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Magmatic evolution of the Mantos Blancos copper deposit,
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isotope, geochemical data and silicate melt inclusions
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Abstract

The Mantos Blancos copper deposit (500 Mt at 1.0% Cu) was affected by two superimposed hydrothermal
events: (i) phyllic alteration related to a rhyolitic dome emplacement and brecciation at ca 155 Ma; and
(ii) potassic, sodic and propylitic alteration at ca 142 Ma, coeval with stocks and sills emplacement of dioritic
and granodioritic porphyries, that locally grade upwards into polymictic magmatic hydrothermal breccias.
Major hypogene copper sulfide mineralization is related to the second event. A late-ore mafic dike swarm
cross-cuts all rocks in the deposit. Two types of granodioritic porphyries can be distinguished from petro-
graphic observations and geochemical data: granodiorite porphyry I (GP I) and granodiorite porphyry
II (GP II), which resulted from two different trends of magmatic evolution. The concave shape of the rare earth
element (REE) distribution pattern together with the weak or absence of negative Eu anomalies in mafic dikes,
dioritic and GP I porphyries, suggest hornblende-dominated fractionation for this magmatic suite. In contrast,
distinct negative Eu anomalies and the flat REE patterns suggest plagioclase-dominated fractionation, at low
oxygen fugacity, for the GP II porphyry suite. But shallow mixing and mingling between silicic and dioritic
melts are also likely for the formation of the GP Il and polymictic breccias, respectively. Sr-Nd isotopic compo-
sitions suggest that the rhyolitic dome rocks were generated from a dominantly crustal source, while the GP 1
has mantle affinity. The composition of melt inclusions (MI) in quartz crystals from the rhyolitic dome is simi-
lar to the bulk composition of their host rock. The MI analyzed in quartz from GP II and in the polymictic
magmatic hydrothermal breccia of the deposit are compositionally more evolved than their host rocks. Field,
geochemical and petrographic data provided here point to dioritic and siliceous melt interaction as an induc-
ing mechanism for the release of hydrothermal fluids to form the Cu mineralization.

Keywords: Chile, coastal range, cu mineralization, Sr-Nd isotopes, magma mixing.

1. Introduction Two main types of ore deposits occur in this copper
province: volcanic-hosted strata-bound orebodies

The Coastal Range of northern Chile hosts numer- (Espinoza et al., 1996, Maksaev & Zentilli, 2002) and
ous copper deposits, constituting a NS-trending Late porphyry copper deposits (Camus, 2003). Other ore
Jurassic—Early Cretaceous metallogenic belt, which deposits are hosted in intrusive rocks and were
extends for more than 200km (22°-24°S; Fig.1). described by Espinoza et al. (1996) as vein type deposits.
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Fig.1 Geological map of the Coastal Cordillera, Northern
Chile, and location of the Mantos Blancos ore deposit (*)
and other Late Jurassic Early Cretaceous volcanic-hosted
copper deposits (®). Modified after Maksaev and Zentilli
(2002). Bar, 20 km.

The volcanic-hosted strata-bound ore deposits are
characterized by magmatic and hydrothermal breccias
that form feeder structures to the flat-lying peripheral
stratiform mineralization. The hydrothermal breccias
contain a major portion of the commercial mineraliza-
tion and have the highest ore grade in these deposits.
The pipes-like hydrothermal breccias are genetically
related to coeval stocks and sills of mainly dioritic
composition, and are intruded by post-mineralization
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basaltic dikes (Maksaev & Zentilli, 2002). The porphyry
copper mineralization in the belt is associated with
granodioritic porphyries and hydrothermal breccias
(Perell6 et al., 2003). The Mantos Blancos deposit pro-
duces approximately 50% of all copper of the belt, and
had pre-mining resources of 500 million tons with 1.0%
Cu (Ramirez et al., 2006). The ore deposit was formed
by two main hydrothermal events: (i) a first event (ca
155Ma) related to rhyolitic magmatism and magmatic
hydrothermal monomictic breccias of rhyolitic compo-
sition; and (ii) a second event (ca 142Ma) related to
dioritic and granodioritic porphyries and magmatic
hydrothermal polymictic breccias (Ramirez et al., 2006).
We here present new geochemical, isotopic and silicate
melt inclusion (MI) data of the Mantos Blancos district,
in order to better understand its magmatic evolution.
Additionally, the role of the magmatic processes in the
associated hydrothermal alteration is discussed.

