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A challenge for the geostatistical simulation of subsurface properties in mining, petroleum and groundwater ap-
plications is the integration of well logs and seismicmeasurements, which can provide information on geological
heterogeneities at a wide range of scales. This paper presents a case study conducted at the Port Mayaca aquifer,
located inwesternMartin County, Florida, inwhich it is of interest to simulate porosity, based on porosity logs at
two wells and high-resolution crosswell seismic measurements of P-wave impedance. To this end, porosity and
impedance are transformed into cross-correlatedGaussian randomfields, using local transformations. Themodel
parameters (transformation functions, mean values and correlation structure of the transformed fields) are in-
ferred and checked against the data. Multiple realizations of porosity can then be constructed conditionally to
the impedance information in the interwell region, which allow identifying one low-porosity structure and
two to three flow units that connect the two wells, mapping heterogeneities within these units and visually
assessingfluid paths in the aquifer. In particular, the results suggest that the paths in the lowerflowunits, formed
by a network of heterogeneous conduits, are not as smooth as in the upper flow unit.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Seismic measurements and well logs are commonly used to charac-
terize rock properties and geological heterogeneities in the subsurface.
Examples of applications include mining and petroleum exploration, in
which it is of interest to describe heterogeneous ore deposits and reser-
voirs atmultiple scales. These applications are usually focused on under-
standing the nature of the heterogeneity and on improving algorithms
to produce reliable deposit or reservoir models. Such models, which in-
tegrate cores, well logs, seismic and production data are used to identify
mineral resources, to locate unswept oil in reservoirs under waterflood,
or to forecast oil reservoir performance (Ikelle and Amundsen, 2005;
Jennings et al., 2000; Kerans et al., 1994; Malehmir et al., 2012).

In groundwater applications, the integration of seismic data andwell
logs can provide information at awide range of scales in order to predict
the rock physical properties and the geological heterogeneities of an
aquifer, which is essential for flow transportmodeling and for designing
cost-effective aquifer remediation and water management procedures
(Dafflon et al., 2009). The geophysical attributes capture the geological
gineering, University of Chile,
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structures and their physical properties, allowing mapping and charac-
terizing flow units at large well separations to minimize the number of
wells, thus avoiding unnecessary disruptions of the environment. Al-
though a combination of surface reflection seismic and well log data
can help to delineate large scale heterogeneities and structural features
in aquifers (Parra et al., 2006), it is also important to conduct high-
resolution crosswell seismic measurements to predict rock physical
properties such as permeability and porosity at local scales in the region
between wells.

To relate the geological units or the lithology of an aquifer to its
petrophysics, it is imperative to have a standard suite of well logs (e.g.,
porosity, permeability, resistivity, gamma ray). For limestone aquifers,
formation micro-imager (FMI) logs are recommended to provide the
microstructure characteristics of the formation at the well location. In
carbonate aquifers, the FMI logs allow estimation of primary (matrix)
and secondary porosities. Processing the FMI logs also yields vuggy
and crack porosity logs. The primary or matrix porosity can contain
interconnected pores to create awater flowpath, and the secondary po-
rosity can be formed by isolated or connected vugs. Connected vugs in
the matrix form good water conduits, while isolated vugs form low-
permeability flow paths (Kazatchenko et al., 2006). Cores and well
logs provide relevant information about the rock-fabric facies, which
is used to describe heterogeneities and to predictfluid paths in the aqui-
fer at the well scale. By using porosity and permeability data captured
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Fig. 1.Map of P-wave impedance in the interwell region.
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by seismic waves, as well as seismic data acquired between wells, one
can relate the seismic attributes with petrophysical data at the well
scale to characterize the aquifer betweenwells. Themost common attri-
butes extracted from seismic data are P-wave velocity, impedance and
attenuation.

Geostatistical techniques such as kriging and cokriging have been
widely used to integrate seismic data with well log data (Doyen, 1988;
Dubrule, 2003; Parra and Emery, 2013). These techniques allow map-
ping or delineating flow units but do not provide information about
pore structure variability (or heterogeneities) within these units.
Although the relationship between total porosity and the lithological
units at the well scale are generally understood, there is a need to iden-
tify and to visualize the distribution of small-scale heterogeneities in
aquifers at the interwell region, which can be achieved bymeans of sto-
chastic simulation (Belina et al., 2009; Dafflon and Barrash, 2012;
Dafflon et al., 2009; Dubreuil-Boisclair et al., 2011).

