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Abstract We obtain a formula for the n-dimensional distributions of the Airy1
process in terms of a Fredholm determinant on L2(R), as opposed to the standard
formula which involves extended kernels, on L2({1, . . . , n} × R). The formula is
analogous to an earlier formula of Prähofer and Spohn (J Stat Phys 108(5–6):1071–
1106, 2002) for the Airy2 process. Using this formula we are able to prove that the
Airy1 process is Hölder continuous with exponent 1

2 —and that it fluctuates locally
like a Brownian motion. We also explain how the same methods can be used to obtain
the analogous results for the Airy2 process. As a consequence of these two results, we
derive a formula for the continuum statistics of the Airy1 process, analogous to that
obtained in Corwin et al. (Commun Math Phys 2012, to appear) for the Airy2 process.

Mathematics Subject Classification 60K35 · 82C22 · 60G17

1 Introduction and main results

1.1 General background

The Airy processes are stochastic processes which are expected to govern the asymp-
totic spatial fluctuations in a wide variety of random growth models on a one
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606 J. Quastel, D. Remenik

dimensional substrate, top lines of non-intersecting random walks and free energies
of directed random polymers in 1 + 1 dimensions (all belonging to the Kardar–Parisi–
Zhang, or KPZ, universality class [21]). They are non-Markovian and are defined
in terms of their finite-dimensional distributions, which are given by determinantal
formulas. These formulas, which have been derived by asymptotic analysis of exact
formulas in special discrete models such as the totally asymmetric simple exclusion
process and the polynuclear growth model, give the n-dimensional distributions in
terms of Fredholm determinants of extended kernels, on L2({1, . . . , n} × R). The
exact results are then conjecturally extrapolated to more general processes in the uni-
versality class which do not possess the same exact solvability.

The particular Airy process arising in each case depends on the initial data, and this
picks out a number of KPZ sub-universality classes. For reasons of scaling invariance,
there are three special pure initial data classes: narrow wedge, flat, and equilibrium.
Narrow wedge corresponds to point-to-point polymers, or growth models where the
exponential of the height is initially a Dirac delta. Physically, one starts with curved,
or droplet, initial data. After some time t , the height looks like a parabola in space,
corresponding to the deterministic evolution, on top of which is approximately an Airy2
process [24] with amplitude t1/3 and varying on a spatial scale of t2/3. Flat corresponds
to point-to-line polymers, or growth models with constant initial data. At time t , one
sees spatially the Airy1 process [28], again with size t1/3 and varying on spatial scale
t2/3. Equilibrium corresponds to growth models starting from equilibrium, which in
the KPZ universality class means approximately a two-sided Brownian motion. At a
later time one sees spatially the Airystat process [6]. Note that all these descriptions are
modulo a global height shift which is non-trivial itself, and can be very large compared
to the scales on which these fluctuations are observed.

There are also three other basic mixed initial data, corresponding to starting with
one of the basic three geometries to the left of the origin and another one to the right.
The resulting spatial fluctations are still of size t1/3 and on a spatial scale of t2/3,
with non-homogeneous crossover Airy processes Airy2→1 [8], Airy1→stat [9] and
Airy2→stat [11,29], the names being self-explanatory. Of course, there will be other
less commonly seen sub-universality classes, but these six are the basic ones, and,
interestingly, all have determinantal finite-dimensional distributions.

Although the determinantal formulas arise naturally in deriving the finite-
dimensional distributions from the special solvable discrete models, they are cum-
bersome for the analysis of properties of these processes involving short range scales.
For example, one would expect to be able prove the pathwise continuity directly by
just checking the Kolmogorov continuity criterion using the determinantal formula for
the two point distributions with extended kernel on L2({1, 2}× R). This turned out to
be surprisingly difficult, and has been an open problem since the processes were intro-
duced. For the Airy2 process, which is in some sense the most basic one, what was done
historically was to study the probability measure on the point processes obtained by
sampling the Airy line ensemble at a finite set of times. Prähofer and Spohn [24] proved
the continuity of the Airy line ensemble as a point process, from which the continuity
of the top line, the Airy2 process, would follow if one knew that the points came from a
non-intersecting line ensemble. However, this was not known at the time (though it is
now, see [12]). Johansson [20] proved the tightness of an approximating line ensemble
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Local behavior and hitting probabilities of the Airy1 process 607

(the multilayer PNG model), which in particular implied the continuity of the Airy2
process.

On the other hand, the other processes do not arise easily as top lines of line
ensembles. For example, for the Airy1 process, which will be our main example in
this article, even the continuity remained open.

