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Abstract The dynamic and reflective features of programming languages are pow-
erful constructs that programmers often mention as extremely useful. However, the
ability to modify a program at runtime can be both a boon—in terms of flexibility—,
and a curse—in terms of tool support. For instance, usage of these features hampers
the design of type systems, the accuracy of static analysis techniques, or the introduc-
tion of optimizations by compilers. In this paper, we perform an empirical study of a
large Smalltalk codebase—often regarded as the poster-child in terms of availability
of these features—, in order to assess how much these features are actually used in
practice, whether some are used more than others, and in which kinds of projects.
In addition, we performed a qualitative analysis of a representative sample of usages
of dynamic features in order to uncover (1) the principal reasons that drive people
to use dynamic features, and (2) whether and how these dynamic feature usages can
be removed or converted to safer usages. These results are useful to make informed
decisions about which features to consider when designing language extensions or
tool support.
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1 Introduction

Dynamic object-oriented languages such as Smalltalk (Goldberg and Robson 1983)
or Ruby allow developers to dynamically change the program at runtime, for instance
by adding or altering methods; languages such as Java, C# or C++ provide reflective
interfaces to provide at least part of the dynamism offered by dynamic languages.
These features are extremely powerful: the Smalltalk language for instance ships with
an integrated development environment (IDE) that uses these dynamic features to
create, remove, and alter methods and classes while the system is running.

If powerful, these dynamic features may also cause harm: they make it impossible
to fully check the types of a program statically; a type systems has to fall back to
dynamic checking if a program exploits dynamic language features. Until recently,
the problem of static analysis in the presence of reflection was largely sidestepped;
current solutions to it fall back on dynamic analysis in order to know how the
dynamic features are exercised at runtime (Bodden et al. 2011). Another example
is the (static) optimization of program code, which is impossible to achieve for code
using any dynamic language feature. Moreover, tools are affected by the use of
these features. For instance, a refactoring tool may fail to rename all occurences
of a method if it is used reflectively, leaving the program in an inconsistent state.
In short, dynamic language features are a burden for language designers and tool
implementors alike.

This problem is exacerbated since language designers and tool implementors
do not know how programmers are using dynamic language features in practice.
Dynamic features might only be used in specific applications domains, for instance
in parsers/compilers, in testing code, in GUI code, or in systems providing an
environment to alter code (eg. an IDE). Having precise knowledge about how
programmers use dynamic features in practice, for instance how often, in which
parts, and in which types of systems they are used, can help language designers and
tool implementors find the right choices on how to implement a specific language
extension, static analysis, compiler optimization, refactoring tool, etc. If it turns out
that a given dynamic feature is used in a minority of cases, then it may be reasonable
to provide a less-than optimal solution for it (such as resorting to dynamic type
checking in a static type system). On the other hand, if the usage is pervasive, then a
much more convincing solution needs to be devised. Hence, it is of a vital importance
to check the assumptions language designers and tool implementors might have
against reality.

In this paper, we perform an empirical study of the usage of dynamic language
features by programmers in Smalltalk. We survey 1,000 Smalltalk projects, featuring
more than 4 million lines of code. The projects are extracted from Squeaksource,
a software super-repository hosting the majority of Smalltalk code produced by
the Squeak and Pharo open-source communities (Lungu et al. 2010). We statically
analyze these systems to reveal which dynamic features they use, how often and in
which parts. Next, we interpret these results to formulate guidelines on how language
designers can best deal with particular language features, depending on how and how
frequent such features are used in practice.

In addition to these quantitative results, we also performed a qualitative analysis
of a representative sample of 377 usages of dynamic features across our corpus.
By focusing on this restricted data set, we were able to perform a deeper analysis,
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with two goals. The first goal is to investigate the principal reasons why developers
use dynamic features, in order to pinpoint areas of applications, and types of
computations that are more prone to these usages than other. Understanding these
practices can also indicate ways to extend a programming language to support certain
patterns in a more robust manner. The second goal is to determine whether some
of these dynamic usages can be removed (or converted to safer usages of the same
feature), in order to reduce the extent of the problem and simplify static analyses.
Thus, we provide guidelines on how to refactor some of the common idioms we
encountered.

We focus on the Smalltalk programming language because it is a very salient
data point. Smalltalk is, alongside with LISP, one of the languages with the most
support for dynamic features, since it is implemented in itself. The kernel of the
language (classes, methods, etc), and the development tools (compiler, code browser,
etc) make extensive use of the dynamic features in order to implement the vision
of a “live” programming systems. Thus our hypothesis is that Smalltalk represents
an upper bound estimate of the use of dynamic features in practice. For Smalltalk
programmers, this dynamic behavior is the norm, hence they should use it more than
their counterparts in other languages—especially since they are so easy to access.

Contributions This paper explores the usage of dynamic features in Smalltalk in
order to gain insight on the usage of these features in practice.

Our first contribution is a quantitative analysis of a large corpus of source
code (1,000 Smalltalk projects) in order to validate, or invalidate, the following
hypotheses:

1. Dynamic features are not used often. More precisely, we are interested in
determining which features are used more than others.

2 Most dynamic features are used in very specific kinds of projects. We conjecture
that they are more often used in core system libraries, development tools, and
tests, rather than in regular applications.

3. The specific features that have been integrated in more static languages over
time (eg. Java) are indeed the most used.

4. Some usages of dynamic features are statically tractable, unproblematic for static
analyses and other tools.

While our study allows us to validate these hypotheses, we do so with some
caveats; this makes it still necessary for language designers, tool implementors, and
developers of static analyses to carefully consider dynamic features. We provide
prelimary guidelines as to which are most important.

Since dynamic features can not be ignored outright, our second contribution is
the qualitative analysis of a representative sample of 377 dynamic feature usages in
order to better understand the reasons why developers resort to using these dynamic
features, and whether some of them can be refactored away, or converted to safer
usages of the same features. We find that some of the usages are unavoidable, others
are due to limitations of the programming language used, some can be refactored,
and others are mostly superfluous.

As a consequence of these two studies, we gain insight into how language
designers and tool providers have to deal with these dynamic features, and into
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why the developers need to use them—yielding further insights in the limitations
of programming languages that need to be addressed.

Structure of the Paper We review related work (Section 2) before giving the
necessary background on Smalltalk to the reader (Section 3). We then describe
our experimental methodology, analysis infrastructure, and the dynamic features we
look at (Section 4); our results follow (Section 5). We then discuss these results and
their implications (Section 6). Later, we perform our qualitative analysis of dynamic
feature usages and identify refactorable occurences (Section 7). We close the paper
by first discussing the potential threats to the validity of this study (Section 8), before
concluding (Section 9).

2 Related Work

There have been a number of empirical studies on the usage of programming
language features by developers.

Knuth studied a wide variety of Fortran programs, informing quantitatively “what
programmers really do” (Knuth 1971). Knuth performed static analysis on a sample
of Fortran programs, and dynamic analysis on a smaller sample, recording the
frequency of execution of each kind of instruction. Knuth found several possible
optimizations to compilers and suggested compiler writers to consider not only the
best and the worst cases, but also the average case of how programers use language
features in order to introduce optimizations.

Melton and Tempero measured the size of cycles among classes in 78 Java
applications, and found that most applications featured very large cycles (sometimes
in the thousands of classes) (Melton and Tempero 2007).

Tempero et al. characterized the usage of inheritance in 90 Java programs, and
found a higher usage of inheritance than they expected (Tempero et al. 2008).
Rysselberghe and Demeyer took evolution into account and proposed hypotheses on
how the hierarchies change over time, based on observations about the evolution of
two Java systems (Van Rysselberghe and Demeyer 2007). Later, Tempero analyzed a
corpus of 100 Java programs in order to characterize how fields were used (Tempero
2009): a large number of classes had non-private fields, but less were actually
accessed in practice.

Muschevici et al. performed an empirical study on how multiple dispatch is used
in nine applications written in six languages supporting it, and contrasted it with the
Java corpus mentioned above (Muschevici et al. 2008).

Malayeri and Aldrich inspected 29 Java programs in order to determine if they
would have benefited from structural (instead of nominal) subtyping; they found that
the programs would benefit somewhat (Malayeri and Aldrich 2009).

A large-scale study (2,080 Java applications found on Sourceforge) by Grechanik
et al. asks 32 research questions on the usage of Java by programmers (Grechanik
et al. 2010), related to the size of the applications, the number of arguments in
methods, whether methods are overriden or not, etc.

Finally, Parnin et al. performed an empirical study of 20 Java systems (Parnin et al.
2011), with the goal of assessing how programmers transitioned to Java Generics—
or not. They found that adoption rates and delay to adoption varied from project
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to project (with some projects not adopting generics), and that usually one or two
developers drove the adoption of Java generics.

Dynamic Features In addition, several pieces of work have specifically investigated
the usage of dynamic features in Java, Python and Javascript.

Bodden et al. investigated the usage of Java reflection in the case of the DaCapo
benchmark suite, and found that the benchmark harness loads classes dynamically,
and executes methods via reflection, causing the call graph extracted from static
analysis to significantly differ from the call graph actually observed at runtime
(Bodden et al. 2010). Furthermore, the class loaders that DaCapo uses are non-
standard.

Holkner and Harland investigated the dynamic behavior of 24 Python programs,
by monitoring their execution (Holkner and Harland 2009). They found that the
Python program in their corpus made a heavier usage of dynamic features during
their startup phase, but that many of them also used some of these features during
their entire lifetime.

