to obtain, if not all, at least most of the

minima for a particular PES. The rarefaction curve is a resource

taken from ecology, and basically is a graph of the number of

hits (different local minima) as a function of the number of

seeds that are examined, which in addition is useful to charac-

terize diversity, and on which we will elaborate later on.

The FIRE method

We have chosen to use the FIRE algorithm to obtain the mini-

mal energy structures, instead of conjugate gradient or L-

BFGS,[24] because it is strictly local, it does not get stuck in

transition states, and is a very efficient procedure. The FIRE

algorithm is described by Bitzek et al.[13] as a fast optimization

method, based on conventional molecular dynamics, with

additional velocity modifications and adaptive time steps Dt.

However, the experience we developed performing the calcu-

lations taught us that special care has to be given to the initial

Dt value, because it strongly influences the number of force

evaluations that are required, and therefore the overall com-

puting speed of the procedure. The major difficulty one faces

with a method, as the one just mentioned, is the determina-

tion of the number of seed configurations that are necessary

to be “reasonably” sure that one does obtain an overwhelming

majority of all the minima.

In the context of diversity, our strategy considers two con-

figurations as the same if their energies differ by less than a

critical value. It is worth mentioning that one might expect to

find two structures that have the same energy, but are geo-

metrically different. However, we verified that for N � 16 this

does not occur. To test this assertion, we also filtered the full-

configuration set using the similarity criterion put forward by

Grigoryan and Springborg,[25] which can be defined as follows:

two N atom clusters, A and B, are similar if

DA;B5
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Here, d
ðAÞ
i is the sorted list of NðN21Þ=2 interatomic pair dis-

tances of cluster A (and similarly for B), and Dc is a critical

value. This measure has the significant advantage of being

translationally and rotationally invariant, and furthermore it is

fast and simple to evaluate. In all the calculations, we also

computed the energy ordering, and we verified that both the

similarity criterion of eq. (1), and the energy ordering, yield

identical sets of diverse configurations for N � 16. However,

due to the enormous amount of local minima that are found

for large N clusters, we cannot establish if this property is gen-

eral or limited to rather small N values.

The problem of the precise characterization of the structural

diversity has yet to find a complete solution. However, it is not

the purpose of this article to settle this issue. The distance we

use, as given by eq. (1), works adequately for the small clusters

we deal with here, but a lucid discussion of this matter, and

the many intricacies it has for larger clusters, can be found in

a publication by Oganov and Valle.[26]

The LJ potential

We now illustrate our strategy, and apply it to the problem of

an N-atom clusters. The main interaction potential we adopt is

the LJ pair potential, which for several decades has been used

as a benchmark for cluster energy minimization methods, and

which even today constitutes a challenging and active area of

research.[27–29]

The LJ pair potential can be defined as follows:

ELJN
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where N is number of atoms in the cluster, rij is the distance

between atoms i and j, e is the potential well depth, and r
determines the equilibrium pair separation. The LJ potential

has been extensively investigated in the context of cluster

configurations. The LJ global minima, and the number of local

minima up to N 5 14, can be found in the Cambridge Cluster

Database.[30] In spite of these efforts, our strategy has shown

its power by allowing us to find several unreported minima:

one new local minimum for LJ13, 10 new local minima for LJ14,

and thousands of local minima for LJN, with 15 � N � 65.

Our procedure, to obtain the energy minima for an N atom

cluster, and which is somewhat different from other FIRE appli-

cations, is setup by generating at random a set of 3N coordi-

nates, in a cubic box of volume a3, which we denominate the

“initial configuration” or “seed”. Each one of these seeds is

allowed to evolve by means of the modified dynamics known

as the FIRE[13] until the largest absolute value of the force, act-

ing on every single atom, is less than a predetermined

required accuracy; in our case, 1029ðe=rÞ. As pointed out by

Bitzek et al.[13] once the required accuracy is reached, the over-

whelming majority of the times it does correspond to a mini-

mum. In fact, by minimization of 6:72 3 108 seeds for LJ14, we

found only one transition state (saddle point of the PES),

which was reached only twice, while all the remaining hun-

dreds of million seeds evolved toward one of the 4206 differ-

ent local minima. Two configurations are defined as different if

their energies differ by less than 1027e or, what turns out to

be equivalent for N � 16, that the parameter DA;B defined by
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eq. (1) satisfies DA;B < Dc51024r. For N � 17, we obtained the

established global minimum several times, and we checked

that all of them have the same energy and structure.