One also hopes to study variational problems involving the Airy processes. These
arise naturally. A well-known example is the famous result of Johansson [20] that the
supremum of the Airy2 process minus a parabola has the Tracy–Widom GOE distribu-
tion [32]. There is also a generalization of this [27] that the same supremum on a half-
line is given by the one point marginal of the Airy2→1 process. Variational problems
naturally involve infinitely many spatial points, so formulas giving the distribution of
n sample points in terms of determinants of extended kernels on L2({1, . . . , n} × R)

are not a good tool. In [14] we introduced a continuum formula for the Airy2 process,
which gives the probability that the process lies below a given function on an arbitrary
finite interval, in terms of a Fredholm determinant of the solution operator of a certain
boundary value problem. The formula is obtained as a fine mesh limit of an older
formula of [24] for the n-dimensional distributions (see (1.6) below). The advantage
of the alternative formula for variational analysis is that its complexity is no longer
diverging with the number of spatial points. Using this formula, we were able to give
a direct proof of Johansson’s result [20], study the half line version [27], and derive
an exact formula for the probability density of the argmax of the Airy2 process minus
a parabola, the polymer endpoint distribution [23].

In this article we will obtain analogous discrete and continuum formulas for the
Airy1 process, and use them to prove directly that it is Hölder 1

2 −δ continuous for any
δ > 0. This regularity of Airy1 is expected from the fact that the process is believed
to look locally like a Brownian motion. In fact, we will show in this direction, using
the alternative determinantal formula, that the finite dimensional distributions of the
Airy1 process converge under diffusive scaling to those of a Brownian motion.

Note that the existence of formulas for the Airy1 process involving boundary value
operators is to some extent surprising. In the case of the Airy2 process, which is
the limit of the rescaled top line in a system of non-intersecting Brownian motions
(Dyson’s Brownian motion for the Gaussian Unitary Ensemble), the formula can be
seen as a certain extension of the Karlin-McGregor formula (see [3]). On the other
hand, there is no known analogous construction of the Airy1 process (see in particular
[5]), for which the associated determinantal process is signed (see [4]), and thus it is
not at all apparent where formulas like (1.7) or (1.14) below are coming from.

1.2 Statement of the results

Now we turn to a precise description of the Airy1 process, which will be our main
object of study. It was first derived by Sasamoto [28] (see also [4,7]) by asymptotic
analysis of exact formulas for TASEP with periodic initial data. It is a stationary
process defined through its finite-dimensional distributions, given by a determinantal
formula: for x1, . . . , xn ∈ R and t1 < · · · < tn in R,

P(A1(t1) ≤ x1, . . . ,A1(tn) ≤ xn) = det(I − f1/2 K ext
1 f1/2)L2({t1,...,tn}×R), (1.1)
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where we have counting measure on {t1, . . . , tn} and Lebesgue measure on R, f is
defined on {t1, . . . , tn} × R by f(t j , x) = 1x∈(x j ,∞) and

K ext
1 (t, x; t ′, x ′) = − 1√

4π(t ′ − t)
exp

(
− (x ′ − x)2

4(t ′ − t)

)
1t ′>t

+Ai(x + x ′ + (t ′ − t)2) exp
(
(t ′ − t)(x + x ′) + 2

3 (t ′ − t)3
)

.

(1.2)

Here, and in everything that follows, the determinant means the Fredholm determinant
in the Hilbert space indicated in the subscript. In particular from (1.2) and [17] one
obtains that the one-point distribution of the Airy1 process is given in terms of the
Tracy–Widom largest eigenvalue distribution for the Gaussian orthogonal ensemble
(GOE) [32]:

P(A1(0) ≤ m) = FGOE(2m).

Note that it follows from (1.1) that A1(t) has the same distribution as A1(−t).
The definition of the Airy1 process is analogous to that of the Airy2 process, intro-

duced by Prähofer and Spohn [24], whose n dimensional distributions are given by

P(A2(t1) ≤ x1, . . . ,A2(tn) ≤ xn) = det(I − f1/2 K ext
2 f1/2)L2({t1,...,tn}×R), (1.3)

where the extended Airy kernel [16,22,24] K ext
2 is defined by

K ext
2 (t, x; t ′, x ′) =

{∫ ∞
0 dλ e−λ(t−t ′)Ai(x + λ)Ai(x ′ + λ), if t ≥ t ′

− ∫ 0
−∞ dλ e−λ(t−t ′)Ai(x + λ)Ai(x ′ + λ), if t < t ′,

The analogy between the definitions becomes clearer in light of the following
observations. Letting KAi denote the Airy kernel

KAi(x, y) =
0∫

−∞
dλAi(x − λ)Ai(y − λ)

and H denote the Airy Hamiltonian

H = −� + x,

where � = ∂2
x denotes the one-dimensional Laplacian, one can show (formally) that

the extended Airy kernel can be rewritten as

K ext
2 (t, x; t ′, x ′) = −e−(t ′−t)H (x, x ′)1t ′>t + et H KAie

−t ′ H (x, x ′). (1.4)
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Local behavior and hitting probabilities of the Airy1 process 609

On the other hand, as shown in Appendix A of [7], K ext
1 can be expressed (formally)

in the following alternative way:

K ext
1 (t, x; t ′, x ′) = −e(t ′−t)�(x, x ′)1t ′>t + e−t� B0et ′�(x, x ′), (1.5)

where

B0(x, y) = Ai(x + y).