In this paper, we describe awork conducted at the PortMayaca aqui-
fer in western Martin County, Florida, in which stochastic simulation is
used to visualize the small-scale aquifer heterogeneity. Our study incor-
porates previous well examinations at the site (Parra et al., 2009), in
which tight limestone features are clearly observed at several FMI
depths. These features are correlated with elemental log analysis
(ELAN, Schlumberger propriety software) porosity logs. Several thinner
resistive streaks shown in the FMI logs are not resolved by the ELAN po-
rosity logs, but lower porosity in a permeability barrier interval (Bennett
and Recrenwald, 2002). Between these resistive streaks are thin, con-
ductive limestone zones corresponding to isolated secondary porosity.

For the current study, ELAN porosity logs are integrated with
crosswell P-wave seismic impedance.We selected a highwater produc-
tion zone in the interwell region, and ELAN porosity logs from Port
Mayaca wells MF-37 and EXPM-1 were used to acquire the crosswell
data. Basic statistics of the data are provided in Table 1. The ELANporos-
ity, available along the wells with a resolution of 0.15 m (0.5 ft), repre-
sents the lithological variability of the aquifer at the well scale, while
P-wave impedance data are obtained by inverting crosswell seismic
reflection measurements, with a resolution of 3.05 m (10 ft) in the
east–west direction and 0.61 m (2 ft) in depth (Parra et al., 2006, 2009).

2. Joint modeling of ELAN porosity and P-wave impedance

2.1. Basic hypotheses

In the following, wewill work in the two-dimensional space formed
by the cross-section between wells MF-37 and EXPM-1. A generic loca-
tion in this space will be represented by a vector x = (x1,x2) indicating
the east and depth coordinates. ELAN porosity and P-wave impedance
are viewed as realizations of two cross-correlated spatial random fields,
which will be denoted by Z1 and Z2, respectively.

Modeling the joint distribution of these random fields faces two
main difficulties:

1) ELAN porosity is known only at wells MF-37 and EXPM-1, in the
edges of the region of interest, so that there is little direct informa-
tion about the spatial continuity of this variable along the east–
west direction.
Table 1
Statistics of ELAN porosity (dimensionless) at wells MF-37 and EXPM-1 and P-wave im-
pedance ((g/cm3) (ft/s)) in the interwell region.

ELAN porosity P-wave impedance

Number of data 1070 17,145
Minimum 0.1946 7253.2
Maximum 0.4896 23,824.6
Mean 0.3921 15,943.9
Standard deviation 0.0435 2119.9
2) The distributions of ELAN porosity and P-wave impedance are likely
not to be the same everywhere in the interwell region. In particular,
themap of P-wave impedance (Fig. 1) and the scatter plots of P-wave
impedance along each coordinate axis (Fig. 2) suggest the presence
of a systematic trend along the east coordinate (with greater im-
pedance values to the west and lower values to the east), whereas
no obvious trend is perceptible along the vertical direction (well di-
rection). One therefore expects the random fields associated with
ELANporosity andP-wave impedance to be non-stationary, with dis-
tributions that vary along the east–west direction.

The key idea of the model that will be proposed is to transform
the ELAN porosity and P-wave impedance into two cross-correlated
Gaussian random fields. The non-stationarity of ELAN porosity and
P-wave impedancewill bemodeled through theuse of local transforma-
tions, which vary along the east–west direction, while the transformed
(Gaussian) random fieldswill be considered as stationary (i.e., with dis-
tributions invariant under a translation in space), in order to ease the in-
ference of their spatial correlation structure and to achieve their
simulation subject to conditioning data. In the following subsections,
we will determine the local transformations at the well locations and
in the interwell region, then we will turn to the modeling of the spatial
correlation structure.

2.2. Transforming ELAN porosity data into normally distributed data

Let x = (x1,x2) be a location in the interwell region. It is assumed
that the ELAN porosity at this location, Z1(x), is the transform of a stan-
dard Gaussian random variable, Y1(x):

Z1 xð Þ ¼ ϕx Y1 xð Þð Þ; ð1Þ

where ϕx is a non-decreasing function called Gaussian anamorphosis
(Chilès and Delfiner, 2012). This function characterizes the distribution
of ELAN porosity at location x. It depends on x or, more precisely, on its
first coordinate x1, because of the assumed non-stationarity along the
east–west direction. To model the anamorphosis, let us consider its ex-
pansion into Hermite polynomials (Rivoirard, 1994; Wackernagel,
2003):

∀y∈R;ϕx yð Þ ¼
Xþ∞

p¼0

ϕp x1ð ÞHp yð Þ; ð2Þ

where {ϕp(x1): p ∈ N} are real coefficients (functions of x1) and
{Hp: p ∈ N} are the normalized Hermite polynomials. These polyno-
mials are defined as:

Hp yð Þ ¼ 1ffiffiffiffi
p!

p
g yð Þ

dpg yð Þ
dyp

; ð3Þ



Fig. 2. Scatter plot of P-wave impedance versus A) east coordinate and B) depth. The conditional means are superimposed on each plot (solid lines).
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where g stands for the standard Gaussian probability density function.
Given an anamorphosis function ϕx, the decomposition into Hermite
polynomials is unique, so that ϕx is fully characterized by the set of co-
efficients {ϕp(x1): p ∈ N}.

