Rates of Decay and *h*-Processes for One Dimensional Diffusions Conditioned on Non-Absorption

Servet Martínez¹ and Jaime San Martín¹

Received June 29, 1999; revised March 16, 2000

Let (X_t) be a one dimensional diffusion corresponding to the operator $\mathscr{L} = \frac{1}{2}\partial_{xx} - \alpha\partial_x$, starting from x > 0 and T_0 be the hitting time of 0. Consider the family of positive solutions of the equation $\mathscr{L}\psi = -\lambda\psi$ with $\lambda \in (0, \eta)$, where $\eta = -\lim_{t \to \infty} (1/t) \log \mathbb{P}_x(T_0 > t)$. We show that the distribution of the *h*-process induced by any such ψ is $\lim_{M \to \infty} \mathbb{P}_x(X \in A \mid S_M < T_0)$, for a suitable sequence of stopping times $(S_M : M \ge 0)$ related to ψ which converges to ∞ with M. We also give analytical conditions for $\eta = \lambda$, where λ is the smallest point of increase of the spectral measure associated to \mathscr{L}^* .

KEY WORDS: One-dimensional diffusions; h-processes; absorption.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

We denote by \mathbb{P}_x the probability law of a Brownian motion (B_t) starting at x. Consider the diffusion (X_t) given by

$$X_t = B_t - \int_0^t \alpha(X_s) \, dx$$

where we assume α to be C^1 and denote by T_a , the hitting time of a,

$$T_a = \inf\{t > 0 : X_t = a\}$$

We consider the sub Markovian semigroup given by $P_t f(x) = \mathbb{E}_x(f(X_t), T_0 > t)$, with density kernel denoted by p(t, x, y).

¹ Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería Matemática, Casilla 170-3 Correo 3, Santiago, Chile. E-mail: smartine@dim. uchile.cl, jsanmart@dim.uchile.cl

Let $\gamma(x) = 2 \int_0^x \alpha(z) dz$. We will assume the following condition always holds

Hypothesis H:
$$\int_0^\infty e^{\gamma(x)} (\int_0^x e^{-\gamma(z)} dz) dx = \int_0^\infty e^{-\gamma(x)} (\int_0^x e^{\gamma(z)} dz) dx = \infty.$$

Hypothesis H says that ∞ is a natural boundary for the process (see [4, p. 487]).

It is known (see for instance Ref. 1) that this implies

 $\lim_{x \to \infty} \mathbb{P}_x(T_0 < s) = 0 \quad \text{and} \quad \lim_{M \to \infty} P_x(T_M < s) = 0 \quad \text{for any} \quad s > 0$ (1)

A relevant function in our study is the *scale function* $\Lambda(x) = \int_0^x e^{\gamma(z)} dz$. It satisfies $\mathscr{L}\Lambda \equiv 0$, $\Lambda(0) = 0$, $\Lambda'(0) = 1$ where $\mathscr{L} = \frac{1}{2}\partial_{xx} - \alpha \partial_x$. Hence $\Lambda(X_s) |_{T_0 > s}$ is a local martingale and

for
$$x \in (0, M)$$
, $\mathbb{P}_x(T_M < T_0) = \frac{\Lambda(x)}{\Lambda(M)}$

Note that

$$\mathbb{P}_x(T_0 = \infty) > 0$$
 if and only if $\Lambda(\infty) < \infty$

Let $\mathscr{L}^* = \frac{1}{2}\partial_{xx} + \partial_x(\alpha \cdot)$ be the formal adjoint of \mathscr{L} . Denote by φ_{λ} the solution of

$$\mathscr{L}^* \varphi_{\lambda} = -\lambda \varphi_{\lambda}, \qquad \varphi_{\lambda}(0) = 0, \qquad \varphi_{\lambda}'(0) = 1$$
(2)

and by ψ_{λ} the solution of

$$\mathscr{L}\psi_{\lambda} = -\lambda\psi_{\lambda}, \qquad \psi_{\lambda}(0) = 0, \qquad \psi_{\lambda}'(0) = 1$$
(3)

It can be checked that

$$\varphi_{\lambda} = e^{-\gamma} \psi_{\lambda} \tag{4}$$

Let $\rho(\lambda)$ be the spectral measure of the operator \mathscr{L}^* . We will assume ρ is left-continuous (see [2, Chapter 9]). Let $\underline{\lambda}$ the smallest point of increase of $\rho(\lambda)$. In [5, Lemma 2] it was shown that

 $\underline{\lambda} = \sup \{ \lambda : \varphi_{\lambda}(\cdot) \text{ does not change sign} \}$

Since $\varphi_0 = e^{-\gamma} \Lambda$ does not change sign, we have $\lambda \ge 0$. Also notice that continuity in λ implies that $\varphi_{\lambda} \ge 0$. Notice that ρ is concentrated in $[\lambda, \infty)$.