Results

Seeds and the size of the initial box

Two issues that have to be tackled in an essentially unbiased

search of global and local minima are: (i) the seed, or initial

cluster configuration; and, (ii) the size and shape of the vol-

ume in which the dynamics are started. We choose to gener-

ate the seeds by assigning randomly spatial coordinates to the

N atoms that will eventually form a cluster in a cubic box. To

determine the size of the box that is most convenient for our

purposes, we studied two features: (a) the number of force

evaluations needed to obtain a minimum; and, (b) the diver-

sity, understood as the number of different local minima that

are generated by a certain number of seeds, for different clus-

ter sizes (N values).

Figure 1 displays the average number of force evaluations

required to minimize each one of the 105 seeds we investi-

gated, as a function of the edge length a of the initial box, for

different values of the number N of cluster atoms. It is noticed

that for 13 � N � 65the number of force evaluations varies

smoothly as a function of the edge length. For N < 28, the

plots show little variation in the range 1 < a=r < 3, with a

shallow minimum around 2:5a=r for N 5 13 which becomes

less profound, and shifts toward larger a=r values, as N

increases. On the other hand, a second minimum appears

around a=r � 4, for N � 33, and for which we have not been

able to pinpoint a precise origin.

As reported by Marques et al.[31] for the LJ38 case, who used

a big-bang method, when the volume of the box is increased

the diversity that is generated increases as well, as illustrated

in Figure 2. The fact that the plot for N 5 38 is almost flat is

an indication that the number of minima that we explore is

tiny compared to the total number of local minima. Later on

we discuss the variation of the number of minima as a func-

tion of cluster size.

Although we focus our attention on the LJ potential, our

results seem to hold for other potentials as well. In particular, we

tested our procedure for the Morse potential,[18,19] which by

means of a single parameter q determines the range of the

interaction, and thus adds flexibility to the model. It is given by

V Rð Þ5e
X

i<j

exp q 12
Rij

r

� �� �
exp q 12

Rij

r

� �� �
22

� 	
; (3)

where R is a generic coordinate for all interatomic distances

fRijg, and r is the interatomic distance for which the pair

potential reaches its minimum energy e (i.e., the equilibrium

value). The average number of force evaluations necessary to

find a minimum of the Morse pair potential, as a function of

the edge length of the box in which the simulations are per-

formed, is illustrated in Figure 3.

Number of local minima

A hard problem indeed is to estimate the total number of

local minima. To make some progress in that direction, we

borrow from ecology the concept of rarefaction. Basically, the

rarefaction curve is a plot of the number of different objects

found in the process of sampling a system.[20–23] In applying it

to our case, we plot the number of different local minima N LM

as a function of the number of seeds N s that are explored. As

is apparent in Figure 4 initially N LM grows linearly with N s,

but as N s increases the plot flattens out and saturates. When

analyzing the graph thus obtained, it is possible to determine

the region one is exploring, and how well the sampling that is

being used captures the existing diversity. In Figure 4, we

show the rarefaction curve obtained with our method for 11-

atom LJ clusters, where we distinctly observe that after

200,000 seeds are examined the number of local minima N LM

saturates.

Despite the apparent simplicity of the LJ pair potential, the

precise number of local minima of the PES, even for small N

Figure 1. Average number of force evaluations hNei required to obtain a

minimum for the Lennard–Jones pair potential, as a function of the edge

length a=r of the box used to generate the seeds, for 13 < N < 78. For

a=r50, we calculated with a=r51024.

