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EXISTENCE OF LOCAL AND GLOBAL SOLUTIONS OF
FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS

M. Muslim,1 C. Conca,2 and R. P. Agarwal3 UDC 517.9

We study the existence of local and global mild solutions of the fractional-order differential equations in
an arbitrary Banach space by using the semigroup theory and the Schauder fixed-point theorem. We also
give some examples to illustrate the applications of abstract results.

1. Introduction

We consider the following fractional-order differential equation in a Banach space .H; k:k/ W

dˇu.t/

dtˇ
C Au.t/ D f .t; u.t//; t 2 .0; T �;

u.0/ D u0;

(1.1)

where A is a closed linear operator defined on a dense set, 0 < ˇ � 1; 0 < T < 1; and
dˇu.t/

dtˇ
denotes

the derivative of u in the Caputo sense. We assume that �A is the infinitesimal generator of a compact analytic
semigroup fS.t/W t � 0g in H; and the nonlinear map f is defined from Œ0; T � �H into H satisfying certain
conditions to be specified later.

For the initial works on the existence and uniqueness of solutions of differential equations of different types,
see [1–9] and references therein.

Jardat et al. [3] considered the following fractional-order differential equation in a Banach space:

dˇu.t/

dtˇ
D Au.t/C f .t; u.t/; Gu.t/; Su.t//; t > t0; ˇ 2 .0; 1�;

u.t0/ D u0;

(1.2)

where A generates a strongly continuous semigroup. They have used the semigroup and fixed-point methods to
prove the existence and uniqueness of solutions.

In the present paper, we use the Schauder fixed-point theorem and semigroup theory to prove the existence of
local and global mild solutions of problem (1.1). With some extra assumptions, we can apply all the results of this
paper to the problem considered by Jardat in [3].
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The plan of the paper is as follows: The introduction and preliminaries are given, respectively, in the first two
sections. In Sec. 3, we prove the existence of local mild solutions, and the existence of global mild solutions for
problem (1.1) is given in Sec. 4. In the last section, we give some examples

2. Preliminaries

We note that if �A is the infinitesimal generator of an analytic semigroup, then, for c > 0 large enough,
�.AC cI / is invertible and generates a bounded analytic semigroup. This allows us to reduce the general case in
which �A is the infinitesimal generator of an analytic semigroup to the case where the semigroup is bounded and
the generator is invertible. Hence, without loss of generality, we suppose that

kS.t/k �M for t � 0

and

0 2 �.�A/;

where �.�A/ is the resolvent set of �A: It follows that, for 0 � ˛ � 1; A˛ can be defined as a closed linear
invertible operator with domain D.A˛/ dense in H: We have H� ,! H˛ for 0 < ˛ < �; and the imbedding is
continuous. For more details on the fractional powers of closed linear operators, see [10]. It can easily be proved
that H˛ WD D.A˛/ is a Banach space with norm kxk˛ D kA˛xk equivalent to the graph norm of A˛:

Note that the set CT D C.Œ0; T �;H/ of all continuous functions from Œ0; T � into H is a Banach space under
the supremum norm given by

k kT WD sup
0���T

k .�/k;  2 CT :

We consider the following assumptions:

(H1) �A is the infinitesimal generator of a compact analytic semigroup S.t/I

(H2) the nonlinear map f W Œ0; T � � H ! H is continuous in the first variable and satisfies the following
condition:

kf .t; x/ � f .s; y/k � Lf .r/Œjt � sj C kx � yk�;

for all x; y 2 Br.H; u0/ and t; s 2 Œ0; T �: Here, Lf WRC ! RC is a nondecreasing function and, for
r > 0;

Br.Z; z1/ D fz 2 ZW kz � z1kZ � rg;

where .Z; k:kZ/ is a Banach space.

We need some basic definitions and properties from the fractional-calculus theory.

