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Abstract

We consider the two-dimensional motion of several non-homogeneous rigid
bodies immersed in an incompressible non-homogeneous viscous fluid. The fluid,
and the rigid bodies are contained in a fixed open bounded set ofR

2. The motion of
the fluid is governed by the Navier-Stokes equations for incompressible fluids and
the standard conservation laws of linear and angular momentum rule the dynamics
of the rigid bodies. The time variation of the fluid domain (due to the motion of the
rigid bodies) is not knowna priori, so we deal with a free boundary value problem.
The main novelty here is the demonstration of the global existence of weak solutions
for this problem. More precisely, the global character of the solutions we obtain is
due to the fact that we do not need any assumption concerning the lack of collisions
between several rigid bodies or between a rigid body and the boundary. We give
estimates of the velocity of the bodies when their mutual distance or the distance
to the boundary tends to zero.

1. Introduction

The aim of this paper is to prove an existence result for a coupled system of
nonlinear partial and ordinary differential equations modelling the motion of several
rigid bodies inside a fluid flow. The governing equations for the fluid flow are the
classical Navier-Stokes system, whereas the motion of the rigid bodies is governed
by the balance equations for linear and angular momentum (Newton’s laws).

Let � ⊂ R
2 be an open bounded set representing the domain occupied by

the fluid and byN rigid bodies. We denote byF(t) the domain occupied by the
fluid and bySi(t), i = 1, . . . , N the domains occupied by the rigid bodies at the
instant(t). The full system of equations modelling the motion of the fluid and of
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the rigid bodies can be written as

ρ
F (ut + (u · ∇)u)− νu+ ∇p = ρ

F
g, x ∈ F(t), t ∈ [0, T ], (1.1)

div u = 0, x ∈ F(t), t ∈ [0, T ], (1.2)

∂ρ
F

∂t
+ div (ρ

F
u) = 0, x ∈ F(t), t ∈ [0, T ], (1.3)

u = 0, x ∈ ∂�, t ∈ [0, T ], (1.4)

u = h′i + ωi(x − hi )
⊥, x ∈ ∂Si(t), t ∈ [0, T ], i = 1, . . . , N, (1.5)

Mih
′′
i = −

∫
∂Si (t)

Tnd� +
∫
Si(t)

ρ
S
g dx, t ∈ [0, T ], i = 1, . . . , N, (1.6)

Ji
dωi

dt
= −

∫
∂Si (t)

(x − hi )
⊥ · Tn d�

+
∫
Si(t)

(x − hi )
⊥ · ρ

S
g dx, t ∈ [0, T ], i = 1, . . . , N, (1.7)

u(x,0) = u0(x), x ∈ F(0), (1.8)

ρ
F
(x,0) = ρ0

F
(x), x ∈ F(0), (1.9)

ρ
S
(x,0) = ρ0

S
(x), x ∈ � \ F̄ (0), (1.10)

Si(0) = Si,0, (1.11)

hi (0) = h0
i ∈ R

2, h′i (0) = h1
i ∈ R

2, ωi(0) = ω0
i ∈ R. (1.12)

In the above system the unknowns areu(x, t) (the Eulerian velocity field of
the fluid),ρ

F
(x, t) (the density field of the fluid),ρ

S
(x, t) (the density field of the

rigid part),hi (t), i = 1, . . . , N (the position of the gravity centres of the rigid
bodies) andωi(t), i = 1, . . . , N (the angular velocities of the rigid bodies). For all
x = ( x1

x2

)
, we denote byx⊥ the vectorx⊥ = ( x2−x1

)
.

Moreover we have denoted by∂� the boundary of�, by ∂Si(t) the boundary
of theith-rigid body at instantt , byn(x, t) the outwards unit vector field normal to
∂F (t) and byg(x t) the applied body forces (per unit mass). The constantν > 0
stands for the viscosity of the fluid. Further, we have denoted byMi (byJi) the mass
(respectively, the inertia moment related to the mass centre) of theith-rigid body
and byT the Cauchy stress tensor field in the fluid. The components(Tkl)k,l∈{1,2}
of T are related to the velocity fieldu by

Tkl(x, t) = −p(x, t)δkl + ν

(
∂uk

∂xl
+ ∂ul

∂xk

)
, k, l = 1,2. (1.13)

The existence of weak solutions of (1.1)–(1.13) (in a sense which will be defined
below) has already been studied. In [14] and [21] the authors prove a global existence
result in the case of one body in a fluid filling the whole space. The problem in a
bounded domain with several rigid bodies was considered in [2–5,10,12,13]. In [4]
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and [5], the authors prove global existence up to collisions in the two-dimensional
and in the three-dimensional cases, for both incompressible and compressible fluid.
In [12] and [13], the authors show global existence for one rigid body in the presence
of eventual collisions. The same type of result is obtained in [2,3,10] by different
methods. The methods in the papers quoted above do not seem to be applicable in
the case of several rigid bodies with eventual collisions. The stationary problem
was studied in [21] and [8] (see also the references therein).

The main novelty of this paper is that we show a method of proving global
existence in the presence of eventual collisions for the case of several rigid bodies
immersed in a non-homogeneous fluid. Our results are valid in two space dimen-
sions. The global existence (with collisions) for several rigid bodies seems to be an
open question in the three-dimensional case.

Let us mention that a local (in time) existence result of strong solutions was
proved in [9].

The plan of this paper is as follows: In Section 2 we introduce some notation
and state the main results. In Section 3 we introduce a penalized problem and
describe the main steps of the proof of the existence result. Section 4 contains
some properties of a function space specific to our problem. In Section 5 we apply
classical results of DiPerna and Lions in order to pass to the limit in the transport
equation of the density. In Section 6 we derive several technical results which are
then used, in Section 7, to prove the compactness of the sequence of approximated
velocity fields. The main results are proved in Section 8.

2. Notation and main result

We first introduce some general notation.
LetG ⊂ R

2 be a bounded open set with aC 2 boundary.
If v ∈ L2(G,R2) is a vector field we denote by D(v) the tensor field defined by

Dij (v) = 1

2

(
∂vi

∂xj
+ ∂vj

∂xi

)
, i, j = 1,2,

where the derivatives are calculated in the distributions sense, i.e., inD ′(G).
We say thatv ∈ L2(G,R2) is a rigid velocity field if Dij (v) = 0, in D ′(G),

for i, j ∈ {1,2}.
We will use the following classical functional spaces:
V (G) = {v ∈ C∞

0 (G;R2)
∣∣div v = 0

}
,

V (G) is the closure ofV (G) in
[
H 1(G)

]2
,

H(G) is the closure ofV (G) in
[
L2(G)

]2
.

According to classical results (see, for instance, [22]) we have

V (G) = {v ∈ [H 1
0 (G)

]2∣∣div v = 0 inL2(G)
}
,

H(G) = {v ∈ [L2(G)
]2∣∣div v = 0 in D ′(G), v · n = 0 in H−1/2(∂G)

}
.

Moreover, we will use some non-standard function spaces specific to our prob-
lem.
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Let� ⊂ R
2 be the fixed set representing the domain occupied by the fluid and

by the solid bodies. We suppose that the boundary of� is of classC 2.
If χ is the characteristic function of a subset of�, we define

K(χ) = {v ∈ V (�) : χD(v) = 0 inL2(�)
}
, (2.1)

and

S(χ) = {x ∈ � : χ(x) = 1} .
The spaceK(χ) is clearly a closed subspace ofV (�).
According to Lemma 1.1 in [23, p. 18], ifS(χ) is an open connected subset

of �, then, for everyv ∈ K(χ), there exist a vectorkv and a constant%v such that

v(x) = kv + %vx
⊥ ∀ x ∈ S(χ). (2.2)

If σ > 0 andG ⊂ R
2 is an open set we denote byGσ theσ -neighbourhood ofG,

i.e.,

Gσ =
{
x ∈ R

2 : d(x,G) < σ
}
, (2.3)

and we define the function space

Kσ (χ) =
{
u ∈ V (�)∣∣D(u)(x) = 0 ∀ x ∈ Sσ (χ)

}
.

Moreover, we denote byK0(χ) the closure of∪σ>0Kσ (χ) in H 1(�).
Let us now go back to the notation in problem (1.1)–(1.11). We suppose that

the setsSi(t), i = 1, . . . , N , representing the regions occupied by the solid bodies
at instantt , are open and that, at the initial moment, the boundary ofSi(0), for all
i = 1, . . . , N , is of classC 2. Moreover, we suppose thatSi(0) ∩ Sj (0) = ∅ for
all i, j = 1, . . . , N , i �= j .

Due to the regularity assumptions above, it can be easily checked that the
following result holds.

Proposition 2.1. There existsδ > 0 such that for alli = 1, . . . , N, and for all
x ∈ Si(0) ( for all x ∈ R

2 \ �) there exists a open diskB of radiusδ included in
Si(0) (respectively, inR2 \�) and containingx.

Throughout this paper we fixδ > 0 satisfying the conditions in the proposition
above.

In the particular case when we choose, in (2.3),σ = δ we denote byGext the
setGδ. More precisely, we put

Gext =
{
x ∈ R

2
∣∣d(x,G) < δ

}
,

and we denote byGint the “δ-kernel” ofG defined by

Gint =
{
x ∈ R

2
∣∣B(x, δ) ⊂ G

}
.

We remark that, due to Proposition 2.1, theδ-neighbourhood of theGint and
the “δ-kernel” ofGext are equal toG.
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Moreover, iff ∈ L1
loc(R

2,R2), then we denote byf the convolution off by
a radially symmetric regularizing kernel supported inB(0, δ). More precisely, we
put

f = wδ ∗ f =
∫

R2
wδ(x − y)f (y) dy, (2.4)

wherewδ is a symmetric kernel, i.e.,wδ ∈ D (R2),wδ(x) = w̃δ(|x|),
∫

R2 wδ(x) dx

= 1 and suppwδ ⊂ B(0, δ).
The remark below, which can be checked by a simple calculation, plays an

important role in the remaining part of this work.

Remark 2.1. If u is a rigid velocity field in the setG, thenu(x) = u(x) for all
x ∈ Gint.

We denote byϕi(· , t) the characteristic function ofSi(t) and we putϕ =∑N
i=1 ϕ

i .
We notice thatϕ is the characteristic function of the rigid partS(t) of � at the
instantt .