Most directly related to our work is the study of Javascript dynamic features
by Richards et al. (2010). They analyzed a large amount of Javascript code from
popular web sites, in order to verify whether the assumptions that are made in the
literature about the usage of the dynamic features of Javascript match reality. Some
of the assumptions they checked were: “the use of eval is infrequent and does not
affect semantics” (found to be false), or “the prototype hierarchy is invariant” (also
false); most of the assumptions were found to be violated. In further work, the same
authors performed a more thorough analysis of the usages of the eval function in
Javascript (Richards et al. 2011). Again, assumptions that eval is rarely used were
found to be wrong. While Richards et al. use dynamic analysis to monitor manual
interaction on 103 websites, we use static analysis on 1,000 Smalltalk projects. An
innovation of our study is to consider the kinds of projects that use the features; this
is particularly relevant in a live environment like Smalltalk, where the whole system
is developed in itself.

3 Smalltalk Basics

Smalltalk Goldberg and Robson (1983) is a pure object-oriented language (every-
thing is an object) with no static typing. Compared to mainstream OO languages,
Smalltalk has a distinct terminology: Smalltalk objects communicate by sending
messages to each other. Each message contains a selector (method name) and
arguments. When the object receives the message, it will look up the selector in its
method dictionary, retrieve the associated method, and execute it with the arguments
of the message (if any). Smalltalk’s syntax is also distinct from C-like languages.
We provide equivalent expressions for common cases in Table 1. Note that since
Smalltalk has first-class classes, there are no constructors; instantiating a class is done
by sending a message to a class object. Smalltalk features the concept of Symbols,
which are unique strings; selectors are such symbols.

Many concepts that are implicit in other languages are made explicit through
reification, and can be directly manipulated by programs; this is the case for classes,
methods, and blocks of code. Smalltalk’s programming environment is defined in
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Table 1 Smalltalk and Java
syntax compared

Smalltalk Java

foo bar. foo.bar();
foo bar: baz. foo.bar(baz);
foo bar: baz with: quux. foo.bar(baz, quux);
p := Point new. Point p = new Point();
↑ foo return foo;
self this
super super
’String’ "String"
#symbol String.intern("symbol");

itself and makes extensive use of these dynamic features: one can effortlessly use the
compiler to add new behavior at runtime; in fact, this is the default way programs
are built in Smalltalk. The prominent dynamic features of Smalltalk, which we
investigate in this paper, are:

– Classes as first-class objects. Classes can be passed as arguments to functions,
which makes it hard to know the type of new objects statically. Classes can also
be created programmatically.

– Behavioral reflection. In Smalltalk, one can invoke a method based on its
dynamically-determined name. It is also possible to access or modify the value of
a dynamically-determined field in an object. In addition, Smalltalk also supports
swapping all pointers between two objects.

– Structural reflection. Classes can be created and removed from the program at
runtime; their subclasses can be dynamically changed; methods can be added,
removed, or recompiled dynamically.

– System dictionary. In Smalltalk, the system dictionary is a global variable, called
Smalltalk. This dictionary is the central access point to all global variables in the
system, including all classes. The system dictionary provides several methods that
can be used to access and alter classes at runtime.

All these features are readily available to programmers. We conjecture that dynamic
features are used extensively in the core language libraries and development tools,
yet it remains to be seen if and how they are actually used in applications.

4 Experimental Setup

To find out how developers use the dynamic features provided by Smalltalk in
practice, we perform an analysis of a large repository of Smalltalk projects. This
section describes the experimental setup, that is, the methodology applied to perform
the analysis, the analysis infrastructure, and an explanation of the dynamic features
we are analyzing. This section and the following focus only on the quantitative
analysis; the qualitative analysis of a representative sample of dynamic feature usages
is described entirely in Section 7.
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Table 2 The 10 largest
projects in our study

Project LOC Classes Methods

Morphic 124,729 676 18,154
MinimalMorphic 101,190 483 13,887
System 91,706 502 10,970
Formation 89,172 695 9,833
MorphicExt 69,892 236 9,461
Balloon3D 68,020 397 7,784
Network 58,040 447 8,207
Collections 55,254 405 9,093
Graphics 52,837 139 5,267
SeaBreeze 47,324 228 3,466
Total (1,000) 4,445,415 47,720 652,990

4.1 Methodology

We started our analysis by looking at all 1,850 software projects stored in Squeak-
source in a snapshot taken in early 2010. We ordered all projects by size and selected
the top 1,000 projects, in order to exclude small or toy projects. Since Squeaksource
is the de facto source code repository for open-source development in the Squeak
and Pharo communities, we believe this set of projects is representative of medium
to large sized Smalltalk projects originating from both open-source and academia.
Table 2 summarizes the top ten projects sorted by lines of code (LOC), and also
shows number of classes and methods. The last row shows the total for the 1,000
projects analyzed in this study.

In order to analyze the 1,000 projects, we developed a framework1 in Pharo2 to
trace statically the use of dynamic features in a software ecosystem. This framework
is an extension of Ecco (Lungu et al. 2010), a software ecosystem model to trace
dependencies between software projects. Our analyzer follows three principal steps:
Trace, Collect and Classify.

To Trace, first the analyzer reads Smalltalk package files from disk and builds a
structure (an ecosystem) which represents all packages available on disk. Later, the
analyzer flows across the ecosystem structure parsing all classes and methods from
each package. In the method parsing process, the analyzer traces statically all calls
of the methods that reflect the usage of dynamic features in Smalltalk. Section 4.3
describes these dynamic features in more details and lists the corresponding method
names.

The Collect step gathers the sender, receiver and arguments of each traced
message call AST nodes. The collected data is stored in a graph structure, which
recursively catalogs the sender into packages and classes, and the receiver and
arguments into several categories: literals (e.g. strings, nil, etc), local variables,
special variables (i.e. self or super), literal class names, and arbitrary Smalltalk
expressions.

1Available at http://www.squeaksource.com/ff.
2http://www.pharo-project.org

http://www.squeaksource.com/ff
http://www.pharo-project.org
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The third step, Classify, is performed in the graph structure. Each call site is
classified either as safe or unsafe: A safe call site is one for which the behavior can
be statically determined (e.g. the receiver and arguments are literals, for instance),
whereas an unsafe call may not be fully statically determined. The exact definition of
what is safe and unsafe depends on each feature, as described in Section 4.3.

Characterizing usages as safe or unsafe is an indicator of how dynamic features
are used, and how challenging it may be for a static analysis or development tool to
support it. This study also answers the where question: which kind of projects make
use of these features. For this, we introduce project categories, described below.

4.2 Project Categories

In order to characterize in which kinds of projects dynamic features are used, we
classified each project according to five different categories:

– System core (System, 25 projects): Projects that implement the Smalltalk system
itself.

– Language extension (Lang-Ext., 55 projects): Projects that extend the language,
but are not part of the core (eg. extension for mixins, traits, etc.).

– Tools and IDE (Tools, 63 projects): Projects building the Smalltalk IDE and
other IDE-related tools.

– Test suites (Tests, 24 projects): Projects or parts of projects representing unit and
functionality tests.3

– Applications (Apps, 833 projects): Conventional applications, which do not fit in
any of the other categories; this is the overwhelming majority.

4.3 Analyzed Dynamic Features

We consider four groups of dynamic features of Smalltalk in this study: first-class
classes, behavioral reflection, structural reflection, and system dictionary. We came
to this classification by iterating over a sample of the usages of the features in order to
delineate their intent; This process was supported by our own experience in using the
features. Non-standard and seldom-used features were ommitted. In each of these
groups, the use of the different features are identified by specific selectors, which
we have identified based on the experience of the authors as Smalltalk developers.
In addition to describing each feature and its corresponding selectors, this section
explains how specific usages are characterized are safe or unsafe.

4.3.1 First-Class Classes

This category includes features that are related to the usage of classes as first-
class objects. As opposed to other object-oriented languages such as Java, Smalltalk
classes can be receivers or arguments to methods. The use of first-class classes
complicate matters for static analysis especially with respect to instance creation and
class definition, as one can not know which class will be instantiated or created.

3All subclasses of TestCase are considered to represent tests, no matter how the rest of the project
is categorized.
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Instance Creation In Smalltalk, the typical instance creation protocol consists of
new, which is may be overriden in classes, while basicNew is the low-level method
responsible for actually creating new instances. When tracing all occurrences of
invocations of basicNew in the analyzed projects, we consider only two kind of
occurrences to be unsafe:

x basicNew.
(z foo) basicNew.

In the first case the receiver is a local variable, in the second case the receiver is the
result of a method invocation, or more generally, any arbitrary expression. Usages of
basicNew with a literal class name or the pseudo-variables self or super as receiver
are considered safe. Note that the type of self is statically tractable using self types,
as in Strongtalk (Bracha and Griswold 1993).

Class Creation To create a new class, Smalltalk offers a range of subclass:methods
that only differ in the arguments they accept. As for instance creation, we only
consider a message send of subclass: to be unsafe if: (1) the receiver is a local
variable or a complex Smalltalk expression, or (2) the argument (the class name to
be created) is not a symbol. Examples of safe calls are:

Point subclass: #ColorPoint.
self subclass: #ColorPoint.

Examples of unsafe method calls are:

c subclass: #MySubClass.
Point subclass: x name.

The first example subclasses an undetermined class c, while the second example
creates a subclass of Point with an undetermined name (the result of sending name
to x).

4.3.2 Behavioral Ref lection

Behavioral reflective features of Smalltalk allow programmers to change or update
objects at runtime, or to dynamically compute the name of methods to be executed.
We distinguish between the following features: object reference update, object field
update, and message sending.

Object Reference Update Selectors such as become: allow Smalltalk programmers
to swap object references between the receiver and the argument. After a call to
become:, all pointers to the receiver now point to the argument, and vice versa; this
affects the entire memory. Determining at compile time, if this reference swap is safe
or unsafe is challenging. We consider all calls to these selectors to be unsafe.

Object Field Read In Smalltalk, object fields are private; they are not visible from
the outside and must be accessed by getter and setter methods. The Smalltalk
reflection API provides methods to access them by using their names or indexes,
e.g. instVarNamed:. We categorize as safe usages of an object field read those with
either a number, symbol or string literal as argument.
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Object Field Update Complementary to previous features, Smalltalk allows devel-
opers to reflectively change an object field value. For that propose, the Smalltalk
reflection API offers methods such as instVarAt:put: and variants, to write into object
fields without using the corresponding setter methods. We consider safe calls to be
those where the object field index (the selector’s first argument) is a number, symbol
or string literal.

