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Abstract

We consider the two-dimensional motion of several non-homogeneous rigid
bodies immersed in an incompressible non-homogeneous viscous fluid. The fluid,
and the rigid bodies are contained in a fixed open bounded &&t @he motion of
the fluid is governed by the Navier-Stokes equations for incompressible fluids and
the standard conservation laws of linear and angular momentum rule the dynamics
of the rigid bodies. The time variation of the fluid domain (due to the motion of the
rigid bodies) is not knowa priori, so we deal with a free boundary value problem.
The main novelty here is the demonstration of the global existence of weak solutions
for this problem. More precisely, the global character of the solutions we obtain is
due to the fact that we do not need any assumption concerning the lack of collisions
between several rigid bodies or between a rigid body and the boundary. We give
estimates of the velocity of the bodies when their mutual distance or the distance
to the boundary tends to zero.

1. Introduction

The aim of this paper is to prove an existence result for a coupled system of
nonlinear partial and ordinary differential equations modelling the motion of several
rigid bodies inside a fluid flow. The governing equations for the fluid flow are the
classical Navier-Stokes system, whereas the motion of the rigid bodies is governed
by the balance equations for linear and angular momentum (Newton'’s laws).

Let @ c R? be an open bounded set representing the domain occupied by
the fluid and byN rigid bodies. We denote by () the domain occupied by the
fluid and bySi(r),i = 1,..., N the domains occupied by the rigid bodies at the
instant(¢). The full system of equations modelling the motion of the fluid and of
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the rigid bodies can be written as

pp W+ @-Viu) —vAu+Vp=p.g, xe€F(),1e[0,T], (1.2)
divu =0, x e F(t),t €[0,T], (1.2)
ad .
% vdivp,u) =0, xeF@).tel0T],  (13)
u=020, x €0R,te]0,T], (1.4)

u=nh,+owx-—h), xeds@),rel0,T],i=1,...,N, (1.5)

M;h) = —/ _ Tndr‘+/_ psgdx, t€[0,T],i=1,...,N, (1)
a8t (1) St(t)
Ji@ = —/ (x —h)* - Tndr
dt 38 (1)
+/S_()(x—hi)L-psgdx, tel0,T],i=1,...,N, 1.7
Lt
ux,00=u’(x), xeF(), (1.8)
pr(x,0)=p)(x),  xeF() (1.9)
ps(x.0) = p0(x), xe€Q\F), (1.10)
S1(0) = 80, (1.11)
hi(0) =h% € R?, h)(0) =h!eR% w;(0) =0 ecR. (1.12)

In the above system the unknowns arg, ¢) (the Eulerian velocity field of
the fluid), o, (x, t) (the density field of the fluid)y, (x, 7) (the density field of the
rigid part), k;(¢), i = 1,..., N (the position of the gravity centres of the rigid
bodies) and; (¢#),i = 1, ..., N (the angular velocities of the rigid bodies). For all
x = (i), we denote byt the vectorxt = (2)).

Moreover we have denoted B2 the boundary of2, by 85 (¢) the boundary
of thei™-rigid body at instant, by n(x, ) the outwards unit vector field normal to
dF(r) and byg(x t) the applied body forces (per unit mass). The constant0
stands for the viscosity of the fluid. Further, we have denoted bpy J;) the mass
(respectively, the inertia moment related to the mass centre) of'thigid body
and byT the Cauchy stress tensor field in the fluid. The compon@nt$; (1,2
of T are related to the velocity field by

Tkg(x,t)=—p(x,t)8k1+v(%+%>, k,1=12. (1.13)
3)61 Bxk

The existence of weak solutions of (1.1)—(1.13) (in a sense which will be defined
below) has already been studied. In[14] and [21] the authors prove a global existence
result in the case of one body in a fluid filling the whole space. The problem in a
bounded domain with several rigid bodies was considered in [2-5,10,12,13]. In [4]
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and [5], the authors prove global existence up to collisions in the two-dimensional
and in the three-dimensional cases, for both incompressible and compressible fluid.
In[12] and [13], the authors show global existence for one rigid body in the presence
of eventual collisions. The same type of result is obtained in [2, 3, 10] by different
methods. The methods in the papers quoted above do not seem to be applicable in
the case of several rigid bodies with eventual collisions. The stationary problem
was studied in [21] and [8] (see also the references therein).

The main novelty of this paper is that we show a method of proving global
existence in the presence of eventual collisions for the case of several rigid bodies
immersed in a non-homogeneous fluid. Our results are valid in two space dimen-
sions. The global existence (with collisions) for several rigid bodies seems to be an
open question in the three-dimensional case.

Let us mention that a local (in time) existence result of strong solutions was
proved in [9].

The plan of this paper is as follows: In Section 2 we introduce some notation
and state the main results. In Section 3 we introduce a penalized problem and
describe the main steps of the proof of the existence result. Section 4 contains
some properties of a function space specific to our problem. In Section 5 we apply
classical results of DiPerna and Lions in order to pass to the limit in the transport
equation of the density. In Section 6 we derive several technical results which are
then used, in Section 7, to prove the compactness of the sequence of approximated
velocity fields. The main results are proved in Section 8.

2. Notation and main result

We first introduce some general notation.
Let G c R? be a bounded open set witl& boundary.
If v € L2(G, R?) is a vector field we denote by(®) the tensor field defined by

1 /0v; ov;
Diiwy=z|—+—), i,j=12,
i) =3 (axj + 8xi> ok

where the derivatives are calculated in the distributions sense, i2/((@).

We say thaw € L2(G, R?) is a rigid velocity field if D;(v) = 0, in 2/(G),
fori, j € {1, 2}.

We will use the following classical functional spaces:

Y(G) = {v e ¢F(G; R?)|divv =0},

V(G) is the closure of/(G) in [Hl(G)]z,

H(G) is the closure o (G) in [LZ(G)]Z.

According to classical results (see, for instance, [22]) we have

V(G) = {v e [HE(G)]P|divy = 0in L2(G)},

H(G) = {v € [LAG)||divo = 0in 2'(G), v-n =0in HY2(3G)).

Moreover, we will use some non-standard function spaces specific to our prob-
lem.
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Let Q ¢ R? be the fixed set representing the domain occupied by the fluid and
by the solid bodies. We suppose that the boundagy &f of classz’2.
If x is the characteristic function of a subsetnfwe define

K(x) = {ve V(Q) : xD() =0in LX)}, (2.1)
and
S(x)={x e Q: x(x)=1}.

The spaceX (x) is clearly a closed subspace 6{Q2).
According to Lemma 1.1 in [23, p. 18], §(x) is an open connected subset
of 2, then, for everw € K (x), there exist a vectdr, and a constant, such that

v(x) = ky + Loxt Vx e S(x). (2.2)

If o > 0 andG C R?is an open set we denote b, theo-neighbourhood o6,
ie.,

Gy ={x eR*:d(x,G) <o}, (2.3)
and we define the function space
Ko(x) ={u e V(Q)|Dw)(x) =0Vx € S, (x)}.

Moreover, we denote bio(x) the closure ofJ,-oK (x) in HY(Q).

Let us now go back to the notation in problem (1.1)—(1.11). We suppose that
thesetssi(r), i = 1,..., N, representing the regions occupied by the solid bodies
at instant;, are open and that, at the initial moment, the boundar§/ @), for all
i =1,...,N,is of class&’2. Moreover, we suppose th&t(0) N S/ (0) = @ for
alli,j=1,...,N,i #j.

Due to the regularity assumptions above, it can be easily checked that the
following result holds.

Proposition 2.1. There exist$ > O such that for alli = 1,..., N, and for all
x € S'(0) (for all x € R? \ 2) there exists a open disk of radiuss included in
S(0) (respectively, irR? \ ©) and containing.

Throughout this paper we fi& > 0 satisfying the conditions in the proposition
above.

In the particular case when we choose, in (263} § we denote byGey: the
setGs. More precisely, we put

Gext = {x € R?|d(x, G) < 8},
and we denote by the “s-kernel” of G defined by
Gint = {x € R?|B(x,8) C G}.

We remark that, due to Proposition 2.1, #aeighbourhood of th&iy; and
the “s-kernel” of Gey are equal tas.