We denote byψi(· , t) the characteristic function of the “δ-kernel” ofSi(t), i.e.,

S(ψi) =
(
Si(t)

)
int

and we putψ =∑N
i=1ψ

i .
If T > 0, we denote byQ the cylinderQ = �× [0, T ] and we put

Char(Q) = {g : Q→ {0,1}} , Char(�) = {g : �→ {0,1}} ,
i.e.,ψ ∈ Char(Q) if and only if ψ is the characteristic function of some subset
of Q.

If ψ ∈ Char(Q), we denote byLp(0, T ;K(ψ)) the space of functionsv ∈
Lp(0, T ;V (�)) such thatv(t) ∈ K(ψ(· , t)) for almost allt ∈ [0, T ].

In order to define weak solutions of (1.1)–(1.13) we follow the ideas in [12]
and [4]. This weak formulation is global in the sense that the unknown functions are
defined on the whole domain�. More precisely, instead of considering separately
the velocity (density) fields of the fluid and the rigid bodies, we consider only one
velocity fieldu (respectively, one density fieldρ) defined in�× [0, T ]. For every
i = 1, . . . , N , the restriction ofu(· , t) to Si(t) is a rigid velocity field. Weak
solutions of our problem can be defined as follows:

Definition 1. Letu0 ∈ H(�),ρ0 ∈ L∞(�) andϕi,0 be the characteristic functions
of Si(0), i = 1, . . . , N . A set of functions

{
u, ρ, ϕi, i = 1, . . . , N

}
such that

u ∈ L∞(0, T ;H(�)) ∩ L2(0, T ;K(ϕ)), (2.5)

ϕi ∈ Char(Q) ∩ C 0,1/p(0, T ;Lp(�)), 1 � p <∞, (2.6)

ϕ =
N∑
i=1

ϕi ∈ Char(Q), (2.7)

ρ ∈ L∞(Q), (2.8)
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is said to be a weak solution of (1.1)–(1.13) if the equalities∫
Q

(
ρu(ξ t + (u · ∇)ξ)− νD(u) : D(ξ)

)
dx dt (2.9)

= −
∫
�

ρ0u0 · ξ(x,0)dx −
∫
Q

ρg · ξ dx dt,∫
Q

ρ (ηt + (u · ∇)η) dx dt = −
∫
�

ρ0 · η(x,0) dx, (2.10)∫
Q

ϕi (ηt + (u · ∇)η) dx dt = −
∫
�

ϕi,0 · η(x,0) dx, i = 1, . . . , N (2.11)

hold for any functionsξ ∈ H 1(Q) ∩ L2(0, T ;K(ϕ)), ξ(T ) = 0, η ∈ C 1(Q),

η(T ) = 0.

The main result of this paper is

Theorem 2.1. If u0 ∈ H(�), g ∈ L2(Q), ρ0 ∈ L∞(�), ρ0 � m0 > 0 for
some constantm0 and the boundaries∂�, ∂Si(0), i = 1, . . . , N are of classC 2,
then there exists at least one weak solution of(1.1)–(1.13). Moreover, this solution
satisfies the energy estimate∫

�

ρ|u|2dx +
∫
Q

ν |D(u)|2 dx dt � C

{∫
�

ρ0|u0|2 dx + ‖g‖2
L2(Q)

}
(2.12)

for some constantC > 0.
Finally, there exists a family of isometries

{
A i

s,t

}
s,t∈[0,T ],i∈{1,... ,N} of R

2 such
that

S(ϕi(t)) = A i
s,t

(
S(ϕi(s))

) ∀ s, t ∈ [0, T ], ∀ i = 1, . . . , N (2.13)

andA i
s,t are Lipschitz-continuous with respect tos andt .

Remark 2.2. The theorem above combined with (2.7) implies thatS(ϕi(t))∩
S(ϕj (t)) = ∅ for all i, j = 1, . . . , N , i �= j and for all t ∈ [0, T ].
Since the setsS(ϕi(t)), i, j = 1, . . . , N are open, this fact does not exclude
eventual touching of the boundaries of different bodies or of a boundary of a body
and the boundary∂�.

Theorem 2.2. Let
{
u, ρ, ϕi, i = 1, . . . , N

}
be a weak solution of(1.1)–(1.13)and

hij (t) = dist
(
S(ϕi(t)), S(ϕj (t))

)
, h0i (t) = dist

(
∂�, S(ϕi(t))

)
. Then the follow-

ing assertions hold:

(1) If E0i = {t ∈ [0, T ] : h0i (t) = 0}, thenu(x, t) = 0 asx ∈ S(ϕi(t)) for almost
all t ∈ E0i; if Eij =

{
t ∈ [0, T ] : hij (t) = 0

}
then there exists a rigid velocity

fieldv(x, t) such thatu(x, t) = v(x, t) for all x ∈ S(ϕi(t))∪S(ϕj (t)) and for
almost allt ∈ Eij .
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(2) For all i �= j and for all t0 ∈ [0, T ] with hij (t0) = 0,

lim
t→t0

hij (t)

|t − t0|2
= 0.

Remark 2.3. The theorem above allows collisions of different solids or collisions
between solids and the boundary, but only with vanishing relative velocity and
relative acceleration. This fact might seem to be a new paradox in fluid mechanics.A
possible explanation is that the concept of weak solutions “`a la Leray” of the Navier-
Stokes incompressible model (see for instance [16] and [22]) is not appropriate for
describing collisions with a non-zero relative velocity.

3. Main steps of the proof Theorem 2.1

The first step in the proof of Theorem 2.1 is to approximate the rigid bodies by
very viscous fluids. In this way we introduce a penalized problem. More precisely,
for givenn ∈ N, u0 ∈ H(�), ρ0 ∈ L∞(�), andψi,0 ∈ L∞(�) ∩ Char(�), we
consider the following penalized problem.

Find a set of functions
{
un, ρn, ϕn, ϕ

i
n, ψ

i
n, i = 1, . . . , N

}
such that

un ∈ L∞(0, T ;H(�)) ∩ L2(0, T ;V (�)), (3.1)

ψi
n, ϕ

i
n ∈ Char(Q) ∩ C 0,1/p(0, T ;Lp(�)), 1 � p <∞, i = 1, . . . , N, (3.2)

ϕn =
N∑
i=1

ϕin, (3.3)

ρn ∈ L∞(Q), (3.4)

S(ϕin) =
(
S(ψi

n)
)

ext
, i = 1, . . . , N (3.5)

and such that relations∫
Q

(
ρnun

(
ξ t + (un · ∇)ξ

)−(ν + nϕn)D(un) : D(ξ)
)
dx dt

= −
∫
�

ρ0u0 · ξ(· ,0) dx −
∫
Q

ρng · ξ dx dt, (3.6)

∫
Q

ρn (ηt + (un · ∇)η) dx dt = −
∫
�

ρ0 · η(· ,0) dx, (3.7)

∫ T

0

∫
�ext

ψi
n (γt + (un · ∇)γ ) dx dt (3.8)

= −
∫
�ext

ψi,0 · γ (· ,0) dx, i = 1, . . . , N,
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hold for any functionsξ ∈ H 1(Q) ∩ L2(0, T ;V (�)), ξ(· , T ) = 0, η ∈ C 1(Q),

η(· , T ) = 0, γ ∈ C 1((0, T )×�ext), γ (· , T ) = 0.
The functionun(· , t) in (3.8) is defined as in (2.4) after extendingu by zero

outside�. The replacement ofun by un in (3.8) (which is much smoother) allows
the application of some standard results on ordinary differential equations and on
characteristics of transport equations. Moreover, due to Remark 2.1 we will obtain
a rigid motion whenn→∞, without passing to the limit with respect toδ.

The result below asserts the existence of weak solutions for (3.1)–(3.8). This
result can be proved following step by step the classical methods of investigation
of the Navier-Stokes equations for non-homogeneous fluids (see [1] or [19]). This
is why we omit the proof.

Theorem 3.1. For any n ∈ N, u0 ∈ H(�), ρ0 ∈ L∞(�), ψi,0 ∈ L∞(�) ∩
Char(�) there exists at least a solution of the penalized problem(3.1)–(3.8). This
solution has the following properties:

∫
�

ρn|un|2 dx +
∫
Q

(ν + nϕn)
∣∣D(un)∣∣2 dx dt

� C

{∫
�

ρ0|u0|2 dx + ‖g‖2
L2(Q)

}
, (3.9)

for some constantC > 0, ρ(x, t) � m0 for a.e.x ∈ �, t ∈ [0, T ],

‖ρn(t)‖Lp(�) =
∥∥ρ0
∥∥
Lp(�)

, 1 � p �∞, (3.10)∥∥ψi
n(t)
∥∥
Lp(�ext)

= ∥∥ψi,0
∥∥
Lp(�ext)

, 1 � p �∞, i = 1, . . . , N. (3.11)

Moreover, for allt ∈ [0, T ] the functionsψi
n(· , t) take, a.e. in�, only two values:

0 and1.

According to Theorem 3.1 the sequences{un}, {ρn},
{
ψi
n

}
have subsequences

(which we also denote by{un}, {ρn},
{
ψi
n

}
) such that

un → u in L2(0, T ;V (�)) weakly and inL∞(0, T ;H(�)) weakly∗, (3.12)

ρn → ρ in L∞(Q) weakly∗, (3.13)

ψi
n → ψi in L∞(0, T , L∞(�ext)) weakly∗. (3.14)

Moreover, denote byϕi, i = 1, . . . , N the characteristic functions of
(
S(ψi)

)
ext

and byϕ =∑N
i=1 ϕ

i .
The second step of the proof consists in showing that the weak limits defined

above satisfy the transport equations. More precisely, we will show that the follow-
ing result holds true.

Proposition 3.1. The functionsu, ρ andϕ defined above satisfy relations(2.5)–
(2.8), (2.10)and (2.11).
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The proof of this result, which is based on the results ofDiPerna andLions (see
[6] and [19]), is given in Section 5.

The third and the most technical step of the proof consists in proving the fol-
lowing result, which is proved in Section 7.

Theorem 3.2. The sequence{un} in (3.12)converges strongly tou in L2(Q).

The last step consists in combining Proposition 3.1 and Theorem 3.2 in order to
prove our main existence theorem.

4. Some properties of the space K(χ)

In this section we give some properties of the spaceK(χ) defined by (2.1).
Let χ be the characteristic function of an open subset of�. Throughout this

section we assume thatχ satisfies the following assumptions:

(A1) The characteristic functionχ = ∑N
i=1χ

i , whereχi is the characteristic
function of an open connected setS(χi), for i = 1, . . . , N .