Message Sending The perform: selector invokes a method by passing its name (a
symbol) as the argument of the call, as well as the receiver object. This feature is also
provided by the Java reflection API. Safe calls are those where the method name (the
argument in the expression) can be determined statically—i.e. a symbol. In unsafe
calls, the argument is a local variable or a composition of message calls (e.g. a string
concatenation). Examples of unsafe calls are:

x perform: aSelector.
x perform: (’selectorPrefix’, stringSuffix) asSymbol.

4.3.3 Structural Ref lection

With the structural reflective features of Smalltalk, developers can modify the
structure of a program at runtime by dynamically adding or removing new classes
or methods. We consider the following structural reflective features:

Class Removal In Smalltalk, classes can be removed from the system at runtime. We
include this feature to be analyzed through the removeFromSystem selector where
the receiver is the class to remove. In our analysis, we consider unsafe occurrences to
be calls in which the receiver is a local variable, or a Smalltalk expression. Examples
are:

c removeFromSystem.
(x class) removeFromSystem.

Superclass Update Smalltalk programmers can change at runtime the behavior of
a class by updating the superclass binding. This powerful feature is handled by
superclass: selectors. Safe calls to them are those where both the receiver (the
subclass) and the argument (the new superclass) are either a literal class name
(including nil4) or self. Any other case is potentially unsafe. Safe examples are:

Point3D superclass: MyPoint.
self superclass: nil.

Method Compilation Adding behavior at runtime allows programmers to dynam-
ically load runnable code. Smalltalk provides selectors such as compile: to compile
and add methods to a particular class. Calls where the argument—the code to be
compiled, or the selector name—is lexically a string are safe; others are not. We

4In Smalltalk the root superclass is nil.
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further categorize safe calls to the compile selector in the following categories: trivial,
simple code such as returning a constant or a simple expresion; getter/setter, which
returns/sets an instance variable; and arbitrary code—everything else.

Method Removal This feature complements the one above, adding the capability
to remove behavior from a class at runtime, with selectors such as removeSelector:.
When tracing all occurrences of invocations of this kind of selectors, we categorize
those occurrences where the argument (the selector name) is a variable name or
a composition of message calls (e.g. a string composition) as unsafe. Therefore,
safe occurrences are when the argument is lexically a symbol. Example of unsafe
occurrences are the following:

c removeSelector: aSelector.
c removeSelector: (’prefix’ , varSuffix ) asSymbol.

4.3.4 System Dictionary

The Smalltalk system dictionary is a global variable (called Smalltalk), which regis-
ters all class definitions in the image. Smalltalk provides several methods to access,
add, remove or alter class definitions. We focus only on usages of this dictionary
that concern classes; other manipulations of the system dictionary concern global
variables in general, and are hence out of the scope of this study. We distinguish
between usages of this dictionary for reading, and writing. We also detect when
aliases to this dictionary are created (e.g. by passing it as argument to a method).

Reading The system dictionary provides several methods to both access class
definitions and test for class existence. For example, at: returns the class object whose
name is specified with the argument; hasClassNamed: verifies if the system defines a
class with the given name. Safe usages are those where the class name (the argument)
is a literal symbol or string. Unsafe expression are those where the argument cannot
be determined statically, for instance:

Smalltalk at: myVar .
Smalltalk hasClassNamed: (’Preffix’ , suffixVar) .

Writing The system dictionary can also be used to alter the classes defined in the
system. For instance, some usages are:

Smalltalk at: #MyClass put: classRef .
Smalltalk removeClassNamed: #MyClass .

Both expressions are alternative ways of doing class renaming or removal operations,
which are already feasible using the reflective abilities of Smalltalk presented previ-
ously. In our study, we classify as safe the usages where the argument in the call is a
literal symbol or string, as shown in previous example.

Aliasing Because the system dictionary is a variable in Smalltalk, programmers can
pass it around, and therefore aliases to this variable can be created. Aliasing makes
it particularly difficult to track usages of the system dictionary. In this category, we
collect direct aliasing (assignment expressions involving the system dictionary) as
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well as expressions that can yield aliases, e.g. passing the dictionary as an argument
to a method or returning it in a block. All aliasing occurrences are categorized as
unsafe usages.

5 Results

This section presents the results of the study. After presenting general results
showing how many and how often projects use dynamic features, we analyze the
usage of each dynamic feature in detail. In particular we distinguish between safe
and unsafe usages as explained in Section 4.3 and application code, and system, tools,
language extensions and tests (Section 4.2). When they exist, we list common patterns
of usage of the features.

5.1 General Results

5.1.1 Are Dynamic Features Used Often?

In our analysis of the 1,000 projects, we found 20,387 dynamic feature occurrences,
i.e., calls to a method implementing a dynamic feature. Only 11,520 methods use at
least one dynamic feature; this shows that a fair proportion of methods either use a
feature more than once or use several features at once. The 11,520 methods using
dynamic features represent 1.76% of the 652,990 methods we analyzed for this study.
This shows that use of dynamic features is punctual: most methods do not make use
of them.

Of the total methods using dynamic features, 6,524 were in projects classified
as “Applications” (1.00% of all analyzed methods) and 3,832 of these use dynamic
features that we consider as unsafe (58.74% of the methods using dynamic features,
or 0.59% of all methods); these results confirm the previous point.

Projects classified as applications represent 83% of the projects, yet contain
only 56.63% of the methods using dynamic features, confirming the fact that other
project categories use these features more extensively. Of all the dynamic feature
usages, 12,094 were classified as unsafe (59.32%); 5,253 of those were in applications
(43.43%).

5.1.2 Do Regular Applications Use Less Dynamic Features?

To confirm assumption 2, which states that most dynamic feature usages occur out-
side application projects, we ran a statistical test comparing all application projects
to all other projects. As the data of dynamic feature usages is normally distributed
across projects, we use a Student’s t-test (two-tailed, independent, unequal sample
sizes, unequal variance) which yields a p-value of 0.00958 (d.f = 610.9, t = 2.599).
This result confirms assumption 2.

However, the data stemming from non-application projects has a high variance
and its mean number of dynamic feature usages differs considerably from those in
application projects. Due to this, the effect size of this experiment is rather low
(as expressed with a Cohen’s d of 0.169), which would require us to analyze even
more projects in order to reliably confirm assumption 2. Still, the current results are
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a strong indication that dynamic feature usage is more widespread in special projects
such as language extensions or system core projects.

5.1.3 What are the Most Prevalent Dynamic Features?

Figure 1 shows the distribution of the usage of dynamic features, with a maxi-
mum of 6,048 occurrences of message sending (29.67%) and a minimum of 114
occurrences for superclass updates (0.56%). Categories are distributed as follows:
first-class classes with 15.46%, behavioral reflection with 44.41%, structural
reflection with 15.85% and system dictionary with 24.28%. Four dynamic features—
Message sending, Instance creation, Method recompilation, and Reading system
dictionary—, account for more than 75% of the usages. Of these, Java provides three
in its reflection API (message sending, instance creation, access to the class table),
catering to 64% of the usages in the analyzed Smalltalk projects.

Figure 2 exhibits the per-feature distribution of all software projects arranged left
to right in the following categories: No Use, projects with no occurrences of the
analyzed feature (blue); Safe, projects that have one or more occurrences of the
analyzed dynamic feature, but all occurrences are safe (green); Unsafe in Systems,
Tests, Language extensions or Tools represents all projects in those project categories
with at least one unsafe call of the feature (yellow); Unsafe in Applications includes
application projects with at least one unsafe call (red). Most features (except instance
creation, message sending and reading system dictionary) follow a common pattern:

– Many projects do not use the analyzed feature. This category ranges between 725
projects in method definition and 961 in the superclass update feature.

– Unsafe uses are almost equally distributed between applications and other
categories, with an average of 45 and 53 projects respectively. Applications with
83% of the projects have comparatively less unsafe uses.

– Finally, projects having only safe usages of a dynamic feature are a minority
(excepting instance creation features), with an average of 22 projects.

Fig. 1 Distribution of dynamic feature usages
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Fig. 2 Per-feature distribution of all projects arranged by category of use

The cases of instance creation, message sending and reading system dictionary
are distinct: 40% of the projects make use of dynamic instance creation, but the
majority of them only have safe usages; less than 10% of the projects use it unsafely.
Message sending is even more widespread—60% of all projects use it—, but follows
an opposite distribution of safe/unsafe usages: most of the projects use it in an unsafe
fashion. In the case of reading the system dictionary: 39% of projects use this feature
with a majority of unsafe usages—30% of all projects, half of them in applications—.
These three features are used pervasively by all kinds of projects.

5.1.4 Interpretation

– The methods using dynamic features are a very small minority. However, the
proportion of projects using dynamic features is larger, even if still a minority.
This confirms hypothesis 1—dynamic features are not used often—, but shows
that they cannot be safely ignored. An analysis of each feature is needed.

– Dynamic features are more often used in core system libraries, development
tools, and tests, rather than in regular applications (hypothesis 2). However, it
is important to remark that it is not the case that conventional applications use
few dynamic features: applications gather nearly half of the unsafe uses. Con-
sidering that applications account for 83% of all analyzed projects, applications
are nonetheless clearly under-represented in terms of dynamic feature usage
compared to most other project categories (cf. Table 3).