Rigid Bodies in a Fluid 117

Moreover, if f € LL (R2, R?), then we denote by the convolution off by
a radially symmetric regularizing kernel supportedsiD, §). More precisely, we
put

f=wsxf= /]RZ ws(x — ) f(y)dy, (2.4)

wherew; is a symmetric kernel, i.ews € Z (R?), ws(x) = w5(|x|),fR2 ws(x) dx
= 1 and suppus C B(0, 9).

The remark below, which can be checked by a simple calculation, plays an
important role in the remaining part of this work.

Remark 2.1. If u is a rigid velocity field in the set, thenu(x) = u(x) for all
X € Gint.

We denote by (-, 7) the characteristic function of (r) and we putp = 3" | ¢'.
We notice thatp is the characteristic function of the rigid patr) of Q at the
instantz. . ‘

We denote by}’ (-, ¢) the characteristic function of thé-kernel” of S* (¢), i.e.,
and we puty = Y, ¢l

If T > 0, we denote by) the cylinderQ = Q x [0, T'] and we put

CharQ) ={g: 0 — {0,1}}, CharQ) ={g: Q2 — {0,1}},

i.e., ¥ € Char Q) if and only if ¢ is the characteristic function of some subset
of Q0.

If v € CharQ), we denote byL.?(0, T'; K (vy)) the space of functions €
L?(0,T; V(R2)) such thaw(r) € K(y(-,t)) for almost allr € [0, T].

In order to define weak solutions of (1.1)—(1.13) we follow the ideas in [12]
and [4]. This weak formulation is global in the sense that the unknown functions are
defined on the whole domain. More precisely, instead of considering separately
the velocity (density) fields of the fluid and the rigid bodies, we consider only one
velocity fieldu (respectively, one density fiejg) defined inQ x [0, T']. For every
i = 1,...,N, the restriction ofu(-,t) to S(¢) is a rigid velocity field. Weak
solutions of our problem can be defined as follows:

Definition 1. Letu® € H(Q), p° € L*(R) andy"° be the characteristic functions
of $'(0), i =1,..., N.Asetof functionsu, p, ¢’, i =1,..., N} such that

ueL®0,T; H)NL*O, T; K(p)), (2.5)

¢' e ChaQ) N¢%YP 0, T; LP(Q)), 1< p < oo, (2.6)
N

9= ¢ eCharQ), @2.7)

i=1
p € L>(Q), (2.8)



118 JORGE ALONSO SAN MARTIN, VICTOR STAROVOITOV & MARIUS TUCSNAK
is said to be a weak solution of (1.1)—(1.13) if the equalities
/Q(pu(E, + (u-V)§) —vD(w) : D(§)) dx dt (2.9)
= - [ o5 0x ~ [ pg-gavan,
Q o
/ o (i + (u-V)n) dxdt = —/ 0% n(x,0)dx, (2.10)
0 Q
/ @ (i + - V)n) dxdt = —/ (pi’0~ nx,0dx, i=1,...,N (2.11)
0 Q

hold for any functionst € H1(Q) N L%(0, T; K (¢)), £&(T) = 0,5 € €XQ),
n(T)=0.

The main result of this paper is

Theorem 2.1 If u® € H(Q), g € L%(Q), p° € L®(Q), p° = mg > 0O for
some constantg and the boundarie8$2, 95'(0),i =1, ..., N are of class¢’?,
then there exists at least one weak solutiofllof }(1.13) Moreover, this solution
satisfies the energy estimate

[p|u|2dx+/ v |D@)|? dxdt§C{/ p°|u°|2dx+||g||§2(Q)} (2.12)
Q 0 Q

for some constan® > 0.
Finally, there exists a family of isometri¢s/’ , }
that

2
suel0.7nien.. v OF R such

S@' 1) =, (S (s)) Vs,tel0,T],Vi=1...,N (2.13)
and.«/% , are Lipschitz-continuous with respectstand?.

Remark 2.2. The theorem above combined with (2.7) implies tiSap’())N
S(p/(t)) = @pforalli,j =1,...,N,i # jandforallr e [0,T].
Since the sets$(¢'(¢)), i,j = 1,...,N are open, this fact does not exclude
eventual touching of the boundaries of different bodies or of a boundary of a body
and the boundarg .

Theorem 2.2. Let{u, p, ¢, i = 1,..., N} be aweak solution ¢f..1)+(1.13)and
hij(t) = dist(S(¢' (1)), S(¢/ (1)), hoi (t) = dist(3Q, S(¢'(1))). Then the follow-
ing assertions hold:

(1) If Eg; = {t € [0, T : hoi(t) = 0}, thenu(x, 1) = Oasx € S(¢'(¢)) for aimost
all 1 € Eq;; if E;j = {t € [0, T]: hij(r) = 0} then there exists a rigid velocity
fieldv(x, 1) such thatu(x, t) = v(x, ) forall x € S(¢' (1)) U S(¢/ (¢)) and for
almost allr € E;;.
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(2) Forall i # j and for all#g € [0, T with 7;;(t9) = O,

hij(t)
t—1o |t — tO|2 ’

Remark 2.3. The theorem above allows collisions of different solids or collisions
between solids and the boundary, but only with vanishing relative velocity and
relative acceleration. This fact might seem to be a new paradox in fluid mechanics. A
possible explanation is that the concept of weak solutiaha Leray” of the Navier-
Stokes incompressible model (see for instance [16] and [22]) is not appropriate for
describing collisions with a non-zero relative velocity.

3. Main steps of the proof Theorem 2.1

The first step in the proof of Theorem 2.1 is to approximate the rigid bodies by
very viscous fluids. In this way we introduce a penalized problem. More precisely,
for givenn € N, u® € H(Q), p° € L®(Q), andy’0 € L>®(Q) N Char), we
consider the following penalized problem.

Find a set of function§u,, pu, ¢u, ¢}, ¥i, i=1...,N}suchthat

u, € L*(0,T; HQ)) N L0, T; V(Q)), (3.1)

¥l ¢l e ChatQ) N €Y7, T; LP(Q)), 1<p<o0,i=1...,N, (3.2

N
=D ¢ (3.3)
i=1
Pn € LZ(O), (3.4)
S(@y) = (S(l/f,’;))ext, i=1...,N (3.5)

and such that relations
A}muaa+wmfvmy4v+n@»Dwu:D@»dxm

=—/pouo~§(-,0)dx—/ ong - Edxdt, (3.6)
Q o

me+mwwmwm=—éfmmmw, (3.7)

T .
/O fQ Vi (v + @ - V)y) dx di (3.8)

=_/ vi0.y(,0dx, i=1...,N,
Qext
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hold for any functions € H1(Q) N L2(0, T; V()), &(-, T) = 0, € €X(0Q),
n(.T)=0,y € €10, T) x Qexp). y(-.T) =0.

The functionz,, (-, ¢) in (3.8) is defined as in (2.4) after extendingyy zero
outsideQ2. The replacement af,, by u,, in (3.8) (which is much smoother) allows
the application of some standard results on ordinary differential equations and on
characteristics of transport equations. Moreover, due to Remark 2.1 we will obtain
a rigid motion whem — oo, without passing to the limit with respect o

The result below asserts the existence of weak solutions for (3.1)—(3.8). This
result can be proved following step by step the classical methods of investigation
of the Navier-Stokes equations for non-homogeneous fluids (see [1] or [19]). This
is why we omit the proof.

Theorem3.1. For anyn € N, u® € H(Q), p° € L®(Q), v'0 € L®Q) N

Char(2) there exists at least a solution of the penalized prol(@m)~3.8). This
solution has the following properties:

/pn|un|2dx+/ (v + ngn) |D(ay) |* dux dt
Q (0]

< C{fﬂpo'"(”de ||g||i2(Q)}, (3.9)
for some constant > 0, p(x,1) = mg fora.e.x € 2,1 € [0, T],

lon Ol Lr@) = ||p0||LP(SZ)’

< 00, (3.10)
VAG] 00

i=1...,N. (3.11)

LP(Qex) — [0 LP(Qex)’

Moreover, for allz € [0, T'] the functionsp,';(- , 1) take, a.e. in2, only two values:
Oandl.