2. Geological setting

During the Jurassic-Early Cretaceous a subduction-
related magmatic belt developed along the present
Coastal Range of northern Chile. It is represented
by 7000-m-thick basaltic-andesitic volcanic pile
(La Negra Formation) and granitic—dioritic plutonic
rocks. The volcanic sequence has mantle affinity
(Rogers & Hawkesworth, 1989; Lucassen et al., 2002)
and evolved with time from an initial stage of tholei-
itic affinity to calc-alkaline composition (Palacios,
1984; Rogers & Hawkesworth, 1989; Pichowiak et al.,
1990; Kramer et al., 2005). Three main plutonic events
have been described in the Coastal Range of northern
Chile (Andriessen & Reutter, 1994; Pichowiak, 1994;
Scheuber, 1994; Dallmeyer et al., 1996; Scheuber &
Gonzalez, 1999): Early Jurassic (200-180 Ma) granitic—
tonalitic rocks, Middle Jurassic (170-160Ma) grano-
dioritic rocks, and Late Jurassic-Early Cetaceous
(155-140Ma) granodioritic-dioritic rocks. The tec-
tonic evolution of the Coastal Range during the
Jurassic is interpreted in terms of coupling and de-
coupling between the down-going and overriding
plates, in a transtensional regime due to oblique
subduction (Scheuber & Gonzalez, 1999). Between
200 and 155Ma an intra-magmatic belt, controlled by
the NS-trending sinistral strike—slip Atacama Fault
Zone was developed. But at the end of the Jurassic,
and due to foundering of the subducting plate, sub-
duction rollback and decoupling, the emplacement of
the magmatic belt was controlled by an EW-trending
extensional regime (Scheuber & Gonzalez, 1999).
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3. Geology of the deposit

The lithological units recognized within the Mantos
Blancos ore deposit consist of a rhyolitic dome and
magmatic hydrothermal monomictic breccias of the
same composition, intruded by stocks and sills of
dioritic and granodioritic porphyries. The dioritic and
granodioritic stocks locally grade upwards into mag-
matic hydrothermal polymictic breccias. These rock
units are all mineralized to a variable degree. Late
mafic dike swarms cross-cut all previously mentioned
rock units and are essentially barren (Ramirez et al.,
2006; Fig.2).

3.1. Rhyolitic dome and associated magmatic
hydrothermal rhyolitic breccias

The dome structure has been identified by the restora-
tion of its pre-mining geometry by studying drill core
logs of the early stage of exploitation (Chavez, 1985).
Drill cores located in the vicinity of the mine also
provide evidence of an outward decreasing thickness,
compatible with a dome structure, from the main rhy-
olitic body of the pit. The rhyolitic dome occupies the
most important parts of the deposit, and it is hosted
by felsic tuffs and mafic-intermediate lava flows of
the La Negra Formation and intruded by stocks and
sills of dioritic and granodioritic porphyries. The rhy-
olitic dome is exposed over 350m in depth along the
walls of the current open pit, but information from
drill cores indicates a vertical extent to at least 800 m.
Due to pervasive alteration, the contacts between
internal flows are very difficult to observe, but near-
horizontal and vertical flow laminations of 1-4cm
thickness are recognized. The rhyolitic dome consists
of rhyolitic porphyry with 30-60% of feldspar and cor-
roded quartz phenocrysts (1-5mm) in a highly altered
felsic groundmass. Magnetite and zircon are common
accessory minerals. Subvertical bodies of magmatic
hydrothermal breccia hosted in the rhyolitic dome
have been recognized. They are matrix-supported
monomictic (rhyolite) breccias approximately 100-
250 m in vertical view, and with subcircular horizontal
sections of 50-100m in diameter. The matrix is com-
posed of rhyolitic rock flour with intense alteration
and disseminated sulfides. The rhyolitic fragments are
altered, irregular in shape, poorly sorted and vary in
size between 1cm and several meters. Although the
age of the rhyolitic dome is not known, the age of the
hydrothermal event affecting the dome is ca 155Ma
(*%Ar/¥Ar in sericite; Oliveros, 2005) and is probably
close to the dome emplacement age.
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3.2. Granodioritic and dioritic porphyries, and
associated magmatic hydrothermal polymictic
breccias

3.2.1. Granodiorite porphyries

Two granodioritic porphyries have been recognized:
granodiorite porphyry I (GP I) and granodiorite por-
phyry II (GP II). Rocks of the GP I are mainly located
west and south of the pit, but are also recognized from
drill cores in the mine. Commonly it contains 35-50%
of 0.5-5-mm large phenocrysts of hornblende, oscillatory-
zoned plagioclase and biotite, in a groundmass of
quartz, feldspars and minor biotite. GP II is restricted
to the ore deposit domain. It contains 10-30% of phe-
nocrysts of 0.5-3mm large plagioclase (albitized),
embayed B-quartz and chloritized hornblende in a
groundmass of quartz, feldspars and hematite inter-
growth (Fig.3e, f). Minor amounts of magnetite and
zircon have been observed in both GP I and GP II.