Note that (1.5) corresponds exactly to (1.4) after replacing H by −� and KAi by B0.
This particular replacement was emphasized in [15]; more generally, all the extended
kernels arising in this and related areas have an analogous structure. We stress that
both (1.4) and (1.5) should be regarded at this point as formal identities, as it is not
clear how to make sense of e−t H and et� for t < 0.

Our first result provides a new determinantal formula for the finite-dimensional
distributions of the Airy1 process without using extended kernels or, in other words,
involving the Fredholm determinant of an operator acting on L2(R) instead of
L2({t1, . . . , tn} × R). For the Airy2 process such a formula was introduced by [24] as
its original definition:

P(A2(t1) ≤ x1, . . . ,A2(tn) ≤ xn)

= det
(

I − KAi + P̄x1 e(t1−t2)H P̄x2 e(t2−t3)H · · · P̄xn e(tn−t1)H KAi

)
L2(R)

, (1.6)

where P̄a denotes projection onto the interval (−∞, a]. The equivalence of (1.3) and
(1.6) was derived in [24,25], see Remarks 2.1 and 2.2 below for a discussion about
some technical details. Our result states that the finite-dimensional distributions of the
Airy1 process admit the same representation after replacing H by −� and KAi by B0.

Theorem 1 The finite-dimensional distributions of the Airy1 process are given by the
following formula: for x1, . . . , xn ∈ R and t1 < · · · < tn in R,

P(A1(t1) ≤ x1, . . . ,A1(tn) ≤ xn)

= det
(

I − B0 + P̄x1 e−(t1−t2)� P̄x2 e−(t2−t1)� · · · P̄xn e−(tn−t1)�B0

)
L2(R)

. (1.7)

Remark 1.1

1. Note that, since t1 < · · · < tn , all the heat kernels in (1.7) are well defined
except for the first one. The same situation is present in the formula for the
Airy2 process, as the factor e(tn−t1)H in (1.6) is in principle ill-defined. The sit-
uation is resolved in that case by observing that e(tn−t1)H is applied after KAi
in (1.6), and KAi is a projection operator onto the negative eigenspace of H .
In our case the situation is resolved by Proposition 1.2 below.

2. The operator

J := −B0 + P̄x1 e−(t1−t2)� P̄x2 e−(t2−t3)� · · · P̄xn e−(tn−t1)�B0
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610 J. Quastel, D. Remenik

appearing inside the determinant in (1.7) is not trace class, basically because the
heat kernel is not even Hilbert–Schmidt. However, we will show in Proposition
2.3 that there is a conjugate operator J̃ = U−1 JU which is trace class in L2(R),
so the formula (1.7) should be computed as det(I − J̃ )L2(R). Alternatively, this
implies that the Fredholm determinant in (1.7) regarded as its Fredholm expansion
series is well defined. (The same issue arises in (1.1), as K ext

1 is not trace class on
L2({t1, . . . , tn} × R); this is resolved in Appendix A of [4].)

3. Note that the issue discussed in the last point does not arise in the formula (1.6)
for the Airy2 process. The fact that the operator appearing in that formula is trace
class is proved in Proposition 3.2 of [14].

The following result shows that we are allowed to consider the operator e−t� for
t > 0 as long as it is applied after B0.

Proposition 1.2 For fixed t, y ∈ R let ϕt,y(x) = e−2t3/3−(x+y)t Ai(x + y + t2). Then
for all s, t > 0 we have

es�ϕt,y(x) = ϕt−s,y(x). (1.8)

In particular, et�ϕt,y = Ai(x + y), and as a consequence the kernel e−t� B0 is well
defined for every t > 0 via the formula

e−t� B0 = e−2t3/3−(x+y)t Ai(x + y + t2) (1.9)

and it satisfies the group property in the sense that e(s+t)� B0 = es�et� B0 for all
s, t ∈ R.

We remark that versions of the above identities appear in earlier works on the Airy1
process, and in particular in [4,7,28]. Proposition 1.2 allows us to make sense of
(1.5): since the Airy1 process is stationary, by shifting t1, . . . , tn we may assume that
0 < t1 < · · · < tn , and then all the heat kernels with a negative parameter in (1.5)
appear applied after B0. The same type of argument allows to make sense of (1.4),
(1.6) and (1.7) (though see also the last paragraph of Remark 2.2).

As we mentioned, formulas (1.6) and (1.7) are better adapted than the standard
extended kernel formulas to short range properties of the process. As a first application
we will prove

Theorem 2 The Airy1 process A1 and the Airy2 process A2 have versions with Hölder
continuous paths with exponent 1

2 − δ for any δ > 0.

Recall that continuity was known for A2 but not for A1. The Hölder 1
2− continuity

for A2 also follows from recent work of Corwin and Hammond [12]. They study
the Airy line ensemble directly, obtaining the continuity (and Hölder 1

2− continuity)
directly from a certain Brownian Gibbs property. In general, all the Airy processes
are supposed to be locally Brownian. Note that the definition of locally Brownian is
not unique. For A2 it follows from [12] that it is locally absolutely continuous with
respect to Brownian motion. Analogous results have recently become available for the
solutions of the KPZ equation at finite times [13,19,26]. For A1 the line ensemble
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Local behavior and hitting probabilities of the Airy1 process 611

picture is missing at the present time, so a proof was lacking. As another application
of the formulas, we prove that the Airy1 process is locally Brownian in the sense that
under local Brownian scaling, the incremental process converges to that of Brownian
motion.

