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Rates of Decay and h-Processes for One Dimensional
Diffusions Conditioned on Non-Absorption
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Let (Xt ) be a one dimensional diffusion corresponding to the operator L=
1
2�xx&:�x , starting from x>0 and T0 be the hitting time of 0. Consider the
family of positive solutions of the equation L�=&*� with * # (0, '), where
'=&limt � �(1�t) log Px(T0>t). We show that the distribution of the h-process
induced by any such � is limM � � Px(X # A | SM<T0), for a suitable sequence
of stopping times (SM : M�0) related to � which converges to � with M. We
also give analytical conditions for '=*

�
, where *

�
is the smallest point of increase

of the spectral measure associated to L*.

KEY WORDS: One-dimensional diffusions; h-processes; absorption.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

We denote by Px the probability law of a Brownian motion (Bt) starting
at x. Consider the diffusion (Xt) given by

Xt=Bt&|
t

0
:(Xs) dx

where we assume : to be C1 and denote by Ta , the hitting time of a,

Ta=inf[t>0 : Xt=a]

We consider the sub Markovian semigroup given by Pt f (x)=Ex( f (Xt),
T0>t), with density kernel denoted by p(t, x, y).
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Let #(x)=2 �x
0 :(z) dz. We will assume the following condition always

holds

Hypothesis H: ��
0 e#(x)(�x

0 e&#(z) dz) dx=��
0 e&#(x)(�x

0 e#(z) dz) dx=�.

Hypothesis H says that � is a natural boundary for the process (see
[4, p. 487]).

It is known (see for instance Ref. 1) that this implies

lim
x � �

Px(T0<s)=0 and lim
M � �

Px(TM<s)=0 for any s>0

(1)

A relevant function in our study is the scale function 4(x)=�x
0 e#(z) dz. It satis-

fies L4#0, 4(0)=0, 4$(0)=1 where L= 1
2�xx&:�x . Hence 4(Xs) 1T0>s is

a local martingale and

for x # (0, M ), Px(TM<T0)=
4(x)

4(M )

Note that

Px(T0=�)>0 if and only if 4(�)<�

Let L*= 1
2�xx+�x(: } ) be the formal adjoint of L. Denote by .* the

solution of

L*.*=&*.* , .*(0)=0, .$*(0)=1 (2)

and by �* the solution of

L�*=&*�* , �*(0)=0, �$*(0)=1 (3)

It can be checked that

.*=e&#�* (4)

Let \(*) be the spectral measure of the operator L*. We will assume
\ is left-continuous (see [2, Chapter 9]). Let *

�
the smallest point of

increase of \(*). In [5, Lemma 2] it was shown that

*
�
=sup[* : .*( } ) does not change sign]

Since .0=e&#4 does not change sign, we have *
�
�0. Also notice that con-

tinuity in * implies that .*
�
�0. Notice that \ is concentrated in [*

�
, �).
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Also observe that Hypotheses H implies � .0(x) dx=� e&#(x)4(x) dx=�.
Therefore, we have

|
�

0
.*

�
(x) dx<� O *

�
>0 (5)

The analysis of one dimensional diffusions with absorption presented in
Ref. 5, uses spectral tools. Let us introduce the concepts needed to present
those results. Consider the following Hilbert spaces H=L2(R+ , e#(x) dx)
and K=L2(R, d\(*)). The spectral decomposition is studied through the
unitary transformation U: H � K defined as

Uf (*)=|
�

0
f (z) .*(z) e#(z) dz=|

�

0
f (z) �*(z) dz

An important role is played by the subset H0/H, which consists of all
nonnegative functions not equivalent to zero for which Uf is bounded from
below in some right neighborhood of *

�
.