One can experimentally estimate ϕx and its associated Hermite
coefficients for coordinates x1 = 0 m and x1 = 382.5 m (1255 ft), cor-
responding to the locations of wells MF-37 and EXPM-1. As an illustra-
tion, the first two coefficients are given in Table 2. Note that the
coefficient of order 0 is nothing more than the mean value of ELAN po-
rosity. This is explained because H0(y) = 1 and, for p N 0, the expected
value of Hp(Y) is zero when Y is a standard Gaussian random variable
(Rivoirard, 1994).

2.3. Modeling the distributions of ELAN porosity and P-wave impedance in
the interwell region

Although the anamorphosis functions of ELAN porosity are not the
same at wells MF-37 and EXPM-1, their difference mainly concerns
the first two coefficients ϕ0(x1) and ϕ1(x1), associatedwith the Hermite
polynomials of degrees 0 and 1. This is corroborated by plotting this dif-
ference, which appears to be almost linear, except in the tail of negative
Gaussian values corresponding to low porosity values (this may be
explained because, for bothwells, the porosity distribution is negatively
skewed and its lower tail is poorly known due to the small amount of
data) (Fig. 3).

Based on this observation, we will assume that, for p ≥ 2, the coeffi-
cient associated with the Hermite polynomial of degree p, ϕp(x1), does
not vary in the interwell region, i.e., it actually does not depend on coor-
dinate x1. The ELAN porosity anamorphosis (Eq. (2)) can therefore be
expanded as:

∀y∈R;ϕx yð Þ ¼ ϕ0 x1ð Þ þ ϕ1 x1ð ÞH1 yð Þ þ
Xþ∞

p¼2

ϕpHp yð Þ: ð4Þ

Each constant coefficient ϕp with p ≥ 2 can be experimentally esti-
mated by averaging the ϕp coefficients found for wells MF-37 and
EXPM-1. To complete the determination of the ELAN porosity
Table 2
First coefficients of the ELAN porosity anamorphosis at wells MF-37 and EXPM-1.

Order Coefficient for well MF-37 Coefficient for well EXPM-1

0 0.3760 0.4082
1 −0.0371 −0.0402
distribution in the interwell region, it therefore remains to determine
the spatially-varying coefficients ϕ0(x1) and ϕ1(x1). To this end, we
will use the information of the covariate (P-wave impedance).

As for ELAN porosity, let us assume that the P-wave impedance at lo-
cation x = (x1,x2), denoted by Z2(x), is the transform of a standard
Gaussian random variable, Y2(x):

Z2 xð Þ ¼ φx Y2 xð Þð Þ; ð5Þ

with

∀y∈R;φx yð Þ ¼
Xþ∞

p¼0

φp x1ð ÞHp yð Þ; ð6Þ

for a unique set of real coefficients {φp(x1): p ∈ N}.
Since P-wave impedance is exhaustively known in the interwell re-

gion, the anamorphosis function φx or, equivalently, its Hermite coeffi-
cients {φp(x1): p ∈ N} can be estimated experimentally for any
coordinate x1. It is interesting to note that the coefficients φ0(x1) and
φ1(x1) vary to a great extent with the coordinate, whereas the coeffi-
cients of greater orders have a smaller range of variation and could
therefore be considered as constant in the interwell region (Fig. 4),
which is precisely the same assumption made for ELAN porosity:

∀y∈R;φx yð Þ ¼ φ0 x1ð Þ þ φ1 x1ð ÞH1 yð Þ þ
Xþ∞

p¼2

φpHp yð Þ: ð7Þ

For the particular coordinates x1 = 0 m and x1 = 382.5 m, corre-
sponding to the locations of wells MF-37 and EXPM-1, the first two co-
efficients are indicated in Table 3.

