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ABSTRACT: A continuous model of a metabolic network
including gene regulation to simulate metabolic fluxes dur-
ing batch cultivation of yeast Saccharomyces cerevisiae was
developed. The metabolic network includes reactions of
glycolysis, gluconeogenesis, glycerol and ethanol synthesis
and consumption, the tricarboxylic acid cycle, and protein
synthesis. Carbon sources considered were glucose and then
ethanol synthesized during growth on glucose. The meta-
bolic network has 39 fluxes, which represent the action of 50
enzymes and 64 genes and it is coupled with a gene regula-
tion network which defines enzyme synthesis (activities) and
incorporates regulation by glucose (enzyme induction and
repression), modeled using ordinary differential equations.
The model includes enzyme kinetics, equations that follow
both mass-action law and transport as well as inducible,
repressible, and constitutive enzymes of metabolism. The
model was able to simulate a fermentation of S. cerevisiae
during the exponential growth phase on glucose and the
exponential growth phase on ethanol using only one set of
kinetic parameters. All fluxes in the continuous model
followed the behavior shown by the metabolic flux analysis
(MFA) obtained from experimental results. The differences
obtained between the fluxes given by the model and the
fluxes determined by the MFA do not exceed 25% in 75% of
the cases during exponential growth on glucose, and 20% in
90% of the cases during exponential growth on ethanol.
Furthermore, the adjustment of the fermentation profiles of

biomass, glucose, and ethanol were 95%, 95%, and 79%,
respectively. With these results the simulation was consid-
ered successful. A comparison between the simulation of the
continuous model and the experimental data of the diauxic
yeast fermentation for glucose, biomass, and ethanol, shows
an extremely good match using the parameters found. The
small discrepancies between the fluxes obtained through
MFA and those predicted by the differential equations, as
well as the good match between the profiles of glucose,
biomass, and ethanol, and our simulation, show that this
simple model, that does not rely on complex kinetic expres-
sions, is able to capture the global behavior of the experi-
mental data. Also, the determination of parameters using a
straightforward minimization technique using data at only
two points in time was sufficient to produce a relatively
accurate model. Thus, even with a small amount of experi-
mental data (rates and not concentrations) it was possible to
estimate the parameters minimizing a simple objective
function. The method proposed allows the obtention of
reasonable parameters and concentrations in a system with a
much larger number of unknowns than equations. Hence a
contribution of this study is to present a convenient way to
find in vivo rate parameters to model metabolic and genetic
networks under different conditions.
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Introduction

Mathematical modeling of biological systems, such as
metabolic and genetic networks, is one of the key
methodologies of metabolic engineering (Wiechert, 2002).
It allows understanding and validation of mechanisms
which are involved in metabolism.

Yeast Genome Database: www.yeastgenome.org; Enzyme Database Brenda:

www.brenda.uni-koeln.de.

Correspondence to: J.A. Asenjo

Contract grant sponsor: Fondecyt

Contract grant number: 1061119; 1090156

Contract grant sponsor: Millennium Scientific Initiative (ICM)

Contract grant number: P05-001-F

Received: 12 September 2011; Revision received: 13 March 2012;

Accepted: 14 March 2012

Accepted manuscript online 22 March 2012;

Article first published online 24 April 2012 in Wiley Online Library

(http://onlinelibrary.wiley.com/doi/10.1002/bit.24503/abstract)

DOI 10.1002/bit.24503

� 2012 Wiley Periodicals, Inc. Biotechnology and Bioengineering, Vol. 109, No. 9, September, 2012 2325



Glycolysis, which is considered the heart of basic
metabolism, has been widely studied in yeast using
mathematical models as well as biochemical approximations
(Brusch et al., 2004; Gombert et al., 2001; González et al.,
2003; Hynne et al., 2001; Teusink et al., 2000; Wang and
Hatzimanikatis, 2006), nevertheless few models include
gluconeogenesis (Famili et al., 2003; Rizzi et al., 1997), even
though glycolysis and gluconeogenesis are intimately related
in the sense that there are some enzymes which are involved
in both processes.

During batch growth on glucose Saccharomyces cerevisiae
presents a respirofermentative first phase where cells grow at
their maximum-specific rate; the glucose uptake rate
exceeds the capacity for total oxidation and part of it is
converted to ethanol and other fermentative products.
When glucose is exhausted several genes are activated which
allow cells to use ethanol and other products as energy and
carbon sources (Daran-Lapujade et al., 2004; Dı́az et al.,
2009; González et al., 2003; Rolland et al., 2002), and the
culture enters the respiratory phase. Moreover, yeast cells
use both positive and negative control mechanisms to
regulate enzyme levels in order to accomplish this metabolic
switch. Enzyme levels are regulated at the stage of gene
transcription (repression and induction), mRNA stability,
translation, and protein stability (Rolland et al., 2002;
Santangelo, 2006).

The purpose of this study is to present a continuous
model for simulation and in vivo parameter estimation, in
order to represent the behavior of S. cerevisiae using glucose
and then ethanol as carbon sources using one model and one
set of parameters. The model is constructed using enzyme
kinetics, the mechanisms of gene expression and enzyme
synthesis, as well as data from microarrays. Data from
metabolic flux analysis (MFA) is used to fit the equation
parameters. Rate parameters are calculated using the Law of
Mass Action and Michaelis–Menten kinetics (Bailey and
Ollis, 1986).

Methods and Model System

Genetic Network

S. cerevisiae can use different carbon sources according to
their availability. The presence of different carbon sources
implies that different genes are expressed or repressed.
Control of the genetic network can occur at different stages,
which can include at least the following: DNA transcription,
RNA transport, RNA processing, RNA transduction, and
post-translational modifications (Boube et al., 2002; Dı́az
et al., 2009; Santangelo, 2006). The main mechanisms
involved are:

a) Glucose induction (Glycolytic gene expression): Almost
all glycolytic steps have genes that are expressed with
fermentative and non-fermentative carbon sources.
Nevertheless, the presence of glucose triggers the

induction of the expression of most glycolytic genes and
some glucose transporters, especially in the lower part of
the glycolysis and fermentation pathway (Benanti et al.,
2007; Müller et al., 1995; Özcan et al., 1996; Zhang et al.,
2009). The increase of this glycolytic capacity is essential
for efficient energy generation (Rolland et al., 2002;
Santangelo, 2006). The main gene families induced by
glucose considered were hxt, glk, pfk, pdc, adh, pda, pdb,
lpd, pdx, and pyc.

b) Glucose repression (Gluconeogenic gene expression):
This pathway is responsible for the downregulation of
respiration, gluconeogenesis, and the transport and
catabolic capacity of alternative sugars during growth on
glucose (Gancedo, 1998; Özcan et al., 1998; Rolland et al.,
2002; Schüller, 2003). The main gene families repressed
by glucose considered were fbp, adh2, ald2, acs, pck1, cit2,
and idp.