Theorem 3 For any fixed s ∈ R, let Bε(·) be defined by Bε(t) = ε−1/2(A1(s +
εt) − A1(s)), t > 0. Then Bε(·) converges to Brownian motion in the sense of con-
vergence of finite dimensional distributions. The same holds for B̃ε(·) defined by
B̃ε(t) = Bε(−t), t > 0.

Note that by stationarity there is no loss of generality in taking s = 0 in the
theorem, while the statement about B̃ε(·) follows from the statement about Bε(·) by
time reversal invariance of Airy1. The analogue of Theorem 3 for Airy2, which follows
from its local absolute continuity with respect to Brownian motion, was proved earlier
by Hägg [18], and can also be obtained directly by our method. We remark also that,
using an analogue of (1.7) for the Airy2→1 process, which will appear in upcoming
work [3], it should not be hard to adapt our proofs to show that A2→1 is Hölder 1

2−
continuous and is locally Brownian in the sense of the last result (in fact, the result of
[3] is more general and should allow one to extend our proofs to other processes).

Going back to A1, one can be quite precise in terms of finite dimensional distribu-
tions. Letting 0 < t1 < · · · < tn , we will prove that

P(A1(εt1) ≤ x + √
εy1, . . . ,A1(εtn) ≤ x + √

εyn | A1(0) = x)

= E(1B(ti )≤yi ,i=1,...,n gε
t,y(x, B(tn)))hε

t,y(x), (1.10)

where B(t) is a standard Brownian motion with B(0) = 0 and

gε
t,y(x, z)=

∫ ∞
−∞ du e−εtn� B0(

√
εz+x, u)(I − B0+	

(x,
√

εy+x)

(0,εt) e−εtn� B0)
−1(u, x)∫ ∞

−∞ du B0(x, u)(I − B0+ P̄x B0)−1(u, x)
,

(1.11)

where 	
(x,

√
εy+x)

(0,εt) = P̄x et1� P̄y1+x e(t2−t1)� · · · e(tn−tn−1)� P̄yn+x and

hε
t,y(x, z)= P(A1(0) ≤ x,A1(εt1) ≤ x+√

εy1, . . . ,A1(εtn) ≤ x+√
εyn)

FGOE(2x)
. (1.12)

One has

lim
ε→0

gε
t,y(x, z) = lim

ε→0
hε

t,y(x) = 1,

from which it follows from (1.10) that the finite dimensional distributions converge to
those of Brownian motion. It would be interesting to understand the role of gε

t,y(x, z).

Expansions gε
t,y(x, z) = 1 + ε1/2g(1)

t,y (x, z) + O(ε) and hε
t,y(x) = 1 + ε1/2h(1)

t,y(x) +
O(ε) may identify the infinitesimal increments of A1 in order to develop a stochastic
calculus.
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612 J. Quastel, D. Remenik

One of course has formulas analogous to (1.10) for the Airy2 process (and, in view
of [3], other processes such as Airy2→1), but we do not include them here.

Our last result, which is an application of Theorems 1 and 2, gives a determinantal
formula for the continuum statistics of the Airy1 process on a finite interval. This was
done for the Airy2 process in [14], and the same argument will allow us to take a limit
of the formula in Theorem 1 as the size of the mesh in t goes to 0.

Fix 
 < r . Given g ∈ H1([
, r ]) (i.e. both g and its derivative are in L2([
, r ])),
define an operator 	

g
[
,r ] acting on L2(R) as follows: 	

g
[
,r ] f (·) = u(r, ·), where

u(r, ·) is the solution at time r of the boundary value problem

∂t u − �u = 0 for x < g(t), t ∈ (
, r)

u(
, x) = f (x)1x<g(
)

u(t, x) = 0 for x ≥ g(t).

(1.13)

The fact that this problem makes sense for g ∈ H1([
, r ]) is not hard and can be seen
from the proof of Proposition 2.3 below (see also Proposition 3.2 of [14]).

Theorem 4

P(A1(t) ≤ g(t) for t ∈ [
, r ]) = det
(

I − B0 + 	
g
[
,r ]e

−(r−
)� B0

)
L2(R)

. (1.14)

In other words, hitting probabilities of curves byA1 can be expressed in terms of
Fredholm determinants of the analogous hitting probabilities for Brownian motion.