(A2) The setsS(χi), i = 1, . . . , N , have smooth boundaries (sayC 2).

Assumption (A1) implies thatS(χi) ∩ S(χj ) = ∅ for all i, j = 1, . . . , N , i �= j .
This fact does not exclude the case where∂S(χi) ∩ ∂S(χj ) �= ∅ for some values
of i andj with i �= j .

Moreover, the assumptions above clearly imply that

K(χ) =
N⋂
i=1

K(χi).

If we consider nowu ∈ K(χ), then the restriction ofξ to each of the sets
S(χi) is a rigid velocity field. The result below gives information on the behaviour
of u ∈ K(χ) in the case when the boundaries ofS(χi) andS(χj ), i �= j , have
common points.

Proposition 4.1. Suppose thati, j ∈ {1, . . . , N}, i �= j, are such that∂S(χi) ∩
∂S(χj ) �= ∅. Then, for anyu ∈ K(χ), there exists a rigid velocity fieldw such that
u(x) = w(x) for all x ∈ S(χi) ∪ S(χj ).
Proof. Sinceu ∈ K(χi), there exists a rigid functionw such thatu(x) = w(x)

for all x ∈ S(χi). Let us introduce the functionv = u− w. We have to prove that

v(x) = 0 ∀ x ∈ S(χj ).
Let us suppose thatM ∈ ∂S(χi) ∩ ∂S(χj ). Sincev ∈ K(χj ), we have the

representation:

v(x) = a + ω(x − xM)
⊥ ∀ x ∈ S(χj ), (4.1)

wherea ∈ R
2 andω ∈ R are constants.
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S(χi)

Bi

Bj

S(χj )δ

M

ξ1

ξ2

Fig. 4.1. Contact between solidsS(χi) andS(χj ).

Since the boundaries∂S(χi) and∂S(χj ) are of classC 2, there existδ > 0 and
the open disksBi andBj of radiusδ such that

Bi ⊂ S(χi), Bj ⊂ S(χj ), Bi ∩ Bj = {M} ,
whereBi is the closure ofBi in R

2.
Let us introduce a system of coordinates with the origin inM and havingMξ1

andMξ2 as coordinate axis (see Fig. 4.1). With respect to this new system of
coordinates, (4.1) becomes

v(ξ) = a + ωξ⊥ (4.2)

for all ξ ∈ R
2 such thatξ + xM ∈ S(χj ).

The equations of the boundaries∂Bi and∂Bj with respect to this system of
coordinates are

ξ2 = ±c(ξ1), ξ1 ∈ [−δ, δ]
wherec(ξ1) = δ −

√
δ2− ξ2

1 for all ξ1 ∈ [−δ, δ]. Notice that

ξ2
1

2δ
� c(ξ1) � ξ2

1

δ
∀ ξ1 ∈ (−δ, δ). (4.3)

First we prove thata = 0. Let us fix an arbitrary positive numberτ < δ and
consider the domain

Dτ =
{
(ξ1, ξ2) : −τ < ξ1 < τ,

|ξ1|
τ
c(τ ) < ξ2 < c(τ)

}
. (4.4)

SinceDτ ⊂ Bj , we have∫
Dτ

vdξ1dξ2 = a

∫
Dτ

dξ1 dξ2+ ω

∫
Dτ

ξ⊥ dξ1 dξ2.
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Hence

|a|µ(Dτ ) �
∫
Dτ

|v| dξ1 dξ2+ |ω|
∫
Dτ

|ξ | dξ1 dξ2

� [µ(Dτ )]
1/2 ‖v‖L2(Dτ )

+ |ω|
√
τ2+ c2(τ )µ(Dτ ),

(4.5)

whereµ is the two-dimensional Lebesgue measure.
Sincev vanishes inBi we can apply the Poincaré inequality to get

‖v‖L2(Dτ )
� 2c(τ ) ‖∇v‖L2(�) . (4.6)

Relations (4.5) and (4.6) imply that

|a| � 2‖∇v‖L2(�) c(τ )µ(Dτ )
−1/2+ |ω|

√
τ2+ c2(τ ). (4.7)

Sinceµ(Dτ ) = τc(τ ), from (4.3) and (4.7) we have

|a| � Cτ1/2 ∀ τ < δ,

where

C = max

{
2√
δ
‖∇v‖L2(�) ,

√
2δ|ω|

}

is a constant independent ofτ . By passing to the limit whenτ → 0 we find that
a = 0.

Let us now prove thatω = 0. For any positive real numberr < δ let us consider
the setGr defined by

Gr =
{
(ξ1, ξ2) : 0 < ξ1 < r, |ξ2| < c(r)

r
ξ1

}
.

We notice that

∂Gr = �ir ∪ �jr ∪ �r,
where we used the notation:

�ir =
{
(ξ1, ξ2) ∈ ∂Gr : 0 < ξ1 < r andξ2 = −c(r)

r
ξ1

}
,

�
j
r =
{
(ξ1, ξ2) ∈ ∂Gr : 0 < ξ1 < r andξ2 = c(r)

r
ξ1

}
and

�r = {(ξ1, ξ2) ∈ ∂Gr : ξ1 = r} .

It is clear that�ir ⊂ Bi and�jr ⊂ Bj .
Since divv = 0 in�, we have∫

∂Gr

v · n ds = 0.
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Using the fact thatv = 0 on�ir , we see that the relation above yields∫
�
j
r

v · n ds +
∫
�r

v · n ds = 0.

From (4.2) and the fact thata = 0 and�jr ⊂ Bj , we obtain

∣∣∣∣
∫
�
j
r

v · n ds
∣∣∣∣ =
∣∣∣∣∣
∫ √r2+c2(r)

0
ωτ dτ

∣∣∣∣∣ = |ω|
2
(r2+ c2(r)) � |ω|r2

2
.

Hence, for allr ∈ (0, δ), we have the inequality

|ω|r2

2
�
∣∣∣∣
∫
�r

v · n ds
∣∣∣∣ �
∫
�r

|v| ds �
√

2c(r) ‖v‖L2(�r )
,

which gives the estimate

ω2r4

8c(r)
� ‖v‖2

L2(�r )
∀ r ∈ (0, δ).

By using (4.3), we get

δω2r2

8
� ‖v‖2

L2(�r )
∀ r ∈ (0, δ).

Integrating this inequality with respect tor from 0 to an arbitraryγ ∈ (0, δ) we
obtain

δω2

8

γ 3

3
� ‖v‖2

L2(Gγ )
. (4.8)

On the other hand, by the Poincaré inequality, we have

‖v‖2
L2(Gγ )

� (2c(γ ))2 ‖∇v‖2
L2(Gγ )

. (4.9)

Inequalities (4.3), (4.8) and (4.9) imply that

ω2 � 96
γ

δ3
‖∇v‖2

L2(Gγ )
∀ γ ∈ (0, δ).

By passing to the limit whenγ → 0, the relations above imply thatω = 0, i.e.,
v = 0 in S(χj ). Proposition 4.1 is now proved.

The method used in the proof of Proposition 4.1 can be easily extended to the case
when one of the sets ofS(χi) touches the boundary of�. In this case, the behaviour
of u ∈ K(χ) is given in the result below, which is stated without proof.

Proposition 4.2. Suppose that∂S(χi) ∩ ∂� �= ∅ for somei = 1, . . . , N . Then,
anyu ∈ K(χ) satisfies the conditionu(x) = 0 for all x ∈ S(χi).
We next state and prove a result showing that the union of the spacesKσ (χ), σ > 0,
is dense in the spaceK(χ).
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Proposition 4.3. For any ξ ∈ K(χ), there exists a sequence of functions{
ξσ
}
σ>0 ⊂ K(χ) satisfying the conditions:ξσ ∈ Kσ (χ) for all σ > 0 and

ξσ → ξ in H 1(�) asσ → 0.

Proof. We prove this assertion by using the notion of a stream function. Letψ ∈
H 2(�) be the stream function ofξ (i.e.,ξ = ∇⊥ψ , where∇⊥ψ =

(
∂ψ/∂x2−∂ψ/∂x1

)
). It

clearly suffices to prove that there exists a sequence of functions{ψσ }σ>0 ⊂ H 2(�)

satisfying the conditions

lim
σ→0

ψσ = ψ in H 2(�) and ξσ = ∇⊥ψσ ∈ Kσ (χ) ∀ σ > 0. (4.10)

We remark that the general form of the stream function of a rigid velocity field
is

ψ(x) = a + b · x + c|x|2, (4.11)

wherea, c ∈ R andb ∈ R
2 are some constants.

Let us divide the setsS(χ0) = R
2 \ � andS(χi), i = 1, . . . , N , into several

groups as follows: if∂S(χi) ∩ ∂S(χj ) �= ∅, thenS(χi) andS(χj ) belong to the
same group. Letm be the number of groups. We clearly havem � N + 1. Denote
by φk, k = 1, . . . , m, the sum of functionsχi included in the group numberk and
let us definer by

r = min
k �=% dist

(
S(φk), S(φ%)

)
.

We clearly haver > 0.
According to Proposition 4.1 there exist the rigid functionsuk, k = 1, . . . , m,

such thatξ(x) = uk(x) asx ∈ S(φk) ∩ � . Letψk, k = 1, . . . , m, be the corre-
sponding stream functions (which have the form (4.11)). Each of these functions is
determined up to a constant. We choose these constants such thatψk(x) = ψ(x)

for all x ∈ S(φk) ∩�.
Moreover, we introduce an auxiliary functioñψ ∈ H 2(�) such that̃ψ(x) =

ψk(x) for all x ∈ Sr/3(φ
k) ∩ �. With this auxiliary function we can writeψ as

ψ = ψ̃ + w, wherew ∈ H 2(�) andw(x) = 0 for all x ∈⋃N
k=0 S(χ

k) ∩�.
Suppose that{wσ } ⊂ H 2(�) is a sequence such that

wσ (x) = 0 ∀ x ∈
N⋃
k=0

Sσ (χ
k) ∩�, and lim

σ→0
wσ = w in H 2(�), (4.12)

then the sequence{ψσ } defined byψσ = ψ̃ + wσ for all σ > 0 clearly satisfies
(4.10).

In order to construct{wσ } satisfying (4.12) for anyσ > 0, we consider the
sequence of functions{ησ }σ>0 such thatησ : R

+ → R
+, ησ (s) = 0 if s ∈ [0, σ ],
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ησ (s) = 1 if s � 2σ and
∣∣η′′σ (s)∣∣ = 4σ−2 if s ∈ (σ,2σ). We can take for instance

ησ (s) =




0 if s � σ,

2(σ−1s − 1)2 if σ < s � 3
2σ,

1− 4(2− σ−1s)2 if 3
2σ < s < 2σ,

1 if s � 2σ.