In order to complete the information of the regulatory
genetic network in S. cerevisiae, information from the study
on gene expression in yeast of Dı́az et al. (2009) was used.

Metabolic Network

The reaction network was constructed to include glycolysis,
gluconeogenesis, tricarboxylic acid (TCA) cycle, and
fermentation reactions. Main protein production pathways
were taken into consideration according to the metabolic
network presented by González et al. (2003). The pentose
phosphate pathway (PPP) was not included since González
et al. (2003) showed that it represented relatively small fluxes
compared to the others considered in the network. Figure 1
shows the network used in the present study.

Interaction Between Metabolic Network and
Regulatory Genetic Network

The genetic regulatory network interacts with the metabolic
network (Cox et al., 2005; Gagneur and Casari, 2005) since
the expression of genes, synthesizing enzymes, determines
the terminal velocities of the fluxes of the metabolic routes.
On the other hand, the concentration of the internal
metabolites of the metabolic network can regulate gene
expression, thus influencing the regulatory genetic network.
Asenjo et al. (2007) investigated a discrete mathematical
model of gene regulation of metabolism in Escherichia coli
using three different carbon sources. Figure 2 shows the
interactions that take place including glucose induction and
glucose repression.

Rate Equations of the System and Enzyme Synthesis

Hynne et al. (2001) proposed a method to compute some
kinetic constants when the expression for the dynamics are
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rational functions. Hynne’s method assumes that the
metabolite concentrations in the cell are known or can be
reasonably estimated. They also assumed that the constants
in the denominator of the rational expressions are known.
When all this information is available, the determination of
the kinetic constants appearing in the numerator reduces to
a linear algebra problem. However, this is not usually the
case since not all the data are fully available in the literature.
Many kinetic constants have been computed for in vitro
conditions and not in vivo and measured concentrations of
metabolites vary from one publication to another even if the
experimental conditions are relatively similar (Albe et al.,
1990; Lagunas and Gancedo, 1983; Theobald et al., 1997).

To overcome some of these difficulties, simplified
reaction dynamics were used based in most cases on
mass-action kinetics. Given the limited quantity and quality
of experimental data, parts of the problem of reverse
engineering kinetic constants and concentrations is under-
determined, while others are over-determined. To work

around these problems, reasonable regularization condi-
tions were imposed and then the resulting non-linear
problem was solved using a standard iterative numerical
algorithm.

In the case of the enzymatic reactions, it was considered
that the rate equations correspond to kinetics of the
Michaelis–Menten type. As virtually all reaction substrates
in the cell are at relatively low concentrations (Albe et al.,
1990; Lagunas and Gancedo, 1983; Theobald et al., 1997) it
can be safely assumed that the enzyme catalyzed reactions
are of first order with respect to the substrate. This is an
important simplification given the fact that metabolite
concentrations in the cell are relatively low, and in most
cases lower or similar than the values of Km. For instance in
Equations (8 and 9), the Michaelis constants (Km) found by
previous authors are 1.23 and 4.0mM, respectively (0.21 and

Figure 1. Reaction network of the model. [Color figure can be seen in the online

version of this article, available at wileyonlinelibrary.com]

Figure 2. Interactions between metabolic network and regulatory genetic

network. Continuous lines represent reactions in the metabolic network; Broken lines

represent transcription factors or enzymes; Nodes represent transcription factors in

the genetic network. Different colors represent different genetic regulation mechan-

isms. Blue: glucose repression (Negative regulation. Gluconeogenic genes); Red:

glucose induction (Positive regulation. Glycolytic genes). [Color figure can be seen in

the online version of this article, available at wileyonlinelibrary.com]
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0.68 g/L; Hynne et al., 2001 and Rizzi et al., 1997), which
are similar or even higher than the concentrations of
metabolites of 0.24 and 0.12 g/L on glucose and on ethanol
for DHAP in our work (Eq. 8), and of 0.26 and 0.13 g/L on
glucose and ethanol for GAP (Eq. 9). For the purposes of
this study, where the aim is to carry out simulations at
steady-state, with constant metabolite concentrations but at
different conditions, the further complexity of complete
Michaelis–Menten kinetics does not appear necessary. This
will be confirmed with the quality of the results obtained.
Hence, the enzyme kinetics correspond to an irreversible
reaction with a single substrate as shown in the following
equation:

v ¼ k½E�½S� (1)

where v is the rate of the enzymatic reaction, [E] is the
enzyme concentration, and [S] the substrate concentration.
This last expression can be rewritten considering a
normalized enzymatic factor, e, in the following way:

v ¼ k0
½E�

½E�max

½S� (2)

v ¼ ek0½S� (3)

where e ¼ ½E�
½E�max

For constitutive enzymatic reactions it will be considered
that e¼ 1.

The Method in Detail

The continuous model is a system of ordinary differential
equations that follow a standard form

dC

dt
¼ S� v (4)

where S is the stoichiometric matrix and v is a vector of
velocities. Mass-action kinetics were assumed for the
internal non-enzymatic reactions of the cell and simplified
Michaelis–Menten kinetics (first order) for the internal
enzymatic reactions. Most of the enzymatic reactions have
constitutive enzyme expression. These rate equations of
the model are presented in Table I. All equations that
include the parameter e1 correspond to enzymes that are
glucose-induced and those that include e2 are glucose
repressed. The rest are either constitutive enzymes or
transport equations or mass-action law type. These
expressions are augmented with some extra equations to
model biomass production and ethanol, glucose, and
glycerol transport to/from the cell membrane from/to the
extracellular medium. There are also equations to model
gene expression by mRNA and enzyme synthesis. These
equations will be described later.