– The three most pervasive features—Instance creation, Message sending and
Reading the system dictionary—correspond to features that static languages such
as Java support, confirming hypothesis 3.
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Table 3 Per-feature distribution of safe and unsafe calls, where unsafe calls are sorted by project
category

Dynamic feature % Safe % Apps % Tools % Ext % Syst % Tests

Instance creation 92.53 4.32 (0.69) 0.59 (1.25) 0.70 (1.70) 1.76 (9.42) 0.11 (0.61)
Class creation 30 18.33 (0.31) 9.76 (2.21) 1.90 (0.49) 8.57 (4.90) 31.43 (18.71)
Object ref. update 0 45.66 (0.55) 12.22 (1.94) 6.75 (1.23) 24.44 (9.78) 10.93 (4.55)
Object field read 25.52 35.09 (0.56) 11.24 (2.40) 3.99 (0.97) 23.13 (12.42) 1.04 (0.58)
Object field update 61.14 18.67 (0.58) 5.20 (2.12) 1.80 (0.84) 12.91 (13.29) 0.28 (0.30)
Message sending 7.03 47.52 (0.61) 26.57 (4.54) 3.17 (0.62) 9.79 (4.21) 5.92 (2.65)
Class removal 6.24 10.91 (0.14) 8.05 (1.36) 1.56 (0.30) 10.91 (4.65) 62.34 (27.70)
Superclass update 7.89 42.11 (0.55) 18.42 (3.17) 7.02 (1.39) 7.02 (3.05) 17.54 (7.93)
Method compilation 60.02 18.25 (0.55) 7.10 (2.82) 3.22 (1.46) 6.32 (6.32) 5.10 (5.32)
Method removal 39.13 13.27 (0.26) 15.10 (3.94) 3.43 (1.02) 18.76 (12.33) 10.30 (7.05)
System dict. reading 48.52 15.86 (0.37) 11 (3.39) 2.47 (0.87) 11.36 (8.83) 10.79 (8.73)
System dict. writing 80.69 4.95 (0.31) 2.72 (2.24) 0.5 (0.47) 4.95 (10.25) 6.19 (13.36)
System dict. aliasing 0 28.02 (0.34) 27.54 (4.37) 4.83 (0.88) 15.46 (6.18) 24.15 (10.06)

In bold: category that is considerably over-represented (over-representation factor > 4)

5.2 First-Class Classes

For each feature, we provide basic statistics (number of uses, number of unsafe uses,
and number of unsafe uses in applications), and a bar chart showing the classification
of each feature in various, feature-specific, patterns of usage. We also provide
percentage distributions among categories in Table 3. We highlight in bold categories
that are particularly over-represented, measured by the over-representation factor
(ORF). An ORF of 1 means that a category has a distribution of unsafe calls equal
to its representation in the project corpus. The higher the ORF, the more over-
represented are unsafe calls in a particular category. For instance, while only 2.5%
of all projects belong to the System category, it is responsible for 23.56% of all
unsafe instance creation occurrences (1.76% of all instance creations), hence the
over-representation of unsafe instance creations in the System category is 9.42. Note
that Application projects are under-represented for all dynamic features as denoted
by an ORF smaller than 1; for Application project the factor varies between 0.14 for
the class removal and 0.69 for the instance creation feature.

Instance Creation (2,732 calls, 204 unsafe, 118 in Apps) Figure 3 reveals that
programmers use instance creation (basicNew) in a statically safe way (92.53%)
while unsafe calls (see Table 3 for distribution) are restricted to a few occurrences
(7.47%). Applications feature the most unsafe calls (118, i.e. 4.32%), but are actually
under-represented as 83% of the projects are applications (ORF=0.69). On the
contrary, System projects are the most over-represented (1.76%, ORF=9.42).

Fig. 3 Safe/unsafe usages
of instance creation
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Fig. 4 Safe/unsafe usages
of class creation

The most common (and safe) pattern is self basicNew (74%): Programmers define
constructor methods (as class methods) and inside them call basicNew. A common
unsafe pattern (almost a third of unsafe calls) is to defer the choice of the class to
instantiate via polymorphism (self factoryClass basicNew).

Class Creation (420 calls, 294 unsafe, 77 in Apps) Figure 4 and Table 3 show
that a strong minority of cases are safe uses (30%); 18% of unsafe usages are in
application (ORF=0.31), while more than 50% are in other project categories. Tests
are extremely over-represented, with nearly a third of unsafe usages, with an ORF of
18.71. Indeed, tests often create temporary classes for testing purposes, and the ORF
confirms that this practice is indeed very common. Likewise, System and—to a lesser
extent—Tools are both over-represented (ORFs of 4.90 and 2.21, respectively), each
having close to 10% of uses of the features; both project categories are infrastructural
in nature and may need to create classes as part of their responsibilities. Most unsafe
usages in Apps are in class factory methods generating a custom class name, such as:

FactoryClass>>customClassWithSuffix: aStringSuffix
↑ Object subclass: (’MySpaceName’ , aStringSuffix) asSymbol.

To provide perspective, the code base we analyze contains 47,720 statically defined
classes, showing that dynamic class creation clearly covers a minority of cases, less
than 1%.

Interpretation

– Instance creation is the third-most used dynamic feature, but its usage is mostly
safe, with only 118 unsafe usages in applications.

– The majority of class creation uses are unsafe, but most of those are located in
non-application code, primarily testing code. A lot of unsafe usages appear to be
related to class name generation.

– Some support is still needed for a correct handling of these features in static
analysis tools. In particular, support for self-types is primordial to make usages
of self and super tractable and hence safe.

5.3 Behavioral Reflection

Object Reference Update (311 calls, 311 unsafe, 142 in Apps) According to Table 3,
System projects particularly are over-represented (2.5% of projects account for 25%
of calls, an ORF of 9.78). For instance, some low-level system operations need to

Fig. 5 Unsafe uses of object
references updates
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Fig. 6 Safe/unsafe usages
of object field reads

migrate objects when their classes are redefined, and use become: for such a task.
Applications however do use this feature somewhat extensively, with more than 45%
of calls, see Fig. 5. They are still under-represented (ORF=0.55).

Object Field Read (1,254 calls, 934 unsafe, 440 in Apps) Reading object field values
is a commonly used dynamic feature, accounting for 6.15% of all dynamic feature
usages. The distribution of safe (only 25.5%) and unsafe usages is displayed in
Fig. 6. Unsafe usages can be further categorized either in calls using as argument
(i) a variable (64.59%) or (ii) a complex Smalltalk expression (9.89%, referred to
as Other). Most unsafe reading of object fields occurs in App projects (35.09%),
while in System projects this feature accounts for 23.13% of all unsafe usages. This
makes System projects extremely over-represented, as the ORF is 12.42. The other
project categories are less represented, particularly Tests projects, which as nearly
the same ORF as application (0.58 and 0.56, respectively). Most unsafe usages in
category variable follow the pattern:

obj allInstVarNames do: [:ivar |
(obj instVarNamed: ivar) doSomething]

Object Field Update (1,441 calls, 560 unsafe, 269 in Apps) Writing and updating the
values of object fields is the fifth-most used feature. Figure 7 gives the distribution of
safe (61.14%) and unsafe calls. Unsafe calls are split in: Variable (31.16%), when the
first argument is a variable; and Other (7.7%), when the first argument is a complex
Smalltalk expression, such as a method call. Unsafe calls in applications make up
18.67% of the total (Table 3), while unsafe calls in the System category make up
12.91% of all field updates (ORF=13.29), for reasons similar to the uses of object
reference updates. Here again, Tests are under-represented, with an ORF of 0.30,
and Language extensions have an ORF of 0.84.

The following pattern is extremely common (664 or 46% of all calls, with 398 calls
in Applications):

MyClass basicNew instVarAt: idx1 put: value1 ;
instVarAt: idx2 put: value2;
...
instVarAt: idxN put: valueN.

Fig. 7 Safe/unsafe usages
of object field updates
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Fig. 8 Safe/unsafe usages
of message sending

This code snippet creates a new object and initializes all its fields with predeter-
mined values. Smalltalk provides the storeString method, which serializes the object
in the form of a valid Smalltalk expression that, when executed, recreates the object
in the same state; it is a relatively common practice to save objects as executable
expressions that way. It is actually surprising that Tests do not use this feature more
heavily.

Message Sending (6,048 calls, 5,623 unsafe, 2,874 in Apps) The most used dynamic
feature accounts for 29.67% of all occurrences. Unfortunately, most of these usages
(92,97%) are unsafe (Fig. 8). This is not surprising: there is little value in calling a
method reflexively if the message name is constant. Two thirds of all calls use as
argument a local variable, and more complex Smalltalk expressions are used in one
fourth of cases.

Table 3 indicates that almost half of the message sending feature occurrences
(47.62%) are unsafe calls inside App projects. If Apps are—as usual—under-
represented, the ORF of 0.61 is one of the highest. Tool projects follow with a quarter
of all occurrences (26.57%, ORF=4.54); a possible explanation for that large over-
representation is that tools often feature a UI, for which reflexive message sending is
commonly used in Smalltalk—an example being the Morphic UI framework. System
packages are also significantly over-represented (ORF=4.21), although the reason
for that is less clear. The rest is split between the other project categories: Tests
(5.92%) and Language-extensions (3.17%, under-represented).

Interpretation

– Supporting message sending is a priority: it constitutes almost 30% of dynamic
feature usages; 60% of projects use it; nearly 93% of uses are unsafe. However,
supporting message sending efficiently may be challenging. The state-of-the-art
solution of Bodden et al. mixes enhanced static analysis with dynamic analysis to
provide sufficient coverage (Bodden et al. 2011).

– The other three behavioral features—object reference update and field
accesses—are used infrequently. The exception is Systems projects, which do
use them pervasively: in all three, Systems projects have an over-representation
factor in excess of nine.

Fig. 9 Safe/unsafe usages
of class deletion
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Fig. 10 Safe/unsafe usages
of superclass updates

– Object field updates are 60% safe, due to their usage as a serialization mech-
anism. This contrasts with field reads, whose safe usages are only 25%; field
reads are mostly used with a dynamically-determined instance variable name.
Reference updates are much more challenging to support.