Denote byηkσ (x) the functionησ (dk(x)), wheredk(x) denotes the distance
from x to S(χk). After some calculation we conclude that the function

wσ (x) = w(x)

N∏
k=0

ηkσ (x)

converges tow in H 2(�) asσ → 0. The proposition is proved.

As a consequence of the result above we obtain

Corollary 4.1. The spacesK(χ) andK0(χ) coincide.

Proof. For anyσ > 0, we haveKσ (χ) ⊂ K(χ). Hence⋃
σ>0

Kσ (χ) ⊂ K(χ).

SinceK(χ) is a closed subspace ofH 1
0 ,

K0(χ) =
⋃
σ>0

Kσ (χ) ⊂ K(χ).

The opposite inclusion follows directly from Proposition 4.3, thus the result is
proved.

5. Compactness of the density field

5.1. Some background on the transport equation

In this subsection we gather, for easy reference, some basic facts about transport
equations and, in particular, those concerning compactness of weak solutions. We
do not give proofs, we only refer to the relevant literature.

Let us consider the problem of findingψ ∈ L∞(Q) such that

∂ψ

∂t
+ div (ψv) = 0, in D ′(Q), (5.1)

ψ(x,0) = ψ0(x), in L∞(�), (5.2)

wherev is a given vector fieldv ∈ L2(0, T ;V (�)) andψ0 ∈ L∞(�). We recall
the following result ofDiPerna & Lions (see [6]).
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Proposition 5.1. The problem(5.1), (5.2)has a unique weak solutionψ ∈ L∞(Q)
∩C
([0, T ];L1(�)

)
, in the sense that there exists a uniqueψ ∈ L∞(Q)∩

C
([0, T ];L1(�)

)
such that∫

Q

ψ (ηt + (v · ∇)η) dx dt = −
∫
�

ψ0η(· ,0) dx ∀ η ∈ C 1(Q), η(· , T ) = 0.

Furthermore, if the data satisfiesψ0(x) ∈ {0,1} a.e. in�, thenψ(x, t) ∈ {0,1}
a.e. inQ.

For a proof of Proposition 5.1, we refer to [6]. Let us only point out that the previous
problem need not be complemented by boundary conditions because the velocity
field v vanishes on∂�.

We will essentially use the following compactness result, also due toDiPerna
& Lions (see for instance [19]).

Theorem 5.1. Let {ψn}n>0 and{vn}n>0 be two sequences such that

{ψn} ⊂ C
([0, T ];L1(BR)

)
for all R > 0,

{vn} ⊂ L2 (0, T ;V (�)) .
If the sequence{ψn} is bounded inL∞(Q), the sequence{vn} is bounded in
L2 (0, T ;V (�)) and

∂ψn

∂t
+ div (ψnvn) = 0 in D ′(Q),

ψn(0)→ ψ0 in L1(�),

vn ⇀ v weakly inL2(0, T ;V (�)),
for someψ0 ∈ L∞(�), ψ0 � 0 a.e., then{ψn} converges strongly in the space
C ([0, T ];Lp(�)) for all 1 � p < ∞ to the unique solutionψ ∈ L∞(Q) ∩
C
([0, T ];L1(�)

)
of the problem

∂ψ

∂t
+ div (ψv) = 0 in D ′(Q),

ψ(x,0) = ψ0(x) a.e. in �.

5.2. Passage to the limit in the transport equations

In this subsection we apply the results in the previous subsection to the se-
quences of solutions of the penalized problem (3.1)–(3.8).

In order to prove Proposition 3.1 we first notice that, by Theorem 5.1, we have
the following result.

Lemma 5.1. The sequences{ρn},
{
ψi
n

}
contain subsequences(which we also de-

note by{ρn},
{
ψi
n

}
) such that

ρn → ρ strongly inC ([0, T ];Lp(�)), (1 � p <∞),
ψi
n → ψi strongly inLp(�ext×]0, T [), (1 � p <∞).
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Corollary 5.1. The corresponding subsequences of
{
ϕin
}

and{ϕn} (which we also
denote by

{
ϕin
}

and {ϕn}) converge respectively toϕi and ϕ strongly in
Lp(�ext×]0, T [), (1 � p <∞).

We can obtain more information about the convergence ofψi
n, ϕin, ϕn by using the

regularity of the vector fieldun. In order to obtain this information we recall some
classical notions on ordinary differential equations and characteristics of transport
equations.

Let us consider the following Cauchy problem:

dX(t)

dt
= un(X, t),

X(s) = y,

(5.3)

wherey ∈ �ext ands ∈ [0, T ] are given. Since for almost allt ∈ [0, T ], un(· , t) ∈
D (R2) andun(x, ·) ∈ L∞(0, T ;R2) for all x ∈ �ext, it follows from classical
results (see for instance [20, Section 68]) that (5.3) admits a unique solution defined
in [0, T ]. Moreover, sinceun|∂�ext = 0, it follows thatX(t) ∈ �ext for all t ∈
[0, T ]. Let us denote byM n

s,t (y) this unique solution.
The properties of the family of mappingsM n

s,t (y) can be summarized by the
following result.

Lemma 5.2. (a) The set of functions

y →M n
s,t (y)

is bounded inC 2(�ext;R2), uniformly with respect tos, t ∈ [0, T ] andn > 0.
(b) The set of functions

s →M n
s,t (y)

is bounded inW1,∞(0, T ;R2), uniformly with respect tot ∈ [0, T ], y ∈ �ext
andn > 0. Moreover, the set of functions

t →M n
s,t (y)

is bounded inW1,∞(0, T ;R2), uniformly with respect tot ∈ [0, T ], y ∈ �ext
andn > 0.

(c) Alsodet
(
∂Mn

s,t (y)
∂y

)
= 1 for anyy ∈ �ext, s, t ∈ [0, T ], n > 0.

Proof. The boundedness ofM s,t (·) in C (�ext) is a direct consequence of the
fact thatM s,t (y) ∈ �ext for all y ∈ �ext. Moreover, according to Theorem 1A
in [17, p. 57] (see also [20, Section 69]), for each fixed(s, t) ∈ [0, T ] × [0, T ],
the functionM s,t (·) is C 1(�ext) and the functionst → ∂M s,t (y)

∂yi
, i = 1,2, are

absolutely continuous int and they satisfy the linear initial value problem

d

dt

(
∂M s,t (y)

∂yi

)
= ∇xun(M s,t (y), t)

∂M s,t (y)

∂yi
a.e. in[0, T ] (5.4)

∂M s,s(y)

∂y1
=
(

1
0

)
,

∂M s,s(y)

∂y2
=
(

0
1

)
. (5.5)
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Sinceun is bounded inL∞(0, T ;C 2(�ext)), relations (5.4), (5.5) above imply
that assertion (a) of the lemma is true.

In order to prove assertion (b) we first notice that the boundedness of the func-
tions t → M s,t (y) ands → M s,t (y) in C (�ext) is a direct consequence of the
fact thatM s,t (y) ∈ �ext for all y ∈ �ext andt, s ∈ [0, T ]. Moreover, according

to (5.3), it is clear thatt → ∂M s,t (y)
∂t

is bounded inL∞(0, T ;R2). Concerning the

functions → ∂M s,t (y)
∂s

, we notice that it is absolutely continuous int and satisfies
the linear initial value problem

d

dt

(
∂M s,t (y)

∂s

)
= ∇xun(M s,t (y), t)

∂M s,t (y)

∂s
a.e. in[0, T ] (5.6)

∂M s,t (y)

∂s

∣∣∣∣
t=s
= −un(y, s). (5.7)

Sinceun is bounded inL∞(0, T ;C 1(�ext)), relations (5.6), (5.7) above imply that
the functions → M s,t (y) is bounded inW1,∞(0, T ;R2). This ends the proof of
assertion (b).

In order to prove assertion (c) it suffices to notice that relations (5.4), (5.5)
above and the classical Liouville theorem imply that

Det

(
∂M s,t (y)

∂y

)
= exp

∫ t

s

div
(
un(M s,η(y), η)

)
dη (5.8)

and to use the fact that divun = 0.

From the lemma above we can conclude the following corollaries.

Corollary 5.2. The sequence{M n} converges toM in

C 0,α([0, T ] × [0, T ];C 1(�ext)
)
,

α < 1, asn→∞, whereM s,t (y) is the unique solution of the Cauchy problem

dX(t)

dt
= u(X, t),

X(s) = y ∈ �ext.

Simple calculations show that the solution of the transport equation (3.8) is

ψi
n(x, t) = ψi,0 (M n

t,0(x)
)
. (5.9)

The relation above, Corollary 5.2 and the dominated convergence theorem imply
the following result.

Corollary 5.3. The functionsψi in Lemma 5.1 satisfy the condition

ψi(x, t) = ψi,0 (M t,0(x)
) ∀ x ∈ �ext, ∀ t ∈ [0, T ]. (5.10)



130 Jorge Alonso San Martín, Victor Starovoitov & Marius Tucsnak

Proof of Proposition 3.1. From (3.9) and (5.12) we conclude thatϕiD(u) = 0
for i = 1, . . . , N . This fact implies that there exist rigid functionsvi such that
vi (x, t) = u(x, t) for x ∈ S(ϕi(t)). It follows from Remark 2.1 that

u(x, t) = vi (x, t) ∀ x ∈ S(ψi(t)). (5.11)

Let us defineA i
s,t (y) as the unique solution of the problem:

dX(t)

dt
= vi (X, t),

X(s) = y ∈ R
2.