Figure 2. Diversity of configurations obtained for the LJ potential after the

minimization of 105 seeds, as a function of the box size, for clusters of

18 � N � 38 atoms.
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values, is quite hard to estimate, and is one of the objectives

we seek. An emblematic case is LJ13, where the number of

local minima has been continuously updated. Hoare found 988

local minima using a growth algorithm.[32,33] Later, using differ-

ent variations of the eigenmode-following method,[34] Tsai and

Jordan found 1328 minima.[35] Doye et al.[36] found 1467, while

Ball and Berry[37] found 1478. Next, Chekmarev found 1506

minima using a taboo search of the PES.[38] Doye and Wales

reported 1509 local minima,[39] and in this article we again

increase this number to 1510.

For larger N values Wales and Doye,[11] citing the work of

Tsai and Jordan,[35] reported the order of magnitude of the

number of different local minima of the PES for LJ147 clusters

as �1060, but with the warning that the value depends on the

functional form used to fit the Tsai and Jordan results. Their

estimate was obtained using the form exp ða1bNÞ, but if one

instead uses exp ða1bN1cN2Þ the estimate grows to �10259

minima. Later on, Wales and Scheraga[40] reported that the

number of minima for LJ55, excluding permutational isomers,

is at least 1010. A table with these results is given as Table 1.

Considering that probably there are of the order of 1022 min-

ima on the LJ55 PES, it is quite remarkable that it is relatively

easy to obtain the global minimum, a fact underscored by

Doye and Wales.[41] And finally Fournier,[42] citing Chek-

marev[38] suggested that the number of local minima for an N-

atom cluster, interacting through a LJ potential, is roughly of

the order of 2:7 ðN25:7Þ, for N � 6.

It is thus relevant to mention that, using the FIRE-based

strategy presented here, we found all the global minima

reported in the Cambridge Cluster Database[30] for the LJ pair

potential up to N 5 65. Moreover, in addition, we also found a

new local minimum for LJ13, which increases the number of

local minima from 1509 to 1510, and 10 new local minima for

LJ14 were also obtained, increasing their number from 4196 to

4206. For LJ15, we found 11,823 local minima but, to the best

of our knowledge, no estimate exists in the literature.

To check on the efficiency of our procedure, we consider

the N 5 38 case, known to be a severe test.[36] Our method

finds on average the global minimum once every �7280

times, while in a recent paper Oakley et al.,[43] imposing sym-

metry considerations and thus slightly biasing the search, find

it once every 142. Therefore, our simple and unbiased proce-

dure seems to be quite efficient, and provides the extra bonus

of generating a diverse set of low-lying local minima. However,

it is worth mentioning that recently similar strategies have

also been put forward in slightly different contexts by, among

others, Chen et al.,[44] Lyakhov et al.,[45] and Shang et al.[46]

Moreover, it is relevant to remark that there is a payoff

between efficiency in obtaining the global minimum and the

diversity that is generated, due to the enormous amount of

local minima (our estimate is that there are �2:531014 local

minima for LJ38). Therefore, we understand that our procedure

allows for a reasonable trade-off between efficiency and

diversity.

An issue that has attracted considerable attention is how to

estimate the number of minima for larger N values. On the

basis of the number of local minima obtained with our strat-

egy for 8 � N � 15, and using the functional form exp ða1bNÞ
to extrapolate the number of local minima to larger N values,

we obtain that the number of local minima is given by

exp ð1:033683N26:12731Þ, as illustrated in Figure 6, which is

in close agreement with the estimate by Fournier.[42] Figure 6

also shows the number of local minima obtained after the

minimization of 63107 and 123107 seeds, generated in a

Figure 3. Average number of force evaluations hNei required to obtain a

minimum for the Morse pair potential, as a function of the length of the

edge of the box in which the initial configurations are generated. We mini-

mized 500,000 seeds and set q510. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Rarefaction curve illustrating the evolution of the number of local

minima N LM as a function of the number of initial configurations (seeds)

N S , for 11 atom Lennard–Jones clusters. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Table 1. Number of local minima estimated by various authors for LJ

clusters of N 5 55 and N 5 147 atoms.