5.4 Structural Reflection

Class Removal (385 calls, 361 unsafe, 42 in Apps) Class removal is one of the lesser-
used features. According to Fig. 9, safe usages are in the minority (6.24%); calls with
a local variable as receiver make 80% of the calls; more complex calls make the rest.
It is also obvious that unsafe usages in applications are also a minority (10.91% of
usages according to Table 3, and an extremely low ORF of 0.14), whereas System
projects have the same number of usages (translating to a much higher ORF of 4.65).
Tests provide the overwhelming majority of unsafe usages with 62.34%. This massive
over-representation (ORF=27.70, the largest by far) ties up with the heavy usage by
tests of dynamic class creation (which also had a very high ORF. 18.71). A common
pattern in tests (208 instances, more than 80%), is to create a new class, run tests on
it, and then delete it.

Superclass Update (114 calls, 105 unsafe, 48 in Apps) This feature is the least used
with just 114 occurrences, 0.56% of all dynamic feature occurrences. As shown in
Figure 10, safe calls account for 7.89% while 42.11% are unsafe calls inside App
projects; Tests are the heaviest users (ORF=7.93, 17.54%), followed by Tools (3.17,
18.45%) and Systems (3.05, 7.02%). Since tests often build classes to run test code
on, it stands to reason that they would also need to specify their superclasses.

Method Compilation (2,296 calls, 918 unsafe, 419 in Apps) Method compilation is
the fourth-most used feature, with nearly 2,300 of the 14,184 calls. A majority of the
usages (60%) are statically known strings, and are thus safe (Fig. 11). Of the rest, 17%
hold the source code in a variable, while 23% are more complex expressions—i.e. a
string concatenation, which represents 40% of complex expressions.

Applications feature a bit less than half of the usages (18.25%, ORF=0.55), and
are hence under-represented (but not less than usual); on the other hand, Systems
(ORF=6.32), and Tests (ORF=5.32) are over-represented. This behavior is similar

Fig. 11 Safe/unsafe uses
of method compilation
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to the one in class creation (although less skewed towards Tests), and has similar
reasons.

In addition, we manually classified the safe method compilations that are known
statically in trivial methods (returning a constant or a simple expression), getter/set-
ter (returning/setting an instance variable), and arbitrary code. We found that the
vast majority (75.91%) of the methods compiled were trivial in nature, while getter
and setters constituted 7.55%, with the remaining 16.55% being arbitrary. Examples
of methods classified as “trivial” follow:

ClassA>>one
↑ 1.

ClassB>>equals: other
↑ self = other.

ClassC>>newObject
↑ self class new.

Note that the code base we analyze contains 652,990 methods, so we can hypoth-
esize that the number of statically defined methods vastly outnumbers the quantity
of dynamically defined ones, but we cannot be sure of that fact without performing
dynamic analysis.

Method Removal (437 calls, 266 unsafe, 58 in Apps) Method removals are used
relatively sparsely, and unsafe uses are much more prevalent in Tools, Systems,
Language extensions, and Tests than in Apps, as shown in Fig. 12. Safe calls make
up 39.13% of all the calls; unsafe calls with a variable 40.73%; complex unsafe calls
20.14%. We see in Table 3 that Apps are clearly under-represented (a low ORF of
0.26): System projects on the other hand are very over-represented (ORF=12.33), as
are Tests, to a lesser extent (ORF=7.05); Tools follow (ORF=3.94). The low ORF
in Apps is similar to Class Removal.

Interpretation

– Besides method compilation, structural reflective features are rarely used. In
addition, the vast majority of application projects does not use these features. It
appears that support for superclass update, class removal, and method removal
does not need to be as urgent/efficient than other features.

– Class removal seems to be quite correlated with class creation, which is expected.
Table 3 shows that all project categories show similar numbers of usages (with
Apps creating more classes than they remove); the total number of calls are also
similar (385 vs 420). The over-representation factors are also quite similar.

– Changes to methods (method compilation and removal) have a large proportion
of safe usages (40 to 60%). However, the significant proportion of unsafe uses

Fig. 12 Safe/unsafe uses
of method removal
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Fig. 13 Safe/unsafe uses
of Smalltalk readings

means that support for method compilation cannot be neglected in the design of
static analysis tools.

– Tests are the largest users of structural reflection, as they are heavily represented
in all features. System projects follow (2 out of 4)

5.5 System Dictionary

Reading (4,338 calls, 2,233 unsafe, 688 in Apps) Reading the system dictionary
is the second most used dynamic feature and accounts for 21.41% of all usages.
Approximately half of usages are unsafe (51.5%, see Fig. 13). Most unsafe usages
occur by passing a local variable as argument to read objects stored in the dictionary
(24.55%); more complex Smalltalk expressions are used in 26.92% of all unsafe
usages.

As indicated in Table 3 the system dictionary is mostly read in App projects
(15.9%), followed by System (11.36%), Tools projects (11.00%), and Tests (10.79%).
Given the relative size of these projects categories, reading the system dictionary is
overly represented in these categories compared to App projects (ORF=0.37). The
trend we have been seing earlier, with Systems and Tests often being heavy users, is
confirmed (ORF=8.83 and 8.73, respectively)

We found two common patterns: (1) using the system dictionary to check the
existence of a class (60% in safe usages), and (2) accessing the class reference through
the system dictionary (30% in safe usages). Below are some examples of the previous
pattern:

Smalltalk at: #MyClass
ifPresent: [...do something...]
ifAbsent: [...do something else...] .

myClassRef := Smalltalk at: #MyClass.

These patterns are not the monopoly of safe usages, they are also present in unsafe
usages in similar proportions.

Writing (404 calls, 78 unsafe, 20 in Apps) Writing in the system dictionary is much
less common than reading from it. By accounting for 1.99% of all dynamic feature
usages it is one of the less-used features. Around a fifth of its usages are considered to
be unsafe (19.3%). Similar to previous features, unsafe usages are split in two groups:

Fig. 14 Safe/unsafe uses
of Smalltalk writings
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Fig. 15 Safe/unsafe uses
of Smalltalk aliasing

passing a local variable to the dictionary to identify the object to be written (12.87%);
and passing a complex Smalltalk expression to the dictionary (6.44%) (cf. Fig. 14).

Unsafe writing to the system dictionary mostly occurs in Tests (6.19%), subse-
quently followed by Apps and System projects, both with a share of 4.95%. Both
System projects and Tests are overly writing to the system dictionary compared to
the relative sizes of these project categories (ORF=10.25 and 13.36, respectively).

Aliasing (207 calls, 207 unsafe, 58 in Apps) Aliasing the system dictionary is even
less common than writing to it, making it the second least used of all analyzed
dynamic features behind superclass update, only accounting for 1.02% of all dynamic
feature usages. However, as mentioned in Section 4.3.4, we consider all occurrences
of aliasing to be unsafe. As Fig. 15 illustrates, almost all usages of system dictionary
aliasing happen by passing the dictionary as parameter to a method (89.86%); 7.7%
are local aliases, which appear superfluous, and 2.4% are aliases to fields.

Most occurrences of system dictionary aliasing are in App projects (28.02%),
followed by Tools (27.54%), Tests (24.15%) and System projects (15.46%). Hence,
as with most other dynamic features, Tests (ORF=10.06) and System (ORF=6.18)
projects are over-represented (and Tools, to a lesser extent).

Interpretation

– Smalltalk reading is the second most used dynamic feature with 21% of all
usages. Testing for the existence of a class or obtaining a reification of it is also
supported by Java, confirming assumption 3.

– Smalltalk writing is used infrequently. However more than 80% are safe usages.
Tests and System applications are over represented (see Table 3), with 6.19%
and 4.95% respectively.

– Smalltalk aliasing is the second least used dynamic feature. A few usages (less
than 10%) are direct aliasing to local variables, which could be avoided through
straightforward substitution. Other usages would require inter-procedural analy-
sis to track down how the dictionary is used afterwards.

– Tests and Systems projects are largely over-represented for every feature.

6 Discussion

We discuss whether each of the assumptions and research questions we mentioned in
the introduction is valid or not, and provide guidelines for each feature we studied.

1. Dynamic features are rarely used. Dynamic features were found to be used in a
small minority of methods—1.76%. Assumption 1 is validated.

2. Dynamic features are used in specific kinds of projects. We conjectured that
core system libraries, development tools, language extensions, and tests, were
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the main users of dynamic features. If these categories use on average much
more dynamic features than regular applications (the 17% of projects make
56.57% of unsafe usages), the latter still makes up nearly half of all the unsafe
usages. Going further, a statistical test showed us that there were more usages of
dynamic features in projects not classified as applications but we found the effect
size to be small. As such, assumption 2 is validated, albeit with a smaller effect
than expected. If we look at categories individually, the over-representation
factors of Table 3 show us that Systems and Tests are by far the largest users
of unsafe dynamic features, Tools are also over-represented, whereas Language
Extensions are close to normal, and Applications are systematically under-
represented.

3. The most used dynamic features are supported by more static languages. The
three most used features, reflective message sending, reading the system dictio-
nary and instance creation, are supported by the Java reflection API, validating
assumption 3.

4. Some usages of dynamic features are statically tractable. We found that 4 fea-
tures (instance creation, object field updates, method compilation, and smalltalk
writing) have a majority of safe uses. Three others (object field reads, class
creation and method removal) have a strong minority (more than 30%) of safe
uses. Assumption 4 is validated.

Even if dynamic features are used in a minority of methods (1.76%, validating
assumption 1), they cannot be safely ignored: a large number of projects make use
of some of the features in a potentially unsafe manner. We review each feature on a
case-by-case basis, and in order of importance (as determined by overall usage of the
features).

– Message sending is the most used feature overall, with 60% of projects using it
and a majority of unsafe uses. Supporting it is both challenging and critical.