3.2.2. Diorite porphyry

The diorite porphyry has 5-10% of 2-5-mm large
phenocrysts of pyroxene (and minor hornblende) in a
groundmass of fine-grained pyroxene, plagioclase and
magnetite. The diorite porphyry exhibits mm-sized
spherical miarolitic cavities with quartz and sulfide in-
fill (Fig. 3a) and chlorite sulfide infill (Fig. 3b). Mutual
intrusive relationships between both GP II and diorite
porphyries are common (Ramirez et al., 2006), and
meter—centimeter enclaves of one in the other have
been frequently observed (Fig. 3g, h). Recent “°Ar/3°Ar
data on amphibole give ages of 142.2 + 1 Ma for GP I,
and 141.4 + 0.5 Ma for the diorite porphyry (Oliveros,
2005). Although the age of GP II is not known, the mu-
tual intrusive relationships with the dioritic porphyry
suggest that both are coeval.

3.2.3. Polymictic magmatic hydrothermal breccias

Two polymictic and matrix-supported pipe-like mag-
matic hydrothermal breccias are recognized in the pit of
the mine. They are spatially related with N-S faults and
hosted within the rhyolitic dome. The largest breccia
body, located in the central part of the pit, is cross-cut by
metric-sized sills of dioritic porphyry and GP I. The
breccias form near-vertical bodies, with a vertical extent
of approximately 700m, and have sub-spherical sections
with diameters between 100 and 500m. The upper part
of the breccia pipes exhibits hydrothermal characteris-
tics as evidenced by the presence of a matrix composed
of hydrothermal and ore minerals (Fig. 3c, d). The breccia
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Fig. 2 Geological map of the Mantos Blancos ore deposit. Bar, 5 km.

fragments include angular and sub-rounded altered size from 1cm to 15m. Downwards in the breccia bod-
rocks of the rhyolitic dome and of granodioritic and dio- ies, magmatic features are progressively more evident.
ritic porphyries. They are poorly sorted and range in It is common to observe magma mingling as evidenced
© 2008 The Authors
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Fig. 3 Microphotographs of different rock units in the Mantos Blancos district. (a) Miarolitic cavity with quartz and sulfide
(Cpy) infill in diorite porphyry (cross-polarized light, sample CPM-1-2); (b) miarolitic cavity with sulfide (Cpy + Bo) infill
with a border zone of chlorite, calcite, epidote and chalcopyrite in diorite porphyry (cross-polarized light, sample CPM-
1-15); (c) mineralized polymictic magmatic hydrothermal breccia with cross-polarized light; and (d) with plane-polarized
light (sample P-4-1); (e) oscillatory-zoned plagioclase phenocryst in granodiorite porphyry I (GP I; cross-polarized light,
sample MB-2-3); (f) reabsorbed quartz phenocryst in GP II (cross-polarized light, sample 11497-320); (g, h) Pictures of
dioritic micro-enclaves in GP II. Bars: a—f, 1 mm; g, h, 1 cm. Bo, bornite; Cc, calcite; Chl, chlorite; Cpy, chalcopyrite;

Ep, epidote; Plg, plagioclase; Qz, quartz.

by granodioritic enclaves in a dioritic matrix, as well as
dioritic enclaves in a granodioritic matrix (Fig.3g, h).

3.3. Mafic dike swarm

Most mafic dikes are subvertical oriented in NNE
direction, although NS and NNW subvertical dikes also
occur. The dikes are 1-12m thick and represent approxi-
mately 15% of the total rock volume in the deposit.
They exhibit porphyritic texture, with 10-25% of 3-
10-mm altered plagioclase, hornblende and minor pyrox-
ene phenocrysts, in a very fine-grained groundmass of
feldspar, hornblende, and subordinately biotite and mag-
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netite. A hornblende “°Ar/*Ar age of 142.7+2.1Ma
was obtained for a weak late-mineralized dike in the
mine (Oliveros, 2005).