(5.12)

If y ∈ S(ψi(s)), then, by (5.11), we know thatA i
s,t (y) =M s,t (y), so relation

(5.10) can be rewritten as

ψi(x, t) = ψi,0(A i
t,0(x)

) ∀ x ∈ �ext, ∀ t ∈ [0, T ]. (5.13)

SinceA i
t,0(x) is a rigid displacement, relation (5.13) implies that

ϕi(x, t) = ϕi,0
(
A i

t,0(x)
) ∀ x ∈ �ext, ∀ t ∈ [0, T ]. (5.14)

The relation above implies that

∂ϕi(x, t)

∂t
+ div

(
ϕi(x, t)vi (x, t)

) = 0 in D ′(�ext× [0, T )).
In other words we showed that∫ T

0

∫
�ext

ϕi(ηt + (vi · ∇)η) dx dt = −
∫
�ext

ϕi,0η0 dx

for all η ∈ C 1(Q), η(T ) = 0.
Moreover, sinceϕivi = ϕiu andu(x, t) = 0 for x ∈ �ext \�,∫ T

0

∫
�

ϕi(ηt + (u · ∇)η) dx dt = −
∫
�

ϕi,0η0 dx (5.15)

for all η ∈ C 1(Q), η(T ) = 0.
We have thus proved thatϕi andu satisfy (2.11). Moreover, from Proposition 5.1

we know thatϕi ∈ Char(Q).
Concerning the functionϕ =∑N

i=1 ϕ
i , we notice that it satisfies the equation∫ T

0

∫
�

ϕ(ηt + (u · ∇)η) dx dt = −
∫
�

ϕ0η0 dx,

whereϕ0 = ∑ϕi,0 takes only two values: 1 and 0. By Proposition 5.1 it follows
thatϕ takes also only two values: 1 and 0, i.e., (2.7) holds true. This fact implies
thatS(ϕi) ∩ S(ϕj ) = ∅ if i �= j .

According to Theorem 5.1, the functionρ ∈ L∞(Q) satisfies (2.10) and

0 < m0 � ρ �
∥∥ρ0
∥∥
L∞(�).
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6. Some technical results

In this section we give several technical results which are an essential ingredient
of the proof of the compactness of the velocity field.

If σ > 0 andG ⊂ R
2, we denote byGσ theσ -neighbourhood ofG, i.e.,

Gσ =
{
x ∈ R

2 : d(x,G) < σ
}
.

Notice that if we takeσ = δ, whereδ > 0 is the number fixed in Section 2,
thenGδ = Gext.

Let χ : � → {0,1} be the characteristic function of a subsetS(χ) of �. We
suppose that the boundary ofS(χ) is of classC 2. Let us introduce the function
spaces

V s(�) the closure ofV (�) in Hs(�), 0< s � 1,
Ks(χ) the closure ofK(χ) in Hs(�), 0 � s � 1,

where the spacesV (�) andK(χ) were introduced in Section 2. We note that
V 1(�) = V (�) andK1(χ) = K(χ), where the spaceV (�) was also introduced
in Section 2.

Moreover we define several projection operators.
First we denote byP s(χ), the orthogonal projector ofHs(�) ontoKs(χ),

0 � s � 1.
If σ > 0, we denote byP s

σ (χ) the orthogonal projector ofHs(�) onto the
space of functions which are rigid velocity fields in aσ -neighbourhood ofS(χ).
More precisely, for 0� s < 1, we setP s

σ (χ) = P s(1ISσ (χ)), where 1ISσ (χ) is the
characteristic function ofSσ (χ).

Lemma 6.1. For anyσ > 0 there existsn0 > 0 (depending only onσ) such that

S(ϕin(t)) ⊂ Sσ (ϕ
i(t)) andS(ϕi(t)) ⊂ Sσ (ϕ

i
n(t))

for all n > n0, for all t ∈ [0, T ] and for all i = 1, . . . , N .

Proof. According to Corollary 5.2, we haveM n →M in C ([0, T ]×[0, T ]×�).
This fact, combined with (5.9) and (5.10) implies that, for anyσ > 0, there exists
n0 > 0 such that

S(ψi
n(t)) ⊂ Sσ (ψ

i(t)) andS(ψi(t)) ⊂ Sσ (ψ
i
n(t)) (6.1)

for all n > n0, t ∈ [0, T ], i = 1, . . . , N . By considering theδ-neighbourhood of
the sets above and by using (3.5) we find that for allσ > 0 we have the relations

Sδ(ψ
i
n(t)) = S(ϕin), Sσ+δ(ψi) = Sσ (ϕ

i),

Sδ(ψ
i(t)) = S(ϕi) and Sσ+δ(ψi

n) = Sσ (ϕ
i
n).

(6.2)

Relations (6.1) and (6.2) imply the proof of the lemma.
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The next result of this section is

Proposition 6.1. Letu andϕ be the functions considered in Proposition 3.1; then

lim
σ→0

∫ T

0

∥∥P s
σ (ϕ(· , t))u(· , t)− u(· , t)∥∥2

L2(�)
dt = 0. (6.3)

Proof. For almost everyt ∈ [0, T ] we haveu(t) ∈ K(ϕ(· , t)). Then, by Proposi-
tion 4.3 there exists a sequence{uσ }σ>0 that converges tou(t) in K(ϕ(· , t)), and
such thatuσ ∈ Kσ (ϕ(· , t)) for all σ > 0.

Then we have∥∥P s
σ (ϕ(· , t))u(· , t)− u(· , t)∥∥

L2(�)
�
∥∥P s

σ (ϕ(· , t))u(· , t)− u(· , t)∥∥
V s(�)

� ‖uσ − u(· , t)‖H1
0 (�)

.

We conclude that the sequence of functions

fσ (t) =
∥∥P s

σ (ϕ(· , t))u(· , t)− u(· , t)∥∥2
L2(�)

converges to zero for a.e.t ∈ [0, T ]. Since{fσ } is bounded from above by the
functiong ∈ L1(0, T ) defined byg(t) = ‖u(· , t)‖2

H1
0 (�)

, by using the Lebesgue

dominated convergence theorem we conclude that assertion (6.3) holds true.

Let us introduce a family of open sets{Eσ }σ>0 in the following way: for any
σ ∈ (0,1) we first define the sets

Eij
σ =

{
t ∈ [0, T ] : 0 < dist

(
S(ϕi(t)), S(ϕj (t))

)
< σ 1/4} (6.4)

for all i, j = 0, . . . , N , and then we denote

Eσ =
N⋃

i,j=1

Eij
σ . (6.5)

Proposition 6.2. The family of sets{Eσ }σ>0 defined above satisfies

lim
σ→0

µ(Eσ ) = 0, (6.6)

whereµ denotes the Lebesgue measure inR.

Proof. Since, by (5.14),S(ϕi(t)) = A i
0,t

(
S(ϕi,0)

)
and, for ally ∈ �, the functions

t → A i
0,t (y) defined by (5.12) are continuous, we deduce that the real function

t → d
(
S(ϕi(t)), S(ϕj (t))

)
is also continuous in[0, T ]. By applying a classical measure-theory result (see, for
instance, Theorem E in [11, p. 38]) we find thatµ(Eσ ) → 0 whenσ → 0. Thus
the sequence{Eσ }σ>0 satisfies (6.6).
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We now introduce some notation close to the notation used in the proof of Propo-
sition 4.3, for the time-independent case. More precisely, fort ∈ [0, T ], we divide
the setsS(ϕ0(· , t)) = R

2 \ � andS(ϕi(· , t)), i = 1, . . . , N , into several groups
as follows: if ∂S(ϕi(· , t)) ∩ ∂S(ϕj (· , t)) �= ∅, thenS(ϕi(· , t)) andS(ϕj (· , t))
belong to the same group. Letm(t) be the number of groups at timet . We clearly
havem(t) � N + 1, for all t ∈ [0, T ]. Let us introduce the following notation:

– Jk(t) =
{
i ∈ {0, . . . , N} : S(ϕi(· , t)) belong to the group numberk

}
,

– φk(· , t), k = 1, . . . , m(t) is the characteristic function of the set⋃
i∈Jk(t)

S
(
ϕi(· , t)

)
and

– φkn(· , t), k = 1, . . . , m(t) is the characteristic function of the set⋃
i∈Jk(t)

S
(
ϕin(· , t)

)
.

Remark 6.1. An alternative definition of the groups is the following: if
J ⊂ {0, . . . , N}, we say that the domainsS

(
ϕi(· , t)), i ∈ J form one group

if
⋃

i∈J Sγ
(
ϕi(· , t)) is a connected domain for everyγ > 0 and for everyj ∈

{0, . . . , N} \ J there existsγ > 0 such that
⋃

i∈J Sγ
(
ϕi(· , t))⋃ Sγ

(
ϕj (· , t)) is

not connected.

Lemma 6.2. For almost everyt ∈ [0, T ] there exists a subsequence of{un} (also
denoted by{un}) and the corresponding sequences of rigid velocity fields

{
vkn
}
,

k = 1, . . . , m(t) such that,

lim
n→∞

∥∥∥un(· , t)− vkn(· , t)
∥∥∥
W1,p(S(φk(· ,t)))

= 0 ∀p ∈ [1,2) ∀ k = 1, . . . , m(t).

(6.7)

Moreover, if0 ∈ Jk(t), thenvkn(· , t) = 0.

Proof. Let us define

Fn(t) =
∫
�

ϕn(x, t) |D (un(x, t))|2 dx.
If p < 2 then, by Hölder inequality, we have∫
S(ϕ(t))

|D (un(x, t))|p dx

�
∫
S(ϕn(t))

|D (un(x, t))|p dx

+
∫
S(ϕ(t))\S(ϕn(t))

|D (un(x, t))|p dx

� µ (S(ϕn(t)))
2−p

2 ‖D (un(x, t))‖pL2(S(ϕn(t)))

+ µ (S(ϕ(t)) \ S(ϕn(t))) 2−p
2 ‖D (un(x, t))‖pL2(�)

� C1Fn(t)
p
2 + ‖D (un(x, t))‖pL2(�)

µ (S(ϕ(t)) \ S(ϕn(t))) 2−p
2 .

(6.8)
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From (3.9) it follows that the family{nFn} is bounded inL1(0, T ), so we know
thatFn → 0 strongly inL1(0, T ). On the other hand, from (3.9) and Lemma 6.1 it
follows that the second term in the right-hand side of (6.8) tends to zero inL1(0, T ).

Let us denote byAn(t) the expression in the right-hand side of (6.8). We have
proved that

lim
n→∞‖An(t)‖L1(0,T ) = 0,

so, up to the extraction of a subsequence, we have

lim
n→∞An(t) = 0 for almost allt ∈ (0, T ). (6.9)

Let ε > 0. By Egorov’s theorem (see, for instance, [15]), there exists a subset
Mε of [0, T ] such that:

(H1) An
n→∞−→ 0 uniformly inMε;

(H2) ‖un(· , t)‖H1(�) � 1
ε
, for all n ∈ N and for allt ∈ Mε;

(H3) µ ([0, T ] \Mε)
ε→0−→ 0.