Theorem 2 of Ref. 5 asserts that if A and B are bounded measurable
sets and f # H0 then

lim
t � �

�A � f (z) p(t, z, y) dz dy
�B � f (z) p(t, z, y) dz dy

=
�A .*

�
(z) dz

�B .*
�
(z) dz

(6)

A relevant quantity in our study is the exponential decay for the absorption
probability

'=& lim
t � �

1
t

log Px(T0>t)

which exists and is independent of x>0. In [3, Theorem C] it was shown
that

'>0 O '=*
�
, |

�

0
.*

�
(z) dz<�, 4(�)=� (7)

On the other hand, by using [5, Theorem 5] one can deduce that

|
�

0
.*

�
(x) dx<� and |

�

0
e&#(x) dx<� O '=*

�
>0 (8)

Our first result proves that these two conditions are equivalent and also
gives necessary and sufficient conditions, in terms of the eigenvectors of L

and L*, in order to have '>0.

201Rates of Decay and h-Processes for One Dimensional Diffusions



Theorem 1. The following properties are equivalent

(i) '>0;

(ii) ��
0 .*

�
(x) dx<� and ��

0 e&#( y) dy<�;

(iii) ��
0 .*

�
(x) dx<� and 4(�)=�;

(iv) *
�
>0 and 4(�)=�;

(v) _*>0 such that �* is increasing.

In the case when *
�
=0 we have from (7) that necessarily '=0. On the

other hand if *
�
>0 and 4(�)=� we conclude that '>0 and therefore by

(7) *
�
='. This means that the following result holds.

Theorem 2. If 4(�)=� then '=*
�
.

In [3, Theorem B and Proposition D] it was proved that for any s>0
and for any A # Fs :

lim
t � �

Px(X # A | T0>t)=Px \X # A,
�'(Xs)
�'(x)

e's, T0>s+ (9)

and if 4(Xs) 1T0>s is a martingale it was also shown that

lim
M � �

Px(X # A | TM<T0)=Px \X # A,
4(Xs)
4(x)

, T0>s+ (10)

Our aim is to generalize (9) and (10) for * # (0, '). With this goal in
mind we will show in Lemma 4 that when '>0 any of the solutions, �* ,
* # (0, '), satisfies the semigroup property: Ps�*(x)=e&*s�*(x) \x�0,
s>0. Hence

P*
s f (x)=Ex \ f (Xs), e*s �*(Xs)

�*(x)
, T0>s+

defines a Markov process.
Let us consider an increasing sequence of stopping times (S *

M)
associated to �* , defined as follows

S *
M=inf[s>0 : F*(Xs , s)�M ]

where

F*(x, s)=e*s�*(x) for x�0, s>0
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We will show the following result.

Theorem 3. Assume '>0. For any * # (0, ') we have:

\s>0, \A # Fs , lim
M � �

Px(X # A | S *
M<T0)

=Ex \X # A,
�*(Xs)
�*(x)

e*s, T0>s+
Now, in Theorem C of Ref. 3 the quasi limiting distribution of the

diffusion was entirely characterized as

lim
s � �

Px(Xs�a | T0>s)={
1

c&1 |
�

a
.*

�
(x) dx

if '=0

if '>0
(11)

where c=��
0 .*

�
(x) dx. We shall prove later that c&1=2*

�
. There are situa-

tions where '<*
�
. In this case always '=0 and 4(�)<�. From (11)

Px(Xt�a | T0>t) converges to 0. An example of '<*
�

is when the drift is
a positive constant (in our notation :(x)#:<0), in this case '=0<*

�
=

:2�2. We point out that when the drift is constant ' depends on the sign
of the drift whereas *

�
does not. We shall prove that under the condition

'<*
�

the latter quantity governs the speed at which Px(Xt�a | T0>t) con-
verges to 0.

Theorem 4. If '<*
�

then for any a>0

lim sup
t � �

e*
�
t Px(Xt�a | T0>t)<�

We point out that the study of general one dimensional diffusions can
be reduced, under suitable conditions on the diffusion coefficient, to the
previous setting.

2. PROOF OF THE MAIN RESULTS

A direct computation shows that �* and .* introduced in (2) and (3)
satisfy:

�*(x)=|
x

0
e#( y) \1&2* |

y

0
.*(z) dz+ dy

=4(x)&2* |
x

0
e#( y) |

y

0
�*(z) e&#(z) dz dy (12)
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To simplify notation in the proofs of the results we shall denote �=�* ,
.=.* , F=F* , SM=S *

M .