The genes and enzymes that participate in each reaction
are shown in Appendix 1. To simplify the model, every
reaction has been considered to be dependent on one
enzyme synthesized by one molecule of mRNA. This is a

normal simplification as usually one enzyme in a particular
reaction of the metabolism can be considered to be the one
that controls the specific reaction. This would be a normal
assumption for a simplified model such as ours and should
not affect the model outcome.

To define the values of enzyme expression, information of
the regulatory genetic network has been considered. Most
of the gluconeogenic genes are repressed by the presence of
glucose, which means that the enzymes are not being
synthesized during this phase and that they are expressed
when glucose is depleted. A number of glycolytic and
fermentative enzymes behave in exactly the opposite way,
being induced by the presence of glucose (Benanti et al.,
2007; Gancedo, 1998; Müller et al., 1995; Özcan et al., 1996,
1998; Rolland et al., 2002; Schüller, 2003). The rest are
considered to have a constitutive expression. This process
was modeled considering the mRNA synthesis rate regulated
by glucose and the enzyme synthesis rate, based partially
on previous models (Alon, 2007; Bailey and Ollis, 1986;
Hatzimanikatis, 2010; Jacob and Monod, 1961; Kaushik
et al., 1979; Yagil and Yagil, 1971).

Each enzyme expression rate is determined by its mRNA
concentration and its degradation rate, as follows:

d½E�
dt

¼ Kenz1½mRNA� � Kenz2½E� (5)

For the purposes of our model, we only need to model the
e enzymatic factor. The value of e must go from 0 (no
expression) to 1 (maximum expression).

The transition of the e factors between 0 and 1 is very fast
compared to the time of the complete simulation. Therefore,
a simple model like a Hill function, suffices. The simplified
model for enzyme synthesis is:

For induction:

d ½mRNA1�ð Þ
dt

¼ KmRNA
½Glc�a

0:05a þ ½Glc�a � ½mRNA1�
� �

(6)

d½e1�
dt

¼ Kenz ½mRNA1� � ½e1�ð Þ (7)

For repression:

d ½mRNA2�ð Þ
dt

¼ KmRNA
0:05a

0:05a þ ½Glc�a � ½mRNA2�
� �

(8)

d½e2�
dt

¼ Kenz ½mRNA2� � ½e2�ð Þ (9)

The value 0.05 [mmol/g cell] is the threshold of glucose
concentration at which the transition occurs. Hence, when
[Glc]< 0.05 [mmol/g cell] it can be considered that there is
no more glucose available. The values for KmRNA and Kenz

are chosen so the mean degradation times for mRNA and
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Table I. Rate equations.

1 VinGlc Glcx0 $ Glcx

KvinGlc
½Glcx0 �
Kconv

� ½Glcx�
� �

2 VGlcTrans Glcx ! Glc
KVGlc1 ½Glcx �
KVGlc2þ½Glcx �

3 VHK GlcþATP ! G6PþADP
e1KvHK½Glc�½ATP�

4 VPGI G6P $ F6P
KvPGI;f½G6P� � KvPGI;r½F6P�

5 VPFK F6PþATP ! FBPþADP
e1KvPFK½F6P�½ATP�

6 VFBP FBPþADP ! F6PþATP
e2KvFBP½FBP�½ADP�

7 VALD FBP $ GAPþDHAP
KvALD;f½FBP� � KvALD;r½DHAP�

8 VTIM DHAP $ GAP
KvTIM;f½DHAP� � KvTIM;r½GAP�

9 VGAPDH GAPþNAD $ BPGþNADH
KvGAPDH;f½GAP�½NAD� � KvGAPDH;r½BPG�½NADH�

10 VIpPEP BPGþADP $ PEPþATP
KvlpPEP;f½BPG�½ADP� � KvlpPEP;r½PEP�½ATP�

11 VPK PEPþADP ! PyrþATP

KvPK½PEP�½ADP�
12 VPDC Pyr ! ACAþ CO2

e1KvPDC½Pyr�
13 VADH ACAþ 2NADH ! EtOHþ 2NAD

e1KvADH½ACA�½NADH�2
14 VADH2 EtOHþ 2NAD ! ACAþ 2NADH

e2KvADH2½EtOH�½NAD�2
15 VdifEtoH EtOH $ EtOHx

KvdifEtOH;f½EtOH� � KvdifEtOH;r½EtOHx�
16 VoutEtoH EtOHx $ EtOHx0

KvoutEtOH ½EtOHx� � ½EtOHx0 �
Kconv

� �
17 VIpGlyc DHAPþNADHþADP ! GlycþNADþATP

KvlpDlyc½DHAP�
18 VdifFlyc Glyc $ Glycx

KvdifGlyc ½Glyc� � ½Glycx�
� �

19 VoutGlyc Glycx ! Glycx0
KvoutGlyc½Glycx�

20 Vstorage G6PþATP ! CARBþADP
Kvstorage½ATP�½G6P�

21 VALD2 ACAþNAD ! AcetatþNADH
e2KvALD2½ACA�½NAD�

22 VACS Acetatþ 2ATPþ CoA ! ACoAþ 2ADP

e2KvACS½Acetat�½ATP�2½CoA�
23 VPDH PyrþNADþ CoA ! ACoAþNADHþ CO2

e1KvPDH½Pyr�½NAD�½CoA�
24 VPYC PyrþATPþ CO2 ! OACþADP

e1KvPYC½Pyr�½ATP�
25 VCIT1 AcoAþOAC ! Citþ CoA

KvCIT1½ACoA�½OAC�
26 VACO Cit ! Isocit

KvACO½Cit�
27 VIDH IsocitþNAD ! AKGþNADHþ CO2

KvIDH½Isocit�½NAD�
28 VKGD AKGþNAD ! SucþNADHþ CO2

KvKGD½AKG�½NAD�
29 VSDH Suc ! Fum

KvSDH½Suc�
30 VFUM Fum ! Mal

KvFUM½Fum�
31 VMDG2 MalþNAD ! OACþNADH

KvMDDH2½Mal�½NAD�
(Continued )
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the enzymes are in the order of minutes. The values for
KmRNA and Kenz and a used are shown in Table II.