Also observe that Hypotheses H implies $\int \varphi_0(x) dx = \int e^{-\gamma(x)} \Lambda(x) dx = \infty$. Therefore, we have

$$\int_{0}^{\infty} \varphi_{\underline{\lambda}}(x) \, dx < \infty \Rightarrow \underline{\lambda} > 0 \tag{5}$$

The analysis of one dimensional diffusions with absorption presented in Ref. 5, uses spectral tools. Let us introduce the concepts needed to present those results. Consider the following Hilbert spaces $\mathscr{H} = L^2(\mathbb{R}_+, e^{\gamma(x)} dx)$ and $\mathscr{H} = L^2(\mathbb{R}, d\rho(\lambda))$. The spectral decomposition is studied through the unitary transformation $\mathscr{U}: \mathscr{H} \to \mathscr{K}$ defined as

$$\mathscr{U}f(\lambda) = \int_0^\infty f(z) \,\varphi_{\lambda}(z) \, e^{\gamma(z)} \, dz = \int_0^\infty f(z) \,\psi_{\lambda}(z) \, dz$$

An important role is played by the subset $\mathscr{H}_0 \subset \mathscr{H}$, which consists of all nonnegative functions not equivalent to zero for which $\mathscr{U}f$ is bounded from below in some right neighborhood of $\underline{\lambda}$.

Theorem 2 of Ref. 5 asserts that if A and B are bounded measurable sets and $f \in \mathcal{H}_0$ then

$$\lim_{t \to \infty} \frac{\int_{A} \int f(z) p(t, z, y) dz dy}{\int_{B} \int f(z) p(t, z, y) dz dy} = \frac{\int_{A} \varphi_{\underline{\lambda}}(z) dz}{\int_{B} \varphi_{\underline{\lambda}}(z) dz}$$
(6)

A relevant quantity in our study is the exponential decay for the absorption probability

$$\eta = -\lim_{t \to \infty} \frac{1}{t} \log \mathbb{P}_x(T_0 > t)$$

which exists and is independent of x > 0. In [3, Theorem C] it was shown that

$$\eta > 0 \Rightarrow \eta = \underline{\lambda}, \qquad \int_0^\infty \varphi_{\underline{\lambda}}(z) \, dz < \infty, \qquad \Lambda(\infty) = \infty$$
(7)

On the other hand, by using [5, Theorem 5] one can deduce that

$$\int_{0}^{\infty} \varphi_{\underline{\lambda}}(x) \, dx < \infty \qquad \text{and} \qquad \int_{0}^{\infty} e^{-\gamma(x)} \, dx < \infty \Rightarrow \eta = \underline{\lambda} > 0 \qquad (8)$$

Our first result proves that these two conditions are equivalent and also gives necessary and sufficient conditions, in terms of the eigenvectors of \mathscr{L} and \mathscr{L}^* , in order to have $\eta > 0$.

Theorem 1. The following properties are equivalent

- (i) $\eta > 0;$
- (ii) $\int_0^\infty \varphi_{\lambda}(x) dx < \infty$ and $\int_0^\infty e^{-\gamma(y)} dy < \infty$;
- (iii) $\int_0^\infty \varphi_{\lambda}(x) \, dx < \infty$ and $\Lambda(\infty) = \infty$;
- (iv) $\underline{\lambda} > 0$ and $\Lambda(\infty) = \infty$;
- (v) $\exists \lambda > 0$ such that ψ_{λ} is increasing.

In the case when $\lambda = 0$ we have from (7) that necessarily $\eta = 0$. On the other hand if $\lambda > 0$ and $\Lambda(\infty) = \infty$ we conclude that $\eta > 0$ and therefore by (7) $\lambda = \eta$. This means that the following result holds.

Theorem 2. If $\Lambda(\infty) = \infty$ then $\eta = \underline{\lambda}$.

In [3, Theorem B and Proposition D] it was proved that for any s > 0 and for any $A \in \mathcal{F}_s$:

$$\lim_{t \to \infty} \mathbb{P}_x(X \in A \mid T_0 > t) = \mathbb{P}_x\left(X \in A, \frac{\psi_\eta(X_s)}{\psi_\eta(x)} e^{\eta s}, T_0 > s\right)$$
(9)

and if $\Lambda(X_s) 1_{T_0 > s}$ is a martingale it was also shown that

$$\lim_{M \to \infty} \mathbb{P}_x(X \in A \mid T_M < T_0) = \mathbb{P}_x\left(X \in A, \frac{A(X_s)}{A(x)}, T_0 > s\right)$$
(10)

Our aim is to generalize (9) and (10) for $\lambda \in (0, \eta)$. With this goal in mind we will show in Lemma 4 that when $\eta > 0$ any of the solutions, ψ_{λ} , $\lambda \in (0, \eta)$, satisfies the semigroup property: $P_s \psi_{\lambda}(x) = e^{-\lambda s} \psi_{\lambda}(x) \forall x \ge 0$, s > 0. Hence

$$P_s^{\lambda} f(x) = \mathbb{E}_x \left(f(X_s), e^{\lambda s} \frac{\psi_{\lambda}(X_s)}{\psi_{\lambda}(x)}, T_0 > s \right)$$

defines a Markov process.

Let us consider an increasing sequence of stopping times (S_M^{λ}) associated to ψ_{λ} , defined as follows

$$S_{M}^{\lambda} = \inf \left\{ s > 0 : F_{\lambda}(X_{s}, s) \ge M \right\}$$

where

$$F_{\lambda}(x,s) = e^{\lambda s} \psi_{\lambda}(x)$$
 for $x \ge 0$, $s > 0$

We will show the following result.