Lemma 1. Assume 4(�)=�. The following statements are equiv-
alent for *>0:

(i) �* (or equivalently .*) is positive;

(ii) �* is strictly increasing;

(iii) .* is strictly positive and integrable.

Moreover, if any of these conditions holds then

lim
M � �

�*(M )
4(M )

=0 and |
�

0
.*(x) dx=

1
2*

(13)

Proof. (i) O (ii) From (12),

�$(x)=e#(x) \1&2* |
x

0
.( y) dy+ (14)

Assume �$(x0)<0. Then \x�x0 we have:

�$(x)=e#(x)&#(x0)e#(x0) \1&2* |
x

0
.( y) dy+�e#(x)&#(x0)�$(x0)

Then �(x)��(x0)+e&#(x0)�$(x0)(4(x)&4(x0)) � &�, because 4(�)
=�. We deduce that � is increasing. Let us show that � is strictly increasing.

Since �(0)=0 and �$(0)=1 we deduce that �(z)>0 for any z>0.
Now, assume � constant on some interval [x, y]. Hence for z # (x, y):

1
2�"(z)&:(z) �$(z)=0{&*�(z)

which is a contradiction. Thus (ii) holds.

(ii) O (iii). From (14) we get 1&2* �x
0 .( y) dy�0 for any x�0 so

��
0 .( y) dy�1�2*. The function . is strictly positive because of the relation

(4) between . and �.

(iii) O (i). It is trivial.

Let us show that limM � �(�(M )�4(M )) exists. From Itô's formula we
get,

�(x)&*Ex |
s 7TM 7 T0

0
�(Xt) dt

=�(M ) Px(TM<T0 7 s)+Ex(�(Xs), s<TM 7 T0)
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On the other hand, |Ex(�(Xs), s<TM 7 T0)|��(M ) Px(s<T0)
ww�s � � 0.

Hence �(x)&*Ex �TM 7 T0
0 �(Xt) dt=�(M ) Px(TM<T0)=�(M )(4(x)�

4(M )). Therefore the following limit exists

lim
M � �

�(M )
4(M )

=
�(x)&*Ex �T0

0 �(Xt) dt
4(x)

Now, if limM � �(�(M )�4(M ))>0 we obtain from H that ��
0 .(x) dx=

��
0 �(x) e&#(x) dx=�, which contradicts (iii). Thus, limM � �(�(M )�4(M ))

=0. If ��
0 .(z) dz<1�2* we would obtain from (12), lim infx � �(�(x)�4(x))

>0. Hence the result holds. g

Lemma 2. Let *<'. Then �* is a strictly increasing positive function
on R+ and

lim
M � �

�*(M )=�

Proof. If *=0<' then necessarily 4(�)=�. Since �0=4 the
result is verified. Hence we restrict ourselves to the case *{0.

First, let us show � is not bounded. On the contrary assume \x # R+ ,
|�(x)|�K. Consider F(x, t)=�(x) e*t. Then by Itô's formula we have

�(x)=Ex(F(Xs , s), s<TM 7T0)+�(M ) Ex(e*TM, TM<s 7T0)

Since e*TM 1TM<s 7T0
�(e*s 6 1) 1TM<s we obtain

|�(x)|�Ke*sPx(s<T0)+K(e*s 6 1) Px(TM<s)

Letting M � � and using (1) we get |�(x)|�Ke*sPx(s<T0). From the
definition of ', e*sPx(s<T0) ww�s � � 0, for *<'. We obtain �#0 which is
a contradiction, so � is not bounded.

Now let us show � only vanishes at x=0. On the contrary let x0>0
be such that �(x0)=0 and �(x)>0 for x # (0, x0).