One can check easily using the Feynman-Kac formula that the kernel of 	
g
[
,r ] has

the following form:

	
g
[
,r ](x, y) = e−(x−y)2/4(r−
)

√
4π(r − 
)

Pb̂(
)=x,b̂(r)=y(b̂(s) ≤ g(s) on [
, r ]), (1.15)

where the probability is computed with respect to a Brownian bridge b̂(s) from x
at time 
 to y at time r and with diffusion coefficient 2. We remark that the kernel
−B0 +	

g
[
,r ]e−(r−
)� B0 is not trace class, but as in the discrete case (see Remark 1.1)

we will show that there is conjugate operator which is, see Proposition 2.3.
The corresponding formula for the Airy2 process, provided in Theorem 2 of [14],

is the same as (1.14) after replacing −� by H and B0 by KAi. The corresponding
boundary value operator �

g
[
,r ] in that case is actually more complicated than 	

g
[
,r ],

as in our case there is no potential term in the partial differential equation in (1.13).

2 Proof of the determinantal formula

Throughout this section and the next we will denote by ‖ · ‖1 and ‖ · ‖2 respectively
the trace class and Hilbert–Schmidt norms of operators on L2(R) (see Sect. 3 of [14]
for the definitions or [30] for a complete treatment).

123



Local behavior and hitting probabilities of the Airy1 process 613

Proof of Proposition 1.2 Recall that Ai(z) = (2π i)−1
∫
�c

du eu3/3−uz , where
�c = {c + iy, y ∈ R} for any fixed c > 0. Then

es�ϕt,y(x) = 1

2π i

∞∫
−∞

dz
∫
�c

du
1√
4πs

e−(x−z)2/4s−2t3/3−(z+y)t+u3/3−u(z+y+t2).

We can compute the z integral first, which is just a Gaussian integral, to obtain

es�ϕt,y(x) = 1

2π i

∫
�c

du e
1
3 (t+u)((3s−2t+u)(t+u)−3(x+y)).

Shifting u to u − s we get

es�ϕt,y(x) = 1

2π i

∫
�c+s

eu3/3−u(x+y+(t−s)2)−(x+y)(t−s)−2(t−s)3/3 = ϕt−s,y(x),

which proves (1.8). The remaining statements in the proposition follow directly from
this identity. 
�

We turn now to the proof of Theorem 1. The argument is based on the derivation
of the equivalence of (1.3) and (1.6) for the Airy2 case given by Prolhac and Spohn
[25], and in fact the algebraic procedure we will use is basically equivalent to theirs.
In the case of the Airy1 process one has to make sure throughout the proof that the
algebraic manipulations are being done on operators which are trace class, so that
the Fredholm determinants considered are well defined. This is done by rewriting
the algebraic procedure of [25] so that in each step one can conjugate by the correct
operators and check that the resulting conjugated operators are trace class as needed.

Remark 2.1 Our proof of Theorem 1 can be used to complete the details and provide
all the necessary justifications in the proof given in [25] for the Airy2 case. In one sense
the argument in that case is simpler, because the kernels in (1.3) and (1.6) are already
trace class. Nevertheless the Airy2 case presents an additional difficulty, namely that
even for t > 0 the operator e−t H does not map L2(R) into itself (note that this issue
does not arise in the Airy1 case, as et� is clearly a bounded operator acting on L2(R)

for t > 0). We will explain in Remark 2.2 how this can be addressed, and in particular
how the proof below has to be changed to provide a rigorous proof for the Airy2 case.

Proof of Theorem 1 We will retain most of the notation of [25], and as in that paper
we use sans-serif fonts (e.g. T) for operators on L2({t1, . . . , tn}×R). Such an operator
can be regarded as an operator-valued matrix

(
Ti, j

)
i, j=1,...,n with entries Ti, j ∈ L2(R)

acting on f ∈ L2(R)n as (T f )i = ∑n
j=1 Ti, j f j (or, more precisely, as an operator

acting on R
n ⊗ L2(R)). We will use serif fonts for the matrix entries (e.g. Ti, j =

T for some T ∈ L2(R)). All determinants throughout this proof are computed on
L2({t1, . . . , tn} × R) unless otherwise indicated.
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614 J. Quastel, D. Remenik

Recall from Proposition 1.2 that et� B0 satisfies the semigroup property
es�et� B0 = e(s+t)� B0 for all s, t ∈ R. We will use this fact several times below.
We will also use the fact that, since B0(x, y) depends only on x + y, et� and B0
commute for t > 0. Finally, as explained after the proof of Proposition 1.2, we may
(and will) assume that ti > 0 for i = 1, . . . , n.

Let K = f1/2 K 1
extf

1/2, with K 1
ext defined through (1.5) and f as in (1.1). Using the

above interpretation K can be written as

K = P(T−K0 + T+(K0 − I))P, (2.1)

where

K0
i j = B01i= j , Pi, j = Px j 1i= j ,

with Pa = I − P̄a denoting projection onto the interval [a,∞), and T−, T+ are lower
triangular, respectively strictly upper triangular, and defined by

T−
i j = e−(ti −t j )�1i≥ j , T+

i j = e−(ti −t j )�1i< j .

Observe that all the heat kernels in T+ have positive parameters, while those in
T− have negative parameters but appear applied after B0 in the expression for K
in (2.1), so Proposition 1.2 ensures that (2.1) makes sense.