Theorem 3. Assume $\eta > 0$. For any $\lambda \in (0, \eta)$ we have:

$$\begin{split} \forall s > 0, \quad \forall A \in \mathscr{F}_s, \quad \lim_{M \to \infty} \mathbb{P}_x (X \in A \mid S_M^{\lambda} < T_0) \\ &= \mathbb{E}_x \left(X \in A, \frac{\psi_{\lambda}(X_s)}{\psi_{\lambda}(x)} e^{\lambda s}, \ T_0 > s \right) \end{split}$$

Now, in Theorem C of Ref. 3 the quasi limiting distribution of the diffusion was entirely characterized as

$$\lim_{s \to \infty} \mathbb{P}_x(X_s \ge a \mid T_0 > s) = \begin{cases} 1 & \text{if } \eta = 0\\ c^{-1} \int_a^\infty \varphi_{\underline{\lambda}}(x) \, dx & \text{if } \eta > 0 \end{cases}$$
(11)

where $c = \int_0^\infty \varphi_{\underline{\lambda}}(x) dx$. We shall prove later that $c^{-1} = 2\underline{\lambda}$. There are situations where $\eta < \underline{\lambda}$. In this case always $\eta = 0$ and $\Lambda(\infty) < \infty$. From (11) $\mathbb{P}_x(X_t \leq a \mid T_0 > t)$ converges to 0. An example of $\eta < \underline{\lambda}$ is when the drift is a positive constant (in our notation $\alpha(x) \equiv \alpha < 0$), in this case $\eta = 0 < \underline{\lambda} = \alpha^2/2$. We point out that when the drift is constant η depends on the sign of the drift whereas $\underline{\lambda}$ does not. We shall prove that under the condition $\eta < \underline{\lambda}$ the latter quantity governs the speed at which $\mathbb{P}_x(X_t \leq a \mid T_0 > t)$ converges to 0.

Theorem 4. If $\eta < \underline{\lambda}$ then for any a > 0 $\limsup_{t \to \infty} e^{\underline{\lambda}t} \mathbb{P}_x(X_t \le a \mid T_0 > t) < \infty$

We point out that the study of general one dimensional diffusions can be reduced, under suitable conditions on the diffusion coefficient, to the previous setting.

2. PROOF OF THE MAIN RESULTS

A direct computation shows that ψ_{λ} and φ_{λ} introduced in (2) and (3) satisfy:

$$\psi_{\lambda}(x) = \int_{0}^{x} e^{\gamma(y)} \left(1 - 2\lambda \int_{0}^{y} \varphi_{\lambda}(z) dz \right) dy$$
$$= \Lambda(x) - 2\lambda \int_{0}^{x} e^{\gamma(y)} \int_{0}^{y} \psi_{\lambda}(z) e^{-\gamma(z)} dz dy$$
(12)

To simplify notation in the proofs of the results we shall denote $\psi = \psi_{\lambda}$, $\varphi = \varphi_{\lambda}$, $F = F_{\lambda}$, $S_M = S_M^{\lambda}$.

Lemma 1. Assume $\Lambda(\infty) = \infty$. The following statements are equivalent for $\lambda > 0$:

- (i) ψ_{λ} (or equivalently φ_{λ}) is positive;
- (ii) ψ_{λ} is strictly increasing;
- (iii) φ_{λ} is strictly positive and integrable.

Moreover, if any of these conditions holds then

$$\lim_{M \to \infty} \frac{\psi_{\lambda}(M)}{\Lambda(M)} = 0 \quad \text{and} \quad \int_{0}^{\infty} \varphi_{\lambda}(x) \, dx = \frac{1}{2\lambda}$$
(13)

Proof. (i) \Rightarrow (ii) From (12),

$$\psi'(x) = e^{\gamma(x)} \left(1 - 2\lambda \int_0^x \varphi(y) \, dy \right) \tag{14}$$

Assume $\psi'(x_0) < 0$. Then $\forall x \ge x_0$ we have:

$$\psi'(x) = e^{\gamma(x) - \gamma(x_0)} e^{\gamma(x_0)} \left(1 - 2\lambda \int_0^x \varphi(y) \, dy \right) \le e^{\gamma(x) - \gamma(x_0)} \psi'(x_0)$$

Then $\psi(x) \leq \psi(x_0) + e^{-\gamma(x_0)}\psi'(x_0)(\Lambda(x) - \Lambda(x_0)) \to -\infty$, because $\Lambda(\infty) = \infty$. We deduce that ψ is increasing. Let us show that ψ is strictly increasing.

Since $\psi(0) = 0$ and $\psi'(0) = 1$ we deduce that $\psi(z) > 0$ for any z > 0. Now, assume ψ constant on some interval [x, y]. Hence for $z \in (x, y)$:

$$\frac{1}{2}\psi''(z) - \alpha(z)\psi'(z) = 0 \neq -\lambda\psi(z)$$

which is a contradiction. Thus (ii) holds.

(ii) \Rightarrow (iii). From (14) we get $1 - 2\lambda \int_0^x \varphi(y) \, dy \ge 0$ for any $x \ge 0$ so $\int_0^\infty \varphi(y) \, dy \le 1/2\lambda$. The function φ is strictly positive because of the relation (4) between φ and ψ .

(iii) \Rightarrow (i). It is trivial.