Let us consider a fixedt such thatt ∈ Mε. By applying a version of the
Korn inequality (see, for instance, [23, p. 20, p. 118]) it follows that for eachi ∈
{0, . . . , N} and for eachp ∈ (1,2) there exists a a rigid velocity field denoted by
vin(· , t) such that∥∥un(· , t)− vin(· , t)

∥∥p
W1,p(S(ϕi(· ,t))) � C ‖D(un(· , t))‖pLp(S(ϕi(· ,t))) � CAn(t).

(6.10)
Sincevin(· , t) is a rigid velocity field, it can be extended in a unique manner to

a rigid velocity field defined onR2. For the sake of simplicity, this rigid velocity
field is also denoted byvin(· , t). Moreover, by using the properties (H1) and (H2)
of Mε, we obtain∥∥vin(· , t)∥∥W1,p(S(ϕi(· ,t))) � 2

ε
for all n ∈ N and for allt ∈ Mε. (6.11)

For everyi = 0, . . . , N one of the following assertions holds true:

– We haved
(
S(ϕi(· , t)), S(ϕj (· , t))) > 0 for all j �= i. In this case, there exists

an indexk(i) such thatS(ϕi(· , t)) = S(φk(i)(· , t)) and relation (6.7) follows
directly from (6.10) and (6.9).

– There exists an indexj �= i, such that thatS(ϕi(· , t)) andS(ϕj (· , t)) belong to
the same group withd

(
S(ϕi(· , t)), S(ϕj (· , t))) = 0. (We remark that two sets

can belong to the same group even if their mutual distance is strictly greater than
zero.)

Consequently it suffices to consider the second case. Let us fix the indexesi andj
such thatS(ϕi(· , t)) andS(ϕj (· , t)) belong to the same group andd

(
S(ϕi(· , t)),

S(ϕj (· , t))) = 0.
Define

w%
n(x, t) = u(x, t)− v%n(x, t), x ∈ S(ϕ%(· , t)), % ∈ {i, j} , (6.12)
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wherev%n are the rigid velocity fields introduced in (6.10). By relation (6.10) it
follows that ∥∥w%

n(· , t)
∥∥p
W1,p(S(ϕ%(· ,t))) � CAn(t), % ∈ {i, j}. (6.13)

By a classical extension result, the functionw
j
n(· , t) can be extended to a func-

tion w̃
j
n(· , t) ∈ W1,p(�) such that∥∥w̃j
n(· , t)

∥∥
W1,p(�)

� C
∥∥wj

n(· , t)
∥∥
W1,p(S(ϕj (· ,t))), div w̃

j
n = 0 inLp(�),

whereC is a constant independent ofn.
We introduce the function

ũn(x, t) = un(x, t)− v
j
n(x, t)− w̃

j
n(x, t) ∀ x ∈ �.

It is clear that

ũn(x, t) = vin(x, t)− v
j
n(x, t)+ wi

n(x, t)− w̃
j
n(x, t) ∀ x ∈ S(ϕi(· , t)),

ũn(x, t) = 0 ∀ x ∈ S(ϕj (· , t)).
Definevn(x, t) = vin(x, t) − v

j
n(x, t) andwn(x, t) = wi

n(x, t) − w̃
j
n(x, t).

Sincevn(x, t) is a rigid velocity field, there existan(t) ∈ R
2 andωn(t) ∈ R such

that we can write

vn(x, t) = an(t)+ ωn(t)(x − xM)
⊥,

whereM ∈ ∂S(ϕi(· , t)) ∩ ∂S(ϕj (· , t)).
By (6.11) it follows that there exists a constantC > 0 such that

|an(t)| + |ωn(t)| � C

ε
∀ n ∈ N, ∀ t ∈ Mε. (6.14)

On the other hand, by repeating the entire procedure in the proof of Proposi-
tion 4.1 we find that for allτ ∈ (0 , δ) and for allp ∈ (1,2) we have

|an(t)| � 2c(τ ) [µ(Dτ )]
−1/p ‖∇ũn(· , t)‖Lp(�) + |ωn(t)|

√
τ2+ c2(τ )

+ 1

µ(Dτ )

∫
Dτ

|wn(x, t)|dx ∀ t ∈ [0, T ],
(6.15)

where the setDτ was introduced in (4.4) and the functionc was also introduced in
the proof of Proposition 4.1.

By using (6.14) and (6.13), relation (6.15) implies that

lim sup
n→∞

|an(t)| � C

ε
τ

2p−3
p ∀ τ ∈ (0, δ), (6.16)

whereC is a constant independent ofτ . If we first suppose thatp ∈ (3
2,2
)

and use
the fact that (6.16) is valid for allτ ∈ (0, δ) and thatan(t) is independent ofτ , we
obtain

lim
n→∞ |an(t)| = 0.
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Similarly,

lim sup
n→∞

|ωn(t)|p � Cγ 2p−3 lim sup
n→∞

‖∇ũn‖pLp(Gγ )
� C

γ 2p−3

ε

∀ γ ∈ (0, δ),
(6.17)

for some constantC > 0, where the domainGγ was defined in the proof of
Proposition 4.1. By passing to the limit whenγ → 0, the estimate above implies,
provided thatp ∈ (3

2,2
)
, the relation limn→∞ ωn(t) = 0.

Thus, we can say that, ifp ∈ (3
2,2
)
, then

lim
n→∞

∥∥vin(x, t)− v
j
n(x, t)

∥∥
W1,p(�)

= 0

for all t ∈ Mε and consequently for almost allt ∈ [0, T ], sinceε > 0 is arbitrary.
Therefore, for almost allt ∈ [0, T ], we have

lim
n→∞

∥∥un(· , t)− vin(· , t)
∥∥
W1,p(S(ϕi (· ,t))∪S(ϕj (· ,t))) = 0.

If k is a number such thati ∈ Jk(t), then the relation above is also valid for all
j ∈ Jk(t). This conclusion allows us to take the functionvin as the functionvkn
in the formulation of the lemma. Thus relation (6.7) is proved forp ∈ (3

2,2
)

and
consequently for allp ∈ [1,2). Finally, if 0 ∈ Jk(t), then we can takevkn = v0

n and
v0
n = 0. The lemma is proved.

The main result of this section is

Proposition 6.3. Let{Eσ }σ>0 be the family of sets defined by(6.4), (6.5). Then for
all s ∈ [0,1) we have

lim
σ→0

lim
n→∞

∥∥P s
σ (ϕ(· , t))un − un

∥∥
L2([0,T ]\Eσ ;V s(�))

= 0. (6.18)

Proof. Let us first suppose that, for an arbitraryσ0 > 0, there exists a family of
functions

(
uσn (· , t)

)
n,σ

such thatuσn (· , t) ∈ Ks
σ (ϕ(· , t)) and

lim
σ→0

lim
n→∞

∥∥uσn (· , t)− un(· , t)
∥∥
V s(�)

= 0 (6.19)

for almost allt ∈ [0, T ] \ Eσ0. Since

∥∥P s
σ (ϕ(· , t))un(· , t)− un(· , t)

∥∥
V s(�)

�
∥∥uσn (· , t)− un(· , t)

∥∥
V s(�)

,

relation (6.19) still holds if we replaceuσn (· , t) by P s
σ (ϕ(· , t))un(· , t). Moreover,

the functiont → ∥∥wσ
n (· , t)

∥∥
V s(�)

, where

wσ
n (· , t) = P s

σ (ϕ(· , t))un(· , t)− un(· , t),
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is measurable, and∫ T

0

∥∥wσ
n (· , t)

∥∥2/s
V s(�)

dt �
∫ T

0
‖un(· , t)‖2/s

V s(�) dt

� C

∫ T

0
‖un(· , t)‖2(1−s)/s

L2(�)
‖un(· , t)‖2

V 1(�)
dt

� C

∫ T

0
‖un(· , t)‖2

V 1(�)
dt � C

(6.20)

due to the energy estimate (3.9).
Relations (6.19) and (6.20) yield (6.18).
Thus in order to finish the proof of the proposition we have only to construct a

family of functions
(
uσn (· , t)

)
n,σ

such thatuσn (· , t) ∈ Ks
σ (ϕ(· , t)), for all n � 1,

and which satisfies (6.19).
By Lemma 6.1, for anyγ > 0 there existsn0 > 0 such that, for alln > n0,

t ∈ [0, T ] andk = 1, . . . , m(t), we have

S
(
φkn(· , t)

)
⊂ Sγ

(
φk(· , t)

)
(6.21)

and

µ
(
Sγ

(
φk(· , t)

)
\ S
(
φkn(· , t)

))
< γ.

Let us fix an arbitraryt ∈ E \ Eσ , whereE ⊂ [0, T ] is the set for which the
assertion of Lemma 6.2 holds. (In particular we have thatµ(E) = T .) By (6.4) and
(6.5) we have

d
(
S(φk(· , t)), S(φ%(· , t))

)
� σ 1/4. (6.22)

Let us introduce the stream functionsHn, H̃
k
n , k = 1, . . . , m(t), such that

∇⊥Hn = un, Hn|∂� = ∂Hn

∂n

∣∣∣∣
∂�

= 0

∇⊥H̃k
n = vkn.

By Lemma 6.2, the stream functions̃Hk
n can be chosen such that

lim
n→∞

∥∥Hn(· , t)− H̃k
n(· , t)

∥∥
W2,p(S(φk(· ,t))) = 0.

This implies that, for anyγ > 0, there existsn0 ∈ N such that for alln > n0
we have ∥∥Hn(· , t)− H̃k

n(· , t)
∥∥p
W2,p(S(φk(· ,t))) � γ. (6.23)

By (6.22) there exists a functioñHn(· , t) ∈ W2,p(�) such that̃Hn(x, t) =
H̃k
n(x, t) for x ∈ S2σ (φ

k(· , t)), k = 1, . . . , m(t). Denote byη̄σ (x, t) the function
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∏N
i=0 ησ (di(x, t)), wheredi(x, t) is the distance fromx to S(ϕi(· , t)) and the

functionησ (·) has been defined in the proof of Proposition 4.3.
Let us now introduce the sequence of functions

{
Hσ
n

}
defined by

Hσ
n = (1− η̄σ )H̃n + η̄σHn.

Then we have:

∥∥Hσ
n (· , t)−Hn(· , t)

∥∥p
W2,p(�)

= ∥∥(1− η̄σ )
(
H̃n(· , t)−Hn(· , t)

)∥∥p
W2,p(�)

=
m(t)∑
k=1

∥∥(1− η̄σ )
(
H̃k
n(· , t)−Hn(· , t)

)∥∥p
W2,p
(
S2σ (φk(· ,t))

)
�

m(t)∑
k=1

∑
i∈Jk(t)

∥∥(1− η̄σ )
(
H̃k
n(· , t)−Hn(· , t)

)∥∥p
W2,p(S2σ (ϕi (· ,t))).