Most equations in the model follow the ðdC=dtÞ ¼ S� v

formulation, where v is obtained using the Law of
Mass Action. However, some do not, and enzyme synthesis
is one of those exceptions. The other exceptions are the
equations that account for glucose and ethanol transport
between the medium and the cell membrane. The glucose
equation is:

dGlcX0

dt
¼ �KvinGlc

GlcX0

Kconv
� GlcX

� �
Biomass (10)

Kconv serves two purposes, it captures the equilibrium
constant of the transport process and also does a conversion
of units. This conversion is needed because GlcX0 is in g/L,
while GlcX is in mmol/g cell. The equation that describes
ethanol transport between the cell membrane and the
growth medium and vice versa is:

dEtOHX0

dt
¼ KvoutEtOH EtOHX � EtOHX0

Kconv

� �
Biomass1:9

(11)

The experimental data (González et al., 2003) shows that
ethanol consumption is proportional to biomass to a power
of ca. 1.9–2.0. The biomass equation is:

dBiomass

dt
¼ Kyield � vPROT � Biomass (12)

where Kyield ¼ K
g
yield on glucose and Kyield ¼

Ke
yieldon ethanol. The values of these parameters are also

shown in Table II.
We assumed that the rate of biomass production is

proportional to the protein production rate. The experi-
mental data (González et al., 2003) shows that the yield
constant is different when the cells are growing on glucose or
on ethanol.

Finally, vGlcTrans is the rate at which glucose is
transferred from the cell membrane to the cytoplasm:

vGlcTrans ¼ 5 mmol=g cell h½ � � GlcX

0:05 mmol=g cell½ � þ GlcX
(13)

In González’s work (2003) it is seen that this rate is
roughly 5 [mmol/g cell] regardless of the amount of glucose
available. The rate, of course, must drop to zero when all the
glucose in the growth media has been depleted. The function
we use for vGlcTrans gives a constant value when
[GlcX]� 0.005 [mmol/g cell].

By analyzing the left kernel of the stoichiometric matrix s,
we determine that our differential equations preserve three
quantities: ATPþADP, NADþNADH, and ACoAþCoA.
This is important for the determination of all the model’s
parameters.

Results and Discussion

As a result of this work a metabolic network with 39 fluxes
that include glycolysis, TCA cycle, and gluconeogenesis, as
well as fluxes towards the routes of protein production and
the PPP was continuously modeled, including gene
regulation of enzyme synthesis. These fluxes represent the
interaction of 50 enzymes and 64 genes.

Metabolic Flux Analysis (MFA) Phase

The first step is to determine the internal network fluxes
from somemeasured external fluxes. All the measured fluxes

Table I. (Continued )

32 VPCK1 OACþATP ! PEPþADPþ CO2

e2KvPCK1½OAC�½ATP�
33 VCIT2 ACoA ! CicloGlyoxyþ CoA

e2kvCIT2½ACoA�
34 VIDP CicloGlyoxy ! AKG

e2KvIDP½CicloGlyoxy�
35 VPROT 0:1246Pyrþ 0:10830ACþ 0:138BPGþ 0:1553AKGþ 4:3ATP ! PROTþ 4:3ADP

KPROT1½BPG�½ATP� þ KPROT2½PYR�½ATP� þ KPROT3½AKG�½ATP� þ KPROT4½OAC�½ATP�
36 VPPP G6PþATP ! PPPþADPþ CO2

KvPPP½G6P�½ATP�
37 VconsNADH 2NADHþ 2:48ADPþO2 ! 2NADþ 2:48ATP

KvconsNADH½NADH�2½ADP�2
38 Vconsum ATP ! ADP

Kvconsum½ATP�
39 VCO2 CO2 $ CO2x0

KvCO2 ½CO2� � ½CO2x0�ð Þ

Table II. Values of constants used in the expressions for enzyme

induction and repression and for biomass growing on glucose and ethanol.

KmRNA 25.0

Kenz 12.5

a 10.0

K
g
yield

0.317

Ke
yield 0.173
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used in this study were from González et al. (2003)
taken from the raw data when cells are in steady-state,
growing exponentially on glucose, and then exponentially
on ethanol at a constant-specific growth rate. Hence in a
small Dt (period of time) a pseudo stationary state of
the network can be assumed. The MFA problem was
resolved using the metabolic network proposed in this
study, at two points in time, one during the exponential
growth on glucose phase and the other during the
exponential growth on ethanol. These vectors of fluxes
will be called fg and fe, and the times at which the fluxes
were sampled will be denoted as tg and te, respectively. The
results of the fluxes of the simplified model of MFA are
shown in Figure 3.

Determination of Kinetic Parameters and Metabolite
Concentrations

After computing fg and fe, a vector of kinetic constants K and
vectors of concentrations Cg and Ce, were determined such
that

V K; Cg

� � ¼ fg

V K; Ceð Þ ¼ fe

where V is the vector of kinetic expressions, and Cg and Ce

are vectors of concentrations at tg and te. The kinetic
expressions are shown in Table II. There are a total of
72 equations and 120 unknowns in this system. In the
cases where reactions are defined as reversible, the ratio
of both constants is equal to the equilibrium constant of
the reaction. In general, this set of equations may not
have a solution, especially when the vectors fg and fe contain
some error. Since fg and fe were computed from
experimental data they should be considered estimated
quantities. The standard technique to handle indetermina-
tion is minimizing some form of error expression,
sometimes called a residue. The number of unknowns is
much larger than the number of equations, thus we
expect some constants and/or concentrations to be under-
determined. Ideally, one could use measurements of
concentrations of all metabolites in the cell to reduce
the number of degrees of freedom. This would also have
the advantage of turning our non-linear system of equations
into a linear one. Unfortunately, a number of metabolite
concentrations are not available in the literature and/or
they vary more than one order of magnitude in some
cases even if experimental conditions are relatively
similar (Albe et al., 1990; Lagunas and Gancedo, 1983;
Theobald et al., 1997). One approach to find a solution
is to impose some regularization conditions that favor
answers with desirable properties. In our case, we would
like concentrations and constants not to be ‘‘too large’’ as
they would be physically unrealistic conditions for a
biological system. Also, the kinetic constants cannot be
‘‘too small,’’ as this would considerably slow down the
convergence rate to equilibrium. A final constraint we have

to enforce is the preservation of some quantities. In our
model, for example, ATPþADP is preserved, therefore,
Cg,ATPþCg,ADP¼Ce,ATPþCe,ATP.