N 5 55 N 5 147

Wales and Doye[11] �1021 �1060and/or �10259

Wales and Sheraga[40] �1010 —

This work �1022 �231063

Our results agree with the ones reported by Wales and Doye[11].
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33333 r3 box. It is quite apparent that there is no big differ-

ence between exploring 120 million and 60 million seeds.

However, the box size strongly conditions the efficiency of the

method; in fact, when using a 13131 r3 box one obtains the

LJ38 global minimum after �7280 minimizations, but if the box

size is increased to 33333 r3 then �23,210 minimizations are

required.

The deviation of the extrapolation from our results is due to

the fact that we underestimate the number of local minima, as

certainly we did not find all of them. Both Fournier’s and our

fits roughly match the data up to N � 17. Hence, the N 5 20

case is a good candidate to discriminate between the two

curves. Furthermore, we believe that it may be possible to

analyze the rarefaction curves to improve on these predictions,

an issue that will be analyzed elsewhere.

Global minima

The issue of determining the ideal number of seeds that are

required to explore the problem of finding the cluster global

minimum, and the low-lying energy minima, is always present

when one implements this type of searches. On the one hand,

including a huge number of seeds lessens the probability of

missing the global minimum. On the other, being overly ambi-

tious imposes a severe stress on computing resources and

machine time. Thus, exploring the field to determine conver-

gence tendencies seems warranted. In Figure 5, we present

the probability P of finding the accepted global minimum[47]

by minimization of two different sets of 12 million seeds, gen-

erated in a 3 3 3 3 3 r3 cubic box. Inspection of the figure

suggests that P decreases as �102N=10, a fact that is most

important to keep in mind when trying to estimate the num-

ber of seeds required to find the energy minimum for large

clusters, in the implementation of unbiased search procedures.

If we define N LMðNÞ as the number of local minima then, by

inspection of Figure 5, we conclude that

P Nð Þ > 1

N LMðNÞ
: (4)

In fact, for all the cluster sizes, we explored (i.e., N � 65),

our procedure always yields the accepted global minimum.

Up to now, the only unbiased methods which are able to

obtain the global minimum for the LJ Marks decahedra for

N575277 and N51022104 are BH and the GA. At this point,

we have minimized 12,000,000 seeds for the N 5 75 case,

without obtaining the reported global minimum.

Lowest energy planar clusters

It is well-known that, regardless of the element, the lowest

energy cluster configuration obtained with phenomenological

potentials is not necessarily the same as the lowest energy

structures of DFT calculations.[9,48–51] Because of this reason, a

widely used strategy to obtain the global minimum of a given

configuration is to minimize, using DFT, a large set of low-

energy configurations obtained by means of phenomenologi-

cal potentials. However, even when one is able to determine

all the local minima of a phenomenological potential it is pos-

sible that none of them matches, or converges toward, the

global minimum after DFT refinement. A clear-cut example is

found in the few atom transition and coinage metal clusters

(N � 10), where it is often the case that the global minimum is

a planar configuration.[49] And, as it is well-known that LJ,

Morse, and the widely used for transition metals Gupta poten-

tial, they do not yield planar structures among the set of local

minima. On the contrary, our method has the rather unique

capability of creating planar seeds which remain planar

throughout the FIRE minimization. This is a useful feature

which allows to generate low-energy planar configurations. Of

Figure 5. Probability P on a logarithmic scale (blue diamonds and green

circles), of reaching the Lennard–Jones pair potential global minimum as a

function of cluster size N, after minimization of 12 million seeds generated

in a 13131 r3 (blue diamonds), and a 33333 r3 box (green circles). The

black triangles correspond to the inverse of the number of local minima

obtained, fitted by the straight red line. The shaded region at the bottom

corresponds to the inverse of the number of seeds (12 million). [Color fig-

ure can be viewed in the online issue, which is available at wileyonline

library.com.]

Figure 6. Number of local minima obtained for the Lennard–Jones pair

potential, as a function of cluster size N, by minimization of seeds gener-

ated in a 33333 r3 box. The green diamonds and the blue 1 signs corre-

spond to the 60 and 120 million seeds that were examined, respectively.