To go further and to achieve the modeling of the ELAN porosity dis-
tribution, the idea is to relate the first two ELAN porosity coefficients,
ϕ0(x1) and ϕ1(x1), with the first two P-wave impedance coefficients,
φ0(x1) andφ1(x1). On the one hand, the coefficients of order 0 represent
the mean values of the raw (untransformed) variables (Rivoirard,
1994). Furthermore, a look at the scatter plot between the ELAN poros-
ity and P-wave impedance at thewell locations (Fig. 5) indicates a linear
relationship between these two variables. In order tofit themeanvalues
observed at the well locations (Tables 2 and 3), this relationship can be
modeled in the following way (Parra and Emery, 2013):

meanporosityþ 0:000014�meanimpedance ¼ 0:615; ð8Þ

image of Fig.�2


Fig. 3. A) ELAN porosity distribution at wellMF-37, B) ELAN porosity distribution atwell EXPM-1, C) Gaussian anamorphoses for ELAN porosity at wells MF-37 and EXPM-1, D) Difference
between both anamorphoses and its approximation by a straight line (R2 = 0.80 if one omits the subset of 43 points painted in red and only accounts for the 492 points painted in green).
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i.e., in terms of zero-order coefficients:

ϕ0 x1ð Þ þ 0:000014φ0 x1ð Þ ¼ 0:615: ð9Þ

On the other hand, if one calculates the ratios between the first coef-
ficients of ELAN porosity and P-wave impedance at the well locations
Fig. 4. Evolution of the first five coefficients of the P-wave impe
(Tables 2 and 3), it is noticeable that approximately the same value is
obtained for the two wells:

ϕ1 0ð Þ
φ1 0ð Þ ¼ 0:0000192and

ϕ1 382:5ð Þ
φ1 382:5ð Þ ¼ 0:0000188: ð10Þ
dance anamorphosis, as a function of the east coordinate.

image of Fig.�3
image of Fig.�4


Table 3
First coefficients of the P-wave impedance anamorphosis at wells MF-37 and EXPM-1.

Order Coefficient for well MF-37 Coefficient for well EXPM-1

0 17,074 14,777
1 −1925.2 −2133.6

Fig. 6. Experimental variograms of the Gaussian transform of ELAN porosity, calculated
along the vertical direction.
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Accordingly, we will assume that this ratio between coefficients re-
mains the same in the interwell region and impose, for any coordinate
x1:

ϕ1 x1ð Þ ¼ 0:000019φ1 x1ð Þ: ð11Þ

In terms of the raw variables (ELAN porosity and P-wave imped-
ance), this relationship will allow Eq. (8) to remain valid, at a first-
order approximation, even if the distributions of the transformed vari-
ables deviate from a standard Gaussian distribution, aswill be explained
in Section 2.6.

2.4. Spatial modeling via Gaussian random fields

For simulation,wewill further assume that the transformed porosity
and impedance fields are stationary Gaussian random fields, i.e., their
finite-dimensional distributions are multivariate normal and are in-
variant under a translation in space (Chilès and Delfiner, 2012). To cor-
roborate these assumptions, let us first compare the experimental
variograms of the transformed porosity calculated along the vertical di-
rection, for both wells (MF-37 and EXPM-1): these variograms turn out
to be very similar (Fig. 6), which agrees with the stationarity assump-
tion. In order to check multivariate normality, let us consider spatial
continuity measures known as “variograms of order ω” (Matheron,
1989):

γ ωð Þ
1 hð Þ ¼ 1

2
E jY1 x þ hð Þ−Y1 xð Þjω� �

γ ωð Þ
2 hð Þ ¼ 1

2
E jY2 x þ hð Þ−Y2 xð Þjω� � ;

8><
>: ð12Þ

where E{.} stands for the mathematical expectation, h for a separation
vector andω for a positive real value. Experimentally, these variograms
of orderω can be estimated by replacing the expectation by an average
over the pairs of datawith locations separated byh (Chilès andDelfiner,
2012). The caseω = 2 corresponds to the traditional variogram. In the
Fig. 5. Scatter plot of P-wave impedance versus ELAN porosity at well locations. The
modeled linear relationship (Eq. (8)) is superimposed.
case of stationary Gaussian random fields, the following identities hold
(Emery, 2005):

γ ωð Þ
1 hð Þ ¼ 2ω−1ffiffiffi

π
p Γ

ωþ 1
2

� �
γ 2ð Þ
1 hð Þ

h iω=2 ð13Þ

γ ωð Þ
2 hð Þ ¼ 2ω−1ffiffiffi

π
p Γ

ωþ 1
2

� �
γ 2ð Þ
2 hð Þ

h iω=2
: ð14Þ

Eqs. (13) and (14) indicate that, in log–log coordinates, the points
representing the variogram of order ω as a function of the traditional
variogram should be aligned with slope ω/2. As shown in Fig. 7 for
ω = 1 and ω = 0.5, this property is well satisfied with the Gaussian
transforms of ELAN porosity and P-wave impedance data, corroborating
that the transformed fields can be modeled as stationary Gaussian
random fields.