Let us show that $\lim_{M \to \infty} (\psi(M) / \varLambda(M))$ exists. From Itô's formula we get,

$$\begin{split} \psi(x) &- \lambda \mathbb{E}_x \int_0^{s \wedge T_M \wedge T_0} \psi(X_t) \, dt \\ &= \psi(M) \, \mathbb{P}_x(T_M < T_0 \wedge s) + \mathbb{E}_x(\psi(X_s), s < T_M \wedge T_0) \end{split}$$

On the other hand, $|\mathbb{E}_x(\psi(X_s), s < T_M \land T_0)| \leq \psi(M) \mathbb{P}_x(s < T_0)$ $\xrightarrow{s \to \infty} 0.$

Hence $\psi(x) - \lambda \mathbb{E}_x \int_0^{T_M \wedge T_0} \psi(X_t) dt = \psi(M) \mathbb{P}_x(T_M < T_0) = \psi(M)(\Lambda(x) / \Lambda(M))$. Therefore the following limit exists

$$\lim_{M \to \infty} \frac{\psi(M)}{\Lambda(M)} = \frac{\psi(x) - \lambda \mathbb{E}_x \int_0^{T_0} \psi(X_t) dt}{\Lambda(x)}$$

Now, if $\lim_{M\to\infty} (\psi(M)/\Lambda(M)) > 0$ we obtain from H that $\int_0^\infty \varphi(x) \, dx = \int_0^\infty \psi(x) \, e^{-\gamma(x)} \, dx = \infty$, which contradicts (iii). Thus, $\lim_{M\to\infty} (\psi(M)/\Lambda(M)) = 0$. If $\int_0^\infty \varphi(z) \, dz < 1/2\lambda$ we would obtain from (12), $\lim \inf_{x\to\infty} (\psi(x)/\Lambda(x)) > 0$. Hence the result holds.

Lemma 2. Let $\lambda < \eta$. Then ψ_{λ} is a strictly increasing positive function on \mathbb{R}_+ and

$$\lim_{M \to \infty} \psi_{\lambda}(M) = \infty$$

Proof. If $\lambda = 0 < \eta$ then necessarily $\Lambda(\infty) = \infty$. Since $\psi_0 = \Lambda$ the result is verified. Hence we restrict ourselves to the case $\lambda \neq 0$.

First, let us show ψ is not bounded. On the contrary assume $\forall x \in \mathbb{R}_+$, $|\psi(x)| \leq K$. Consider $F(x, t) = \psi(x) e^{\lambda t}$. Then by Itô's formula we have

$$\psi(x) = \mathbb{E}_x(F(X_s, s), s < T_M \wedge T_0) + \psi(M) \mathbb{E}_x(e^{\lambda T_M}, T_M < s \wedge T_0)$$

Since $e^{\lambda T_M} \mathbf{1}_{T_M < s \land T_0} \leq (e^{\lambda s} \lor 1) \mathbf{1}_{T_M < s}$ we obtain

$$|\psi(x)| \leqslant K e^{\lambda s} \mathbb{P}_x(s < T_0) + K(e^{\lambda s} \vee 1) \mathbb{P}_x(T_M < s)$$

Letting $M \to \infty$ and using (1) we get $|\psi(x)| \leq Ke^{\lambda s} \mathbb{P}_x(s < T_0)$. From the definition of η , $e^{\lambda s} \mathbb{P}_x(s < T_0) \xrightarrow[s \to \infty]{} 0$, for $\lambda < \eta$. We obtain $\psi \equiv 0$ which is a contradiction, so ψ is not bounded.

Now let us show ψ only vanishes at x = 0. On the contrary let $x_0 > 0$ be such that $\psi(x_0) = 0$ and $\psi(x) > 0$ for $x \in (0, x_0)$.

By Itô's formula we obtain,

$$\begin{split} |\psi(x)| &= |\mathbb{E}_x(\psi(X_s) \ e^{\lambda s}, s < T_{x_0} \land T_0)| \\ &\leq \max_{y \in [0, x_0]} |\psi(y)| \ e^{\lambda s} \mathbb{P}_x(s < T_0) \xrightarrow[s \to \infty]{} 0 \end{split}$$

Therefore, we get that $\psi(x)$ is strictly positive for x > 0.

Now, we prove that ψ is increasing. Assume there exist x < y for which $\psi(x) > \psi(y)$. In the case $\lambda < 0$ take z < x such that $\psi(z) = \psi(y)$. Denote by $\bar{x} \in (z, y)$ a point verifying $\psi(\bar{x}) = \max_{r \in [z, y]} \psi(r)$. Then

$$\frac{1}{2}\psi''(\bar{x}) = \frac{1}{2}\psi''(\bar{x}) - \alpha(\bar{x})\psi'(\bar{x}) = -\lambda\psi(\bar{x}) > 0$$

which is a contradiction. Assume now $\lambda > 0$. Since ψ is not bounded there exists z > y such that $\psi(x) = \psi(z)$. Consider $\bar{x} \in (x, z)$ such that $\psi(\bar{x}) = \min_{r \in [x, z]} \psi(r) > 0$, then

$$\frac{1}{2}\psi''(\bar{x}) = \frac{1}{2}\psi''(\bar{x}) - \alpha(\bar{x}) = -\lambda\psi(\bar{x}) < 0$$

which is again a contradiction. Hence ψ is increasing.

Finally if $\psi(x) = \psi(y)$ for x < y we see that ψ is constant on [x, y] and therefore: $0 \neq -\lambda\psi(z) = \frac{1}{2}\psi''(z) - \alpha(z)\psi'(z) = 0$ for $z \in (x, y)$. The result follows from this.