3.4. Hydrothermal alteration and
mineralization

The deposit was affected by two overprinted hydro-
thermal events: (i) a phyllic alteration event related to
the rhyolitic dome emplacement and rhyolitic mag-
matic hydrothermal brecciation that took place at
ca 155Ma; and (ii) a potassic-propylitic-sodic alteration
event that developed at ca 141-142Ma, coeval with the

© 2008 The Authors
Journal compilation © 2008 The Society of Resource Geology



stocks and sills intrusion of dioritic and granodioritic
porphyries. This second hydrothermal event is related
to the main mineralization pulse, which occurs dis-
seminated and in stockworks centered in the polymic-
tic magmatic hydrothermal breccias (Ramirez et al.,
2006). Hypogene sulfide assemblages have a vertical
and lateral zoning within polymictic breccia bodies. A
barren pyrite root zone is overlain by pyrite—chalcopy-
rite, and followed upwards and laterally by chalcopy-
rite—digenite or chalcopyrite-bornite. The assemblage
digenite—supergene chalcocite characterizes the central
portions of high-grade mineralization in the polymic-
tic breccia bodies (Ramirez et al., 2006).

4. Whole rock geochemistry

Major oxide, trace, and rare earth element (REE) con-
tents of 52 representative samples from the Mantos
Blancos ore deposit are listed in Table1. Geochemical
analyses were carried out using inductively coupled
plasma atomic emission spectometer (ICP-AES) (Perkin
Elmer P-430) at the Department of Geology, University
of Chile. The USGS standards BCR-2, AGV-2 and G-2
were used for calibration. Because of the widespread
hydrothermal alteration, the rock classification is
by immobile elements according to the Floyd and
Winchester (1978) diagram for volcanic rocks. Figure4
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Fig. 4 Immobile element classification of major rock
units of the Mantos Blancos deposit. After Floyd and
Winchester (1978).
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indicates that samples of the dioritic and granodioritic
porphyries fall in the fields of its volcanic counterparts
(andesite and dacite), respectively. Most rocks of the
felsic dome are rhyolitic in composition and rocks of
the mafic dike swarm plot in the basaltic field. The REE
chondrite-normalized patterns for different rock units
are shown in Figure5. The rhyolite samples show
strongly fractionated light rare earth elements (LREE)
patterns with distinct negative Eu anomalies and flat
heavy rare earth elements (HREE) patterns. The GP 1
samples have concave REE patterns and no Eu anom-
aly. The GP II samples differ from the GP I samples in
their negative Eu anomalies and in the less fraction-
ated HREE patterns. The rocks of the dioritic porphy-
ries and late-ore basaltic dikes exhibit similar gently
dipping slightly fractionated REE patterns with a small
Eu depletion.

5. Sr-Nd isotopes and the nature of the
magma sources

The analyzed samples of Mantos Blancos district (Ta-
ble2) have different isotopic signatures. The analyti-
cal isotope procedure is presented in AppendixI. Two
samples from GP I have initial 8Sr/%Sr ratios of
0.70362 and 0.70395 and ¢Nd values of +3.5 and +3.2,
respectively. These data suggest a dominant mantle
source and are similar to the reference data for La
Negra Formation (Rogers & Hawkesworth, 1989;
Lucassen et al., 2002; Fig.6). The rhyolitic dome has
an initial 87Sr/8Sr ratio of 0.70592 and an e¢Nd value
of —2.0, suggesting more crustal involvement. A sam-
ple from the igneous matrix of the Mantos Blancos
polymictic breccia has an initial 8Sr/%Sr ratio of
0.70591, similar to that of the rhyolitic dome, and an
eNd of +0.15, suggesting a mixed source between the
rhyolitic dome and the GP I. Three samples of the dio-
ritic porphyry (F. Munizaga, pers. comm., 2006) from
the open pit have intermediate isotopic composition
between the GP I porphyry (included in the field of
volcanic rocks of the La Negra Formation) and the
rhyolitic dome (87Sr/8Sr initial ratios range between
0.70455 and 0.70573 and eNd values between 0.0 and
+2.5; Fig.6). No isotope data exist for the basaltic
dikes of the deposit, but because of the chemical com-
positional similarities between the basaltic dikes and
mafic lavas of the La Negra Formation (Rogers &
Hawkesworth, 1989; Lucassen et al., 2002) and Creta-
ceous dikes in the region (Lucassen et al., 2002), a de-
pleted isotopic signature is assumed for the Mantos
Blancos dikes.
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Fig.5 Chondrite-normalized rare earth element patterns of rock samples from Mantos Blancos. (a) Rhyolite dome; (b)

granodiorite phorphyry; (c) diorite porphyry; (d) mafic dike.

6. Silicate melt inclusions hosted in
quartz

Silicate MI hosted in quartz phenocrysts of the GP 1II,
and quartz crystals of the polymictic breccia were
analyzed using a Cameca SX 100 electron microprobe
(TU Clausthal, Zellerfeld, Germany). An accelerating
voltage of 15 kV, beam current of 8 nA, beam diameter
of 3 pm and a counting time of 6 s were chosen for
major elements, and 20 kV, beam current of 40 nA, and
a counting time of 20 s for trace elements.