2.5. Modeling the spatial correlation structure

Gaussian random fields are characterized by their mean values and
their joint spatial correlation structure, which can be represented by
direct and cross covariances or by direct and cross variograms
(Wackernagel, 2003). For ELAN porosity (Gaussian random field Y1),
the variogram can be calculated experimentally along the vertical direc-
tion (well direction) for lag distances that are multiples of 0.15 m and
along the east–west direction for a single lag distance of 382.5 m, corre-
sponding to the distance that separates the two wells. For P-wave im-
pedance (Gaussian random field Y2), the variogram can be calculated
along the vertical direction for lag distances that are multiples of
0.61 m and along the east–west direction for lag distances that are
multiples of 3.05 m, corresponding to the grid mesh at which P-wave
impedance is available. As for the cross variogram, it can be calculated
along the vertical direction for lag distances that are multiples of
0.61 m and along the east–west direction for a single lag distance of
382.5 m. These experimental variograms exhibit a dampened periodic
behavior along the vertical direction, but not along the east–west direc-
tion, and a finite sill in both directions (Fig. 8).

The fitting of variogram models is complicated by the fact that the
ELAN porosity variogram and the cross variogram are mostly unknown
along the east–west direction. However, it is observed that the direct
and cross variograms have similar shapes along the vertical direction,
except for small distances (the ELAN porosity variogram grows faster

image of Fig.�5
image of Fig.�6


Fig. 7. Variograms of order 1 (blue) and of order 0.5 (red) as a function of the traditional variogram, for the Gaussian transforms of ELAN porosity (A) and P-wave impedance (B). Circles:
experimental variograms calculated along the vertical and east–west directions. Solid lines: theoretical models (Eqs. (13)–(14)) under an assumption of multivariate normality.

Fig. 8.Direct and cross variograms for the Gaussian transforms of ELAN porosity and P-wave impedance, along the vertical direction (left) and east–west direction (right). Crosses: exper-
imental variograms; solid lines: fitted theoretical models.
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than the P-wave impedance variogram, while the cross variogram
does not exhibit a small-scale structure). A fit can be undertaken
by using a linear coregionalization model (Wackernagel, 2003),
which consists in modeling all the variograms by the same set of
basic nested structures. Specifically, three basic structures are
considered:

• a cubic structurewith ranges 30.5 m (east–west) and1.22 m(vertical);
• a cubic structurewith ranges 85.3 m (east–west) and 3.05 m(vertical);
• a separable structure, obtained by multiplying a dampened periodic
covariance along the vertical direction (a J-Bessel covariance function
of order 0 and scale factor 3.35 m) and a monotonic covariance along
the east–west direction (cubic with range 426.7 m).

The ranges and scale factors along the vertical directions have been
chosen in order to fit all the direct and cross variograms, while the
ranges along the east–west direction have been chosen in order to fit
the direct variogram of P-wave impedance: the separable structure
models the large-scale behavior and the first two cubic structures
model the small-scale behavior. Although the first cubic structure has
a smaller contribution than the second one to the variogram of P-
wave impedance, this contribution is not negligible, so that its range
can be reasonably inferred.

The mathematical expression of the above-mentioned basic
structures can be found in the specialized literature (Chilès and
Delfiner, 2012). The fitting of the sills associated with each structure
is performed by using an iterative algorithm (Emery, 2010), which
provides the model that minimizes the squared deviations between
experimental and fitted variograms. The results are displayed in
Fig. 8. Overall, the direct and cross variograms have a similar large-
scale behavior, governed by the separable structure, but their
small-scale behaviors are different (reflecting different small-scale
variability for ELAN porosity and P-wave impedance). The first
cubic structure has a larger contribution to the direct variogram of
ELAN porosity, while the second cubic structure has a larger contri-
bution to the direct variogram of P-wave impedance. Both structures
help to model the variogram increase at small distances, which is
faster for ELAN porosity than for P-wave impedance, and have a
small contribution to the cross variogram, which is dominated by
the separable structure.

2.6. Revisiting the assumption of standard Gaussian distributions

When looking back at the fitted variogram models (Fig. 8), it
is seen that the sills of the direct variograms are slightly greater
than 1: more precisely, these sills are equal to 1.08 for both
ELAN porosity and P-wave impedance. Since the variogram sill
coincides with the variance of the random field, this means that
the transformed random fields Y1 and Y2 do not have a unit
variance.