Since $\psi_{\lambda}(x)$ is continuous in λ , we deduce from the last Lemma that ψ_{η} is also positive and increasing (in fact the above arguments show it is strictly increasing). Hence if $\lambda \in (0, \eta]$ we deduce from (12) $\psi_{\lambda}(x) < \Lambda(x) \forall x > 0$.

Lemma 3. If ψ_{λ} is increasing for some $\lambda > 0$ then $\lambda \leq \eta$.

Proof. Let $F(x, t) = \psi(x) e^{\lambda t}$. According to Itô's formula we obtain,

$$\psi(x) = \psi(M) \mathbb{E}_x(e^{\lambda T_M}, T_M < T_0 \land s) + \mathbb{E}_x(\psi(X_s) e^{\lambda s}, s < T_0 \land T_M)$$

Therefore

$$\psi(x) \ge \mathbb{E}_x(\psi(X_s) e^{\lambda s}, s < T_0)$$

Since ψ is an increasing function we obtain for any a > 0,

$$\psi(x) \ge \psi(a) \mathbb{E}_x(1_{X_s \ge a} e^{\lambda s}, s < T_0) = \psi(a) e^{\lambda s} \mathbb{P}_x(X_s \ge a \mid T_0 > s) \mathbb{P}_x(T_0 > s)$$

From (11) we deduce

$$\limsup_{s \to \infty} e^{\lambda s} \mathbb{P}_x(T_0 > s) \leqslant \frac{\psi(x)}{\psi(a)} (\lim_{s \to \infty} (\mathbb{P}_x(X_s \ge a \mid T_0 > s))^{-1} < \infty$$

Then, for fixed x > 0, there exists K > 0 such that $\mathbb{P}_x(T_0 > s) \leq Ke^{-\lambda s}$. Therefore $\eta \ge \lambda > 0$. We remark that if $\eta > 0$ we have $\eta = \underline{\lambda}$. From relations (11) and (13) we obtain $\lim_{s \to \infty} \mathbb{P}_x(X_s \ge a \mid T_0 > s) = 2\underline{\lambda} \int_0^\infty \varphi_{\underline{\lambda}}(z) dz$. From Lemma 1, $\psi_{\underline{\lambda}}$ is strictly increasing and therefore we obtain as in the previous proof the following estimate

$$\limsup_{s \to \infty} e^{\underline{\lambda}s} \mathbb{P}_x(T_0 > s) \leqslant \frac{\psi_{\underline{\lambda}}(x)}{2\underline{\lambda}} \left(\sup_{a > 0} \left(\psi_{\underline{\lambda}}(a) \int_a^\infty \varphi_{\underline{\lambda}}(y) \, dy \right) \right)^{-1}$$

Proof of Theorem 1. (i) \Leftrightarrow (v). If follows directly from Lemmas 2 and 3.

(i) \Rightarrow (ii). Since $\eta > 0$ we get from (7), $\int_0^\infty \varphi_{\lambda}(x) dx < \infty$. On the other hand there exists $\lambda > 0$ (given by (v)) such that ψ_{λ} is increasing. From (13), $\int_0^\infty \psi_{\lambda}(y) e^{-\gamma(y)} dy = (2\lambda)^{-1} < \infty$. Then the relation $\int_0^\infty e^{-\gamma(y)} dy < \infty$ follows from the fact that ψ_{λ} is increasing.

(ii) \Rightarrow (i). This follows from (8).

 $(i) \Rightarrow (iii)$. This follows from (7).

(iii) \Rightarrow (i). From Lemma 1, $\psi_{\underline{\lambda}}$ is increasing and from (5) $\underline{\lambda} > 0$. From Lemma 3 we get $\eta \ge \underline{\lambda} > 0$.

 $(i) \Rightarrow (iv)$. This is a direct consequence of (7).

(iv) \Rightarrow (iii). This follows from Lemma 1, since $\lambda > 0$ and $\varphi_{\lambda} \ge 0$ we get φ_{λ} is integrable.

Let us now turn to the proof of Theorem 3. First we will show some technical lemmas.

Lemma 4. Assume $\eta > 0$. Then for any $\lambda \in (0, \eta]$ we have:

(i)
$$\psi_{\lambda}(x) = \lambda \mathbb{E}_{x}(\int_{0}^{T_{0}} \psi_{\lambda}(X_{s}) ds) \ \forall x \ge 0.$$

(ii)
$$\mathbb{E}_{x}(\psi_{\lambda}(X_{s}), s < T_{0}) = e^{-\lambda s}\psi_{\lambda}(x) \ \forall x \ge 0, \ \forall s > 0.$$

Proof. (i) Using Itô's formula we get

$$\psi(x) = \psi(M) \mathbb{P}_x(T_M < T_0) + \lambda \mathbb{E}_x \int_0^{T_M \land T_0} \psi(X_s) \, ds$$
$$= \psi(M) \frac{A(x)}{A(M)} + \lambda \mathbb{E}_x \int_0^{T_M \land T_0} \psi(X_s) \, ds$$

From (13) we obtain the result.