– Smalltalk reading represents the second most used feature, with almost 40%
of projects using it. Half of system dictionary reads are unsafe. Supporting it
is crucial and also challenging.

– Instance creation is used by 40% of the projects, but can be considered mostly
safe if a notion of self types is introduced, as in Strongtalk (Bracha and Griswold
1993).

– Method compilation is used in an unsafe manner by a little over 20% of the
projects, and as such also needs improved support.

– Object field reads and updates are the last of the features that has a somewhat
widespread usage. Although reads usages are mostly unsafe, updates are mainly
safe.

– Class creation and removal are heavily used in tests, but class creation is used in
applications as well.

– Smalltalk writing is rarely used, less than 8% of projects used it. Moreover, four
of five system dictionary updates are safe.

– Object reference updates are somewhat problematic, as nearly 45% of the usages
are in applications. Supporting such a dynamic feature is also a challenge.

– Method removal has a large number of safe uses, and is primarily used outside
applications.
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– Smalltalk aliasing are problematic, although occasionally used (7.9% projects).
Supporting it is not vital, but programmers must take account of them.

– Superclass updates is a somewhat exotic features whose usages are few and far
between.

As a rule of thumb, we conclude that message sending, system dictionary reads,
method compilation, instance creation, object field reads and updates, and to a lesser
degree also class creation, system dictionary updates, and object reference updates,
are particularly important dynamic features that static analysis tools, type systems,
and compiler optimizations should support well. Of less importance are class and
method removals, smalltalk aliasing and superclass update since they are rarely used
in an unsafe manner in application projects, nonetheless language designers cannot
afford to completely ignore them.

7 Why Do Developers Resort to Using Dynamic Features?
(And What to do About it)

Beyond a state of the pratice on the usage of dynamic features, we also wish to
understand why developers end up using them. Even if Smalltalk is a language
where these features are comparatively easier to access than most programming
languages, developers should only use them when they have no viable alternatives,
as they significantly obfuscate the control flow of the program, and add implicit
dependencies between program entities that are hard to track (e.g. a dynamic
invocation of a method does not show up in the list of users of the methods). As
such, any usage of a dynamic feature that is superfluous, or that can be removed at a
moderate cost, should be removed, or at least carefully considered for removal.

In this section, we answer the two following research questions:

RQ1: What are the principal reasons why developers use dynamic features?
RQ2: Are certain types of dynamic feature usages refactorable? Can they be

removed, or can unsafe usages be refactored to safe ones?

However, these questions can not be addressed by a large-scale quantitative
analysis as we performed above; each dynamic feature usage needs to be manually
inspected to determine the reason of its existence, and whether it can be removed.
Thus, we had to reduce the scope of the study.

7.1 Methodology

Sample Size From a total of 1,000 Smalltalk projects, we collected 20,387 occur-
rences of dynamic features (Section 5). These occurrences represent our initial data
set. Due to the fact that manual inspection is required, we extract a representative
sample set that we inspected further. We establish the sample set size (n) with the
formula (Triola 2006):

n = N · p̂q̂ · (zα/2)
2

(N − 1) · E2 + p̂q̂ · (zα/2)2

We keep the standard confidence level of 95% (zα/2) and the standard 5% margin
of error (E). The proportions source code that is refactorable ( p̂), and of source
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code that is not refactorable (q̂) are unknown a priori, so we consider the worst
case scenario ( p̂ = q̂ = 0.5, i.e. p̂q̂ = 0.25). Statistically speaking, the population of
our data set (20,387 dynamic features usages) is relatively small. Because of this, we
include the finite population correction factor directly into the formula (N).

The sample size computed from the formula is 377. As we do not have previous
information about the distribution of refactorable source code, we employ random
sampling without replacement to select a reliable sample set from our initial data set.
Table 4 shows the obtained distribution by feature. The first column is the name of
each analyzed feature; the second represents the data set size; and finally, the third
shows the sample size.

Inspecting Dynamic Feature Usages In order to understand the rationale for the
usage of a given dynamic feature, and to determine whether and how a given feature
is refactorable, we employed partial program comprehension techniques (Erdös and
Sneed 1998). Our infrastructure allows us to browse the source code of a dynamic
feature usage, and, when necessary, browse the source code of the project using it,
as well as inspecting the list of methods calling the one where the dynamic feature
is used. As such, each code fragment was inspected for as long as it was deemed
necessary in order to understand the reasons behind the usage of the dynamic
feature, and whether it was refactorable. Three of the authors inspected the sample;
each source code element was inspected by at least two authors.

To abstract away from the raw information in the sample, we elaborated a
classification of the types of dynamic feature usage rationales in categories. We
performed several iterations steps where the authors would examine individual
examples in the sample, and either assign it to a category, or create a new one. After
each step, we discussed the classification and altered the definition of the categories.
This was performed until we arrived to an agreement on a stable classification. The
classification was stored in an online repository, which was used as support for the
discussion. We describe the different categories in Section 7.2 below.

In addition to classifying dynamic feature usage rationales, we also report, though
less systematically, on the refactorability of dynamic feature usages. In particular, we
pay attention to the locality of refactoring when possible. This is because refactorings

Table 4 Per-feature
distribution of the
sample set size

Dynamic feature Data size Sample size

Instance creation 2,732 58
Class creation 420 10
Object ref. update 311 5
Object field read 1,254 23
Object field update 1,441 14
Message sending 6,048 125
Class removal 385 8
Superclass update 114 5
Method compilation 2,296 34
Method removal 311 3
Smalltalk reading 4,338 79
Smalltalk writing 404 8
Smalltalk aliasing 207 5
Total 20,387 377
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that are local to a given method body are much easier to perform than global ones,
such as modifying all call sites of a given method.

Finally, we also looked at prominent application domains where dynamic features
are used, as reported in Section 7.3. We mention these when a particular kind of
application is overwhelmingly represented in a given category.

7.2 Categorizing User Intention When Using Dynamic Features

In this section, we describe the eight categories we found in the inspection of the
sample set, mining for user intent. We start with the most generic categories, that are
significantly present in several features. We then introduce categories that are related
to some specific features. We explain each category, describe some interesting cases
extracted from the samples, and discuss the potential for refactoring of the different
scenarios. We end this section with a brief discussion of the false positives detected
in our analysis.

Figure 16 summarizes our results, showing the per-feature distribution of user in-
tention categories. For each feature, we count relative usages (percentage) discarding
false positives.

Fig. 16 Per-feature distribution of user intention
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7.2.1 Essential Usages

Usages of dynamic features classified as essentials are intrisic usages of the dynamic
feature. They constitute 37.5% of all dynamic feature usages—more than a third. All
but two categories of dynamic features (Smalltalk writing and aliasing) have essential
usages.

For instance, a remote communication framework needs to perform dynamic
method invocation based on the instructions received from a socket. Hence, the
original functionality of dynamic method invocation is embedded in a wrapper that
refines it to specify a communication protocol, but still uses the original functionality
deep down. This category is present in almost all features.

In our analysis, we found that programmers wrap essential dynamic features usage
within code of their own to alter their behavior, e.g. adding pre/post-conditions, or
providing extended behavior such as the remove communication example mentioned
above. Additional examples include essential dynamic feature usages aimed at
facilitating debugging (logging), and wrappers around object field accesses in order
to mirror changes made to an object in an object database. Language extensions (e.g.
a dynamic component model on top of Smalltalk objects) also make use of dynamic
features in such a fundamental manner.

In general, these usages cannot be refactored, because the possibilities to take
into account are very large, even potentially infinite (e.g. they could depend on user
input). Even when the usages may be refactored theoretically, in many cases it is at
a prohibitive cost. For instance, removing a wrapper around an object field access in
an object database could be achieved only at the cost of modifying every accesses to
the state of every object susceptible to be stored in the database. Likewise, reflective
method invocation in a remote communication framework could be replaced by a
mechanism similar to Java RMI, where remote interfaces are declared statically and
proxies are generated by the compiler. Proposals to alleviate the burden of RMI
programming in Java are, unsurprisingly, based on reflective invocation.

Occasionally, some of these instances can be refactored. A particular example we
found was a wrapper used in debugging that executed a given method, but only if
it belonged in a predefined (and small) set of allowed method. Since the number of
possibilities was small (only four), the cases could be enumerated and the dynamic
feature usage removed.

Beyond this wrapping behavior, we found two other categories of essential usages.
The first is the overwhelming majority of dynamic class instantiation (98.3%—all but
one case). These are essential because they are the very means by which objects are
created in the language; however, as we mentioned previously, self types (Bracha
and Griswold 1993) can be used to make these usages safe.

The second one is test code that explicitly tests dynamic features. Obviously,
removing it would negatively impact the test coverage of the projects, so these usages
can not be parted with either, nor can they be refactored away.

7.2.2 Convenience

Reflective features are powerful, providing flexibility to programmers that can at
times be abused. Since Smalltalk makes it extremely easy to call a method based on
its selector (a symbol), iterate over sets of methods or instance variables, program-
mers often use these features to shorten repetitive source code, sometimes at the
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expense of readability. Convenience usages are pervasive: they are the second-most
important category, just shy of 20% of the usages of dynamic features; 8 out of 13
dynamic features are used as such; of note, 32% of dynamic method invocations are
classified as convenience.

An example is the following, which chooses a message to send based on a
condition:

classesSelected := classesSelected
perform: (aBoolean ifTrue: [ #copyWith: ] ifFalse: [ #copyWithout: ])
with: (self classes at: anInteger ifAbsent: [ ↑ self ]).

This could be rewritten as the slightly longer, but far more legible:

arg := self classes at: anInteger ifAbsent: [ ↑ self ].
classesSelected := aBoolean

ifTrue: [classesSelected copyWith: arg]
ifFalse: [classesSelected copyWithout: arg].

There are surprisingly many of these types of usages in our sample, including a
similar one where a class is similarly chosen based on a boolean condition, and is
then instantiated.