By Itô's formula we obtain,

|�(x)|=|Ex(�(Xs) e*s, s<Tx0
7 T0)|

� max
y # [0, x0]

|�( y)| e*sPx(s<T0) ww�s � � 0

Therefore, we get that �(x) is strictly positive for x>0.
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Now, we prove that � is increasing. Assume there exist x< y for which
�(x)>�( y). In the case *<0 take z<x such that �(z)=�( y). Denote by
x� # (z, y) a point verifying �(x� )=maxr # [z, y] �(r). Then

1
2�"(x� )= 1

2 �"(x� )&:(x� ) �$(x� )=&*�(x� )>0

which is a contradiction. Assume now *>0. Since � is not bounded there
exists z> y such that �(x)=�(z). Consider x� # (x, z) such that �(x� )=
minr # [x, z] �(r)>0, then

1
2�"(x� )= 1

2�"(x� )&:(x� )=&*�(x� )<0

which is again a contradiction. Hence � is increasing.
Finally if �(x)=�( y) for x< y we see that � is constant on [x, y] and

therefore: 0{&*�(z)= 1
2�"(z)&:(z) �$(z)=0 for z # (x, y). The result

follows from this. g

Since �*(x) is continuous in *, we deduce from the last Lemma that
�' is also positive and increasing (in fact the above arguments show it is
strictly increasing). Hence if * # (0, '] we deduce from (12) �*(x)<
4(x) \x>0.

Lemma 3. If �* is increasing for some *>0 then *�'.

Proof. Let F(x, t)=�(x) e*t. According to Itô's formula we obtain,

�(x)=�(M ) Ex(e*TM, TM<T0 7 s)+Ex(�(Xs) e*s, s<T0 7 TM)

Therefore

�(x)�Ex(�(Xs) e*s, s<T0)

Since � is an increasing function we obtain for any a>0,

�(x)��(a) Ex(1Xs�ae*s, s<T0)=�(a) e*s Px(Xs�a | T0>s) Px(T0>s)

From (11) we deduce

lim sup
s � �

e*sPx(T0>s)�
�(x)
�(a)

( lim
s � �

(Px(Xs�a | T0>s))&1<�

Then, for fixed x>0, there exists K>0 such that Px(T0>s)�Ke&*s.
Therefore '�*>0. g
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We remark that if '>0 we have '=*
�
. From relations (11) and (13)

we obtain lims � � Px(Xs�a | T0>s)=2*
�

��
0 .*

�
(z) dz. From Lemma 1, �*

�is strictly increasing and therefore we obtain as in the previous proof the
following estimate

lim sup
s � �

e*
�
sPx(T0>s)�

�*
�
(x)

2*
�
\sup

a>0 \�*
�
(a) |

�

a
.*

�
( y) dy++

&1

Proof of Theorem 1. (i) � (v). If follows directly from Lemmas 2
and 3.

(i) O (ii). Since '>0 we get from (7), ��
0 .*

�
(x) dx<�. On the other

hand there exists *>0 (given by (v)) such that �* is increasing. From
(13), ��

0 �*( y) e&#( y) dy=(2*)&1<�. Then the relation ��
0 e&#( y) dy<�

follows from the fact that �* is increasing.

(ii) O (i). This follows from (8).

(i) O (iii). This follows from (7).

(iii) O (i). From Lemma 1, �*
�

is increasing and from (5) *
�
>0. From

Lemma 3 we get '�*
�
>0.

(i) O (iv). This is a direct consequence of (7).

(iv) O (iii). This follows from Lemma 1, since *
�
>0 and .*

�
�0 we

get .*
�

is integrable. g

Let us now turn to the proof of Theorem 3. First we will show some
technical lemmas.

Lemma 4. Assume '>0. Then for any * # (0, '] we have:

(i) �*(x)=*Ex(�T0
0 �*(Xs) ds) \x�0.

(ii) Ex(�*(Xs), s<T0)=e&*s�*(x) \x�0, \s>0.

Proof. (i) Using Itô's formula we get

�(x)=�(M ) Px(TM<T0)+*Ex |
TM 7 T0

0
�(Xs) ds

=�(M )
4(x)

4(M )
+*Ex |

TM 7 T0

0
�(Xs) ds

From (13) we obtain the result.
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(ii) From Itô's formula,

�(x)=Ex(�(Xs) e*s, s<TM 7 T0)+�(M ) Ex(e*TM, TM<s 7 T0)

Since

�(M ) Ex(e*TM, TM<s<T0)��(M ) e*sPx(TM<T0)

=
�(M )
4(M )

4(x) e*s ww�M � � 0

the result follows. g

Lemma 5. For 0<*<' we have:

(i) Px(S *
M<T0)=�*(x)�M if �*(x) # (0, M ).