(ii) From Itô's formula,

$$\psi(x) = \mathbb{E}_x(\psi(X_s) \ e^{\lambda s}, s < T_M \land T_0) + \psi(M) \ \mathbb{E}_x(e^{\lambda T_M}, T_M < s \land T_0)$$

Since

$$\begin{split} \psi(M) & \mathbb{E}_{x}(e^{\lambda T_{M}}, T_{M} < s < T_{0}) \leq \psi(M) e^{\lambda s} \mathbb{P}_{x}(T_{M} < T_{0}) \\ &= \frac{\psi(M)}{\Lambda(M)} \Lambda(x) e^{\lambda s} \xrightarrow[M \to \infty]{} 0 \end{split}$$

the result follows.

Lemma 5. For $0 < \lambda < \eta$ we have:

(i)
$$\mathbb{P}_x(S_M^{\lambda} < T_0) = \psi_{\lambda}(x)/M$$
 if $\psi_{\lambda}(x) \in (0, M)$.

(ii) $\lim_{M \to \infty} (\mathbb{P}_x(S_M^{\lambda} < T_0 \land s) / \mathbb{P}_x(S_M^{\lambda} < T_0)) = 0$

Proof. (i) We will write S_M instead of S_M^{λ} . Take x such that $\psi(x) \in (0, M)$. If $t \leq S_M \wedge T_0$ then $X_t \in [0, \psi^{-1}(M)]$. Therefore, from Itô's formula we get,

$$\begin{split} \psi(x) &= \mathbb{E}_x(F(X_{S_M \wedge T_0 \wedge s}, S_M \wedge T_0 \wedge s)) \\ &= M \mathbb{P}_x(S_M < T_0 \wedge s) + \mathbb{E}_x(F(X_s, s), s < S_M \wedge T_0) \end{split}$$

Now $\mathbb{E}_x(F(X_s, s), s < S_M \land T_0) \leq M \mathbb{P}_x(s < T_0) \xrightarrow[s \to \infty]{} 0$. Therefore (i) holds.

(ii) We can assume $\psi(x) < M$. On the set $\{S_M < T_0 \land s\}$ we have $\psi(X_{S_M}) = Me^{-\lambda S_M} \ge Me^{-\lambda s}$. Therefore $T_{\psi^{-1}(Me^{-\lambda s})} \le S_M$.

Hence:

$$\frac{\mathbb{P}_{x}(S_{M} < T_{0} \land s)}{\mathbb{P}_{x}(S_{M} < T_{0})} \! \leqslant \! \frac{\mathbb{P}_{x}(T_{\psi^{-1}(Me^{-\lambda s})} < T_{0})}{\mathbb{P}_{x}(S_{M} < T_{0})} \! = \! \frac{M}{\psi(x)} \frac{\Lambda(x)}{\Lambda(\psi^{-1}(Me^{-\lambda s}))}$$

Put $N = \psi^{-1}(Me^{-\lambda s})$, then $\psi(N) = Me^{-\lambda s}$ and N converges to ∞ with M. Thus, $(\mathbb{P}_x(S_M < T_0 \land s)/\mathbb{P}_x(S_M < T_0)) \leq e^{\lambda s}(\Lambda(x)/\psi(x))(\psi(N)/\Lambda(N))$ $\xrightarrow{M \to \infty} 0$ by using Lemma 1.

Proof of Theorem 3. Let θ_s be the shift operator in s units of time. It can be checked that $S_{Me^{-\lambda s}} \circ \theta_s = S_M - s$ on the set $\{s \leq S_M < \infty\}$. Observe that on this set $\psi(X_s) \leq Me^{-\lambda s}$, therefore from Lemma 5 (i),

 $\mathbb{P}_{X_s}(S_{Me^{-\lambda s}} < T_0) = (\psi(X_s)/M) e^{\lambda s}$. Now, by using the Markov property we get,

$$\begin{split} & \frac{\mathbb{P}_{x}(X \in A, s \leqslant S_{M}^{\lambda} < T_{0})}{\mathbb{P}_{x}(S_{M} < T_{0})} \\ &= \frac{\mathbb{E}_{x}(X \in A, \mathbb{P}_{X_{s}}(S_{Me^{-\lambda s}}^{\lambda} < T_{0}), T_{0} > s, S_{M}^{\lambda} \geqslant s)}{\mathbb{P}_{x}(S_{M} < T_{0})} \\ &= \mathbb{E}_{x} \left(X \in A, \frac{\psi_{\lambda}(X_{s})}{\psi_{\lambda}(x)} e^{\lambda s}, T_{0} > s, S_{M} \geqslant s \right) \\ &\xrightarrow[M \to \infty]{} \mathbb{E}_{x} \left(X \in A, \frac{\psi_{\lambda}(X_{s})}{\psi_{\lambda}(x)} e^{\lambda s}, T_{0} > s \right) \end{split}$$

because $\{S_M \ge s\} \supseteq \{T_{\psi_{\lambda}^{-1}(Me^{-\lambda s})} \ge s\} \nearrow \{T_{\infty} \ge s\} = \Omega$, \mathbb{P}_x a.e. To finish the proof we use Lemma 5 (ii) to get the result:

$$\begin{split} \left| \mathbb{P}_{x}(X \in A \mid S_{M} < T_{0}) - \frac{\mathbb{P}_{x}(X \in A, s \leq S_{M} < T_{0})}{\mathbb{P}_{x}(S_{M} < T_{0})} \right| \\ \leq \frac{\mathbb{P}_{x}(S_{M} < T_{0} \land s)}{\mathbb{P}_{x}(S_{M} < T_{0})} \xrightarrow[M \to \infty]{} 0 \end{split}$$