As we mentioned in Remark 1.1, it is proved in [4] that there is an invertible operator
V such that VKV−1 is trace class. Explicitly, V is a (diagonal) multiplication operator
given by

Vi, j = Vi 1i= j with Vi f (x) = (1 + x2)−2i f (x).

Since VPT+PV−1 is strictly upper triangular, I + VPT+PV−1 is invertible, and then
we can write

det(I − VKV−1) = det((I + W1)(I − (I + W1)−1W2)) (2.2)

with

W1 = VPT+PV−1, W2 = VP(T− + T+)K0PV−1. (2.3)

We remark that W1 is trace class by Lemma A.2 in [4].
Next we want to obtain an explicit expression for (I + W1)−1W2. Observe that

[
(I + T+)−1)

]
i, j = 1i= j − e−(ti −ti+1)�1i= j−1, (2.4)

which can be checked directly using the semigroup property of the heat kernel. In
particular I + T+ is invertible, so we can write

(I + W1)−1W2 = (I + W1)−1VP(T− + T+)(I + T+)−1K0(I + T+)PV−1, (2.5)
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Local behavior and hitting probabilities of the Airy1 process 615

where we have used the fact that et� and B0 commute for t > 0, and hence so do
T+ and K0. Using (2.4) we deduce that

[
(T− + T+)(I + T+)−1K0]

i, j = e−(ti −t j )�B0 − e−(ti −t j−1)�e−(t j−1−t j )� B01 j>1

= e−(ti −t1)� B01 j=1. (2.6)

Note that only the first column of this matrix has non-zero entries.
Observe now that, since VPT+PV−1 is strictly upper triangular, we have

(VPT+PV−1)n+1 = 0, which implies that

(I + W1)−1 =
n∑

k=0

(−1)k(VPT+PV−1)k . (2.7)

On the other hand by (2.6) we have for 0 ≤ k ≤ n − i

[(VPT+PV−1)kVP(T− + T+)(I + T+)−1K0]i,1

=
∑

i<a1<···<ak≤n

Vi Pxi e
−(ti −ta1 )� Pxa1

e−(ta1 −ta2 )�

· · · Pxak−1
e−(tak−1−tak )� Pxak

e−(tak −t1)�B0, (2.8)

which follows from (2.6) and the definition of PT+P, while for k > n − i the left side
above equals 0 (and the case k = 0 is interpreted as Vi Pxi e

−(ti −t1)�B0). Replacing
each factor Px except the first one by I − P̄x and using the semigroup property for the
heat kernel we deduce that the last expression equals

k∑
m=0

∑
i=b0<b1<···<bm≤n

(
n − i − m

k − m

)
(−1)m Vb0 Pxb0

e−(tb0 −tb1 )� P̄xb1
e−(tb1 −tb2 )�

· · · P̄xbm−1
e−(tbm−1−tbm )� P̄xbm

e−(tbm −t1)� B0.

Summing the above expression times (−1)k from k = 0 to k = n−i and interchanging
the order of summation leads to

n−i∑
m=0

n−i∑
k=m

∑
i=b0<b1<···<bm≤n

(
n−i −m

k − m

)
(−1)k+m Vb0 Pxb0

e−(tb0 −tb1 )� P̄xb1
e−(tb1−tb2 )�

· · · P̄xbm−1
e−(tbm−1 −tbm )� P̄xbm

e−(tbm −t1)� B0.

Noting that
∑n−i

k=m

(n−i−m
k−m

)
(−1)k+m = 1m=n−i and recalling (2.7) we deduce that

[(I + W1)−1VP(T− + T+)(I + T+)−1K0]i, j

= 1 j=1

∑
i=b0<b1<···<bn−i ≤n

Vb0 Pxb0
e−(tb0 −tb1 )�

·P̄xb1
e−(tb1 −tb2 )� · · · P̄xbn−i−1

e−(tbn−i−1−tbn−i )� P̄xbn−i
e−(tbn−i −t1)� B0
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616 J. Quastel, D. Remenik

= 1i=n, j=1Vn Pxn e−(tn−t1)� B0

+1i<n, j=1Vi Pxi e
−(ti −ti+1)� P̄xi+1e−(ti+1−ti+2)�

· · · P̄xn−1 e−(tn−1−tn)� P̄xn e−(tn−t1)�B0. (2.9)

Post-multiplying by (I + T+)PV−1 we finally obtain from this and (2.5) that

[(I + W1)−1W2]i, j = 1i=n Vn Pxn e−(tn−t j )�B0 Px j V −1
j

+1i<n Vi Pxi e
−(ti −ti+1)� P̄xi+1e−(ti+1−ti+2)� · · · P̄xn e−(tn−t j )� B0 Px j V −1

j ,

(2.10)

where we have used again the fact that et� commutes with B0 for t > 0.
At this stage we can check that (I + W1)−1W2 is trace class. In fact it is enough to

check (see (A.5) in [4]) that each entry of this operator-valued matrix is trace class.
The case i = n was checked in Lemma A.3 in [4], while for the case i < n we can
use a similar strategy. Since Vi and V −1

j are multiplication operators, they commute
with Pa for any a, and then choosing −L ≤ min{xi , x j } we have