(ii) limM � �(Px(S *
M<T0 7 s)�Px(S *

M<T0))=0

Proof. (i) We will write SM instead of S *
M . Take x such that

�(x) # (0, M ). If t�SM 7 T0 then Xt # [0, �&1(M )]. Therefore, from Itô's
formula we get,

�(x)=Ex(F(XSM 7T0 7 s , SM 7 T0 7 s))

=MPx(SM<T0 7 s)+Ex(F(Xs , s), s<SM 7 T0)

Now Ex(F(Xs , s), s<SM 7 T0)�MPx(s<T0) ww�s � � 0. Therefore (i) holds.

(ii) We can assume �(x)<M. On the set [SM<T0 7 s] we have
�(XSM

)=Me&*SM�Me&*s. Therefore T�&1(Me&*s )�SM .

Hence:

Px(SM<T0 7 s)
Px(SM<T0)

�
Px(T�&1(Me&*s)<T0)

Px(SM<T0)
=

M
�(x)

4(x)
4(�&1(Me&*s))

Put N=�&1(Me&*s), then �(N )=Me&*s and N converges to � with M.
Thus, (Px(SM<T0 7 s)�Px(SM<T0))�e*s(4(x)��(x))(�(N )�4(N ))

ww�M � � 0 by using Lemma 1. g

Proof of Theorem 3. Let %s be the shift operator in s units of time.
It can be checked that SMe&*s b %s=SM&s on the set [s�SM<�].
Observe that on this set �(Xs)�Me&*s, therefore from Lemma 5 (i),
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PXs
(SMe&*s<T0)=(�(Xs)�M) e*s. Now, by using the Markov property we

get,

Px(X # A, s�S *
M<T0)

Px(SM<T0)

=
Ex(X # A, PXs

(S *
Me&*s<T0), T0>s, S *

M�s)

Px(SM<T0)

=Ex \X # A,
�*(Xs)
�*(x)

e*s, T0>s, SM�s+
ww�M � � Ex \X # A,

�*(Xs)
�*(x)

e*s, T0>s+
because [SM�s]$[T�*

&1(Me&*s)�s]Z[T��s]=0, Px a.e.
To finish the proof we use Lemma 5 (ii) to get the result:

}Px(X # A | SM<T0)&
Px(X # A, s�SM<T0)

Px(SM<T0) }
�

Px(SM<T0 7 s)
Px(SM<T0)

ww�M � � 0 g

Proof of Theorem 4. We prove first that �*
�

is bounded and more-
over ultimately decreasing (the proof also shows that the same property
holds for any * # (0, *

�
]). We have that �*

�
is a positive function and from

Lemma 3 it cannot be an increasing function in the whole domain. There-
fore there exists x*>0 such that �$*

�
(x)>0, x # [0, x*) and �$*

�
(x*)=0.

From �"*
�
(x*)&2:(x*) �$*

�
(x*)=&2*

�
�*

�
(x*), we obtain �"*

�
(x*)<0. In par-

ticular �$*
�
(x)<0 in an interval (x*, x*+$). Using (14) we find that

�$*
�
(x*)=e#(x*) \1&2*

� |
x*

0
.*

�
( y) dy+=0

and for x>x*

�$*
�
(x)=e#(x) \1&2*

� |
x

0
.*

�
( y) dy+<0

because .*
�

is a positive function. Hence, �*
�

is bounded and ultimately
decreasing.
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We shall prove that for *�*
�

the function �* is also bounded. The
inequality �*��*

�
follows directly from an inequality of Caplygin type (see

Theorem 1, Chap. XI of Ref. 6). Let us show now that �* is also bounded
from below. It follows from (12) and the upper bound for �* that

�*(x)�4(x)&2* |
x

0
e#( y) |

y

0
�*

�
(z) e&#(z) dz dy�4(x)&

*
*
�

(4(x)&�*
�
(x))

Since we are in the case 4(�)<� we deduce �* is bounded below.
Using the fact that �* is bounded we get that the process