The continuous red, and the dashed gray lines, correspond to two different

fits, as indicated. The shaded region marks the values used for the extrapo-

lation. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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course, these structures are not stable local minima of the

arbitrary phenomenological potential used, but they provide a

valuable contribution to the overall structure diversity, which is

a valuable tool in the search for two-dimensional (2D) minima.

In Table 2, we provide the number of planar local energy min-

ima and their energies E in units of e, for clusters of up to 13

atoms, obtained after minimization of 60 million seeds. In Fig-

ure 7, we illustrate the lowest energy configurations we

obtained for LJ clusters of 5 � N � 13 atoms. These conforma-

tions are by no means stable minima of the 3D phenomeno-

logical potential that is used, but they serve the purpose of

convenient inputs for DFT refinement, especially suited when a

2D quantum global minimum can be expected.[51,52] This is

due to the fact that with this procedure planar seeds remain

planar throughout.

Minima distribution and basin sizes

Interesting information is contained in the mean square dis-

tance deviation hri, as a function of the average interatomic

distances hdiji, of the local minima defined as

hri5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

NðN21Þ
XN

i 6¼j

ðrij2hdijiÞ2
vuut ; (5)

and

hdiji5
2

NðN21Þ
XN

i 6¼j

rij : (6)

For the N 5 9 cluster, we obtain the spectrum of the 21 min-

ima that is displayed in the top panel of Figure 8. A prominent

feature is the clear-cut energy gap between the global minimum

and the other 20 local minima. This feature is present in all of

the spectra we have calculated, that is up to N � 14, as can be

verified in Figure 9. If proved to be general, it would constitute a

useful tool in the problem of searching for the global minimum.

The structure of the new local minimum for N 5 13 is illustrated

in Figure 10. Another general property that Figures 8 and 9 dis-

play is that the global minimum always corresponds to lowest

value of hdiji and to low values of hri, a fact that is most salient

for the symmetric (icosahedral) N 5 13 case where the global

minimum splits off completely, and corresponds to the smallest

of all hdiji and hri values.

A second characteristic that is noticeable in Figures 8 and 9

is that in general P reaches a rather large value for the global

Figure 7. Conformations of the lowest energy planar LJ configurations, for clusters of 5 � N � 13 atoms. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Table 2. Number of local energy minima obtained for planar configura-

tions, and the corresponding values of the minimal energies.

No. of atoms No. of configurations E=e

3 1 23.000000

4 1 25.073421

5 1 27.178024

6 3 29.358274

7 4 212.534867

8 9 214.683990

9 16 216.909315

10 36 220.101612

11 70 222.336540

12 160 225.566703

13 337 227.804065
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minimum, which implies that it is hit several times in the

search process. Moreover, when one looks at the energy

values of the previously unreported local minima we found for

N 5 13, and illustrated in Figure 10, and the 10 new minima

for N 5 14, these are located in the midst of the distribution,

rather than at the largest energy values, as one naively could

have expected. Thus, that they were previously missed seems

to be related to their narrow basin of attraction widths. The

only transition state (saddle point of the PES) that we found,

as already aforementioned, (marked with an arrow in Fig. 9),

has an energy of E=e � 246.

Inspection of Figure 9 also suggests that for large clusters

(N� 1) the probability spectrum does have a well-separated

global minimum and that P displays a rather strong decrease

as a function of increasing energy (notice the logarithmic

character of the plots). In addition, the breaking up of the

spectrum into “energy bands” seems to be a general attribute

of small clusters. Moreover, Figures 8 and 9 display another

interesting feature, namely that the structures in a particular

energy band also appear as segregated layers in the hri versus

hdiji plot, a fact we stress with the different color codes used

in these figures.

We stress that the size of the global minimum attraction

basin is among the largest ones, as can be observed by

inspection of Figures 8 and 9. The rest of the basin sizes is, on

average, a monotonously decreasing function of energy.