According to Theorem 3.1 the sequen¢es}, {o.}, {1}, } have subsequences
(which we also denote bl }, {o.}, {v}) such that

u, — u in L%(0, T; V(R)) weakly and inL>(0, T; H(2)) weakly*, (3.12)

on — p in L*(Q) weakly", (3.13)
Yl — ¢l in L0, T, L™ (Qext)) Weakly*. (3.14)
Moreover, denote by, i = 1,..., N the characteristic functions (QS(w"))ext

and byp = Y .

The second step of the proof consists in showing that the weak limits defined
above satisfy the transport equations. More precisely, we will show that the follow-
ing result holds true.

Proposition 3.1. The functionss, p and ¢ defined above satisfy relatiotf2.5)-
(2.8), (2.10)and (2.11)
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The proof of this result, which is based on the result®dferna andLions (see
[6] and [19]), is given in Section 5.

The third and the most technical step of the proof consists in proving the fol-
lowing result, which is proved in Section 7.

Theorem 3.2. The sequencfu, } in (3.12)converges strongly ta in L2(Q).

The last step consists in combining Proposition 3.1 and Theorem 3.2 in order to
prove our main existence theorem.

4. Some properties of the space K (x)

In this section we give some properties of the spkcg) defined by (2.1).
Let x be the characteristic function of an open subseRoThroughout this
section we assume thatsatisfies the following assumptions:

(A1) The characteristic functiory = Z ", x', where x; is the characteristic
function of an open connected sgty’), fori =1,..., N.
(A2) The setsS(x’),i =1,..., N, have smooth boundarles (s&f).

Assumption (Al) implies tha§(x') N S(x/) =@ foralli, j=1,... ,N,i # j.
This fact does not exclude the case wheséx’) N 3S(x/) # @ for some values
ofi andj withi # j.

Moreover, the assumptions above clearly imply that

N
KGO =K.

If we consider nomz € K()x), then the restriction of to each of the sets
S(x") is arigid velocity field. The result below gives information on the behaviour
of u € K(x) in the case when the boundariesSgfy’) andS(x/), i # j, have
common points.

Proposition 4.1. Suppose that, j € {1,..., N}, i # j, are such thad S(x) N
3S(x7) # @. Then, forany € K(y), '_there exists a rigid velocity field such that
u(x) = w(x) forall x € S(x") U S(x/).

Proof. Sinceu‘ e K(x"), there exists a rigid functiow such thatu(x) = w(x)
forall x € S(x'). Let us introduce the function = u — w. We have to prove that

v(x)=0 VxeSx)).

Let us suppose tha/ € 9S(x) N 3S(x/). Sincev € K(x/), we have the
representation:

v(x) =a+wx—xy)" VxeSix'), 4.1)

wherea € RZ andw € R are constants.
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Fig. 4.1. Contact between solid®(x’) andS(x ).

Since the boundariesS (/) andd S(x /) are of clas€’2, there exis > 0 and
the open disk®; and B; of radiuss such that

B; C S(x"), B;cS(x)), BinB;={M},

whereB; is the closure of; in R2.

Let us introduce a system of coordinates with the origidimnd havingM &1
and M&» as coordinate axis (see Fig. 4.1). With respect to this new system of
coordinates, (4.1) becomes

v(€) =a+ ot 4.2)

for all £ € R? such that + x; € S(x/).
The equations of the boundarié®; anddB; with respect to this system of
coordinates are

§2 = £c(81), €1 €[-4,4]

wherec(é1) = § — /82 — g2 for all & € [, §]. Notice that

2 2
% <) = %1 VéL € (=5,9). (4.3)

First we prove thatt = 0. Let us fix an arbitrary positive number< § and
consider the domain

pe=[Ee:t<ti<r Hew <p <] @4

SinceD; C Bj, we have

f vdtids = a f dE1dEr + f gL dey ds.
D, D, D,
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Hence

laluw(Dr) §/D |v|d$1déz+|wI/D 1§l dé1dé2

(4.5)
< D2 ol 20p,) + |01V T2 + 2(T)p(Dy),
wherepu is the two-dimensional Lebesgue measure.
Sincev vanishes inB; we can apply the Poincaré inequality to get
vl L2(p,) = 2¢(2) [Vl L2q) - (4.6)
Relations (4.5) and (4.6) imply that
la| < 2|Vl 12, c(D)u(D) 2 + |wlV/T2 + (7). (4.7)

Sinceu(D;) = tc(t), from (4.3) and (4.7) we have
la| < ctY? vt <38,

where

2
NG
is a constant independent of By passing to the limit whem — 0 we find that
a=0.

Let us now prove thab = 0. For any positive real number< § let us consider
the setG, defined by

Gy = {18 0 <& <r, Il < i),

We notice that
3G, =TiUuT] uT,,
where we used the notation:

Fi = {(gl, £) € 0G, : 0 < & < randé = —@Slla

ri = l(gl, £2) €3G, : 0 <& <randé = @51}

and
I ={(1,82) €3G, : &1 =71}

Itis clear thatl! C B; andrl/ ¢ B;.
Since divw = 0 in 2, we have

/ v-nds =0.
G,
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Using the fact that = 0 onT", we see that the relation above yields

/,v-nds+/ v-nds =0.
r! T,

From (4.2) and the fact that= Oandl"{ C Bj, we obtain

N r24c2(r)
/ v-nds /
r 0

J
H

2
- %(r%cz(r)) 2 —|wg '

wtdt

Hence, for all- € (0, §), we have the inequality

[ v-nds §/ [v|ds = /2c(r) vl 2T, »
r, T,

which gives the estimate

|oo|r?
2

=

2.4

w~r
< 2
8c(r) = ||v||L2(F,.) Vr € (07 8)
By using (4.3), we get
Sw?r?

2
8 § ”v”LZ(F,) Vre (Oa 6)

Integrating this inequality with respect tofrom O to an arbitrary € (0, §) we
obtain

S y® 2
?? g ”v”LZ(Gy) . (48)
On the other hand, by the Poincaré inequality, we have
10172, < @D IVolTz, - (4.9)

Inequalities (4.3), (4.8) and (4.9) imply that

o 2961 IVoly ) V7 € (©0.0).
By passing to the limit wher — 0, the relations above imply that = 0, i.e.,
v =0in S(x/). Proposition 4.1 is now proved.

The method used in the proof of Proposition 4.1 can be easily extended to the case
when one of the sets 6f(x') touches the boundary 6. In this case, the behaviour
of u € K(x) is given in the result below, which is stated without proof.

Proposition 4.2. Suppose thadS(x’) N dQ # ¢ for somei =1...,N.Then,
anyu € K(y) satisfies the condition(x) = Ofor all x € S(x*).

We next state and prove a result showing that the union of the sgaqgs, o > 0,
is dense in the spad€(y).
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Proposition 4.3. For any § € K(x), there exists a sequence of functions
{€,},.0 C K(x) satisfying the conditions, € K,(x) for all o > 0 and
£, — £in HY(Q) aso — 0.

Proof. We prove this assertion by using the notion of a stream functiomnyLet
H?(Q) be the stream function &f(i.e.,& = V.-, wherevViy = (f;”;?j)fl) ). It

clearly suffices to prove that there exists a sequence of fundtions. o C H?(2)
satisfying the conditions

lim v =y in H?(Q) and &, =Viy, € K,(x) Vo >0, (4.10)

We remark that the general form of the stream function of a rigid velocity field
is

¥(x) =a+b-x+clx| (4.11)

whereq, ¢ € R andb € R? are some constants.

Let us divide the set§(x%) = R2\ Q andS(x?),i = 1,..., N, into several
groups as follows: iBS(x') N dS(x/) # ¥, thenS(x’) andS(x/) belong to the
same group. Let: be the number of groups. We clearly hawe< N + 1. Denote
by ¢*, k = 1,..., m, the sum of functiong’ included in the group numbérand
let us define- by

— i I k ¢
F= r]gi?dlst (S(¢ ), S(é )> .

We clearly have > 0.

According to Proposition 4.1 there exist the rigid functiensk =1, ... , m,
such that (x) = ux(x) asx € S@ N Q. Letyy, k = 1,...,m, be the corre-
sponding stream functions (which have the form (4.11)). Each of these functions is
determined up to a constant. We choose these constants such that= v (x)
forall x € S(¢*) N Q.