Such a procedure, described in detail below, can be used
for regularization of inverse problems such as the present
one, particularly when there are more unknowns than
equations (Engl et al., 2000).

The final expression for the residue we wish to minimize
is

R ¼ a2
w

X
i

Ki;f � ri;f � Ki;b � ri;b
fMFA;i

� 1

� �2

þ a priori

þ g2
w

X
k

C2
kþd2w

X
l

Kl � 5ð Þ2 þ conservation (14)

where

a priori ¼ ’2
w

"�
CGlcX0;g � ĈGlcX0;g

�2

þ
�
CGlcX;g � ĈGlcX0;g

kconv
� 0:995

�2

þ
�
CEtOHX0;e � ĈEtOHX0;e

�2

#

þ b2
w

�
C2
GlcX0;e þ C2

GlcX;e

�
(15)

conservation ¼ "2w

�
CATP;g þ CADP;g � CATP;e � CADP;e

� �2
þ CNAD;g þ CNADH;g � CNAD;e � CNADH;e

� �2
þ CCoA;g þ CACoA;g � CCoA;e � CACoA;e

� �2�
(16)

The terms of R associated with aw are intended to
minimize the relative error of the fluxes predicted by
the continuous model. More precisely, the ratio between
the ith flux at equilibrium of the ODE system
(Ki,f� ri,f�Ki,b� ri,b) and the value obtained by the MFA
( fMFA,i) should be close to one. Similarly, we added terms
corresponding to the regularization conditions. The a priori
term is intended to make the concentrations predicted by
the model similar to those given by our somewhat simplified
model for the MFA shown in Figure 3, which is based on the
experimental data of González et al. (2003). The terms
ĈGlcX0;g , ĈGlcX0;g , and ĈEtOHX0;e are measured quantities,
while the variables without the hat are variables of the ODE.
The last terms correspond to the preservation of quantities.
The 0.995 factor used in R was a simple mathematical
consideration to force CGlcX,g to be slightly lower than
ĈGlcX0;g=Kconv, which indirectly forces KvinGlc to have a large
value. The terms multiplied by g2w and d2w avoid concentra-
tions being too large, while making it undesirable for a rate
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Figure 3. Distribution of metabolic fluxes at different growth phases: (1) exponential growth on glucose (top values) and (2) exponential growth on ethanol (bottom values in

italics). Flux values are expressed in mmol/g cell h. [Color figure can be seen in the online version of this article, available at wileyonlinelibrary.com]
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parameter to be far away from 5. Too small a rate parameter
increases the time the system needs to reach equilibrium.
Our choice of 5 as a desired valued is somewhat arbitrary,
but based on the timescale of the problem at hand. In any
case, the value we used for dw is very small, so this constraint
does not play an important role unless a rate constant is
completely undetermined. The terms that define the
conservation simply state that the preserved quantities
must be the same at tg and te.

The coefficients aw, bw, gw, dw, ew, and ww are the weights
of each constraint. The exact values used for weights are not
critical as long as their relative magnitudes represent how
important it is to satisfy each constraint. For example, since
we know for sure that some quantities are preserved, we
assigned a large value to ew. For practical purposes, this acts
as a ‘‘hard’’ constraint, enforcing equality. For the
regularization conditions we imposed for concentrations
and kinetic rates, we used much smaller coefficients (gw and
dw), making those constraints fairly weak. Table III shows
the values of the weight coefficients that were used.

R was minimized using Matlab’s function lsqnlin. The
objective function has multiple local minima. This was
handled by running the optimizer 100 times starting from a
randomly chosen point. The chosen solution corresponds to
the smallest residue found. The kinetic constants found,
which are shown in Table IV, are the result of this
optimization. Another result of the optimization were the
vectors Cg and Ce, which are estimations of the equilibrium
points of the system when growing on glucose and ethanol,
respectively.

Concerning the parameters used for the enzymatic
reactions, the constants a, KmRNA, and Kenz are used to
model the presence or absence of certain enzymes. The
values used for KmRNA and Kenz were calculated so the half
degradation times for the mRNA and the enzymes is about
2min.

The yield coefficients were calculated based on
the experimental results of González (2003), where the
maximum-specific growth rate during the glucose phase
was mmax¼ 0.159 [1/h], and the maximum-specific growth
rate during the ethanol phase was mmax¼ 0.070 [1/h], which
are both constants. From Equation (12).

dBiomass

dt
¼ Kyield � vPROT� Biomass

it is easy to estimate values for K
g
yield and Ke

yield because the
values of vPROT and Biomass at tg and te, are known during

exponential growth

dBiomass

dt
¼ mmax � Biomass (17)

Therefore,

Kyield ¼ mmax

vPROT
(18)

The calculated values of K
g
yield and Ke

yield are 0.408 and
0.163 respectively. Both K

g
yield and Ke

yield (Table II) were

Table III. Weight coefficients and their values.

Weight coefficient Value

aw 1.0

bw 0.1

gw 0.01

dw 0.0001

ew 150

ww 10,000

Table IV. Kinetic constants of the model.

KvinGlc 363

Kconv 32.0

KvGlc1 5.00

KvGlc2 0.05

KvHK 33.2

KvPGI,f 1470

KvPGI,r 264

KvPFK 20.7

KvFBP 6.47

KALD,f 356

KvALD,r 471

KvTIM,f 841

KvTim,r 773

KvGAPDH,f 59.1

KvGAPDH,r 618

KvlpPEP,f 825

KvlpPEP,r 168

KvPK 1.73

KvPDC 279

KvADH 33.3

KvADH2 41.4

KvdifEtoH,f 542

KvdifEtoH,r 309

KvoutEtoH,f 8.05

KvlpGlyc 2.76

KvdifGlyc 14.6

KvoutGlyc 18.0

Kvstorage 7.50

KvALD2 26.0

KvACS 74.6

KvPDH 142

KvPYC 23.5

KvCIT1 97.8

KvACO 17.1

KvIDH 31.1

KvKGD 232

KvSDH 24.7

KvFUM 24.0

KvMDH2 25.1

KvPCK1 106

KvCIT2 3.59

KvIDP 16.9

KvPROT1 1.03

KvPROT2 9.81

KvPROT3 12.4

KvPROT4 9.36

KvPPP 18.9

KvconsNADH 9.34

Kvconsum 11.9

KvCO2 51.2
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adjusted so that the model adequately fitted the experimen-
tal data over the whole period of both exponential phases on
glucose and on ethanol.