(6.24)

The classical trace theorem and (6.23) imply that

∥∥H̃k
n(· , t)−Hn(· , t)

∥∥p
Lp(∂S(ϕi (· ,t)))
+ ∥∥∇H̃k

n(· , t)− ∇Hn(· , t)
∥∥p
Lp(∂S(ϕi (· ,t))) � Cγ (6.25)

for i ∈ Jk(t).
It is well known (see, for instance, [7]), that the inequality:

‖f ‖p
Lp(S2σ (ϕi (· ,t))\S(ϕi (· ,t)))

� C
(
‖f ‖p

Lp(∂S(ϕi (· ,t))) + σp ‖∇f ‖p
Lp(S2σ (ϕi (· ,t))\S(ϕi (· ,t)))

)

holds for allf ∈ W1
p

(
S2σ (ϕ

i(· , t)) \ S(ϕi(· , t))), i = 0, . . . N , and for allσ small
enough. This fact combined with (6.23), (6.24) and (6.25) implies that

∥∥Hσ
n (· , t)−Hn(· , t)

∥∥p
W2,p(�)

� Cσ−2pγ + Cσ(2−p)/2 ‖un(· , t)‖pH1(�)
. (6.26)

Let us takeuσn (· , t) = ∇⊥Hσ
n (· , t) andγ = σ (2+3p)/2. Then (6.26) yields

∥∥uσn (· , t)− un(· , t)
∥∥p
W1
p (�)

� Cσ(2−p)/2, (6.27)

where the constantC depends ont . Due to the classical embedding theorems, if
p � 2

2−s , then (6.27) implies (6.19). This concludes the proof of the proposition.
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7. Proof of Theorem 3.2

In order to prove Theorem 3.2 we need two results. The first one is

Proposition 7.1. For any s ∈ (0,1) there exists aσ0 > 0 such that, for anyσ ∈
(0, σ0), we have

lim
n→∞

∫
Q

ρnunP
s
σ (ϕ(· , t))(un) dx dt =

∫
Q

ρuP s
σ (ϕ(· , t))(u) dx dt. (7.1)

Proof. Consider an arbitraryσ > 0. Due to Lemma 6.1, there existsn0 > 0 such
that

S(ϕn(t)) ⊂ Sσ/2(ϕ(t)) ∀ t ∈ [0, T ]
for all n > n0.

Moreover, if we divide the interval[0, T ] into NT subintervalsI1 = [0, τ ],
I2 = [τ,2τ ],. . .,INT = [(NT − 1)τ,NT τ ], whereτ = T/NT , then the regularity
of the functiont → A 0,t (y) implies that there existsτ > 0 (depending onσ ) such
that

Sσ/2(ϕ(t)) ⊂ Sσ (ϕ(kτ)), (7.2)

Sσ/2(ϕ(kτ)) ⊂ Sσ (ϕ(t)) (7.3)

for all t ∈ Ik, and for allk = 1, . . . , NT .
More precisely, ifL is the Lipschitz constant of the functiont → A 0,t (y), then

there exist

τ ∈
[

σ

σ0/T + 2(L+ 1)
,

σ

2(L+ 1)

]
,

satisfying (7.2) and (7.3). In particular, it follows that there exists a constantC > 0
such that for allσ ∈ (0, σ0) there existτ � Cσ satisfying (7.2) and (7.3).

Let us take one of the intervalsIk, k = 1, . . . , NT . In (3.6) we consider a test
functionξ , which is equal to zero ift �∈ Ik and such thatξ(· , t) ∈ Kσ/2(ϕ(· , kτ ))
for all t ∈ Ik. In this case (3.6) implies, by using classical estimates on the Navier-
Stokes equations (see for instance [18, pp. 70–71]), that there exists a constant
C > 0 such that∣∣∣∣

∫
Ik

∫
�

ρnunξ t dx dt

∣∣∣∣ � C ‖ξ‖L2(Ik;V (�)) ∀ n > n0.

The relation above implies that the sequence
{
d
dt

(
P 0
σ/2(ϕ(· , kτ ))(ρnun)

)}
is

bounded inL2(Ik;
[
Kσ/2(ϕ(· , kτ ))

]∗
), where

[
Kσ/2(ϕ(· , kτ ))

]∗is the dual space of
Kσ/2(ϕ(· , kτ )) with respect to the pivot spaceK0

σ/2(ϕ(· , kτ )). Moreover, from

(3.9) and (3.10) it follows that the sequence{ρnun} is bounded inL2(Ik ×�), so
the sequence

{
P 0
σ/2(ϕ(· , kτ ))(ρnun)

}
is also bounded inL2(Ik;K0

σ/2(ϕ(· , kτ ))).
Since, for alls > 0, the inclusionK0

σ/2(ϕ(· , kτ )) ⊂
[
Ks
σ/2(ϕ(· , kτ ))

]∗ is com-

pact, it follows from Aubin’s theorem that the sequence
{
P 0
σ/2(ϕ(· , kτ ))(ρnun)

}
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is relatively compact inL2
(
Ik;
[
Ks
σ/2(ϕ(· , kτ ))

]∗). Moreover, by Lemma 5.1 and

(3.12) we haveρnun ⇀ ρu weakly inL2(Ik;L2(�)). It follows that

P 0
σ/2(ϕ(· , kτ ))(ρnun)→ P 0

σ/2(ϕ(· , kτ ))(ρu) (7.4)

in L2
(
Ik;
[
Ks
σ/2(ϕ(· , kτ ))

]∗) strongly for alls > 0.
On the other hand, by (7.3) we also have

P 0
σ/2(ϕ(· , kτ ))P s

σ (ϕ(· , t)) = P s
σ (ϕ(· , t)) ∀ t ∈ Ik and∀ s � 0.

Using the relation above and the fact thatP 0
σ/2(ϕ(· , kτ )) is self-adjoint inL2(�)

we obtain∫
Ik

〈
ρnun,P

s
σ (ϕ(· , t))(un)

〉
L2(�)

dt

=
∫
Ik

〈
P 0
σ/2(ϕ(· , kτ ))(ρnun), P s

σ (ϕ(· , t))(un)
〉
L2(�)

dt

=
∫
Ik

〈
P 0
σ/2(ϕ(· , kτ ))(ρnun), P s

σ (ϕ(· , t))(un)
〉[
Ks
σ/2

]∗
,Ks

σ/2
dt.

By using (7.4) it follows that

lim
n→∞

∫
Ik

〈
ρnun, P

s
σ (ϕ(· , t))(un)

〉
L2(�)

dt

=
∫
Ik

〈
P 0
σ/2(ϕ(· , kτ ))(ρu), P s

σ (ϕ(· , t))(u)
〉
L2(�)

dt

=
∫
Ik

〈
ρu, P s

σ (ϕ(· , t))(u)
〉
L2(�)

dt ∀ k = 1, . . . , NT .

By summing up the relations above, fromk = 1 to k = NT , we obtain the
assertion of Proposition 7.1.

We also need the following result.

Proposition 7.2. The sequences{ρn}, {un} defined above satisfy the relation

lim
n→∞

∫
Q

ρnu
2
n =
∫
Q

ρu2.

Proof. We clearly have∫
Q

ρnu
2
n −
∫
Q

ρu2 =
∫ T

0

∫
�

(
ρnun · P s

σ (ϕ(· , t))[un]
− ρu · P s

σ (ϕ(· , t))[u]
)
dx dt

+
∫ T

0

∫
�

ρnun ·
(
un − P s

σ (ϕ(· , t))[un]
)
dx dt

+
∫ T

0

∫
�

ρu · (P s
σ (ϕ(· , t))[u] − u

)
dx dt.

(7.5)
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In order to estimate the last integral in the right-hand side of of (7.5) we notice
that∣∣∣∣
∫
Q

ρu · (P s
σ (ϕ(· , t))[u] − u

)∣∣∣∣ � C

∫ T

0

∥∥P s
σ (ϕ(· , t))[u] − u

∥∥
L2(�)

dt, (7.6)

whereC = ‖ρu‖L∞(0,T ;L2(�)). On the other hand, by Propositions 6.1, 6.2 and
6.3, for everyγ > 0 there existsσ0 > 0 such that for everyσ ∈ (0, σ0) we have:

µ(Eσ ) � γ, (7.7)

lim
n→∞

∥∥P s
σ (ϕ(· , t))un − un

∥∥
L2([0,T ]\Eσ ;L2(�))

� γ, (7.8)∥∥P s
σ (ϕ(· , t))u− u

∥∥
L2([0,T ]\Eσ ;L2(�))

� γ. (7.9)

Forσ satisfying the conditions above, relations (7.6), (7.7) and (7.9) imply that∣∣∣∣
∫
Q

ρu · (P s
σ (ϕ)[u] − u

)∣∣∣∣ � C

∫
[0,T ]\Eσ

∥∥P s
σ (ϕ)[u] − u

∥∥
L2(�)

dt

+ C

∫
Eσ

∥∥P s
σ (ϕ)[u] − u

∥∥
L2(�)

dt

� Cγ + Cµ (Eσ )
1
2

(∫
Eσ

∥∥P s
σ (ϕ)[u] − u

∥∥2
L2(�)

dt

) 1
2

and, therefore, that ∣∣∣∣
∫
Q

ρu · (P s
σ (ϕ)[u] − u

)∣∣∣∣ � C1γ
1
2 ,

whereC1 > 0 is another constant. The second integral in the right-hand side of
(7.5) can be estimated in a very similar manner, by using (7.8) instead of (7.9).
Moreover, by Proposition 7.1 the first integral in the right-hand side of (7.5) tends
to zero whenn → ∞. Sinceγ > 0 is arbitrary we obtain the conclusion of the
proposition.