‖[(I + W1)−1W2]i, j‖1 = ‖Vi Pxi P−L Ri e
−(tn−t j )�B0 P−L Px j V −1

j ‖1

= ‖Pxi P−L Vi Ri e
−(tn−t j )�B0V −1

j P−L Px j ‖1

≤ ‖P−L Vi Ri e
−(tn−t j )�B0V −1

j P−L‖1,

where Ri = e−(ti −ti+1)� P̄xi+1e−(ti+1−ti+2)� · · · P̄xn and we have used the first of the
inequalities

‖AB‖1 ≤ ‖A‖op‖B‖1, ‖AB‖2 ≤ ‖A‖op‖B‖2, ‖AB‖1 ≤ ‖A‖1‖B‖1, (2.11)

with ‖·‖op denoting the operator norm (see [30]) and ‖Px‖op = 1. Next we remove the
projections P−L and think instead of the operator Vi Ri e−(tn−t j )�B0V −1

j as acting on

L2([−L ,∞)). Using again (2.11) and the fact that the operators Vi and V −1
i commute

with P̄a we have that ‖Vi Ri V −1
n ‖1 is bounded by

‖Vi e
−(ti −ti+1)�V −1

i+1 P̄xi+1‖1‖Vi+1e−(ti+1−ti+2)�V −1
i+2 P̄xi+2‖1

. . . ‖Vn−1e−(tn−1−tn)�V −1
n ‖1,

which is finite because each factor is so by Lemma A.2 in [4]. Since ‖Vne−(tn−t j )�B0
V −1

j ‖1 (computed in L2([−L ,∞)) is finite by Lemma A.3 in [4] we deduce by (2.11)
that

‖[(I + W1)−1W2]i, j‖1 ≤ ‖Vi Ri V −1
n ‖1‖Vne−(tn−t j )�B0V −1

j ‖1 < ∞.
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Going back to (2.2), since both W1 and (I + W1)−1W2 are trace class, we have

det(I − VKV−1) = det(I + W1
)

det
(
I − (I + W1)−1W2)

= det(I − (I + W1)−1W2), (2.12)

where the second equality follows from the fact that, since W1 is strictly upper tri-
angular, its only eigenvalue is 0, and thus det(I + W1) = 1. Now let U be given
by Ui, j = U1i= j where U is the (diagonal) multiplication operator introduced right
before Proposition 2.3 with 
 = t1 and r = xn . Then x to (2.5) we have

(I + W1)−1W2 = W3W4

with W3 = (I + W1)−1VP(T− + T+)(I + T+)−1K0U−1 and W4 = U(I + T+)PV−1.
We have already checked that W3W4 is trace class, so if we prove that W4W3 is also
trace class we can deduce from the cyclic property of determinants and (2.12) that

det(I − VKV−1) = det(I − W4W3). (2.13)

Recall from (2.9) that only the first column of (I+W1)−1VP(T−+T+)(I+T+)−1K0

has non-zero entries. Since U(I + T+)PV−1 is upper triangular and U−1 is diagonal,
the same is true for W4W3. Observe that V−1(I + W1)−1V = (I + PT+P)−1, so all
the V’s cancel in W4W3. For the first column of this operator-valued matrix we get
using (2.9) that

(W4W3)k,1 = Ue−(tk−tn)� Pxn e−(tn−t1)� B0U−1

+
n−1∑
i=k

Ue−(tk−ti )� Pxi e
−(ti −ti+1)� P̄xi+1 · · · P̄xn−1 e−(tn−1−tn)� P̄xn e−(tn−t1)� B0U−1

= Ue−(tk−tn)� Pxn e−(tn−t1)� B0U−1

+
n−1∑
i=k

Ue−(tk−ti )�(I − P̄xi )e
−(ti −ti+1)� P̄xi+1 · · · P̄xn−1 e−(tn−1−tn)� P̄xn e−(tn−t1)� B0U−1

= Ue−(tk−tn)� Pxn e−(tn−t1)� B0U−1

+
n−1∑
i=k

[Ue−(tk−ti+1)� P̄xi+1 · · · P̄xn−1 e−(tn−1−tn)� P̄xn e−(tn−t1)� B0U−1

−Ue−(tk−ti )� P̄xi · · · P̄xn−1 e−(tn−1−tn)� P̄xn e−(tn−t1)� B0U−1].

Telescoping the last sum yields

(W4W3)k,1 = Ue−(tk−t1)� B0U−1−U P̄xk e−(tk−tk+1)� P̄xk+1 · · · P̄xn e−(tn−t1)� B0U−1

= U [e−(tk−tn)� − P̄xk e−(tk−tk+1)� P̄xk+1 · · · P̄xn ]e−(tn−t1)� B0U−1.

(2.14)
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Using this last decomposition we get directly from the proof of Proposition 2.3(a) that
(W4W3)k,1 is trace class. This justifies the identity (2.13), and then since only the first
column of W4W3 is non-zero we deduce that

det(I − VKV−1) = det(I − (W4W3)1,1)L2(R).