Model Validation

After the determination of the model parameters, we
integrated the model and compared its output against the
experimental results obtained by MFA (Fig. 3). Simulation
of the ordinary differential equations was done using
MatLab’s ode23tb function because of the ODEs exhibiting
stiffness. The initial concentrations were the values of the
Cg vector obtained by the residue minimization process
described above. As mentioned before a number of
metabolite concentrations are not available or vary more
than one order of magnitude in the published literature
(Albe et al., 1990; Lagunas and Gancedo, 1983; Theobald
et al., 1997). Howewer, those obtained in the simulations
carried out using our model are very similar to those
obtained by Albe et al. (1990) and Theobald et al. (1997). For
instance, in our simulations we obtained ATP concentra-
tions of 0.52 g/L in the glucose phase and 0.61 g/L in the
ethanol phase, whereas Albe et al. obtained values of 0.76 g/L
(1.5mM) and Theobald et al. 1.06 g/L (2.1mM) in the
cytoplasm. For NAD our values where 1.3 g/L in the glucose
phase and 0.55 g/L in the ethanol phase, and Albe obtained
0.71 g/L (1.3mM) and Theobald 0.71 g/L (1.07mM) in the
cytoplasm. For citrate our values where 0.11 g/L on glucose
and 0.07 on ethanol, whereas for Albe it was 0.13 g/L
(0.7mM). Clearly, our values are within the same order of
magnitude as those obtained by Albe and Theobald.

Figures 4 and 5 show the qualitative behavior of the model
during exponential growth on glucose and during exponen-
tial growth on ethanol without glucose, respectively. All
fluxes followed the behavior shown by the MFA obtained
from experimental results both when cells were growing on
glucose or ethanol. Tables V and VI show how well the
fluxes, computed with the rate constants determined, shown
in Table IV, and using the model, match the fluxes obtained
from the MFA during the exponential growth on glucose
and ethanol, respectively (Fig. 3).

In Figures 4 (glucose) and 5 (ethanol), it can be seen that
the fluxes shown when cells are growing on glucose (Fig. 4)
and on ethanol (Fig. 5) exhibit the direction expected from
the MFA (Fig. 3). Similarly, the values obtained in this work
by a somewhat simplifiedmetabolic network usingMFA and
those obtained using the continuous model were extremely
similar in most cases during growth on glucose and ethanol.
Very few values show discrepancies (Tables V and VI). The
model was able to simulate a fermentation of S. cerevisiae
during exponential growth on glucose and exponential
growth on ethanol. The differences obtained between the
fluxes given by the model and the fluxes determined by
the MFA do not exceed 25% in 75% of the cases during
exponential growth on glucose, and 20% in 90% of the cases
during exponential growth on ethanol.

Figure 6a shows the typical behavior of a glucose-induced
enzyme (hexokinase; HK) and a glucose repressed enzyme
synthesis (fructose biphosphatase; FBP) during batch
fermentation. Figure 6b shows experimental data of the
diauxic yeast fermentation for glucose, biomass, and
ethanol, and the simulation of the continuous model for
the whole batch fermentation which shows an extremely
good match between the experimental data and the
continuous model with the parameters found. The
adjustment of the profiles of biomass, glucose, and ethanol
were 95%, 95%, and 79%, respectively. With these results
the simulation was considered successful.

The small discrepancies between the fluxes obtained
through MFA and those predicted by the differential
equations, as well as the good match between the profiles of
glucose, biomass, and ethanol, and the simulation show that
this simple model, that does not rely on complex kinetic
expressions, is able to capture the global behavior of the
experimental data. Also, the determination of parameters
using a straightforward minimization technique using data

Figure 4. Qualitative behavior of the model during the exponential growth on

glucose phase. Arrows correspond to active metabolic fluxes. [Color figure can be

seen in the online version of this article, available at wileyonlinelibrary.com]
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at only two time points was sufficient to produce a relatively
accurate model. Thus, even with a relatively small amount
of experimental data (rates and not concentrations) it was
possible to estimate the parameters minimizing a simple
objective function. It should be realized that the method
proposed allows the obtention of reasonable parameters and
concentrations in a system with a much larger number of
unknowns (120) than equations (72).

The validity of the model has also been tested to be
predictive beyond the shift from glucose to ethanol
consumption. This was done by testing the effects of
deleting the Snf1 and the Mig1 genes. The results have been
compared with those reported in the literature (Gancedo,
1998; Klein et al., 1998; Soontorngun et al., 2007). The effect
on four of the genes that are directly influenced by Snf1 and
Mig1 which are fbp1, adh2, pck1, and idp2 (Table A1) was
compared, and in all cases the simulation results obtained,
with no glucose repression effect, and thus an important
increase in gene expression, were identical to those reported
in the literature. The other five genes, also regulated by Snf1
and Mig1 in our model, namely ald2, ald3, acs1, acs2, and
cit2 show exactly the same behavior in the simulation.