Proof of Theorem 4. We prove first that ψ_{λ} is bounded and moreover ultimately decreasing (the proof also shows that the same property holds for any $\lambda \in (0, \underline{\lambda}]$). We have that ψ_{λ} is a positive function and from Lemma 3 it cannot be an increasing function in the whole domain. Therefore there exists $x^* > 0$ such that $\psi'_{\lambda}(x) > 0, x \in [0, x^*)$ and $\psi'_{\lambda}(x^*) = 0$. From $\psi''_{\lambda}(x^*) - 2\alpha(x^*) \psi'_{\lambda}(x^*) = -2\underline{\lambda}\psi_{\lambda}(x^*)$, we obtain $\psi''_{\lambda}(x^*) < \overline{0}$. In particular $\psi'_{\lambda}(x) < 0$ in an interval $(x^*, x^* + \delta)$. Using (14) we find that

$$\psi'_{\underline{\lambda}}(x^*) = e^{\gamma(x^*)} \left(1 - 2\underline{\lambda} \int_0^{x^*} \varphi_{\underline{\lambda}}(y) \, dy \right) = 0$$

and for $x > x^*$

$$\psi'_{\underline{\lambda}}(x) = e^{\gamma(x)} \left(1 - 2\underline{\lambda} \int_0^x \varphi_{\underline{\lambda}}(y) \, dy \right) < 0$$

because $\varphi_{\underline{\lambda}}$ is a positive function. Hence, $\psi_{\underline{\lambda}}$ is bounded and ultimately decreasing.

We shall prove that for $\lambda \ge \underline{\lambda}$ the function ψ_{λ} is also bounded. The inequality $\psi_{\lambda} \le \psi_{\underline{\lambda}}$ follows directly from an inequality of Caplygin type (see Theorem 1, Chap. XI of Ref. 6). Let us show now that ψ_{λ} is also bounded from below. It follows from (12) and the upper bound for ψ_{λ} that

$$\psi_{\lambda}(x) \ge \Lambda(x) - 2\lambda \int_0^x e^{\gamma(y)} \int_0^y \psi_{\underline{\lambda}}(z) e^{-\gamma(z)} dz dy \ge \Lambda(x) - \frac{\lambda}{\underline{\lambda}} \left(\Lambda(x) - \psi_{\underline{\lambda}}(x) \right)$$

Since we are in the case $\Lambda(\infty) < \infty$ we deduce ψ_{λ} is bounded below.

Using the fact that ψ_{λ} is bounded we get that the process $\psi_{\lambda}(X_t) e^{\lambda t} \mathbf{1}_{T_0 > t}$ is a martingale and therefore we obtain

$$\psi_{\lambda}(x) e^{-\lambda t} = \mathbb{E}_{x}(\psi_{\lambda}(X_{t}), T_{0} > t) = \int p(t, x, y) \psi_{\lambda}(y) dy$$
(15)

In particular for λ we obtain the following estimate when $b > x^*$

$$\begin{split} \psi_{\underline{\lambda}}(x) &= \mathbb{E}_x(\psi_{\underline{\lambda}}(X_t) e^{\underline{\lambda}t}, t < T_0) \geqslant e^{\underline{\lambda}t} \mathbb{E}_x(\psi_{\underline{\lambda}}(X_t), X_t \in [x^*, b], t < T_0) \\ &\geq e^{\underline{\lambda}t} \psi_{\underline{\lambda}}(b) \mathbb{P}_x(X_t \in [x^*, b], t < T_0) \\ &= \psi_{\underline{\lambda}}(b) \mathbb{P}_x(t < T_0) e^{\underline{\lambda}t} \mathbb{P}_x(X_t \in [x^*, b] \mid t < T_0) \end{split}$$

where we have used the observation that ψ_{λ} is nonnegative and decreasing on $[x^*, \infty)$. From the relation $\lim_{t \to \infty} \mathbb{P}_x(t < T_0) = (\Lambda(x)/\Lambda(\infty)) > 0$, we find

$$\limsup_{t \to \infty} e^{\underline{\lambda}t} \mathbb{P}_{x}(X_{t} \in [x^{*}, b] \mid T_{0} > t) \leq \frac{\psi_{\underline{\lambda}}(x) \Lambda(\infty)}{\psi_{\underline{\lambda}}(b) \Lambda(x)}$$
(16)

To conclude the result we will use a pointwise version of (6). In fact observe that if in (6) we take $f(z) = p(\Delta, x, z)$, for $\Delta > 0$, x > 0, then we will have

$$\lim_{t \to \infty} \frac{\mathbb{P}_x(X_t \in A, T_0 > t)}{\mathbb{P}_x(X_t \in A, T_0 > t)} = \frac{\int_A \varphi_{\underline{\lambda}}(z) dz}{\int_B \varphi_{\underline{\lambda}}(z) dz}$$
(17)

provided that $p(\Delta, x, \cdot) \in \mathcal{H}_0$, which amounts to proving that

- (i) $\int p^2(\varDelta, x, z) e^{\gamma(z)} dz < \infty;$
- (ii) $\int_0^\infty p(\Delta, x, z) \psi_{\lambda}(z) dz$ is bounded in some right neighborhood of $\underline{\lambda}$.

Now, (i) follows from the fact that $p(\Delta, x, \cdot)$ is bounded and that $\Lambda(\infty) = \int e^{\gamma(z)} dz < \infty$. (ii) follows immediately from (15).