Other examples include specifying a list of methods in an array, and then iterating
over it, executing a method at each step of the iteration. We found several test cases
that are organized in this fashion, where common behavior before and after the test is
executed in the body of the loop. Some programs make use of the fact that Smalltalk
methods are classified in categories, in order to execute all the methods belonging
to a certain category. A particular example of this scenario executes all the methods
in a given category, and returns the list of the returned values. As it turns out, each
method actually returns a constant string, making the set of dynamically-executed
methods equivalent to returning an array of strings (with, among others, the added
benefit that an array of string is immune to errors in classifying methods in the wrong
category). Another example implements an “undo” mechanism by setting up an
array of method names of undo methods. To undo an action passed as parameter,
it computes the index of the undo action and retrieves the associated method in the
array, to execute it. Of course, such a scheme is sensible to the order of the methods
in the array.

The same type of behavior is also common in order to iterate over instance
variables names, or classes names. Unlike the wrapper case, the majority of these
usages feature a small number of possibilities, and are possible to refactor locally,
by simply enumerating the handful of possibilities. A minority are a bit more
challenging to refactor, as they involve scattered modification (e.g. converting a set
of dynamically-invoked methods to an array of strings).

7.2.3 Dynamic Code Management

This category deals with the runtime creation of new code entities (classes and
methods), their modifications, and their disposal. Smalltalk provides free access to
the compiler as a class of the system, in the same manner as many dynamic languages
provide an “eval” function (e.g. Javascript Richards et al. 2011). As such creating and
deleting classes and methods is common, as we have shown above. Dynamic code
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management is the third widespread category in terms of versatility, with 6 out of 13
dynamic features. Overall, 8.6% of all usages belong to dynamic code management,
including all of Smalltak writing, and the majority of class removals, and of method
compilations and removals.

The reasons for this are multiple:

– Some tests need to create classes and methods as part of their fixtures, and delete
them afterwards.

– Some systems implements prototypes (as in Javascript), by defining one class for
each would-be prototype.

– Others generate basic or more elaborate methods from parameters they are
given. In our sample we found several implementations of auto-generated getters
and setters for instance variables; needless to say, a standard implementation for
this would be useful. Other cases are much more elaborate, involving iterations
over a set variables to either generate several methods, or several statements in
a method.

– A lot of the code generated in fixtures for test cases consist of constant methods.
We found other uses for constant methods, namely patching the code of another
application in order to fix a known issue. This is of course a brittle strategy, as it
ignores the possible changes in the other application.

– Yet another use of code generation is as an ad-hoc serialization mechanism.
Using structural reflection, each Smalltalk object can generate a piece of code
that, when executed, returns a copy of the object itself. This produces sequences
of calls to reflective field accesses, each of them setting up one field of the object.
This expression can then be compiled in a method of a class in order to re-create
the object at anytime, and is used in test fixtures.

Cleanup code—removing code entities—is also somewhat prevalent (especially,
as we remarked above, in test code to remove previously generated classes or
methods). Other cleanup operations remove all the subclasses of a given class, which
is known to contain generated code. A variant of this is the dynamic recompilation
of methods, replacing the statements that they contain with an empty method body.
We found this in a handful of cases, when a program dynamically changes from
development mode to deployment mode: methods logging behavior are altered to
do nothing instead. Of course, a similar behavior could be achieved in a program
that keeps its development/deployment mode more explicitly as a boolean status,
which is checked by the methods above. Barring this particular case, and replacing
ad-hoc serialization with a more robust serialization mechanism, refactoring these is
difficult.

7.2.4 Advanced Method Dispatch

A large part of the usages of dynamic method invocation are alternative method
dispatch mechanisms—32.6%, or 11% of all the dynamic feature usages. We found
the following:

– An object stores another object and an associated method name, for later invoca-
tion. This is very common in UI frameworks, where the method is expected to be
called when a UI action takes place. This is a lightweight variant of the Observer
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and Listener design patterns. The standard UI framework available for Pharo,
Morphic, provides a very simple way to set up UI notifications as follows:

button on: #eventName send: #methodToExecute to: receiver

In this case, two symbols are passed as argument, one being the name of the
event to react to (such as button click, double click, etc.), and the other the name
of the method to call on the third argument. If the event handler determines that
the message needs an argument, it will also provide the source of the event as an
argument. As a side note, this example shows that passing method names through
symbols is problematic, as in this example, one symbol is a method name, while
the second is not.

– An object performs a dispatch on itself based on a method name it receives
as argument, or a method name that is obtained by processing the argument.
This is again a lightweight variant of other design patterns, e.g. the Visitor
or Strategy patterns. Examples that we found are an interpreter class, which
interprets a stream of bytecodes represented as symbols, and dynamically in-
vokes the method bearing the same name as the bytecode. Other examples
are more complex, where the method name is constructed from one parameter
(adding a prefix or suffix to match the name of the method), or two parameters
(implementing an ad-hoc double-dispatch mechanism).

Of course these are quite fragile, as they are very sensitive to renaming: only a
runtime error will give an indication that a method has changed, or that a new type
of objects need to be handled. The more heavyweight versions of these patterns are
not sensitive to these errors occasioned by renaming, but may trigger an explosion of
small “glue classes”, such as the anonymous Java listener classes that are omnipresent
in Java UI code. Barring additional support, such a refactoring is not trivial.

The well-known lightweight solution for these programming idioms is to use first-
class functions, as found in languages such as Lisp, ML, Haskell, or Scala. First-
class functions can be type checked, while method names as symbols carry no type
information. Surprisingly, this is also possible in Smalltalk, because Smalltalk code
blocks are essentially anonymous functions! However, their syntax makes them a
bit more verbose than symbols, which make programmer opt for the more concise
alternative in many cases. A straightforward iteration on a collection is achieved by:

collection do: [:eachInteger | eachInteger squared]

But many Smalltalk dialects also support the more concise:

collection do: #squared

Since dynamic message sending achieved by passing names of methods is the most
used feature in our corpus, it seems worthwhile to explore more robust mechanisms
than plain symbols. Such a refactoring would be tedious, but not complicated.

7.2.5 Defensive Programming

Due to the nature of Smalltalk as a dynamic language that, in addition, relies on
whole system images, one is never sure if the environment contains the classes
necessary for the correct execution of a program. Recall that accessing a class is done
via the system dictionary; if the class is not defined, a null pointer will be returned.
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Defensive programming is distributed accross two features only (Smalltalk reading
and aliasing) but is prevalent in these (61.9% of reading; 40% of aliasings; 14.17%
overall).

Most code just assumes that all classes are present, but some code actually checks
in the system dictionary if the required classes exist. Upon discovering that a needed
classes does not exist, we found programs that react differently: some report the
error to the user; some return a default value computed without the missing class;
some use an alternative class instead; and finally, some dynamically download and
install a given version of the package that contains the class. Introspecting the
system dictionary cannot be refactored in the context of a dynamic environment like
Smalltalk; a better way to solve the problem would be to improve the way Smalltalk
handles package dependencies, either at the language or infrastructural level.

7.2.6 Breaking Encapsulation

Reflective field accesses are sometimes used to circumvent encapsulation, because
the API of an object does not permit access to its fields. They constiture 5.77% of all
the usages, but 65.3% of object field reads, and 46.7% of object field updates.

Breaking encapsulation is common when a test needs access to a field but the
programmer does not wish to expose the field for the rest of the world. Other
instances of this usage exists outside of tests, for which the only solution would be to
extend the API to permit access to such field. Another solution would be to extend
the language to better support privileged access to the internals of an object. Recall
that Smalltalk is strongly encapsulated in the sense that fields are not accessible from
outside an object. On the other hand, all methods are. Java or C++ support different
visibility mechanisms used to control encapsulation at the level of both fields and
methods. Even with such mechanisms, reflective access is needed at times, because
they are not very flexible. Encapsulation policies are a flexible alternative to address
this issue (Schärli et al. 2004).

We found one instance where a specific field was accessed reflectively, despite the
presence of the accessor in the source code. In fact, the accessor was also performing
additional computations, that the calling code did not wish to take place. A source
code comment stated: “Ugly, but fast”, indicating that the user was perfectly aware
of the problem, but chose to ignore it on purpose.

Most examples we found break encapsulation in a systematic manner, iterating
over all the fields of an object, sometimes recursively. This is the case of generic
object copiers, and of some persistence frameworks that need to write objects on
disk. It is also the case of the ad-hoc serialization mechanism mentioned above, which
generates source code that, when evaluated, creates a copy of the object. These would
be prohibitive to refactor, as every object would need to implement its own version
of copy or serialization methods.

7.2.7 State Update

Since object reference updates is a seldom-used feature, the corpus that we inspected
does not feature a lot of these usages—only five. We think that it is worth mentioning
that out of these five, two made the receiving object itself change its class before
resuming operation.
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It is interesting that this kind of usage of reference update directly corresponds to
state update in typestate-oriented programming languages (Aldrich et al. 2009). Such
languages support stateful resources with state-specific behavior and representation.
As such they are the language-level equivalent of the State design pattern. Tracking
down such state changes statically is not trivial, but is feasible, even in a gradual
manner (Wolff and Garcia 2011).

7.2.8 Useless

A small, but still noticeable categories of usages (2.36%) were truly useless usages of
dynamic features, where the usage did not appear to have any kind of benefit over
its non-dynamic counterpart.

For instance:

(html effect id: id; perform: #appear)

Is strictly equivalent to:

(html effect id: id; appear)

We conjecture that these usages slipped in when a programmer reused and
adapted a code fragment found somewhere else, and did not notice the dynamic
usage was unnecessary. All of these can be safely replaced with their non-dynamic
equivalent.