The sample preparation by remelting can introduce
contamination by silica from the host quartz. Webster
et al. (2004) discussed in detail the difficulties in deter-
mining appropriate heating times and temperatures
for remelting of MI characterized by variable composi-
tions. Based on the empirical results obtained in the
laboratory, the best conditions for the experiments in
quartz are 950°C and 101.325 X 10% Pa external pressure

134

during 24 h (Dietrich, 1999; Wittenbrink, 2006). After
the heating experiments, the samples were quenched
to produce a silicate glass. The homogenized MI are
small (15-40pum), in some cases with a vapor bubble
(1-10 pm) of 5-15% in volume relative to the MI. Al-
though the heating temperature (950°C) seems to be
high, after 24 h (only in very small inclusions <10 pm)
the host quartz walls were partially melted, and few
larger inclusions were not entirely re-homogenized.
The MI were located towards the central portions of
their host embayed B-quartz crystals, phenocrysts
formed early in the crystallization of Mantos Blancos
acidic magmas. At least three individual analyses were
carried out on each MI, hence the reported values in
Table 3 are averages of several analytical spots. The
analytical data of MI, within each lithological unit,
have relatively low dispersion in silica content, and
average data were used for major elements (Table 3,
Fig.7). In general the SiO, concentrations of the MI

© 2008 The Authors
Journal compilation © 2008 The Society of Resource Geology



Table 2 Sr-Nd isotope data from Mantos Blancos ore deposit

Mantos Blancos Cu deposit

Sample Rock unit Rb (ppm) 20 Sr (ppm) 20 87Sr/8Sr 20 8’Rb/%Sr 20 (87Sr /86Sr),

MB1+t Rhyolitic 3.155 0.032 37.68 0.30 0.7065 0.00001  0.242 0.004  0.7059
dome

MB6 Polymictic 1194 1,660 55.21 057 0.7184 0.00002  6.264 0.081  0.7059
breccia

MB3 GP1 81.19 0,810  391.55 313  0.7051 0.00001  0.600 0.008  0.7039

MB4 GPI 79.98 0,800 382.43 3.06 0.7048 0.00001  0.605 0.008  0.7036

MB-sp-7 Diorite 52 88 0.71452 4.94 0.704549
porphyry

MB-sp-46  Diorite 71 100 0.71374 4.04 0.705586
porphyry

MB-sp-60  Diorite 120 101 0.71061 2.42 0.705725
porphyry

Sample Rock unit Sm 20 Nd 20 143N d/ 20 ¥Sm/ 20 (14Nd/ Nd

(ppm) (ppm) 144N d 144N d 144Nd),

MB1+t Rhyolitic 4.236 0.004 16.511 0.02 0.51249  0.000006  0.1551  0.0008 0.51234 -2.0
dome

MB6 Polymictic ~ 1.211 0.001 3.352  0.004 0.51267 0.000008  0.2184  0.0011  0.51247 0.1
breccia

MB3 GPI 4.29 0.004 24.32 0.031  0.51272 0.000008  0.1067  0.0005 0.51263 3.2

MB4 GPI 4.351 0.004 23.199 0.03 0.51274 0.000007  0.1134  0.0006  0.51264 3.5

MB-sp-7 Diorite 2 6.56 0.512646 0.1620 0.512498 0.77
porphyry

MB-sp-46  Diorite 5.64 24.82 0.512694 0.1208 0.512583 2.45
porphyry

MB-sp-60  Diorite 5.49 23.73 0.512569 0.1230 0.512456  -0.03
porphyry

All samples were obtained from the open pit walls, except samples from the GP I unit, located a few km to the west and
southwest of the pit. The samples MB-sp-7, MB-sp-46 and MB-sp-60 correspond to diorite porphyry unit from the pit
(E. Munizaga, pers. comm., 2006). All samples were recalculated to 142 Ma, except t recalculated to 155 Ma.

GP, granodiorite phorphyry.

trapped in quartz phenocrysts of the rhyolitic dome
(Wittenbrink, 2006) resemble the bulk rock composi-
tion. In contrast, the MI from the GP Il and the polymic-
tic breccia have higher SiO, contents than their host
rocks. An intriguing feature of the MI is their copper
concentrations. Extremely high copper contents have
been detected in MI from the rhyolitic dome (323-
13400 ppm; Wittenbrink, 2006). Cu contents between
60 and 1665 ppm have been measured in the GP 1I,
whereas low Cu contents (55-150 ppm) have been ob-
tained in MI from the polymictic breccia.