Definition 2.1. A real function g.x/; x > 0; is said to be in the space C�; � 2 R; if there exists a real
number p .> �/ such that g.x/ D xpg1.x/; where g1 2 C Œ0;1/; and it is said to be in the space Cm� iff
g.m/ 2 C�; m 2 N:
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Definition 2.2. The Riemann–Liouville fractional integral operator of order ˇ � 0 of a function g 2 C�;

� � �1; is defined as

Iˇg.t/ D
1

�.ˇ/

tZ
0

.t � �/ˇ�1g.�/d�; t > 0:

Definition 2.3. If g 2 Cm
�1 and m is a positive integer, then we can define the fractional derivative of g.t/

in the Caputo sense as follows:

dˇg.t/

dtˇ
D

1

�.m � ˇ/

tZ
0

.t � �/m�ˇ�1gm.�/d�; m � 1 < ˇ � m; t > 0:

Definition 2.4. By a mild solution of the differential equation (1.1), we mean a continuous solution u of the
following integral equation:

u.t/ D S.t/u0 C
1

�.ˇ/

tZ
0

.t � s/ˇ�1S.t � s/f .s; u.s// ds:

For more details on mild solutions, see [3].

3. Existence of Local Solutions

To prove the existence of a mild solution of the evolution problem (1.1), we need the following lemma:

Lemma 3.1. The differential equation (1.1) is equivalent to the following integral equation:

u.t/ D u0 C
1

�.ˇ/

tZ
0

.t � s/ˇ�1.�Au.s//ds C
1

�.ˇ/

tZ
0

.t � s/ˇ�1f .s; u.s//ds;

where 0 < t � T:

Proof. For details, we refer to Lemma 1.1 in [3].

We now state the following theorem:

Theorem 3.1. Assume that conditions (H1) and (H2) are satisfied and u0 2 D.A/: Then there exists t0;
0 < t0 < T; such that Eq. (1.1) has a local mild solution on Œ0; t0�:

Proof. Let R > 0 be such that

Mku0k �
R

2

and let A1 D kA�˛k:
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We choose t0; 0 < t0 � T; such that

t0 <

"
R

2

º
M

ˇ�.ˇ/
fLf .R/ŒT CR�C kf .0; u0/kg

»�1# 1ˇ
:

We set

Y D fu 2 Ct0 Wu.0/ D u0; ku.t/ � u0k � R for 0 � t � t0g:

Clearly, Y is a bounded, closed, convex subset of Ct0 :
For any 0 < QT � T; we define a mapping F from C QT into C QT as follows:

.F u/.t/ D S.t/u0 C
1

�.ˇ/

tZ
0

.t � s/ˇ�1S.t � s/f .s; u.s// ds:

Clearly, F is well defined.
We need to show that F WY ! Y: For any u 2 Y; we have .F u/.0/ D u0: If t 2 Œ0; t0�; then

k.F u/.t/ � u0k � kS.t/u0 � u0k C
1

�.ˇ/

tZ
0

.t � s/ˇ�1kS.t � s/kkf .s; u.s//kds

�
R

2
C

M

ˇ�.ˇ/
fLf .R/ŒT CR�C kf .0; u0/kgt

ˇ
0 � R:

Hence, F WY ! Y:

We now show that F maps Y into a precompact subset F.Y / of Y: For this purpose, we show that, for
fixed t 2 Œ0; t0�; Y.t/ D f.F u/.t/Wu 2 Y g is precompact in H and F.Y / is a uniformly equicontinuous family
of functions. Here, for t D 0; Y.0/ D fu0g is precompact in H:

Let t > 0 be fixed. For an arbitrary � 2 .0; t/; we define a mapping F� on Y by the formula

.F�u/.t/ D S.t/u0 C
1

�.ˇ/

t��Z
0

.t � s/ˇ�1S.t � s/f .s; u.s//ds

D S.t/u0 C
S.�/

�.ˇ/

t��Z
0

.t � s/ˇ�1S.t � s � �/f .s; u.s// ds:

Since S.�/ is compact for every � > 0; the set Y�.t/ D f.F�u/.t/Wu 2 Y g is precompact in H for every
� 2 .0; t/; where t 2 .0; t0�:

We also have

k.F u/.t/ � .F�u/.t/k D







 1

�.ˇ/

tZ
t��

.t � s/ˇ�1S.t � s/f .s; u.s// ds







 � �ˇR1
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for all t 2 .0; t0�; u 2 Y; and

R1 D
M

ˇ�.ˇ/
fLf .R/ŒT CR�C kf .0; u0/kg:

Consequently, the set Y.t/; where t � 0; is precompact in H:
For any t1; t2 2 .0; t0� with t1 < t2 and u 2 Y; we have

.F u/.t2/ � .F u/.t1/ D ŒS.t2/ � S.t1/�u0 C
1

�.ˇ/

t2Z
t1

.t2 � s/
ˇ�1S.t2 � s/f .s; u.s// ds

C
�1

�.ˇ/

t1Z
0

Œ.t1 � s/
ˇ�1
� .t2 � s/

ˇ�1�S.t2 � s/f .s; u.s// ds

C
1

�.ˇ/

t1Z
0

.t1 � s/
ˇ�1ŒS.t2 � s/ � S.t1 � s/� f .s; u.s// ds

D I1 C I2 C I3 C I4: (3.1)

Hence,

k.F u/.t2/ � .F u/.t1/k � kI1k C kI2k C kI3k C I4k: (3.2)

We get

I1 D ŒS.t2/ � S.t1/�u0:

It follows from Theorem 2.6.13 in [10] that, for every 0 < � < 1 � ˛; t2 > t1 > 0; we have

kI1k � A1k.S.t2/ � S.t1//A
˛u0k � A1C�C˛C�t

�.˛C�/
1 .t2 � t1/

�
ku0k �M1.t2 � t1/

�;

where C� is some positive constant such that kA�S.t/k � C�t�� for all t > 0: Furthermore, M1 depends on
t1 and blows up as t1 decreases to zero.

Using Eq. (3.1), we get

kI2k �
1

�.ˇ/

t2Z
t1

.t2 � s/
ˇ�1
kS.t2 � s/kkf .s; u.s//kds �

MA2

ˇ�.ˇ/
.t2 � t1/

ˇ ;

where A2 D fLf .R/ŒT CR�C kf .0; u0/kg: We have

I3 D
�1

�.ˇ/

t1Z
0

Œ.t1 � s/
ˇ�1
� .t2 � s/

ˇ�1�S.t2 � s/f .s; u.s// ds:
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Hence,

kI3k �
A2A1 C˛

�.ˇ/

t1Z
0

.t1 � s/
��1Œ.t1 � s/

���
� .t2 � s/

���� ds;

where

� D 1 � ˛; � D
1 � ˇ

1 � ˛
; and ˛ ¤ 1:

Hence, after some calculation, we get

kI3k �
A2A1 C˛

�.ˇ/
�ı1

��1.1 � c/��.1��/�1.t2 � t1/
�.1��/;

where

c D

�
1 �

��
�

�1
��

�
and 0 < ı1 � 1:

Similarly, we obtain

kI4k �
A1A2 C1C˛

�.ˇ/

t1Z
0

.t1 � s/
ˇ�1Œ.t1 � s/

�1
� .t2 � s/

�1� ds

�
A1A2 C1C˛

˛�.ˇ/
ı2
. 1
ˇ
�1/.1 � c1/

�ˇ .t2 � t1/
ˇ.1� 1

ˇ
/;

where

C1C˛ D

�
1 �

1

ˇ2

�
; 0 < ı2 � 1;

and C1C˛ is some positive constant such that kA1C˛S.t/k � C1C˛t�1�˛ for all t > 0:
Thus, it follows from the above calculations that the right-hand side of inequality (3.2) tends to zero as

t2 � t1 ! 0: Hence, F.Y / is a family of equicontinuous functions. Furthermore, F.Y / is bounded. Thus,
according to the Arzelà–Ascoli theorem (see [11]), F.Y / is precompact. The existence of a fixed point of F in
Y is a consequence of the Schauder fixed-point theorem.