This observation leads us to revisit the assumption that these
transformed fields are standard Gaussian, i.e., with zero mean
and unit variance. It would actually be more convenient to assume
that the mean values and variances may slightly deviate from zero
and one, respectively. Relaxing the assumption of zero mean and
unit variance has no effect on the variogram analysis stage
(Section 2.5) or on the calculation of variograms of order ω
(Section 2.4). However the mean values of the Hermite polyno-
mials now differ from zero, so that the anamorphosis coefficients
of order 0 do not coincide with the mean values of the raw vari-
ables any more (Rivoirard, 1994). Accordingly, the relationship
given in Eq. (9) may not be equivalent to the desired relationship
between the mean values of ELAN porosity and P-wave impedance
(Eq. (8)).

To examinewhether or not themean values of ELAN porosity and P-
wave impedance are modified in a significantmanner, let us come back
to the expansions of the anamorphoses into Hermite polynomials
(Eqs. (2) and (6)) and consider a first-order approximation:

∀x ¼ x1; x2ð Þ; E Z1 xð Þf g≈ϕ0 x1ð Þ þ ϕ1 x1ð ÞE H1 Y1 xð Þð Þf g
E Z2 xð Þf g≈φ0 x1ð Þ þ φ1 x1ð ÞE H1 Y2 xð Þð Þf g :

�
ð15Þ

Since H1(y) = −y (Eq. (3)), it comes:

∀x ¼ x1; x2ð Þ; E Z1 xð Þf g≈ϕ0 x1ð Þ−m1ϕ1 x1ð Þ
E Z2 xð Þf g≈φ0 x1ð Þ−m2φ1 x1ð Þ ;

�
ð16Þ

wherem1 andm2 are themean values of Y1(x) and Y2(x), assumed con-
stant in space. Accounting for Eqs. (9) and (11), imposed in the
anamorphosis modeling stage, one obtains:

E Z1 xð Þf g þ 0:000014E Z2 xð Þf g≈ 0:615

− 0:000014m2 þ 0:000019m1ð Þφ1 x1ð Þ:
ð17Þ

It is therefore possible to preserve the relationship (Eq. (8)) between
themean ELAN porosity and themean P-wave impedance, by imposing
the following constraint between the mean values of the Gaussian ran-
dom fields Y1 and Y2:

m1 ¼ −0:000014
0:000019

m2 ¼ −0:737m2: ð18Þ
2.7. Summary of the joint model for ELAN porosity and P-wave impedance

In summary, the distribution of ELANporosity in the interwell region
ismodeled through a spatially-varyingGaussian anamorphosis function
(Eq. (4)), whose Hermite coefficients of order 0 and 1 are related to that
of the P-wave impedance anamorphosis (Eqs. (9) and (11)), while the
coefficients of greater orders are constant in space and can be estimated
experimentally from thewell data. TheGaussian transformsof ELANpo-
rosity and P-wave impedance constitute jointly stationary Gaussian
random fields, with means related through Eq. (18) and with a spatial
correlation structure given by the direct and cross variograms displayed
in Fig. 8. It is interesting to note that the dependence relationship be-
tween ELAN porosity and P-wave impedance is twofold: on the one
hand, a stochastic dependence modeled by the cross-variogram; on
the other hand, a functional dependencemodeled by the linear relation-
ship between the mean values (Eq. (8)).

3. Simulation of ELAN porosity

3.1. Non-conditional simulation

Before simulating ELAN porosity conditionally to P-wave impedance
data, it is interesting to draw a few non-conditional realizations of these
two variables. To this end, the cross-correlatedGaussian randomfields Y1
and Y2 are cosimulated on the grid on which the P-wave impedance is
known, with no conditioning data, by using an adaptation of the turning
bands program proposed by Emery (2008). The simulated Gaussian ran-
dom fields are transformed into ELAN porosity and P-wave impedance
fields by applying the modeled anamorphosis functions, which are
known through their expansions into Hermite polynomials (Eqs. (4)
and (7)).

The non-conditional realizations can be used to qualitatively vali-
date the fitted model. In particular, one can visually check that the spa-
tial continuity of P-wave impedance is adequately reproduced, by
comparing the maps of the impedance realizations (Fig. 9) with the
true impedance map (Fig. 1).

3.2. Simulation of ELAN porosity conditioned to P-wave impedance data

The realizations of ELAN porosity and P-wave impedance can be
made conditional to the known impedance data through a post-



Fig. 9. Maps of non-conditional realizations of P-wave impedance, to compare with Fig. 1.
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processing step based on cokriging (Chilès and Delfiner, 2012; De
Fouquet, 1994). In the present case, a particular type of cokriging
must be used, in order to account for the relationship between the
mean values of the underlying Gaussian random fields (Eq. (18))
(Emery, 2012). As an illustration, Fig. 10 presents the maps of four
conditional realizations of ELAN porosity in the interwell region
(the maps of P-wave impedance realizations are all equal to the
map in Fig. 1, as the realizations are conditioned to the impedance
data), while Table 4 summarizes the main statistics of these four
realizations.