7.2.9 False Positives

The final category we found were false positives, demonstrating the limit of our
previous automated analysis. We fortunately only found barely more than a handful
of them:

– We found seven usages of the Smalltalk system dictionary as a mean to define
and alter global variables instead of storing classes. When programmers need to
share state accross large portions of their programs, they usually instantiate the
Singleton design pattern, but the Smalltalk dictionary offers a “quick and dirty”
alternative.

– One usage of the method removeFromSystem: (class removal) was calling a
similarly named method that had a wholly different purpose. It appears that the
original method name is not specific enough and can be overloaded.

– One usage of the method superclass: was calling a method with a similar intent,
but which did not end up using a dynamic feature; this was a call to an object that
mirrors an actual Smalltalk class—as part of a type inference system—but that
does not impact the actual class.

– Finally, one call to compile: was found in “junk code”—obviously incorrect code
that was never meant to be executed, but part of a fixture for a test case. Often,
these fixtures are compiled dynamically and removed when the test finishes, but
this one was statically defined—in a method named “foo”.

This totals 10 false positives, or 2.65% of the sample (recall that the percentages
reported above exclude false positives). This low figure gives us strong confidence in
the results of the preceding section.
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7.3 Types of Applications

In the sample we inspected, we noticed that some types of applications had a
particular frequency of usage of dynamic features, as well as a particular distribution
of usages.

7.3.1 Testing

As we already hinted at earlier, unit tests constitute a large proportion of all the
usages of dynamic features. Unit tests have several reasons to be heavy users of
dynamic features:

– Testing the dynamic features themselves. In order to achieve a good code
coverage, all the functionality of a system should be tested, including the dynamic
features.

– Generation of test objects. In some cases, tests need to generate classes and
methods as part of their behavior. In addition, these objects need to disposed
of once testing is over. The easy access to the compiler makes it trivial to do so,
making this a very common occurence.

– Bypassing the public API. White-box testing is done with the knowledge of how
the code under test works. A test may need to set up an object in a way that
should not be possible in the public API, such as accessing a field that should
not be accessed by regular clients. In these cases, several test cases access the
instance variable by name, or by index. In other cases, objects that are fixtures of
test cases are saved in source code, and restored by accessing their fields directly

All these factors make it often difficult to refactor test cases so that they do not
use these features. It can be argued that this is not as problematic, as test cases
are not part of the core of the application. However, the maintainability problems
encountered while co-evolving application and test code are not considered in this
study; further analysis is required to shed light on this subject.

7.3.2 Other Types of Applications

We noticed 3 other types of applications that were prominent, and with specific usage
patterns.

– UI applications make heavy usage of dynamic method invocation as a lightweight
form of an event notification system; the usage of this idiom is so pervasive that it
has spread to other types of event handling systems, such as the Announcements
framework for Pharo.

– Several frameworks that communicate with databases, or implement object
databases, make heavy usage of serialization and de-serialization of objects. In
order to do so in a generic way, they reflect on the structure of the objects they
need to serialize, using field access reads and field access writes.

– Low-level system support code uses object field reads and writes to implement
copy operations, saving the state of the system to disk, and convert numbers and
strings from objects to compact bit representation.
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7.4 Summary

We found a variety of reasons why developers use dynamic features, in a spectrum
ranging from essential, fully-justifiable reasons, to ones that can, for all intent and
purposes, be considered useless.

– Some of these dynamic feature usages are unavoidable, as they are a direct
mapping to the dynamic feature itself (such as method dispatch in a remote com-
munication framework, or tests of the dynamic feature themselves). Removing
or refactoring these usages is most of the time impossible.

– Other usages point at limitations in the programming language (lack of first-class
methods, privileged access to the private attributes of an object, objects changing
state). Beyond extending the language, other solutions to most of these problems
exist in the form of design patterns. Refactoring these would often be costly,
however, and would trade one kind of complexity with another.

– Yet another class of usage deals with the generation and removal of new source
code entities. There is no clear guidelines to address these cases, however.

– Defensive programming code idioms are in the majority spawned from the
nature of Smalltalk as an image-based programming system, with historically
little support for handling dependencies between packages.

– Finally, the mere availability of such powerful dynamic features make pro-
grammers abuse them in the name of conciseness. To save a few lines of
code, programmers will go to considerable lengths, at times producing code
barely shorter, but much harder to understand—dubious gains, to say the least.
Fortunately, most of these usages can be easily removed as they are not critical
to the program.

8 Threats to Validity

8.1 Threats to Construct Validity

We classified the projects in categories in order to investigate whether certain
categories use dynamic features more often. We may have misclassified some
of the projects. However, three of the authors individually classified all projects
and discussed classification differences before coming to an agreement for each
project.

Our list of methods triggering dynamic features is not exhaustive. Our criteria for
inclusion of a given method was whether it was “standard”, i.e. part of the Smalltalk-
80 standard API. Non-standard methods triggering dynamic features were left out,
however their usage is limited (for instance, there are 64 usages of the ClassBuilder
class instead of the subclass: selector, and only seven in regular applications).

A risk we had was to perform an analysis on a corpus that contained a high
proportion of false positives. While performing our manual analysis of the sample, we
kept track of the number of false positives we found, in order to gather an estimate
of the false positive in our corpus. We found 10 false positives in our sample of
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377 dynamic feature usages, or 2.65%, which we judge to be acceptably low for our
general findings to hold.

We only use static analysis as it would be impractical to perform dynamic analysis
on 1,000 projects. If costly, dynamic analysis would allow us to know the frequency
with which code is executed: some parts of the source code could actually be dead
code, while others may be hotspots taking the major part of the execution time.
As it stands, we cannot be sure whether the code triggering dynamic features is
actually executed; some dynamic feature usage could on the other hand be executed
very often. In addition, Smalltalk features a system dictionary—a dictionary bindings
names to classes—that we did not include in the study, as it would require dynamic
analysis to differentiate this specific dictionary from the other dictionaries used in
the code.

Our manual analysis of the 377 feature usages in our sample involves partial
program comprehension, and a degree of subjective judgement. As such, it is possible
that mistakes were made in the classification of the source code fragments, or that
the intent of some of them was misinterpreted. We tried to avoid that by having at
least two of the authors reviewing each of the instances, and inspecting closely the
ones where the two judges disagreed, before taking a final decision.

8.2 Threats to External Validity

Our study includes only open-source projects for obvious accessibility reasons, hence
we cannot generalize the results to industrial projects.

We only consider projects that are found in the Squeaksource repository. Squeak-
source is the de facto standard source code repository for Squeak and Pharo develop-
ers, however, we cannot be sure of how much the results generalize to Smalltalk code
outside of Squeaksource, such as Smalltalk code produced by VisualWorks users.

Our corpus of analyzed projects only contains Smalltalk source code. Our hypoth-
esis is that Smalltalk code, with the ease of use of its reflective features, constitute an
upper bound on the usage of dynamic features. This assumption needs to be checked
empirically by replicating this study on large ecosystems in other programming
languages.

We selected the top 1,000 projects based on their size to filter out projects
that might be toy or experimental projects. We believe such filtering increases the
representativeness of our results, however, this might also impose a threat.

8.3 Threats to Internal Validity

To distinguish pure application projects from other type of projects, we categorized
projects in categories. Results show that application projects use dynamic features
less often than most other project categories. However, code categorized in the
crosscutting category Tests for instance might use more or less dynamic features
depending on the project the test code belongs to rather than on the fact that it is
test code. There might be other reasons why projects categorized as applications use
dynamic features less often than explained by the categorization in application and
non-application code.
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8.4 Threats to Statistical Conclusion Validity

To determine whether specific kind of projects such a system libraries or develop-
ment tools use dynamic features more often than regular applications (hypothesis 2),
we applied statistical tests to compare application projects to other kind of projects
(cf. Section 5.1.2). These tests are biased due to the fact that application projects
are over-represented (83% of all analyzed projects belong to this category) than
projects of the other categories. The applied t-test to a certain degree accounts for the
unequal sample sizes of application and non-application projects, however, the over-
representation of application projects clearly imposes a threat to conclusion validity.

To account for that in the later discussion, we defined an over-representation
factor (ORF), that we use as support in the discussion on the unsafe dynamic feature
usages. The ORF explicitly takes into account sample size, and allowed us to discover
that for each individual dynamic feature, projects classified as Applications had less
usages of unsafe dynamic features than expected. In contrast, Tests and Systems
projects often had five times as many unsafe dynamic feature usages that one would
expect. Due to the numerous tests that would have been involved (and potential type
I errors associated), we did not test for statistical significance whether each individual
feature was significantly more represented in each category of projects compared to
applications.

9 Conclusions

We performed an empirical study of the usage of dynamic features in the 1,000 largest
Smalltalk projects in the Squeaksource source code repository, accounting for more
than 4 million lines of code.

We assessed the veracity of four high-level assumptions on the usage of dynamic
features: Dynamic features are not used often (yet enough to be problematic); they
are used more in certain kinds of applications than others; the more popular dynamic
features are replicated in more static languages; and some of the dynamic feature
usages are statically tractable.

We also analyzed in details the usage of each of feature, producing a list of features
ordered by the importance of their support for applications. Some are critical (mes-
sage sending, system dictionary reading, instance creation, method compilation);
others less so.

Subsequently, we performed a qualitative analysis of a representative sample of
377 usages of dynamic features, in order to understand the rationale behind each
feature usage, determining whether it was possible to remove these usages, and to
pinpoint limitations of the language that, if addressed, could make it possible to avoid
relying on dynamic features.

We found that, if a large portion of the usages of dynamic features are genuine us-
ages that can not be refactored, others work around limitations of the programming
language. In the absence of changes to the language, these could be replaced by more
standard solutions to the same problems, albeit more complex. Finally, a significant
minority of the usages are superfluous, and could be removed at a moderate cost to
the programmer.
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The usage of dynamic features is a double-edged sword. We hope that our results
will incite the community to study the state of the practice in other languages as
well. Further, we hope that our results—and the results of subsequent studies—will
motivate practitioners to address the issues we encountered.
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