Hence, there exists u 2 Y such that, for all t 2 Œ0; t0�; we have

u.t/ D S.t/u0 C
1

�.ˇ/

tZ
0

.t � s/ˇ�1S.t � s/f .s; u.s//ds; (3.3)

where u.0/ D u0:
Applying similar arguments as above, we see that the function u given by Eq. (3.3) is uniformly Hölder

continuous on Œ0; t0�: With the help of condition (H2), we can show that the map t 7�! f1.t; u.t// is Hölder
continuous on Œ0; t0�: This completes the proof of the theorem.
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4. Existence of Global Solutions

Theorem 4.1. Suppose that 0 2 �.�A/ and �A generates a compact analytic semigroup S.t/ with
kS.t/k � M for t � 0; u0 2 D.A/; and the function f1W Œ0;1/ � H ! H satisfies condition (H2). If
there is a continuous, nondecreasing, real-valued function k.t/ such that

kf1.t;  /k � k.t/.1C k k/ for t � 0;  2 H;

then Eq. (1.1) has a unique mild solution u; which exists for all t � 0:

Proof. According to Theorem 3.1, we can continue the solution of Eq. (1.1) as long as ku.t/k stays bounded.
Therefore, we need to show that if u exists on Œ0; T /; then ku.t/k is bounded as t " T:

For t 2 Œ0; T /; we have

u.t/ D S.t/u0 C
1

�.ˇ/

tZ
0

.t � s/ˇ�1S.t � s/f .s; u.s//ds:

From the above equation, we get

ku.t/k �Mku0k C
1

�.ˇ/

tZ
0

.t � s/ˇ�1kS.t � s/jkf .s; u.s//kds:

Hence,

ku.t/k � C2 C C3

tZ
0

.t � s/.ˇ�1/ku.s/k ds;

where

C2 DMku0k C
1

ˇ�.ˇ/
Mk.T /T ˇ

and

C3 D
1

�.ˇ/
Mk.T /:

Therefore, it follows from Lemma 6.7 ([10], Chap. 5) that u is a global solution.
To complete the proof of the theorem we only need to show that u is unique on the whole interval.
Let u1 and u2 be two solutions of the given fractional integral equation (1.1). Then, by a similar argument

as above, we conclude that

ku1.t/ � u2.t/k �
1

�.ˇ/
MLf .R/

tZ
0

.t � s/.ˇ�1/ku1.s/ � u2.s/k ds:

Hence, according to Lemma 6.7 ([10], Chap. 5), the solution u is unique. This completes the proof of the theorem.
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5. Examples

Let H D L2..0; 1/IR/: Consider the following fractional partial differential equations:

@ˇ

@tˇ
w.t; x/ � @2xw.t; x/ D F.t; w.t; x// x 2 .0; 1/; t > 0;

w.0; x/ D u0; w.t; 0/ D w.t; 1/ D 0; t 2 Œ0; T �; 0 < T <1;

(5.1)

where F is a given function and 0 < ˇ < 1:
We define an operator A as follows:

Au D �u00; u 2 D.A/ D H 1
0 .0; 1/:

Here, clearly, the operator A is self-adjoint, has a compact resolvent, and is the infinitesimal generator of a compact
analytic semigroup S.t/: Let ˛ D 1=2 and let D.A1=2/ be a Banach space with the norm

kxk1=2 WD kA
1=2xk; x 2 D.A1=2/I

denote this space by H1=2:
Equation (5.1) can be reformulated as the following abstract equation in H D L2..0; 1/IR/ W

dˇu.t/

dtˇ
C Au.t/ D f .t; u.t//; t > 0;

u.0/ D u0;

where u.t/ D w.t; :/; i.e., u.t/.x/ D w.t; x/; t 2 Œ0; T �; x 2 .0; 1/; and the function f W Œ0; T � �H ! H is
given by

f .t; u.t//.x/ D F.t; w.t; x//:

We can take f .t; u/ D h.t/g.u
0

/; where h is Lipschitz continuous and gWH ! H is Lipschitz continuous
on H: In particular, we can take g.u/ D sinu; g.u/ D �u; and g.u/ D arctan.u/; where � is constant.
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