Moreover, we introduce an auxiliary functiah € H2(Q) such thaty (x) =
Yr(x) forall x € S,/3(¢") N Q. With this auxiliary function we can writ¢ as
¥ = ¥ + w, wherew € H3() andw(x) = 0 forallx € Jy_o S(x*) N .

Suppose thatw’} ¢ H?(Q) is a sequence such that

N

w’(x) =0 Vxe|JS,(x)nQ. and lmw, =win HX(Q). (4.12)
=0 o—0

then the sequende/,} defined byy, = 17f + w, for all o > 0 clearly satisfies
(4.10).

In order to construcfw?} satisfying (4.12) for any > 0, we consider the
sequence of functionis;, },- ¢ such thaty, : Rt — R™, 5, (s) = 0if s € [0, o],
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Ne(s) = 1if s = 20 and|n’ (s)| = 402 if 5 € (0, 20'). We can take for instance

0 if s < o,
201y —1)2 ifo <s < ga,

No(s) = 1.2 3
1-42—-07%)° if 30 <s <20,
1 if s = 20.

Denote bynX (x) the functionn, (dx (x)), wheredi(x) denotes the distance
from x to S(x¥). After some calculation we conclude that the function

N
w (x) = wx) [ [ k)

k=0
converges tav in H2(2) aso — 0. The proposition is proved.
As a consequence of the result above we obtain

Coroallary 4.1. The spaceX (x) and Ko(x) coincide.

Proof. For anyo > 0, we haveK, (x) C K(x). Hence

U K00 € K.

>0

SinceK () is a closed subspace Hf&

Ko(x) = Ko () € K ().

>0

The opposite inclusion follows directly from Proposition 4.3, thus the result is
proved.

5. Compactness of the density field

5.1. Some background on the transport equation

In this subsection we gather, for easy reference, some basic facts about transport
equations and, in particular, those concerning compactness of weak solutions. We
do not give proofs, we only refer to the relevant literature.

Let us consider the problem of finding € L°°(Q) such that

W div (Yv) = 0, in 2'(0), (6.1

ot
¥ (x,0) = Yo(x), inL>(Q), (5.2)

wherev is a given vector field € L2(0, T; V(2)) andyg € L*(£2). We recall
the following result oDDIPErRNA & LioNs (see [6]).
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Proposition 5.1. The problen{5.1), (5.2)has a unique weak solutiop € L*°(Q)
N% ([0, T1; L)), in the sense that there exists a uniqye € L>(Q)N
% ([0, T1; L*(2)) such that

/Qlﬂ(er(l%V)n) dxdl:—/ﬂlﬁon(wo)dx Vne€HQ), n(-,T)=0.

Furthermore, if the data satisfigs (x) € {0, 1} a.e. in2, theny (x, t) € {0, 1}
a.e.inQ.

For a proof of Proposition 5.1, we refer to [6]. Let us only point out that the previous
problem need not be complemented by boundary conditions because the velocity
field v vanishes o Q.

We will essentially use the following compactness result, also dileRERNA
& Lions (see for instance [19]).

Theorem 5.1. Let{v,},..o and{v,},- o be two sequences such that
{¥m} C € ([0, T1; L*(Bg)) forall R > 0,
{oa) CL2(0, T; V().

If the sequencdy,} is bounded inL*°(Q), the sequencév,} is bounded in
L?(0, T; V()) and

dYn

o T div(¥,v,) =0  in2'(Q),

Yn(0) > Yo in LY(RQ),
v — v weaklyinL?(0, T; V(Q)),

for someyg € L*(RQ), Yo = 0 a.e., then{y,} converges strongly in the space
% ([0, T]; LP(2)) forall 1 £ p < oo to the unique solutiony € L*(Q) N
% (10, T1; L1(2)) of the problem
%+div(¢v)=0 in 2'(0),
¥(x,0) = vYo(x) aeinQ.

5.2. Passage to the limit in the transport equations

In this subsection we apply the results in the previous subsection to the se-
guences of solutions of the penalized problem (3.1)—(3.8).

In order to prove Proposition 3.1 we first notice that, by Theorem 5.1, we have
the following result.

Lemma5.1. The sequencey, }, {w,’,} contain subsequenceéshich we also de-
note by{p,}, {v}}) such that

pn — p strongly in% ([0, T1; LP(R2)), (L= p < 00),

Vi — i strongly inL? (Qextx10, T[), (L < p < 00).



128 JORGE ALONSO SAN MARTIN, VICTOR STAROVOITOV & MARIUS TUCSNAK

Corollary 5.1. The corresponding subsequence$wjf} and{¢,} (which we also
denote by{¢.} and {g,}) converge respectively tgp' and ¢ strongly in
LP(Qextx10, T[), (1 = p < 00).

We can obtain more information about the convergenagiot!, ¢, by using the
regularity of the vector field,,. In order to obtain this information we recall some
classical notions on ordinary differential equations and characteristics of transport

equations.
Let us consider the following Cauchy problem:
axa@) =u,(X, 1)
e~ T (5.3)
X(s) =,

wherey € Qexands € [0, T] are given. Since for almost alle [0, T1, u,, (-, ) €
2 (R?) andu, (x,-) € L®(0, T;R?) for all x € Qeyy, it follows from classical
results (see for instance [20, Section 68]) that (5.3) admits a unique solution defined
in [0, T']. Moreover, sincar, |sq.,, = O, it follows thatX (r) € Qex for all ¢ €
[0, T]. Let us denote by ,(y) this unique solution.

The properties of the family of mapping#; ,(y) can be summarized by the
following result.

Lemma5.2. (a) The set of functions
y—> M (y)

is bounded if¢’2(Qext; R?), uniformly with respect te, r € [0, 7] andn > 0.
(b) The set of functions
s — M ()

is bounded inw1°°(0, 7; R?), uniformly with respect to € [0, ], y € Qext
andn > 0. Moreover, the set of functions

t— M (y)

is bounded inw1°°(0, 7; R?), uniformly with respect to € [0, ], y € Qext
andn >0,
(c) AIsodet(o“/%i,(y)) =1foranyy € Qext, 5,1 € [0, T],n > 0.
Proof. The boundedness of7 ;(-) in ¥ (Qext) iS a direct consequence of the
fact that.Z ; ;(y) € Qext for all y € Qext. Moreover, according to Theorem 1A
in [17, p.57] (see also [20, Section 69]), for each fixedr) € [0, T] x [0, T,
the function.Z s ;(-) is %1(Qext) and the functions — ‘/”5’(” i =12, are
absolutely continuous inand they satisfy the linear initial value problem

4 <M> Vxtny (M 54(y), t)— a.e.in[0, T] (5.4)
dt ay; 0yi

BMZM(y) . 1 8%s,s(y) _ 0
iy (0>’ dy2 (1) 5:9)

M 51 (y)
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Sincei, is bounded in.> (0, T; €2(Qext)), relations (5.4), (5.5) above imply
that assertion (a) of the lemma is true.

In order to prove assertion (b) we first notice that the boundedness of the func-
tionst — #:(y) ands — . (y) in € (Qext) is a direct consequence of the
fact that.Z ; ;(y) € Qext for all y € Qext andz, s € [0, T]. Moreover, according

to (5.3), itis clear that — W is bounded in.>(0, T'; R?). Concerning the

functions — M we notice that it is absolutely continuoustiand satisfies
the linear initial value problem
d (o4 oM .
LD Gt 02D qe im0 1 (5.6)
dt as as
oM
) (57)
8S 1=s

Sincew,, is bounded ir.> (0, T'; €1 (Qexy)), relations (5.6), (5.7) above imply that
the functions — .# ;(y) is bounded infW1>°(0, T; R?). This ends the proof of
assertion (b).

In order to prove assertion (c) it suffices to notice that relations (5.4), (5.5)
above and the classical Liouville theorem imply that

t

and to use the fact that diy = 0.
From the lemma above we can conclude the following corollaries.
Corollary 5.2. The sequencg# "} converges toZ in
€%¢([0, T1 x [0, T1; € H(Qexv)
a < 1,asn — oo, where.Z s ;(y) is the unique solution of the Cauchy problem

dX ()
dt
X(s) =y € Qext-

=u(X,1),

Simple calculations show that the solution of the transport equation (3.8) is
Vale, 1) =y (] o). (5.9)

The relation above, Corollary 5.2 and the dominated convergence theoremimply
the following result.