Proof of Theorem 3.2. We first notice that∣∣∣∣
∫
Q

ρ
(
u2
n − u2

)∣∣∣∣ �
∣∣∣∣
∫
Q

(
ρnu

2
n − ρu2

)∣∣∣∣+
∣∣∣∣
∫
Q

(ρn − ρ)u2
n

∣∣∣∣ . (7.10)

Sinceun is bounded inL∞
(
0, T ;L2(�)

)
and inL2(0, T ;H 1(�)) we can

easily deduce thatun is bounded inL4(Q). Moreover, by Lemma 5.1, we have
ρn → ρ strongly inL2(Q), so the second term in the right-hand side of (7.10)
tends to zero whenn → ∞. Since, by Proposition 7.2, the first term in the right-
hand side of (7.10) also tends to zero, we conclude that

lim
n→∞

∫
Q

ρ
(
u2
n − u2) = 0. (7.11)
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Moreover,∫
Q

|un − u|2 � 1

m0

(∫
Q

ρ
(
u2
n − u2)+ ∫

Q

2ρu · (u− un)

)
, (7.12)

wherem0 is defined in Theorem 2.1. The right-hand side of (7.12) tends to zero by
(7.11) and from the fact thatun → u in L2(Q) weakly. We have thus proved the
strong convergence ofun to u in L2(Q).

8. Proof of the main results

8.1. Proof of Theorem 2.1.

By Proposition 3.1 (proved in Section 5), the functionsu, ρ, ϕi, i = 1, . . . , N
andϕ satisfy relations (2.5)–(2.8), (2.10) and (2.11). So, in order to prove the
existence of at least one weak solution of (1.1)–(1.13) we have only to prove that
(2.9) is also satisfied. Due to Theorem 3.2 and to Lemma 5.1, we can say that, up
to the extraction of a subsequence,

un
n→∞−→ u in L2(Q) strongly, (8.1)

ρn
n→∞−→ ρ in C

([0, T ];Lp(�)) , (1 � p <∞) strongly. (8.2)

Let σ be an arbitrary positive number. We choose the test functionξ in (3.6)
such thatξ ∈ H 1(Q) ∩ L2(0, T ;Kσ (ϕ)). Then, due to Lemma 6.1, there exists
n0 > 0 (depending only onσ ) such that

ϕnD(ξ) = 0 inL2(Q) ∀ n > n0

and, consequently,∫
Q

ϕnD(un) : D(ξ) dx dt = 0 ∀ n > n0.

By using (8.1) and (8.2) we can pass to the limit in (3.6) to show that (2.9) holds
for any ξ ∈ H 1(Q) ∩ L2(0, T ;Kσ (ϕ)). By using Proposition 4.3 and Corollary
4.1, it follows that (2.9) holds for anyξ ∈ H 1(Q) ∩ L2(0, T ;K(ϕ)).

Let us fix i ∈ {1, . . . , N} and consider the functionϕi ∈ C(0, T ;Lp(�)) ∩
Char(Q),1 � p � ∞. SinceS(ϕi(t)) = A i

s,t (S(ϕ
i(s))) andA i

s,t is Lipschitz-
continuous with respect tos and t , there exists a constantC such that for all
s, t ∈ [0, T ] we have

S(ϕi(t)) ⊂ Sγ (ϕ
i(s)), S(ϕi(s)) ⊂ Sγ (ϕ

i(t)),

whereγ = C |t − s|.
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Therefore,

max
{
µ
(
S(ϕi(t)) \ S(ϕi(s))), µ(S(ϕi(s)) \ S(ϕi(t)))}

� max
{
µ
(
Sγ (ϕ

i(s)) \ S(ϕi(s))), µ(Sγ (ϕi(t)) \ S(ϕi(t)))}
� C

∣∣∂S(ϕi(t))∣∣ |t − s|,
where

∣∣∂S(ϕi(t))∣∣ = ∣∣∂S(ϕi(0))∣∣ is the length of the boundary of the body which
is bounded since∂S(ϕi(0)) is of the classC2. Hence

‖ϕ(t)−ϕ(s)‖Lp(�) = µ
(
Sγ (ϕ

i(t))�S(ϕi(s)))1/p � C |t − s|1/p, 1 � p <∞,

whereA�B = (A ∪ B) \ (A ∩ B).
This ends the proof of the existence of at least one weak solution of (1.1)–(1.13).

The energy estimate (2.12) follows directly from (3.9).
Finally, representation (2.13) is already obtained in the proof of Proposition 3.1

(see relation (5.14)).
The theorem is entirely proved.

8.2. Proof of Theorem 2.2.

The first assertion of the theorem follows immediately from Proposition 4.1.
Let us prove the second assertion. The arguments below are similar to those used
in the proof of Proposition 4.1.

Since, fori = 0, . . . , N , the boundary∂S(ϕi) is a curve of classC 2, then for
all x ∈ ∂S(ϕi) there exists a closed ball of radiusδ, containingx and included in
the closure ofS(ϕi).

Let us consider two bodiesS(ϕi) andS(ϕj ) and suppose thathij (t0) = 0

for somet0 ∈ (0, T ). Let us take two closed disksB(Pi(t), δ) ⊆ S(ϕi(t)) and
B(Pj (t), δ) ⊆ S(ϕj (t)) of radiusδ centred at pointsPi(t) andPj (t), respectively,
and such that at timet0 we haveB(Pi(t0), δ)∩B(Pj (t0), δ) �= ∅. These disks move
together with the bodies. Denote byH(t) the distance between the two disks. We
clearly have (see Fig. 8.1)

H(t) = dist
(
Pi(t), Pj (t)

)− 2δ and H(t0) = 0.

Let Qi(t) ∈ ∂B(Pi(t), δ) andQj(t) ∈ ∂B(Pj (t), δ) be two points such that
H(t) = dist(Qi(t),Qj (t)). Let us fix a moment of timet ∈ (0, T ) and introduce
a new system of coordinatesξ = (ξ1, ξ2) with the origin inQj(t). The axisξ1 is
tangential to∂B(Pj (t), δ) and the axisξ2 is orthogonal to it.

Let us consider the domain

Gγ =
{
ξ ∈ R2 | − c(ξ1) < ξ2 < H(t)+ c(ξ1), −γ < ξ1 < γ

}
,

where c(γ ) = δ − √δ2− γ 2 is the function already considered in the proof of
Proposition 4.1 (see Fig. 8.2).
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S(χi)

S(χj )

Bi

Bj

Pi

Pj

Qi

Qj

Fig. 8.1.

Pi

�
j
γ

�iγ

�0
γ

Pj

�0
γ

Fig. 8.2. SetGγ .

The condition divu = 0 implies that

∫
∂Gγ

u · n ds = 0,

wheren is the outward unit vector field normal to∂Gγ . Notice that∂Gγ = �iγ ∪
�
j
γ ∪�0

γ , where�kγ = ∂Gγ ∩∂B(Pk(t), δ), k = i, j . We know that the restrictions

of u toS(ϕi(t))andS(ϕj (t))are rigid velocity fields.We denote these rigid velocity
fields byvi andvj , so we haveu(x, t) = vk(x, t ) asx ∈ S(ϕk(t)), k = i, j .

For the functionvk the following representation holds:

vk(x, t) = ak(t)+ ωk(t)(x − xk(t))
⊥, x ∈ B(Pk(t), δ), k = i, j,
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wherexk(t) is the position vector of the pointPk(t). We notice also that

dH(t)

dt
= (ai − aj ) · e2,

wheree2 is the unit vector directed along the axisξ2.
Definev = u−vj .This function is divergence-free and equal to zero inS(ϕj (t)).

Thus we have: ∫
Gγ

v · n ds =
∫
�iγ

v · n ds +
∫
�0
γ

v · n ds = 0. (8.3)

It is not difficult to calculate that (8.3) implies

2γ (ai − aj ) · e2 = −
∫
�0
γ

v · n ds.

The relation above implies that

2γ

∣∣∣∣dHdt (t)
∣∣∣∣ �
∫
�0
γ

|v| ds.

By integrating this inequality with respect toγ from 0 to somer > 0, we obtain:

r2
∣∣∣∣dHdt (t)

∣∣∣∣ �
∫
Gr

|v| dξ1dξ2. (8.4)

By using the Hölder and Poincaré inequalities, we can estimate the integral in
the right-hand side of (8.4) to get:∫

Gr

|v| dξ1dξ2 � µ(Gr)
1/2 ‖v‖L2(Gr )

� Cµ(Gr)
1/2 (2c(r)+H(t)) ‖∇v‖L2(�) .

Sinceµ(Gr) � 2r(2c(r)+H(t)), it follows that

r2
∣∣∣dH
dt

(t)

∣∣∣ � Cr1/2 (2c(r)+H(t)
)3/2 ‖∇v‖L2(�) .

SinceH(t0) = 0 andH(t) is sufficiently small in a neighbourhood of the point
t0, we can taker = H 1/2(t) in the relation above and, using (4.3), we find that∣∣∣∣dHdt (t)

∣∣∣∣ � C H 3/4(t) z(t), (8.5)

wherez(t) = ‖∇v(t)‖L2(�).
Since the functionz is in L2(0, T ), andH is Lipschitz-continuous int , we

deduce that inequality (8.5) is valid for almost allt ∈ [0, T ].
If s, t ∈ [0, T ], by integrating (8.5) froms to t we obtain

H 1/4(s)− C

∣∣∣∣
∫ t

s

z(p) dp

∣∣∣∣ � H 1/4(t) � H 1/4(s)+ C

∣∣∣∣
∫ t

s

z(p) dp

∣∣∣∣ . (8.6)
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SinceH(t0) = 0, then the relation above implies that

H 1/4(t) � C

∣∣∣∣
∫ t

t0

z(p) dp

∣∣∣∣
for all t ∈ [0, T ].

By applying Hölder’s inequality and the fact thatz ∈ L2(0, T ), we obtain the
estimate

H(t) � C

∣∣∣∣
∫ t

t0

‖∇v(p)‖2
L2(�)

dp

∣∣∣∣2 |t − t0|2.

The relation above and the obvious inequalityhij (t) � H(t) imply that

lim
t→t0

hij (t) |t − t0|−2 = 0.

This ends the proof of the theorem.
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23. Temam, R.: Problèmes math´ematiques en plasticit´e, Gauthier-Villars, Paris, 1983.

Departamento de Ingeniería Matem´atica
Centro de Modelamiento Matem´atico

Universidad de Chile
Casilla 170/3 - Correo 3, Santiago, Chile

e-mail: jorge@dim.uchile.cl

and

Lavrentyev Institute of Hydrodynamics
Novosibirsk 630090, Russia
e-mail: star@hydro.nsc.ru

and

Institut Elie Cartan, Facult´e des Sciences, BP239
54506 Vandoeuvre-les-Nancy, Cedex, France

e-mail: Marius.Tucsnak@iecn.u-nancy.fr
and INRIA Lorraine, Projet CORIDA

(Accepted June 26, 2001)
Published online October 30, 2001– c© Springer-Verlag (2002)