Previous modeling approaches using continuous model-
ing and differential equations for the metabolic network
mainly correspond to the work carried out by the group of
Reuss (Rizzi et al., 1997; Theobald et al., 1997), which did
not consider gene regulation of enzymes. Also, in such a
continuous model, kinetic parameters of the reactions will
change for each different set of conditions such as those
when cells are growing on glucose or on ethanol. The only

Table V. Comparison between fluxes given by MFA and the model during exponential growth on glucose and their difference�.

vinGlc vGlcTrans vHK vPGl vPFK vFBP vALD vTIM

Model 4.63 4.87 4.82 3.90 3.85 0.00 3.81 1.56

MFA 4.89 4.89 4.89 3.90 3.90 0.00 3.90 2.66

Difference [%] 0.69 0.00 0.05 0.00 0.03 0.00 0.10 22.74

vGAPDH vIpPEP vPK vPDC vADH vADH2 vdifEtOH voutEtOH

Model 5.34 5.29 5.18 3.44 3.43 0.00 3.29 3.05

MFA 6.56 6.46 5.46 4.27 4.27 0.00 4.27 4.27

Difference [%] 11.34 10.60 12.68 8.07 8.26 0.00 11.25 17.43

vIpGlyc vdifGlyc voutGlyc vstorage vALD2 vACS vPDH vPYC

Mudel 2.23 2.22 2.22 0.26 0.00 0.00 1.58 0.11

MFA 1.24 1.24 1.24 0.24 0.00 0.00 1.91 0.19

Difference [%] 21.98 21.63 21.63 0.08 0.00 0.00 2.85 1.68

vCIT1 vACO vIDH vKGD vSDH vFUM vMDH2 vPCKl

Mudel 1.57 1.57 1.57 1.51 1.51 1.51 1.51 0.00

MFA 1.91 1.91 1.91 1.80 1.80 1.80 1.80 0.00

Difference [%] 3.03 3.03 3.03 2.34 2.34 2.34 2.34 0.00

vCIT2 VIDP vPROT vPPP vconsNADH vconsum vOUC02

Model 0.00 0.00 0.39 0.65 1.21 4.34 8.64

MFA 0.00 0.00 0.71 0.75 2.10 6.35 10.50

Difference [%] 0.00 0.00 7.21 0.67 18.86 31.81 16.47

The flux values are given in mmol/g cell h.
�The differences were calculated by the mean square error normalized by the maximum flux value given by the MFA or the model:

EðfMFA; fmodelÞ% ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfMFA�fmodelÞ2

p
maxðfMFA;fmodelÞ � 100.

Figure 5. Qualitative behavior of the model during the exponential growth on

ethanol phase, without glucose. Arrows correspond to active metabolic fluxes. [Color

figure can be seen in the online version of this article, available at wileyonlinelibrary.

com]
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model that considered the interaction of the genetic
regulatory network and its interaction with the metabolic
network has been that of Asenjo et al. (2007) which is a
discrete model. This study presents a continuous model that
includes the presence of genes, the regulation of the
synthesis of enzymes by induction, and repression and their
influence on the main reactions of the metabolism of
S. cerevisiae. In addition, in this model, the same set of
parameters is used for the different conditions such as
growth on glucose or on ethanol.

Conclusions

The continuous mathematical model for the metabolic
network, incorporating the information of the genetic
regulatory network, allows a quantitative description of
the behavior of S. cerevisiae during growth on glucose
and ethanol. The metabolic network has 39 fluxes, which
represent the action of 50 enzymes and 64 genes. The model
includes enzyme kinetics, equations that follow both mass-
action law and transport as well as inducible, repressible,
and constitutive enzymes of the metabolism.

The model was able to simulate a fermentation of
S. cerevisiae during the exponential growth phase on glucose
and the exponential growth phase on ethanol using only one
set of kinetic parameters. All fluxes in the continuous model
followed the behavior shown by the MFA obtained from
experimental results. The differences between the fluxes

Table VI. Comparison between fluxes given by MFA and the model during exponential growth on ethanol and their difference�.

vinGlc vGlcTrans vHK vPGI vPFK vFBP vALD vTIM

Model 0.00 0.00 0.00 �0.94 0.01 0.87 0.78 �1.15

MFA 0.00 0.00 0.00 �0.65 0.00 0.65 0.65 �0.93

Difference [%] 0.00 0.00 0.00 8.95 0.50 2.78 1.08 2.10

vGAPDH vIpPEP vPK vPDC vADH vADH2 vdifEtOH voutEtOH

Model �1.88 �1.94 0.08 0.01 0.03 2.84 �2.62 �2.27

MFA �1.58 �1.64 0.05 0.00 0.00 3.07 �3.07 �3.07

Difference [%] 2.39 2.32 0.56 0.50 1.30 0.86 3.30 10.42

vIpGlyc vdifGlyc voutGlyc vstorage vALD2 vACS vPDH vPYC

Mode 0.43 0.44 0.45 0.27 2.92 2.98 0.00 0.00

MFA 0.28 0.28 0.28 0.21 3.07 3.07 0.00 0.00

Difference [%] 2.62 2.91 3.21 0.67 0.37 0.13 0.00 0.00

vCITl vACO vIDH vKGD vSDH vFUM vMDH2 vPCKl

Model 1.44 1.49 1.58 3.25 3.20 3.27 3.49 2.03

MFA 1.26 1.26 1.26 3.00 3.00 3.00 3.00 1.69

Difference [%] 1.13 1.78 3.24 0.96 0.63 1.11 3.44 2.85

vCIT2 vIDP vPROT vPPP vconsNADH vconsum voutCO2

Mode 1.60 1.61 0.43 0.69 7.37 6.94 7.52

MFA 1.82 1.81 0.43 0.44 7.30 7.10 6.39

Difference [%] 1.33 1.10 0.00 4.53 0.03 0.18 8.49

The flux values are given in mmol/g cell h.
�The differences were calculated by the mean square error normalized by the maximum flux value given by the MFA or the model:

EðfMFA; fmodelÞ% ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfMFA�fmodelÞ2

p
maxðfMFA ;fmodelÞ � 100.
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Figure 6. a: Enzymatic expression regulated by glucose during the batch

fermentation. HK, hexokinase (induced); FBP, fructose bisphosphatase (repressed).

b: Model simulation. Biomass, glucose, and ethanol profiles during a whole batch

fermentation. Profiles given by the model (continuous lines) and its comparison to the

experimental data. Experimental results are from González et al. (2003). [Color figure

can be seen in the online version of this article, available at wileyonlinelibrary.com]
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given by the model and the fluxes determined by the MFA
do not exceed 25% in 75% of the cases during exponential
growth on glucose, and 20% in 90% of the cases during
exponential growth on ethanol. Furthermore, the adjust-
ment of the profiles of biomass, glucose, and ethanol were
95%, 95%, and 79%, respectively. With these results the
simulation was considered successful. In addition, the effect
of deleting genes Snf1 and Mig1 in the model showed it
to be predictive beyond the shift from glucose to ethanol
consumption.