Corollary 5.3. The functions)’ in Lemma 5.1 satisfy the condition

Y, 1) =y (M, 0(x)) Vx € Qex, Y1 €[0T (5.10)
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Proof of Proposition 3.1. From (3.9) and (5.12) we conclude thgtD(u) = 0

fori = 1,..., N. This fact implies that there exist rigid functiom$ such that
vi(x,t) =ux,t) forx € S(¢'(1)). It follows from Remark 2.1 that
u(x,1) =v'(x,1) VxeSW®)). (5.11)

Let us definedg),(y) as the unique solution of the problem:

ax@
ar &, (5.12)
X(s) =y e R?

If y € S(¥'(s)), then, by (5.11), we know tha¥ , (y) = .# .. (y), So relation
(5.10) can be rewritten as

Y, 1) =0 5(x)) Yx € Qext, Vi €[0,T]. (5.13)
Since;z%ﬁ,o(x) is a rigid displacement, relation (5.13) implies that
o (x,1) = ¢! o(x)) Vx € Qext Y1 €[0,T]. (5.14)
The relation above implies that
PV . .
% +div (¢ (x, )V (x, ) = 0in 2/ (Qext x [0, T)).

In other words we showed that

T
/ / o'+ ' - VIndxdt = —/ ¢"Onodx
0 Qext Qext

foralln € 1(Q). n(T) = 0.
Moreover, since’ v’ = ¢'u andu(x,t) = 0forx € Qex \ 2,

T
/ / o'y + (- V)n)dxdt = —/ (p”ono dx (5.15)
0 Q Q

foralln € €1(Q), n(T) = 0.

We have thus proved that andu satisfy (2.11). Moreover, from Proposition 5.1
we know thaty! € Char Q).

Concerning the functiop = Zf\’zl @', we notice that it satisfies the equation

T
/ /w(m+(u~V)n)dxdt=—/wonodx,
0 Q Q

wheregy = 3 ¢"0 takes only two values: 1 and 0. By Proposition 5.1 it follows
thatg takes also only two values: 1 and 0, i.e., (2.7) holds true. This fact implies
thatS(¢) N S(p)) =P if i # j.

According to Theorem 5.1, the functigne L°°(Q) satisfies (2.10) and

O<mo=p= “pO”LOO(Q)'
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6. Sometechnical results

In this section we give several technical results which are an essential ingredient
of the proof of the compactness of the velocity field.
If o > 0andG c R?, we denote by, theo-neighbourhood o6, i.e.,

Gy = {x eR?:d(x,G) <o}

Notice that if we taker = §, whered > 0 is the number fixed in Section 2,
thenGs = Gext.

Let x: @ — {0, 1} be the characteristic function of a subs&j) of Q2. We
suppose that the boundary §¢x) is of class#2. Let us introduce the function
spaces

V3(2) the closure of/ (2) in H*(2),0 < s < 1,

K*(x) the closure ofK (x) in H*(R),0< s <1,
where the space¥’(2) and K(x) were introduced in Section 2. We note that
viQ) = V(Q) andK1(x) = K (x), where the spac¥ () was also introduced
in Section 2.

Moreover we define several projection operators.

First we denote byP*(x), the orthogonal projector off*(2) onto K¥(yx),
0<s< 1.

If o > 0, we denote byP;(x) the orthogonal projector off*(2) onto the
space of functions which are rigid velocity fields irraneighbourhood of (x).
More precisely, for 0= s < 1, we setP;(x) = P*(1s,(y)), wherel_(,) is the
characteristic function o, (x).

Lemma 6.1. For anyo > Othere existsig > 0 (depending only on) such that
S(gh (1)) C Se (' (1)) andS(¢' (1)) C Sy (@ (1))
forall n > ng, forallt € [0, T]and foralli =1,..., N.

Proof. Accordingto Corollary 5.2, we hav&”™ — .# in€ ([0, T]1 x [0, T]x ).
This fact, combined with (5.9) and (5.10) implies that, for any 0, there exists
no > 0 such that

SWL(1) C Se (' (1) andSW' (1)) C So (¥} (1)) (6.1)

foralln > ng,t €[0,T],i =1,...,N.By considering thé-neighbourhood of
the sets above and by using (3.5) we find that forsall 0 we have the relations

Ss(Wi(1) = S(g), Se+s(U') = So (@),

A . . A (6.2)
Ss(¥'(1) = S(¢") and  Sois(¥,) = So(gy,).

Relations (6.1) and (6.2) imply the proof of the lemma.
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The next result of this section is

Proposition 6.1. Letu andg be the functions considered in Proposition 3.1; then

T
clrif'o/o [ PS(o(, )ul- 1) —u(-, t)||i2m) dt = 0. (6.3)

Proof. For almost every € [0, T] we haveu(t) € K (¢(-, t)). Then, by Proposi-
tion 4.3 there exists a sequerneg }, . o that converges ta(¢) in K (¢(-, 1)), and
such that, € K, (¢(-, 1)) forallo > 0.

Then we have

| P2 oCoopuC. ) —uC, 0 o) S [ Po@C0)u 1) —ul-, 0

< lug —u(-, t)”[-]&(g) .

Vi)

We conclude that the sequence of functions

Fo®) = | PS(@C . )uC 1) —uC . D) 2

converges to zero for a.e.€ [0, T']. Since{f,} is bounded from above by the

functiong € L1(0, T) defined byg(r) = ||u(-, t)||§11( Y by using the Lebesgue
0

dominated convergence theorem we conclude that assertion (6.3) holds true.

Let us introduce a family of open se{t&, }, - o in the following way: for any
o € (0, 1) we first define the sets

EY ={r €[0,T1:0 < dist(S( (1)), S(¢’ (1)) < o¥/*} (6.4)
foralli, j =0,..., N, and then we denote
N ..
E, = |J EV. (6.5)
i,j=1

Proposition 6.2. The family of set$E, }, - o defined above satisfies
lim w(Es) =0, (6.6)
o—0

whereu denotes the Lebesgue measur®in

Proof. Since, by (5.14)$(¢' (1)) = ;z%f),, (S(¢"%) and, forally € ,the functions
t — ;zfé,t(y) defined by (5.12) are continuous, we deduce that the real function

t — d(S(e (1), S(p’ (1))

is also continuous if0, T']. By applying a classical measure-theory result (see, for
instance, Theorem E in [11, p. 38]) we find thatE,) — 0 wheno — 0. Thus
the sequencéE, },, - o satisfies (6.6).
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We now introduce some notation close to the notation used in the proof of Propo-
sition 4.3, for the time-independent case. More precisely, #f0, T'], we divide

the setsS(¢°(-, 1)) = R?\ Q andS(¢'(-,1)),i = 1,..., N, into several groups

as follows: ifaS(¢ (-, 1)) N 3S(@’/ (-, 1)) # B, thenS(¢'(-, 1)) and S(¢’ (-, 1))
belong to the same group. Let(r) be the number of groups at timeWe clearly
havem(r) < N + 1, for allz € [0, T]. Let us introduce the following notation:

— i) =1{i €{0,..., N} : S(¢'(-, 1)) belong to the group numbét,

— ¢F(-, 1),k =1,...,m(r) is the characteristic function of the set
U s(¢c.n)
iedi(t)
and
- ¢,’§(~ ,1),k=1,...,m(t) is the characteristic function of the set
ieJi(t)

Remark 6.1. An alternative definition of the groups is the following: if
J C {0,..., N}, we say that the domain$(¢'(-, 1)), i € J form one group
if Uies Sy ((pi(~ , t)) is a connected domain for evepy > 0 and for everyj €
{0,..., N}\ J there existyy > O such that J;.; S, (¢'C.0O)USy (¢’ (-, 1)) is
not connected.