Each conditional realization of ELAN porosity provides an image
of the spatial variability of the true unknown values. By comparing
Fig. 10.Maps of conditional rea
Figs. 9 and 10, one observes that the small-scale variability is higher
with ELAN porosity than with P-wave impedance. This is explained be-
cause the growth of the ELAN porosity variogram at short distances is
faster than that of the P-wave impedance variogram (Fig. 8).

The realizations of ELAN porosity suggest the existence of major geo-
logical structures in the interwell region. In particular, one can observe a
low-porosity structure in the depth interval between 270 m and 300 m,
which actually corresponds to a permeability barrierwith small-scale lat-
eral porosity zones related to tight limestone features and isolated vugs,
an interpretation that is supported by well log data (Parra et al., 2009).
The high-porosity structure in the upper part is a flow unit with small
lateral variability associated with vuggy porosity; this unit is formed
lizations of ELAN porosity.

image of Fig.�9
image of Fig.�10


Table 4
Basic statistics of simulated ELAN porosity (realizations 1–4).

Realization Minimum Maximum Mean Standard
deviation

Correlation with
impedance

1 0.1915 0.4997 0.3927 0.0405 −0.4764
2 0.1905 0.4953 0.3888 0.0411 −0.4391
3 0.2015 0.4925 0.3902 0.0392 −0.4090
4 0.1985 0.4996 0.3920 0.0433 −0.4644
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by large structures that are characterized by interconnected matrix
and vugs. In contrast, the structures below the permeability barrier are
flow units formed by a network of heterogeneous conduits that are char-
acterized by a combination of lateral interconnected vugs surrounded by
tight limestone units. The variability of low porosity tight limestone and
the interconnected pores provide a visual assessment of thefluid paths in
the aquifer. In the lower flow units, the fluid path is not as smooth as in
the upper flow unit.
Fig. 12. Probability that a high-porosity structure (decreasing curve) or that a low-porosity
structure (increasing curve) connects the twowells. “High” and “low” porosity are defined
in relation to a porosity threshold indicated in abscissa.
3.3. Processing the realizations

Several outputs can be calculated from the realizations of ELAN po-
rosity. For instance, Fig. 11 maps the mean and standard deviation of
ELAN porosity at each location in the interwell region, as well as the
probabilities that the true ELAN porosity is less than 0.40 or 0.38. All
these maps have been calculated from a set of 400 conditional realiza-
tions. A few artifacts are discernable, especially in the middle of the
interwell region (east coordinate close to 190 m). These are caused by
artifacts in the P-wave impedance map (Fig. 1), which could have
been filtered out prior to the modeling stage. Note that the artifacts
are hardly perceptible in the individual realizations (Fig. 10), as they
are eclipsed by the small-scale variability of ELAN porosity.

The mean ELAN porosity gives a prediction map similar to what can
be obtained by cokriging (Parra and Emery, 2013). The standard devia-
tion measures the uncertainty in the true unknown ELAN porosity.
Globally, one observes an inverse relationship between the standard de-
viation and themeanporosity. This relationship is knownas a regressive
Fig. 11. Top: mean and standard deviation of ELAN porosity realizations. Bottom: probability
effect or proportional effect (David, 1988;Manchuk et al., 2009) and can
be explained because the distribution of ELAN porosity is negatively
skewed (Fig. 3). The standard deviation of ELAN porosity also turns
out to be greater in the eastern part of the interwell region, indicating
that the regressive effect is not uniform in this region (it actually de-
pends on the Gaussian anamorphosis function, which varies with the
east coordinate according to Eq. (4)). Accordingly, if an additional well
could be drilled in the interwell region, it should better be placed be-
tween coordinates 250–350 m, where uncertainty in ELAN porosity is
greater, rather than in the middle of the interwell region.

As for the individual realizations in Fig. 10, the mean ELAN porosity
and the probability maps suggest the existence of one low-porosity
structure and two to three high-porosity structures between the two
that ELAN porosity is less than 0.40 or 0.38, estimated from 400 conditional realizations.

image of Fig.�11
image of Fig.�12


Fig. 13. Experimental residual variogram calculated along the vertical direction (crosses)
and fitted isotropic model (solid line).
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wells. This is corroborated by water well observations at the aquifer, as
water production is very high in the zones above and below the identi-
fied low-porosity structure (Bennett and Recrenwald, 2002). In order to
assesswhether or not these structures effectively connect the twowells,
the following exercise can be done:

1) Define a porosity threshold p.
2) For each realization of ELAN porosity

a. Select the grid nodes for which the simulated porosity is greater
than p.

b. Determine if, among the selected grid nodes, there exists a struc-
ture (i.e., a set of contiguous nodes) that connects the two wells.