7. Discussion
7.1. Origin of the rhyolitic melts

The high-silica rhyolite composition of the dome rep-
resents an oddity within the large volume of mafic-
intermediate Jurassic magmatism of the coastal
range, which is strongly dominated by mantle-
derived andesitic and basaltic volcanic rocks of the La

© 2008 The Authors
Journal compilation © 2008 The Society of Resource Geology

Negra Formation. The enriched Sr-Nd isotopic signa-
tures of the rhyolitic dome are consistent with a pro-
venance from a crust-dominated source. A crustal
melt, with a near-thermal-minimum composition like
that of the rhyolitic dome, should have consistent
near-solidus temperature of formation. To estimate
the maximum temperature of the rhyolite dome we
use zircon saturation thermometry (Watson &
Harrison, 1983; Miller et al., 2003). Zircon saturation
temperatures (Ty,), calculated from bulk rock compo-
sitions, provide maximum estimates of temperature
if the magma is oversaturated in zircon. Because
solubility of zircon is sensitive to temperature but
insensitive to pressure, the zircon saturation temper-
ature allows inference of the magma temperature at
the source if the magma has abundant inherited zir-
con (oversaturated). A temperature of approximately
750°C (Fig.8) has been obtained for the rhyolitic
dome. At this temperature a rhyolitic melt is unlikely
to have resulted from significant crystal fractionation
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Fig.6 ¢Nd and %Sr/%0Sr; isotope data from Mantos
Blancos, with reference data from Late Jurassic volcanic
rocks of the La Negra Formation, Cretaceous dikes
of the Coastal Range (Rogers & Hawkesworth, 1989;
Lucassen et al., 2002) and Paleozoic granitoids (Lucassen
et al., 1999). Lines with tick marks represent a simple
mixing model. The grey vertical field represents the
87Sr/86Sr ratio of calcites from the propylitic assem-
blage of Mantos Blancos (Tassinari et al., 1993). All
isotope data are recalculated to age of emplacement
and Paleozoic granitoids to 150 Ma.

of a more mafic (and high temperature) parental melt.
Moreover, considering that hornblende fractionation
has been invoked as an efficient mechanism to yield
felsic magmas from a basic-intermediate parental
liquid, the REE patterns of the rhyolitic dome (Fig.5)
preclude hornblende participation in the magma
fractionation. It is likely, therefore, that the rhyolites
formed by partial melting of quartz—feldspathic rocks
of crustal origin. Advanced fractionation of a more
primitive parental magma or partial melting of mafic
source material equilibrated under lower crust
(garnet-amphibolite facies) conditions is less likely.
The compositional similarities among the rhyolitic
dome and the MI in quartz, regardless of the host
rock, may indicate that both represent evolved mag-
mas generated through similar processes. Therefore,
the crustal signature in the Sr-Nd isotopic composi-
tion and in the REE patterns of the rhyolitic dome
can be inherited by the MI

The coeval development of mafic magmatism and
felsic magmatism in the Mantos Blancos ore deposit
suggests a cause-and-effect relationship, in which the
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heat source for the generation of the rhyolite melts
would be the mafic magma injected into the felsic
crust. In this scenario the participation of two con-
trasting magma sources (crust and mantle) could be
highly variable and deserves to be assessed. Simple
mixing models (Faure, 1986) are shown in Figure 6 in
order to test the degree of involvement of felsic crust
and mantle in the Sr-Nd isotopic signatures of the
rhyolitic magmas. The boundary conditions for the
modeling are defined by the starting compositions,
which are represented by the average composition of
the mantle-derived mafic volcanic rocks of the La
Negra Formation (Rogers & Hawkesworth, 1989;
Lucassen et al., 2002) and by the composition of the
felsic Paleozoic granitoids of the Coastal Range near
Mantos Blancos (Lucassen et al., 1999). Despite the
wide range of the calculated crust/mantle ratios in
the source (Fig.7), a crustal-dominated source can
best explain the isotopic signatures of the rhyolitic
magmas.