Lemma 6.2. For almost every € [0, T'] there exists a subsequence{nf} (also

denoted by{u,}) and the corresponding sequences of rigid velocity fiébj‘ﬁ},
k=1,...,m(t) such that,

(- 1) = o0

0 Vpell,2 Vk=1,...,m().
(6.7)

lim
n—00

WLP(S@kC 1)

Moreover, if0 € Ji (1), thenvk (-, 1) = 0.
Proof. Let us define

Fn<r>=/ 0n (. 1) | D (up (x, )2 dx.
Q

If p < 2 then, by Hlder inequality, we have

f ID (u,(x,1))|” dx
S@())
§f |D (u,(x,))|” dx
S(@n(0))
+f ID (u,(x,1))|” dx
S@EN\S(gn (1)) " (6.8)
e p
< 1 S@n ) 21D @, a0 o)

+ i (SN \ S@n ) 7 1D (e )75,

< CLEOF 1D @n e, D)l gy 1 (SGON\ Su0) F
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From (3.9) it follows that the familyn F,, } is bounded in.1(0, T), so we know
that F,, — 0 strongly inL1(0, T). On the other hand, from (3.9)and Lemma 6.1 it
follows that the second term in the right-hand side of (6.8) tends to zérb( 7).

Let us denote bw,, (r) the expression in the right-hand side of (6.8). We have
proved that

lim 114, a0,y = O,
S0, up to the extraction of a subsequence, we have

Iimoo An,(t) =0 foralmostallr € (O, 7). (6.9)

Lete > 0. By Egorov’s theorem (see, for instance, [15]), there exists a subset
M, of [0, T] such that:

(H1) A, "=5° 0 uniformly in M,;

(H2) llun (-, Ol g1y < 2, foralln € Nand for allr € M,;
—0

(H3) ([0, T1\ Me) = 0.

Let us consider a fixed such thatr € M,. By applying a version of the
Korn inequality (see, for instance, [23, p. 20, p. 118]) it follows that for eaeh
{0,..., N}and for eaclp € (1, 2) there exist a a rigid velocity field denoted by
v,,(-, t) such that

Jn G0 =3, (sprc ) = CIP@RC O (540 yyy = CARD.
(6.10)
Sinceijl(- , t) is arigid velocity field, it can be extended in a unique manner to
a rigid velocity field defined ofR2. For the sake of simplicity, this rigid velocity
field is also denoted by (-, r). Moreover, by using the properties (H1) and (H2)
of M., we obtain

— 2
[7.¢.0 WL (S0 (.0)) < - foralln € N and for allr € M,. (6.11)

For everyi =0, ..., N one of the following assertions holds true:

— We haved (S(¢'(-, 1)), S(¢/ (-, 1))) > O forall j # i. In this case, there exists
an indexk(i) such thatS(¢ (-, 1)) = S(@*® (-, r)) and relation (6.7) follows
directly from (6.10) and (6.9).

— There exists an indek # i, such that tha§ (¢’ (- , 1)) andS(¢/ (- , 1)) belong to
the same group with (S(¢’ (-, 1)), S(¢’ (-, 1))) = 0. (We remark that two sets
can belong to the same group even if their mutual distance is strictly greater than
zero.)

Consequently it suffices to consider the second case. Let us fix the indexes
such thatS(¢’ (-, 1)) andS(¢/ (-, r)) belong to the same group adtﬂS((p’ (-, 1),

S(p/ (-, t))) =0.
Define

wie, ) =ux, 1) -0 (x,1), xeS@E,0), el j}, (6.12)
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wherev’ are the rigid velocity fields introduced in (6.10). By relation (6.10) it
follows that

[wi -, ;)||’V’V1,1,(S(¢((.J))) < CAL(1), Leli,j). (6.13)

By a classical extension result, the functioh(- , 1) can be extended to a func-
tion i (-, 1) € WLP(Q) such that

|85 O] iy < ClwaC O wirsoic oy AV = 0in LP(R),
(o)) (S(9’¢.0))

whereC is a constant independentof
We introduce the function

Uy, 1) = up(x, 1) —0h(x, 1) — Wi (x, 1) VxeQ.
It is clear that
(X, 1) = T (6, 1) — Th(x, 1) + wh(x, 1) — W (x, 1) Vx € S(p' (-, 1)),

Uy(x,1)=0 VxeS(g/(,1).

Definev, (x. 1) = 7, (x, 1) — v (x, 1) andw,(x, 1) = wi (x,1) — W}(x, 1).
Sincew, (x, 1) is a rigid velocity field, there exist, (r) € R? andw, () € R such
that we can write

v, (x, 1) = @, (1) + 0, ()(x — x40)",
whereM € 3S(¢' (-, 1)) N3S(¢’ (-, 1)).
By (6.11) it follows that there exists a constanht- 0 such that
C
la, ()| + o, ()| £ — VneN, Vte M,. (6.14)
&

On the other hand, by repeating the entire procedure in the proof of Proposi-
tion 4.1 we find that for alt € (0, §) and for allp € (1, 2) we have

lan ()] < 2¢(0) [u(D)] P IV D) Lo () + loa (VT2 + cA(T)

1
|wﬂ(x7 t)|dx Vt € [01 T]s
w(Dz) /DZ
where the seD, was introduced in (4.4) and the functionvas also introduced in
the proof of Proposition 4.1.
By using (6.14) and (6.13), relation (6.15) implies that

(6.15)
+

. C 23
limsupla,(t)| < —t 7 Vzte(090), (6.16)
&

n—oo

whereC is a constant independentofif we first suppose thagt (% 2) and use
the fact that (6.16) is valid for all € (0, §) and that, () is independent of,, we
obtain

lim |a,(t)| = O.
n—>oo
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Similarly,
2p-3 p y2r3
limsu NI < CyP>limsup|Vu <cC
n_)oomwn( N = Cy n—>00p|| ””LP(GV) = e (617)
vy €(0,9),

for some constan€ > 0, where the domairz,, was defined in the proof of
Proposition 4.1. By passing to the limit when— 0, the estimate above implies,
provided thatp (%’ 2), the relation limy_, o w, (1) = 0.

Thus, we can say that, jf € (3, 2), then

5,66, 566Dy =0

for all t € M, and consequently for almost alk [0, T], sinces > 0O is arbitrary.
Therefore, for almost all € [0, T'], we have

n||—>moo ||u,,(~ 1) = ’t)” WLP(S(g!(-.0)US(9/ (-,1))) 0.

If k is a number such thdte J(¢), then the relation above is also valid for all
j € Ji(?). This conclusion allows us to take the functigj as the functiorv®

in the formulation of the lemma. Thus relation (6.7) is provedjoe (3, 2) and
consequently for alp € [1, 2). Finally, if 0 € Ji(¢), then we can take! = BS and
90 = 0. The lemma is proved.

The main result of this section is

Proposition 6.3. Let{E, }, .o be the family of sets defined {8/4), (6.5) Then for
all s € [0, 1) we have

Jim lim | P (o, )n = ta] a0 1\, 1v0 @) = O (6.18)

Proof. Let us first suppose that, for an arbitrary > 0, there exists a family of
functions(uy (-, 1)), _ suchthaug(-,1) € K3 (¢(-,1)) and

n,

lim lim (ug ¢, 0) —u, (-, 1) 0 (6.19)

o—>0n—00

Vs —

for almost alls € [0, T'] \ E4,. Since

” Pl(oC,)uu(-, 1) —uy(-, t)|

i@ = [l (. 0) —un(-, 1) Ve
relation (6.19) still holds if we replac€’ (-, t) by PS(¢(-, t))u,(-,t). Moreover,

the functionr — w3 (-, 1)| ys(q Where

wl (-, 1) = Pl )up(-, 1) —un(-, 1),
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is measurable, and

T T
2 2
/O [wg .02 g dr < /0 latn -, )12 dt

T
2(1—s)/s
<c /o - D135y Nt D131 dt (6.20)

T
< C/o a2, dt < €

due to the energy estimate (3.9).

Relations (6.19) and (6.20) yield (6.18).

Thus in order to finish the proof of the proposition we have only to construct a
family of functions(ug (-, 1)),  such thatg (-, 1) € K3 (p(-. 1)), foralln = 1,
and which satisfies (6.19).

By Lemma 6.1, for any > 0 there existsig > 0 such that, for alk > ng,
te[0,Tlandk =1,...,m(), we have

S (¢>,’i(' , t)) cs, (¢>"(o : r)) (6.21)
and
w(Sy (45 c.0)\ s (oke.n)) <.