�*(Xt) e*t1T0>t is a martingale and therefore we obtain

�*(x) e&*t=Ex(�*(Xt), T0>t)=| p(t, x, y) �*( y) dy (15)

In particular for *
�

we obtain the following estimate when b>x*

�*
�
(x)=Ex(�*

�
(Xt) e*

�
t, t<T0)�e*

�
tEx(�*

�
(Xt), Xt # [x*, b], t<T0)

�e*
�
t�*

�
(b) Px(Xt # [x*, b], t<T0)

=�*
�
(b) Px(t<T0) e*

�
tPx(Xt # [x*, b] | t<T0)

where we have used the observation that �*
�

is nonnegative and decreasing
on [x*, �). From the relation limt � � Px(t<T0)=(4(x)�4(�))>0, we
find

lim sup
t � �

e*
�
tPx(Xt # [x*, b] | T0>t)�

�*
�
(x) 4(�)

�*
�
(b) 4(x)

(16)

To conclude the result we will use a pointwise version of (6). In fact
observe that if in (6) we take f (z)= p(2, x, z), for 2>0, x>0, then we will
have

lim
t � �

Px(Xt # A, T0>t)
Px(Xt # A, T0>t)

=
�A .*

�
(z) dz

�B .*
�
(z) dz

(17)

provided that p(2, x, } ) # H0 , which amounts to proving that

(i) � p2(2, x, z) e#(z) dz<�;

(ii) ��
0 p(2, x, z) �*(z) dz is bounded in some right neigborhood of *

�
.

Now, (i) follows from the fact that p(2, x, } ) is bounded and that
4(�)=� e#(z) dz<�. (ii) follows immediately from (15).
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The result now follows from (16) and (17), and moreover

lim sup
t � �

e*
�
t Px(Xt�a | T0>t)�1

�*
�
(x)

4(x) |
a

0
.*

�
(z) dz

where 1=4(�)(supb�x*[�*
�
(b) �b

x*.*
�
(z) dz])&1. g

3. SOME MONOTONICITY PROPERTIES

The fact that *
�
=', under the hypothesis of Theorem 2, allow us to get

some information about the dependence of *
�

on :. For this purpose we
denote 4:, *

�
(:) and '(:) the quantities 4, *

�
and ' associated to :.

Corollary 1. Let :�; satisfy the hypothesis H and 4:(�)=�=
4;(�). Then

*
�
(:)�*

�
(;)

Proof. From Theorem 3, *
�
(:)='(:) and *

�
(;)='(;). Let

dXt=dBt&:(Xt) dt, X0=x

dYt=dBt&;(Yt) dt, Y0=x

Since :�; we get Xt�Yt for every t, and so T0(X )�T0(Y ). Therefore

Px(T0(X )>s)�Px(T0(Y )>s)

which implies that *
�
(:)�*

�
(;). g

In particular if \x :(x)�k�0 then *
�
(:)�*

�
(k)=k2�2 (this last

equality can be computed directly, also see Ref. 5).

Corollary 2. Let : be a non-negative C1 function for which H holds,
and 4:(�)=�. Then *

�
(:)�(lim supx � � :(x))2�2. In particular if : is

also decreasing *
�
(:)=(limx � � :(x))2�2.

Proof. The result is obvious if lim supx � � :(x)=�. Let dXt=
dBt&:(Xt) dt, X0=x. For ;>lim supx � � :(z) take x0 large enough such
that \z�x0 , :(z)�;. Consider the process

dYt=dBt&; dt, Y0=x
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If x>x0

Yt�Xt \t�Tx0
(X )

Therefore, for such x

Px(T0(X )>s)�Px(Tx0
(X )>s)�Px(Tx0

(T )>s)

=Px&x0
(T0(Y )>s)

Since *
�
(:)=&lims � �(1�s) log Px(T0(X )>s)�&lims � �(1�s) log Px&x0

(T0(Y )>s)=;2�2, the result follows. g

There are examples where 4(�)=�, H is verified, the condition
��

0 e&#(z) dt<� but *
�
='=0. It suffices to take :(x)=1�(1+x).
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