3) Calculate the number of realizations for which a structure has been
identified, relative to the total number of realizations, as an estimate
of the probability that the two wells are connected by a structure
with porosity greater than p.

4) Repeat the same exercise for identifying low-porosity structures (at
step 2a, select the grid nodes with simulated porosity less than
threshold p).
Fig. 14.Maps of three conditional realizations of ELAN porosity and of the drift com
The results of the exercise are indicated in Fig. 12, for porosity
thresholds varying from 0.33 to 0.43. The increasing curve represents
the probability (ordinate axis) that a structure with ELAN porosity
lower than the threshold (abscissa axis) connects the two wells, while
the decreasing curve represents the probability that a structure with
ELAN porosity greater than the threshold connects the twowells. For in-
stance, the increasing curve indicates that there is 23% probability that
the two wells are connected by a structure with ELAN porosity less
than 0.37, and that the probability increases to more than 50% if the po-
rosity threshold is set to 0.38.

3.4. Simulation of ELAN porosity with a simplistic model

The realizations in Fig. 10 can be compared to the ones thatwould be
obtained with a more simplistic model, consisting in splitting the ELAN
porosity field into two components: on the one hand, a drift (trend) lin-
early related to P-wave impedance; on the other hand, a zero-mean re-
sidual that is independent of the drift. By assuming that the residual is
the transform of a stationary Gaussian random field, the simulation of
ELAN porosity can be achieved through the following steps:

1) Based on thewell data,fit a linear regressionmodel of ELAN porosity
as a function of P-wave impedance.

2) Transform the values of the regression residual into normally dis-
tributed data.

3) Calculate the experimental variogram of the transformed residual
and fit a theoretical model. In practice, the experimental variogram
is known only along the vertical direction, so that an isotropic
variogram is fitted (Fig. 13), supposing that the drift accounts for
the anisotropy in the spatial distribution of ELAN porosity.

4) Simulate the residual in the interwell region.
5) Add the drift component and the simulated residual to obtain a real-

ization of ELAN porosity.

As an illustration, Fig. 14 presents the maps of three realizations
obtained through the previous steps, and a map of the drift component,
which coincides with the mean of an infinitely large number of realiza-
tions since the residual has a zero mean. Although the latter map sug-
gests the existence of structures of high and low porosity, these
structures appear as more scattered and less connected than with the
ponent, equal to the mean of infinitely many realizations (simplistic model).

image of Fig.�13
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Fig. 15.Probability that a high-porosity structure (decreasing curve) or that a low-porosity
structure (increasing curve) connects the two wells (simplistic model).
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model developed in Section 2. This can be explained because the resid-
ual variogram (Fig. 13) is composed of two nested structures with a
small range (1.1 m and 5.2 m, respectively), producing small-scale var-
iability in the simulated residual and porosity values. This impression is
confirmedwhen calculating the probability curves as defined in Fig. 12:
the probability that the two wells are connected by a structure with
ELAN porosity less than 0.37 is now very close to zero (Fig. 15). This dis-
agreeswith thewaterwell observations andwith the existence of a per-
meability barrier between the two wells.

4. Conclusions

While spatial prediction techniques such as cokriging provide a
single, smoothed, model of subsurface properties, stochastic simulation
enables the construction of multiple images (realizations) that are con-
sistentwith the available data and reproduce the true underlying spatial
variability and small-scale heterogeneities.

In this paper, we focused on the simulation of porosity, which plays
an important role in groundwater flow and helps to predict fluid paths
in the aquifer at the well scale, based on porosity logs at two wells and
high-resolution crosswell seismic measurements of P-wave impedance.
To this end, a jointmodel of porosity and impedance has been elaborated
and carefully checked against the available data in order to corroborate
the successive model assumptions. Multiple realizations of porosity
have been constructed and conditioned to the impedance data in the
interwell region, giving a representation of our uncertainty in the true
distribution of porosity. The set of realizations allow identifying one
low-porosity structure acting as a permeability barrier in the depth inter-
val between 270 m and 300 m, as well as two to three flow units above
and below this structure, which are likely to connect the twowells. They
also provide a visual assessment of the fluid path in the aquifer and sug-
gest that the path in the lowerflowunits, formed by a network of hetero-
geneous conduits, is not as smooth as in the upper flow unit.

The fitting of the model is essential to assessing the connectivity of
porosity structures. As an illustration, a simpler, but less realistic,
model based on a decomposition of the porosity field into a drift and a
residual component, shows much less connected structures than the
proposed model.
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