Let us fix an arbitrary € E \ E,, whereE C [0, T] is the set for which the
assertion of Lemma 6.2 holds. (In particular we have th@) = 7.) By (6.4) and
(6.5) we have

d(S@ .00, 5@ C.0) 2 a4 (6.22)
Let us introduce the stream functiows, X, k = 1,... , m(z), such that
W
Vi, =u,, Ylyo= —| =0
on |30

Vl\TJ,]f = vﬁ.
By Lemma 6.2, the stream functiodg can be chosen such that
. ~k _
nll—>moo ” \IJ”( ) t) - \Ijn ( s t) H W2,p(5(¢k(.’t))) =0.

This implies that, for any > 0, there existag € N such that for alh > ng
we have

[Wa o) = ¢ D2 sty S V- (6.23)

By (6.22) there exists a functioW, (-, 1) € W2?(Q) such thatl, (x,r) =
Uk(x, 1) forx € Sou (% (-, 1)),k =1,... ,m(t). Denote byi, (x, t) the function
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]_[,-N:O ns (d;(x, 1)), whered; (x, t) is the distance fronx to S(¢(-,)) and the
functionn, (-) has been defined in the proof of Proposition 4.3.
Let us now introduce the sequence of functi¢rg } defined by

W = (1= i)Wy + 7o W
Then we have:

(R R A CNI]
= @ = ) (T 1) = Wu, D) [ 2

m(t)

— _ 5 Nk . _ . »

= ;— ” (1 r}(r)(“l"n( ) t) “Iln( ) t))”WZ'p(Szg(qﬁk(-,t))) (624)
m(t) ~

= Z Z H (- ﬁ“)(qj']:( 1) = Wn(e, t)) H[‘ZVZ,p(Sza(goi(. )
k=1ieJi(t)

The classical trace theorem and (6.23) imply that

[Th 1) = W, 1) ”Z(asapf(-,t)))

+ | VEEC ) = VL (6.25)

p . <
Lr@swic.y = €Y

fori € Ji ().
It is well known (see, for instance, [7]), that the inequality:

p
||f”LP(Sza(<0"(~,t))\S(fﬂi(-,t)))

< P ) P P ) )
= C( ”f”LP(aS((p’ .0)) To ”vf”LP(Szn(w’C,t))\S(vﬂ(‘,t))))

holds forallf < W,} (S20 (@' (.t \ S(¢'(-,1))),i =0,... N,andforallc small
enough. This fact combined with (6.23), (6.24) and (6.25) implies that

W7 o) =W, [y S Co 2y + Co P2 luy (- D)1} g, - (6:26)

Let us takeu? (-, 1) = VAW (-, 1) andy = o @T3P)/2 Then (6.26) yields
7o 0) = w0y ) S Co PP, (6.27)

where the constar@ depends on. Due to the classical embedding theorems, if
p= 2—33 then (6.27) implies (6.19). This concludes the proof of the proposition.
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7. Proof of Theorem 3.2

In order to prove Theorem 3.2 we need two results. The first one is

Proposition 7.1. For anys € (0, 1) there exists ag > 0 such that, for any €
(0, 0p), we have

n—oo

lim / putt P (@ D) () dx dt = / puPS (-, )@ dxdr.  (7.1)
o o

Proof. Consider an arbitrary > 0. Due to Lemma 6.1, there exists > 0 such
that

S(n(1)) C Soy2(p(r)) Vi e[0,T]

forall n > no.

Moreover, if we divide the intervdlO, 7] into Ny subintervals/; = [O, 7],
I =[r,27],.... Iy, = [(Nr — Dz, Nrt], wherer = T /Ny, then the regularity
of the functiorr — <7, (y) implies that there exists > 0 (depending om) such
that

So2(@(t)) C So(p(kT)), (7.2)
So/2(@kt)) C S5 (@(2)) (7.3)
foralltr e I;,andforallk =1,..., Nr.

More precisely, ifL is the Lipschitz constant of the function~ </ ;(y), then
there exist

o o
S lo/TH2L+D) 20+ D]

satisfying (7.2) and (7.3). In particular, it follows that there exists a conétant0
such that for alb € (0, op) there exist = Co satisfying (7.2) and (7.3).

Let us take one of the intervalg, k = 1, ..., N7. In (3.6) we consider a test
function&, which is equal to zero if ¢ I; and such tha§ (-, 1) € K, 2(¢(-, k1))
forall t € I. In this case (3.6) implies, by using classical estimates on the Navier-
Stokes equations (see for instance [18, pp.70-71]), that there exists a constant
C > 0 such that

//pnu,,gtdxdt
I JQ

The relation above implies that the sequer{c%(Pf/z(ga(-,kr))(pnun))} is
boundedinL2(Iy; [Ko/2(¢(-, k7)]"), wherd K, 2(¢ (- , k1)) ] is the dual space of
Ko 2(9(-, kt)) with respect to the pivot spadég/z(go(- ,kt)). Moreover, from
(3.9) and (3.10) it follows that the sequeriggu,,} is bounded inL2(I; x ), so
the sequenc{an/z(<p(~ ,kT))(pautn)} is also bounded ih2(Iy; K2/2(<p(~ ,k7))).
Since, foralls > 0, the inclusiorkg/z(goc k1) C [KS0(0(, kt))]" is com-
pact, it follows from Aubin’s theorem that the sequeddé)/z(gp(- k7)) (pptn) }

=C ||§||L2(1k;v(sz)) Vn > no.
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is relatively compact irL2(Ix; (K520, kt))]"). Moreover, by Lemma 5.1 and
(3.12) we havey,u, — pu weakly in L2(I; L?(R)). It follows that

P2 2(@(- . kD) (puttn) = P2 5(p(- . k1)) (ou) (7.4)

inL Ik, KS S, kr)) strongly for alls > 0.
On the otﬂer hand, by (7.3) we also have

P2o(@(- kT) P (p(-. 1)) = Pi(p(-. 1)) Yt el andVs > 0.

Using the relation above and the fact tlﬁ’ﬁ;z(qa(- , k1)) is self-adjointinL?(£2)
we obtain

/ owtn P2 ) )2,
= [ (P8 20 ko)), Pt 1)) g
k

= /Ik<P£/2(<o(-,kr))<pnun),P;<<p<~,z)>(un>>[,(;/] e

o/2

By using (7.4) it follows that

lim / <,o,,un, P; ((P( s t))(un)>L2(Q) dt
k

n—oo )i

/[ (o, Py (o(0)@) 2 dt Yk =1,... Nr.
k

By summing up the relations above, frdm= 1 to k = Ny, we obtain the
assertion of Proposition 7.1.

We also need the following result.

Proposition 7.2. The sequencd, }, {u,} defined above satisfy the relation
lim / pnu,zl = f puz.
n—o0 Q Q

Proof. We clearly have

T
/ ontt? —/ ou’ = / /(,Onun' Py (p(-, 1)[uy]
[0) 0] 0 Q

— pu- P (p(-,1)[ul]) dx dt

T (7.5)
+'/ / Pnln - (un - Pé(‘/)(' ) t))[un]) dxdt
0 JQ

T
+/ fpu-(P;(g)(.,t))[u]—u) dx dt.
0 Q



Rigid Bodies in a Fluid 141

In order to estimate the last integral in the right-hand side of of (7.5) we notice
that

T
=C fo |23 onlu] = u o, dr. (7.6)

'pru (P (o, 0)[u] — u)

whereC = |lpull .~ 1:12(2)- On the other hand, by Propositions 6.1, 6.2 and
6.3, for everyy > 0 there existgp > 0 such that for every € (0, og) we have:

MW(Eq) =y, (7.7)
nli—>m00 ” P(;-Y (90( s t))un — Uy ”Lz([O,T]\Ea;LZ(Q)) g Y, (78)
H P; (90( ) t))u —u ”LZ([O,T]\E(,;LZ(Q)) g Y- (79)

For o satisfying the conditions above, relations (7.6), (7.7) and (7.9) imply that

' [ on - <c [ e =],z
0 [0,TI\E

o

+ C/E | PS @)l — a2, di

1 s 2 :
< Cy+ Cp B} / [ P2t — w2 g di
Es
and, therefore, that

1
< C1y?,

’/ pu - (P (p)[u] —u)
0

whereC; > 0 is another constant. The second integral in the right-hand side of
(7.5) can be estimated in a very similar manner, by using (7.8) instead of (7.9).
Moreover, by Proposition 7.1 the first integral in the right-hand side of (7.5) tends
to zero whem — oco. Sincey > 0 is arbitrary we obtain the conclusion of the
proposition.