The result now follows from (16) and (17), and moreover

$$\limsup_{t \to \infty} e^{\underline{\lambda}t} \mathbb{P}_x(X_t \leq a \mid T_0 > t) \leq \Gamma \frac{\psi_{\underline{\lambda}}(x)}{A(x)} \int_0^a \varphi_{\underline{\lambda}}(z) dz$$

where $\Gamma = \Lambda(\infty)(\sup_{b \ge x^*} \{ \psi_{\underline{\lambda}}(b) \int_{x^*}^b \varphi_{\underline{\lambda}}(z) dz \})^{-1}$.

3. SOME MONOTONICITY PROPERTIES

The fact that $\underline{\lambda} = \eta$, under the hypothesis of Theorem 2, allow us to get some information about the dependence of $\underline{\lambda}$ on α . For this purpose we denote Λ^{α} , $\underline{\lambda}(\alpha)$ and $\eta(\alpha)$ the quantities Λ , $\underline{\lambda}$ and η associated to α .

Corollary 1. Let $\alpha \ge \beta$ satisfy the hypothesis H and $\Lambda^{\alpha}(\infty) = \infty = \Lambda^{\beta}(\infty)$. Then

 $\underline{\lambda}(\alpha) \ge \underline{\lambda}(\beta)$

Proof. From Theorem 3, $\underline{\lambda}(\alpha) = \eta(\alpha)$ and $\underline{\lambda}(\beta) = \eta(\beta)$. Let

$$dX_t = dB_t - \alpha(X_t) dt, \qquad X_0 = x$$
$$dY_t = dB_t - \beta(Y_t) dt, \qquad Y_0 = x$$

Since $\alpha \ge \beta$ we get $X_t \le Y_t$ for every t, and so $T_0(X) \le T_0(Y)$. Therefore

$$\mathbb{P}_x(T_0(X) > s) \leqslant \mathbb{P}_x(T_0(Y) > s)$$

which implies that $\underline{\lambda}(\alpha) \ge \underline{\lambda}(\beta)$.

In particular if $\forall x \ \alpha(x) \ge k \ge 0$ then $\underline{\lambda}(\alpha) \ge \underline{\lambda}(k) = k^2/2$ (this last equality can be computed directly, also see Ref. 5).

Corollary 2. Let α be a non-negative C^1 function for which H holds, and $\Lambda^{\alpha}(\infty) = \infty$. Then $\underline{\lambda}(\alpha) \leq (\limsup_{x \to \infty} \alpha(x))^2/2$. In particular if α is also decreasing $\underline{\lambda}(\alpha) = (\lim_{x \to \infty} \alpha(x))^2/2$.

Proof. The result is obvious if $\limsup_{x\to\infty} \alpha(x) = \infty$. Let $dX_t = dB_t - \alpha(X_t) dt$, $X_0 = x$. For $\beta > \limsup_{x\to\infty} \alpha(z)$ take x_0 large enough such that $\forall z \ge x_0, \alpha(z) \le \beta$. Consider the process

$$dY_t = dB_t - \beta \, dt, \qquad Y_0 = x$$

If $x > x_0$

$$Y_t \leqslant X_t \qquad \forall t \leqslant T_{x_0}(X)$$

Therefore, for such x

$$\begin{split} \mathbb{P}_{x}(T_{0}(X) > s) &\geq \mathbb{P}_{x}(T_{x_{0}}(X) > s) \geq \mathbb{P}_{x}(T_{x_{0}}(T) > s) \\ &= \mathbb{P}_{x - x_{0}}(T_{0}(Y) > s) \end{split}$$

Since $\underline{\lambda}(\alpha) = -\lim_{s \to \infty} (1/s) \log \mathbb{P}_x(T_0(X) > s) \leq -\lim_{s \to \infty} (1/s) \log \mathbb{P}_{x-x_0}(T_0(Y) > s) = \beta^2/2$, the result follows.

There are examples where $\Lambda(\infty) = \infty$, *H* is verified, the condition $\int_0^\infty e^{-\gamma(z)} dt < \infty$ but $\lambda = \eta = 0$. It suffices to take $\alpha(x) = 1/(1+x)$.

ACKNOWLEDGMENTS

The authors thank for discussions with K. Burdzy (U. Seattle) and P. Collet (E. Polytechnique). They are indebted to support from FONDAP in Applied Mathematics, Presidential Fellowship and FONDECYT.

REFERENCES

- Azencott, R. (1974). Behaviour of diffusion semigroups at infinity. *Bull. Soc. Math. France* 102, 193–240.
- Coddington, E. A., and Levinson, N. (1955). Theory of Ordinary Differential Equations, McGraw-Hill, New York.
- Collet, P., Martínez, S., and San Martín, J. (1995). Asymptotic laws for one-dimensional diffusions conditioned to non absorption. *Ann. of Prob.* 23, 1300–1314.
- 4. Feller, W. (1952). The parabolic differential equation and the associated semi-groups of transformations. *Ann. of Math.* **55**, 468–519.
- Mandl, P. (1961). Spectral theory of semi-groups connected with diffusion processes and its applications. *Czechoslovak Math. J.* 11, (86), 558–569.
- Mitrinović, D., Pecarić, J., and Fink, A. (1991). Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer, Math. and Appl.