7.2. Origin of the intermediate rocks (GP I and
GP II): Crystal fractionation and magma mixing

The REE patterns indicate two distinct fractionation
paths for the Mantos Blancos intermediate rocks. The
concave shape of the HREE distribution, and the ab-
sent or subtle negative Eu anomalies in mafic dikes,
diorites and GP I, suggest hornblende-dominated frac-
tionation for this magmatic suite, which in turn is con-
sistent with the hornblende fractionation vector shown
in Figure9. These data suggest a GP I derivation from
a dioritic parental magma. In contrast, the negative Eu
anomalies in the GP II suggest plagioclase-dominated
fractionation, probably at low oxygen fugacity. But the
distribution of GP II samples in Figure9 differs from
the plagioclase fractionation vector, suggesting an
overprinting of magma mixing effects. In fact, shallow
magma interaction explains both the GP II formation
by magma mixing (Fig.3g, h) and the polymictic brec-
cia by magma mingling. The invariably rhyolitic com-
position of the MI in quartz phenocrysts, regardless of
the composition of the host rock, would represent the
felsic end-member composition of the mixing, whereas
the dioritic porphyry would represent the mafic end-
member composition. This hypothesis is supported by
(i) the presence of abundant mingled fragments of
mafic (dioritic porphyry) and felsic (granodioritic por-
phyries) rocks observed in polymictic magmatic brec-
cia drill core samples (Fig.3g, h); and (ii) the commonly
observed disequilibrium textures in the GP II, such as

© 2008 The Authors
Journal compilation © 2008 The Society of Resource Geology
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Fig. 7 Selected major element variation diagrams of (a) melt inclusions and (b) whole rock analyses of Mantos Blancos
rocks. The average of melt inclusions data is also plotted for comparison with their host rocks.
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Fig.8 Zircon saturation temperature (Tz) of felsic-
intermediate rocks in the Mantos Blancos district. The
shaded area represents the transition of cold and hot
granites of Miller et al. (2003). (Z) granodiorite por-
phyry I (GP I); (O) GP II; () Rhyolitic dome.

corroded quartz phenocrysts (Fig3f). Although the
disequilibrium textures can be explained by mecha-
nisms of decreasing pressure and/or increasing tem-
perature in the magma chamber, we prefer the second
alternative because the GP II exhibits the highest Tz,
(780-810°C; Fig.8), consistent with a thermal input de-
rived from the diorite intrusion into the felsic magma
system. A scheme of the petrogenetic model for the
Mantos Blancos system is given in Figure 10. It consists
of two magmatic suites with distinct origin: a mantle-
dominated suite represented by diorites, mafic dikes
and GP I, and a crustal-dominated suite represented
by the rhyolitic magmas. Magmas from the two suites
interacted to give rise to GP II and polymictic mag-
matic breccias.

7.3. Metallogenic considerations

Considering that (i) the Jurassic—early Cretaceous mag-
matism in the Coastal Range of northern Chile is char-
acterized by mantle-dominated volcanism (Rogers &
Hawkesworth, 1989; Lucassen ef al., 2002); (ii) the vol-
ume of high-silica rocks (like the rhyolitic dome), of
probably crustal-dominated source, is very restricted
in a regional scale; and (iii) the mineralization in nu-
merous copper deposits (including Mantos Blancos)
hosted in Jurassic volcanic rocks of the Coastal Range,
is coeval with stocks and sills of mainly dioritic com-
position, and are intruded by post-mineralization ba-
salticdikes (Maksaev & Zentilli,2002), the hydrothermal
fluids and associated mineralization in the Mantos
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Fig.9 Lavs La/Yb diagram. The data define two trends:
one dominated by hornblende fractionation (dashed
grey line) and the other dominated by magma mixing
(solid line with tick marks) over imposed to
plagioclase fractionation. Because no REE data are
available from GP II melt inclusions, we chose melt in-
clusion data from the rhyolitic dome (Wittenbrink,
2006) as end-member of the mixing model. The mafic
end-member corresponds to the average of the diorite
samples. Rayleigh fractionation vectors of different
minerals are shown according to crystal-melt partition-
ing data for basic and intermediate magma by Keskin
(2002). The size of the vectors is equal to 50% of crystal-
lization. Note that small vertical apparent trend does
not constitute necessarily an evolution trend. (O)
granodiorite porphyry I (GP I); (®) GP II; (O) diorite;
(#) rhyolitic dome melt inclusion.

Blancos system were probably derived from mafic-
intermediate magmas such as the basaltic dikes and
diorites. Basaltic dikes have also been described in the
Bingham porphyry copper, where they have been con-
sidered as the potential metal source for the mineral-
ization (Keith et al., 1997). A similar case has been
described by Halter et al. (2005) in Bajo La Alumbrera
Cu-Au porphyry. In these two deposits the ore is hosted
by more felsic rocks (Halter et al., 2005).