Discussion and Conclusions

A strategy to find a large set of diverse cluster energy minima

is developed. Although at present we restrict ourselves to

interactions specified by classical potentials, the procedure can

Figure 8. Mean square deviation hri versus mean interatomic distance hdiji for N 5 9, 10, and 11 atom LJ clusters. The inset, color coded as in the main

figure, corresponds to the spectrum of the probability for finding local minima as a function of energy. The dark green bars and 1 signs correspond to

the global minima. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 9. Mean square deviation hri versus mean interatomic distance hdiji for N 5 12, 13, and 14 atom LJ clusters. The bright green bars and dots label

the new minima we found. The inset, color coded as in the main figure, corresponds to the spectrum of the probability for finding local minima as a func-

tion of energy. The arrows in the N 5 14 figure denote the transition point. The dark green bars and 1 signs correspond to the global minima. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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be implemented as well in combination with ab initio calcula-

tions. It is inspired on the premise that diversity is the key

ingredient to obtain, via ab initio refinement, the putative

global minimum for a small cluster. Thus, our primary objec-

tive is to develop a procedure to obtain a significant majority

of the local minima of a PES. The strategy we implemented is

based on the FIRE algorithm, which combines molecular

dynamics with velocity modifications and adaptive time steps.

Our strategy succeeds in finding all the reported global min-

ima for clusters of up to 65 atoms, interacting via a LJ poten-

tial. Moreover, one new local minimum is found for LJ13 and

10 new ones for LJ14. Although we devoted most of our inter-

est to the LJ potential, the method seems to be applicable to

other pair potentials, like the one due to Morse.

An issue we studied in detail is the influence of the size of

the initial box for clusters of up to 78 atoms, in terms of the

average number of force evaluations required to obtain a mini-

mum for the LJ potential. Another subject we investigated is

how to estimate the number of local minima of the PES, which

grows explosively with cluster size. Based on the exploration

of up to 120 million seeds, we are able to conjecture an

extrapolation based on the number of different local minima

for LJN, with 8 � N � 15. In addition, the consequences of the

choice of an appropriate box size on the diversity of the min-

ima obtained, and the two minima of Figures. 1 and 3 seem

to be features that apply to other potentials, besides LJ. In

addition, we provide an estimate of the number of seeds that

are required to find the global minimum. The FIRE algorithm

has the additional advantage that it allows to introduce planar

low energy configurations in the diverse set, as they remain

planar during the FIRE minimization process. This feature is

most relevant when searching for the DFT minima of coinage

metal clusters of up to 20 atoms, as ab initio calculations have

shown that the putative global minima is planar, and phenom-

enological potentials do not yield planar minimum energy

conformations.

The energy distribution of the local minima is investigated

using a tool introduced by ecologists: the rarefaction curve,

which is a plot of the number of different objects that is found

in the process of sampling a system. The saturation of the rar-

efaction plot allows an educated guess on how many seeds

are to be explored to obtain the putative global minimum and

most of the local minima.

The plot of the probability P of finding a local minimum, as

a function of energy, provides additional information. We

observe that P breaks up into energy bands, and that the

ground state splits off. Moreover, P exhibits a rapid decrease

as a function of energy. In addition, it is remarkable that the

lowest energy configurations we investigated corresponds to a

minimum of the mean square deviation hri versus mean

interatomic distance hdiji. It is our intention to explore this fea-

ture in more detail and to use it to improve the code conver-

gence. Moreover, the procedure we put forward compares

quite favorably with the methods found in the literature like

BH, Minima Hopping,[12] and Symmetrization Core Orbital.[43]

In summary, we implemented an efficient strategy to find

energy minima of cluster conformations, when the atoms

interact via phenomenological potentials. The objectives of

obtaining the global minimum as well as a diverse set of low-

lying local minima by means of a rather simple procedure

were reached, as our strategy recovers all the reported min-

ima, finds a fair number of new ones, and generates a large

diversity of configurations, including planar ones, which are

functional as inputs for ab initio refinement.

Keywords: optimization � global minimum � local mini-

ma � Lennard–Jones pair potential � energy landscape
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