Proof of Theorem 3.2. We first notice that

‘/Qp(uﬁ—lﬂ) §'/Q(pnuﬁ—pu2) +VQ(pn—p)u5

Sinceu, is bounded inL*> (0, T; L?(Q)) and in L2(0, T; H()) we can
easily deduce that, is bounded inL4(Q). Moreover, by Lemma 5.1, we have
on — p strongly inL2(Q), so the second term in the right-hand side of (7.10)
tends to zero when — oo. Since, by Proposition 7.2, the first term in the right-
hand side of (7.10) also tends to zero, we conclude that

. (7.10)

n—oo

lim /Q p(u? —u?) =0. (7.11)
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Moreover,

f|un—u|2§i</ p(uﬁ—u2)+f 2,0u-(u—un)>, (7.12)
o mo o 9]

wheremg is defined in Theorem 2.1. The right-hand side of (7.12) tends to zero by
(7.11) and from the fact that, — u in L2(Q) weakly. We have thus proved the
strong convergence of, to u in L2(Q).

8. Proof of the main results

8.1. Proof of Theorem 2.1.

By Proposition 3.1 (proved in Section 5), the functiang, ¢, i =1,... , N
and ¢ satisfy relations (2.5)—(2.8), (2.10) and (2.11). So, in order to prove the
existence of at least one weak solution of (1.1)—(1.13) we have only to prove that
(2.9) is also satisfied. Due to Theorem 3.2 and to Lemma 5.1, we can say that, up
to the extraction of a subsequence,

u, = u in L?(Q) strongly, (8.1)
o= p in€(0,T]; LP(Q), (1< p<oo)strongly  (8.2)
Let o be an arbitrary positive number. We choose the test fundtion(3.6)

such thatt € H1(Q) N L2(0, T; K, (¢)). Then, due to Lemma 6.1, there exists
no > 0 (depending only o&) such that

¢.DE) =0 inL*Q) VYn>no

and, consequently,
/ o.D(u,) :D(E)dxdt =0 Vn > nog.
0

By using (8.1) and (8.2) we can pass to the limitin (3.6) to show that (2.9) holds
forany& € H(Q) N L%(0, T; K, (¢)). By using Proposition 4.3 and Corollary
4.1, it follows that (2.9) holds for any € H1(Q) N L2(0, T; K (¢)).

Let us fixi € {1,..., N} and consider the functiop’ € C(0, T; Ly,(22)N
CharQ),1 < p < oc. SinceS(¢' (1)) = &% ;(S(¢'(5))) and.«/} , is Lipschitz-
continuous with respect te and¢, there exists a constaidt such that for all
s,t € [0, T]1we have

S(p (1) C Sy (@' (),  S(p'(5)) C S, (¢' (1)),

wherey = C |t — s].



Rigid Bodies in a Fluid 143

Therefore,
max{u(S(@' () \ S (). 1S’ N\ S 1)}

< max| (S, @' D)\ S (D), 1(S, @ N\ 5@ (1))
< C oS’ @] It = s,

where|dS(¢' (1))| = [3S(¢'(0))| is the length of the boundary of the body which
is bounded sincéS(¢’ (0)) is of the classC2. Hence

lo) =)@ = 1(Sy @ NS )) " S Cli—sIYP, 1= p < oo,

whereAAB = (AU B) \ (AN B).

This ends the proof of the existence of at least one weak solution of (1.1)—(1.13).
The energy estimate (2.12) follows directly from (3.9).

Finally, representation (2.13) is already obtained in the proof of Proposition 3.1
(see relation (5.14)).

The theorem is entirely proved.

8.2. Proof of Theorem 2.2.

The first assertion of the theorem follows immediately from Proposition 4.1.
Let us prove the second assertion. The arguments below are similar to those used
in the proof of Proposition 4.1.

Since, fori =0, ... , N, the boundary S(¢) is a curve of clasg?, then for
all x € 3S(¢') there exists a closed ball of radisiscontainingx and included in
the closure ofS(¢').

Let us consider two bodieS(¢’) and S(¢/) and suppose that;;(to) = 0
for somerg € (0, T). Let us take two closed diskB(P; (1), §) C S(¢'(¢)) and
B(Pj(1),8) € S(¢/ (1)) of radiuss centred at point; (r) and P; (1), respectively,
and such that at timg we haveB(P;(fp), §) N B(Pj (1), 6) # #. These disks move
together with the bodies. Denote B#(z) the distance between the two disks. We
clearly have (see Fig. 8.1)

H(t) =dist(P; (1), Pj(t)) — 25 and H (to) = 0.

Let Qi (r) € dB(P;(1),8) and Q;(tr) € dB(P;(1), ) be two points such that
H(t) = dist(Q;(z), Q;(#)). Let us fix a moment of time € (0, T) and introduce
a new system of coordinatés= (&1, £&2) with the origin inQ; (7). The axisy is
tangential to B(P; (1), §) and the axig> is orthogonal to it.

Let us consider the domain

Gy ={§ € R?| —c(61) <& < H(t) +c(E1), —y <& <y},

where c(y) = § — /82 — y2 is the function already considered in the proof of
Proposition 4.1 (see Fig. 8.2).
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Fig. 8.1.

Fig. 82. SetG,.

The condition diwe = 0 implies that

f u-nds =0,
3G,

wheren is the outward unit vector field normal 8&5, . Notice thatdG,, = Fi, U
F{, U F)(}, wherer"; =0G, NIB(P(1),8), k =i, j. We know that the restrictions

ofuto S(¢' (1)) andS(¢/ (1)) are rigid velocity fields. We denote these rigid velocity
fields byv; andv;, so we haver(x, 1) = vi(x,t ) asx € Sk, k=1, j.
For the functiorw; the following representation holds:

ve(x, 1) = @i (1) + o (1) (x — X (), x € B(P(1),8), k=1, j,
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wherex(¢) is the position vector of the poi (r). We notice also that

dH (1)
FT (a; — aj) - e2,

wheree; is the unit vector directed along the agis
Definev = u—v;. Thisfunction is divergence-free and equal to zersxip; (7)).
Thus we have:

/ v-nds:/
G r

i
L4 4

v~nds+/ v-nds =0. (8.3)
ro

Y

It is not difficult to calculate that (8.3) implies

2y(a; _aj)'eZZ—/ v-nds.

0
FV

g/ lv| ds.
ro

By integrating this inequality with respect tofrom 0 to some- > 0, we obtain:

The relation above implies that

dH
2y 'E(t)

2[5
dt

< fG (0] dédes. (8.4)

By using the Holder and Poincaré inequalities, we can estimate the integral in
the right-hand side of (8.4) to get:

/ v d&1dEr < (G2 (vl L6,

< Cu(GHY2 2e(r) + H1) V0]l 2 -
Sinceu(G,) < 2r(2¢(r) + H (1)), it follows that

dH 3/2
r2 ‘E(z)‘ < Cr¥2 (2e(r) + HO)? 1190 12

SinceH (tp) = 0 andH (¢) is sufficiently small in a neighbourhood of the point
10, We can take = H/2(¢) in the relation above and, using (4.3), we find that

H
"Z—ta) < CH¥ (1) z(n), (8.5)

wherez(t) = Vo)l 12(q)-

Since the functiory is in L2(0, T), and H is Lipschitz-continuous in, we
deduce that inequality (8.5) is valid for almostal [0, T].

If s,z € [0, T], by integrating (8.5) froms to ¢ we obtain

HY%s)—C

t
/ 2(p) dp' < HYA4 1) < HY %)+ C

t
/ 2(p) dp‘ . (86)
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SinceH (19) = 0, then the relation above implies that

t
/ z(p) dp‘
f0
forallt € [0, T].

By applying Hilder's inequality and the fact thate L2(0, T'), we obtain the
estimate

HY*n < cC

2

HnscC It — to]%.

t
‘LHVv@H@qmtw

The relation above and the obvious inequality(r) < H (r) imply that
lim h;j(0) |t — 10|72 = 0.
t—1o

This ends the proof of the theorem.
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