In the Mantos Blancos Cu deposit the second mag-
matic hydrothermal event was temporally and spatially
associated with the dioritic and granodioritic porphyry
emplacement, and thus is consistent with a magma
mingling process. In this scenario the intrusion of
porphyry diorite magma within a colder and shallow
rhyolitic magma chamber could supply not only heat
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Fig.10 Schematic diagram of the Mantos Blancos petrogenetic model.

and volatiles during quenching but also metals. The
magma mingling processes may have induced the early
release of copper-bearing fluids from the quenched
mafic hydrous magma, contributing to the mineraliza-
tion in the polymictic magmatic hydrothermal brec-
cias, porphyries and rhyolitic dome of the Mantos
Blancos deposit. Although the proportion of felsic/
mafic magma in the interaction process is unknown,
the mixing line of Figure 9 suggests a larger volume of
felsic magma, which is consistent with the quartz
phenocrysts preservation in it.

The slightly radiogenic Sr initial ratios of altered
rocks in Mantos Blancos (Fig.6) resemble those obtained
in hydrothermal calcites of the deposit (Tassinari et al.,
1993). According with Tassinari et al. (1993), this high
Sr initial ratio suggests that hydrothermal fluids were
not entirely magmatic and/or that isotopic equilibrium
between host rocks and the ore-bearing hydrothermal
fluids occurred.

8. Conclusions

In the Mantos Blancos copper deposit the emplace-
ment of dioritic and granodioritic porphyry during the
early Cretaceous was related to the major hypogene
copper sulfide mineralization. Two different trends
of magma evolution were recognized in these rocks,
which resulted in two types of granodioritic por-
phyry: GP I and GP II. The first trend is represented
by mafic dikes, dioritic and GP I porphyries, that
evolved by hornblende-dominated fractionation, from
a mantle-dominated source. The second trend is
represented by dioritic porphyries and GP II. Low-
pressure mixing and mingling of dioritic magmas and
rhyolitic melts of crustal origin are likely for the for-
mation of GP II and polymictic breccias, respectively.
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The MI analyzed in quartz from GP II and in the
polymictic magmatic hydrothermal breccia of the de-
posit are compositionally more evolved than their
host rocks, reinforcing the hypothesis of magma inter-
action as a genetic mechanism. Field, geochemical and
petrographic data in Mantos Blancos deposit point to
an interaction between dioritic and siliceous magmas.
This interaction may cause the release of hydrother-
mal fluids from the higher temperature component,
during quenching.
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Appendix I
Analytical method of Sr-Nd isotopes

Powdered rock samples were weighed into clean Tef-
lon screw-top beakers and spiked with mixed 8Rb-#Sr
and *Sm-15Nd tracers. The samples were completely
dissolved in a 3:1 mixture of 22 N HF/14 N HNOj3 on
a hotplate at approximately 110°C. All solutions were
evaporated to dryness and redissolved in aqua regia,
evaporated again and then rewetted with 2 N HNOs.
Rb, Sr, Sm and Nd were chemically separated using a
tandem column elution scheme, modified from Pin
and Zalduegui (1997). The sample solutions were
transferred to preconditioned small-size (50 pL) Teflon
columns containing Eichrom Sr Resin (Darien, IL, USA),
coupled with a second set of 50 pL columns containing
Eichrom Tru Resin (Eichrom Sr Resin, Darien, IL, USA)
to adsorb the rare earth elements (REE). After collect-
ing the Rb during the first elution step and further
washing with 2N HNOs3, Sr and REE were stripped
from the decoupled columns with 1.3mL of double
deionized water (DDW). The REE cut was directly
eluted onto 1 mL columns containing Eichrom Ln Resin
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(Eichrom Sr Resin, Darien, IL, USA) and washed with
9.5mL of 0.25N HCIL. Nd was then eluted with 4mL
of 0.25N HCI prior to elution of Sm with 2mL of
0.75 HCL

For mass spectrometry, Sr was loaded with TaCls-
HF-H3PO, solution (Birck, 1986) onto W single fila-
ments, and Rb, Sm and Nd loaded with DDW onto
the evaporation ribbon of double-Ta and double-Re
filament assemblages, respectively. All isotopic meas-
urements were performed on a six-collector Finnigan
MAT 261 solid-source mass spectrometer (Finnigan
MAT GmbH, Bremen, Germany) running in static
multicollection mode. Sr isotopic ratios were normal-
ized to 88Sr/86Sr=0.1194 and Nd isotopic ratios nor-
malized to ®Nd/'#Nd=0.7219. Repeated static
measurements of the NBS 987 Sr isotope standard
and the La Jolla Nd standard over the duration of the
present study yielded 8Sr/8Sr=0.710250.00004
(2omean,n=12)and *3Nd /1*Nd = 0.511848 + 0.000009
(20 mean, n=8). Maximum total procedure blanks
(n=6) amounted to 30 pg Sr, 5 pg Rb, and 50 pg Sm
and Nd. They were found to be negligible with re-
spect to the analyzed sample amounts.
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