The small discrepancies between the fluxes obtained
through MFA and those predicted by the differential
equations, as well as the good match between the profiles of
glucose, biomass, and ethanol, and our simulation show that
this simple model, that does not rely on complex kinetic
expressions, is able to capture the global behavior of the
experimental data. Also, the determination of parameters
using a straightforward minimization technique using data
at only two points in time was sufficient to produce a
relatively accurate model. Thus, even with a relatively small
amount of experimental data (rates and not concentrations)
it was possible to estimate the parameters minimizing
a simple objective function. Hence, a contribution of this
study consists of presenting a convenient way to find in vivo
rate parameters to model metabolic and genetic networks
under different conditions. It should be realized that the
method proposed allows the obtention of reasonable
parameters and concentrations in a system with a much
larger number of unknowns (120) than equations (72).

Nomenclature

[A] concentration of metabolite A

[S] substrate concentration

[E] enzyme concentration

[mRNA] mRNA concentration

[O] operator concentration

C concentration

S stoichometric matrix

v rate

K rate parameter

e relative enzyme concentration, takes values

between 0 and 1.

Kenz enzyme degradation constant

KmRNA mRNA degradation constant

a Hill factor

kr regulation constant

Kyield yield coefficient

f flux

t time

ri rate of i reaction

fMFA,i flux i obtained by the MFA

aw, bw, gw, dw, ew, ww weight coefficients for minimization

Kconv conversion constant from extracellular to

membrane glucose

KvinGlc rate constant for the glucose flux between

the cell membrane and the extracellular

space

KvoutEtOH rate constant for the ethanol flux between

the cell membrane ad the extracellular space

Subscript

max maximum concentration

t total concentration

g during exponential growth on glucose

e during exponential growth on ethanol

f rate in forward direction

b rate in backward direction

Metabolites (Concentrations given in mM)

GlcX0 extracellular glucose

GlycX0 extracellular glycerol

EtOHX0 extracellular ethanol

GlcX membrane glucose

Glc intracellular glucose

G6P glucose-6-phosphate

F6P fructose-6-phosphate

FBP fructose bisphosphate

GAP glyceraldehyde-3-phosphate

DHAP dihydroxyacetone phosphate

BPG 1,3-biphosphoglycerate

PEP phosphoenol pyruvate

Pyr pyruvate

ACA acetaldehyde

EtOH intracellular ethanol

EtOHX ethanol of membrane

Glyc intracellular glycerol

GlycX glycerol of membrane

ATP adenosine triphosphate

ADP adenosine diphosphate

AMP adenosine monophosphate

NADH nicotinamide adenine dinucleotide (reduced form)

NAD nicotinamide adenine dinucleotide

Acetat acetate

CoA coenzyme A

AcoA acetyl-coenzyme A

OAC oxaloacetate

Cit citrate

Isocit isocitrate

AKG a-ketoglutarate

Suc succinate

Fum fumarate

Mal malate

CicloGlyoxy fictitious metabolite to represent the glyoxylate

cycle
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Appendix 1

Table A1.

Table A1. Genes and enzymes that participate in each reaction of the

network.

Rate Enzyme Gene

vinGlc — —

vGlcTrans Hexose transporter hxt1

Hexose transporter hxt2

Hexose transporter hxt3

Hexose transporter hxt4

Hexose transporter hxt5

Hexose transporter hxt6

Hexose transporter hxt7

vHK Hexokinase A hxk1

Hexokinase B hxk2

Glucokinase glk1

vPGI Phosphoglucoisomerase pgi1

vPFK Phosphofructokinase (dimer) pfk1, pfk2

vFBP Fructose-1,6-bisphosphatase fbp1

vALD Aldolase fba1

vTIM Triose-phosphate isomerase tpi1

vGAPDH Glyceraldehyde-3-phosphate

dehydrogenase (tetramer)

tdh1,tdh2,tdh3

vlpPEP Enolase (dimer) eno1, eno2

3-Phosphoglycerate kinase pgk1

Glycerate phosphomutase gpm1

vPK Pyruvate kinase pyk1

Pyruvate kinase pyk2

vPDC Pyruvate decarboxylase pdc1

Pyruvate decarboxylase pdc5

Pyruvate decarboxylase pdc5

vADH Alcohol dehydrogenase adh1

Alcohol dehydrogenase adh3

Alcohol dehydrogenase adh4

vADH2 Alcohol dehydrogenase II adh2

vdifEtOH — —

voutEtOH — —

Table A1. (Continued )

Rate Enzyme Gene

vlpGlyc Glycero l-3-phosphate dehydrogenase gpd1

Glycerol-3-phosphate dehydrogenase gpd2

DL-glycerol-3-phosphatase gpp1

DL-glycerol-3-phosphatase hor2

vdifGlyc — —

voutGlyc — —

vstorage a a

vALD2 Aldehyde dehydrogenase ald2

Aldehyde dehydrogenase ald3

vACS Acetyl CoAsynthetase acs1

Acetyl CoAsynthetase acs2

vPDH Pyruvate dehydrogenase (complex) pda1, pda2,

pdb1, lpd1, pdx1

vPYC Pyruvate carboxylase pyc1

Pyruvate carboxylase pyc2

vCIT1 Citrate synthetase cit1

vACO Aconitase aco1

vIDH Isocitrate dehydrogenase (complex) idh1, idh2

vKGD Alpha-ketoglutarate

dehydrogenase (complex)

Kgd1, kgd2

Ligase of succinyl-CoA lsc1, lsc2

vSDH Succinate dehydrogenase (complex) sdh1,sdh2,

sdh3,sdh4

vFUM Fumarase (fumarate hydrolase) fuml

vMDH2 Malate dehydrogenase (cytosolic) mdh2

vPCK1 Phosphoenolpyruvate carboxykinase pck1

vCIT2 Citrate synthase cit2

vIDP Isocitrate dehydrogenase, NADP-specific idp2

vPROT a a

vPPP a a

vconsNADH a a

vconsum a a

voutCO2 a a

— Indicates rate without enzyme (or gene).
aRate that has been simplified because it contemplates a great number of

enzymes and genes.
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