The result now follows from the above formula for (W4W3)k,1 with k = 1. 
�
Remark 2.2 A complete proof for the Airy2 case can be obtained from the above
argument by replacing −� by H, B0 by KAi, and both V and U by I. As we mentioned
in Remark 2.1, this case presents the additional issue that the operators et H involved
in T+ and T− do not even map L2(R) to itself (in fact, note that H has the whole real
line as its spectrum). T−, which is associated to operators et H with t > 0, presents no
difficulty in the above proof. In fact, it always appears applied after K, which in this
case is the diagonal matrix with KAi in each diagonal entry, so that since KAi projects
onto the negative eigenspace of H (see Remark 1.1), each entry in T−K is a bounded
operator acting on L2(R). This is analogous to the fact that, in the Airy1 case, the
operators e−t� for t > 0 always appear after B0.

To deal with T+ we start with the formula

e−t H f (x) =
∞∫

−∞
dy

∞∫
−∞

dλ eλt Ai(x + λ)Ai(y + λ) f (y). (2.15)

One can check that for any f ∈ L2(R) the integral is convergent, and thus e−t H f
is well defined, though not necessarily in L2(R). The key is to notice, again using
the formula, that for any a the operators Pae−t H and e−t H Pa are Hilbert–Schmidt
(see (3.10)), so that Pae−t H Pa = (Pae− t

2 H )(e− t
2 H Pa) is trace class by (2.18). In

particular, this implies that the operator W1 defined in (2.3) (with V = I) is trace class
in the Airy2 case. To make sense of (I + W1)−1W2, as needed in (2.2), we can use
(2.8) directly together with (2.7) to write

[(I + W1)−1W2]i, j =
n−i∑
k=0

(−1)k
∑

i<a1<···<ak≤n

Pxi e
−(ti −ta1 )H Pxa1

e−(ta1−ta2 )H

· · · Pxak−1
e−(tak−1 −tak )H Pxak

e−(tak −t j )H KAi Px j (2.16)

(cf. (2.10)), where the same argument can be applied to show that each term is well
defined and is in fact trace class. This allows to derive (2.12), and it is easy to
check that deriving (2.13) via the cyclic property of determinants involves no new
difficulties.

A final remark is in order. The operator P̄x1 e−(t1−t2)H · · · e−(tn−1−tn)H P̄xn appearing
in (1.6) is ill-defined because, unlike in the preceding discussion, an operator of the
form P̄ae−t H P̄b does not map L2(R) to itself. Hence (1.6) should be understood as a
shorthand notation for
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P(A2(t1) ≤ x1, . . . ,A2(tn) ≤ xn)

= det

(
I −

n∑
i=1

n−i∑
k=0

(−1)k
∑

i<a1<···<ak≤n

e−(t1−ti )H Pxi e
−(ti −ta1 )H Pxa1

e−(ta1−ta2 )H

· · · Pxak−1
e−(tak−1−tak )H Pxak

e−(tak −t1)H KAi

)
L2(R)

,

which is obtained from the above proof by working directly with (2.8) instead of (2.9).
Alternatively, one can rewrite

P(A2(t1) ≤ x1, . . . ,A2(tn) ≤ xn)

= det
(

I −
[
e(t1−tn)H − P̄x1 e(t1−t2)H P̄x2 e(t2−t3)H · · · P̄xn

]
e(tn−t1)H KAi

)
L2(R)

.

The product inside this last determinant was shown to be trace class in Proposition 3.2
of [14] (cf. Proposition 2.3 below).

Going back to the Airy1 process, we turn next to proving the existence of trace
class operators which are conjugate to the ones appearing in (1.7) and (1.14). Given
x = (x1, . . . , xn) and t = (t1, . . . , tn) with ti < ti+1 let

	x
t = P̄x1 e−(t1−t2)� P̄x2 e−(t2−t3)� · · · e−(tn−1−tn)� P̄xn . (2.17)

For the case ti = 
+ i−1
n−1 (r −
), i = 1, . . . , n, and xi = g(ti ) for some g ∈ H1([
, r ])

we write

	
g
n,[
,r ] = P̄g(t1)e

−(t1−t2)� P̄g(t2)e
−(t2−t3)� · · · e−(tn−1−tn)� P̄g(tn).

Let U be the operator defined by U f (x) = e−2(r−
)x f (x). Observe that when
	

g
n,[
,r ] is applied to a function on the right, the points g(ti ) appear in reverse order,

which explains the need to consider a reflected version of g in part (c) of the next
result.

Proposition 2.3 Fix 
 < r and let g ∈ H1([
, r ]).
(a) U

(
B0−	x

t e−(tn−t1)�B0
)
U−1 and U

(
B0−	

g
[
,r ]e−(r−
)� B0

)
U−1 are trace class

operators on L2(R).
(b)

∥∥U
(
B0 − 	

g
n,[
,r ]e−(r−
)� B0

)
U−1

∥∥
1 is bounded uniformly in n.

(c) Let nk = 2k and ĝ(t) = g(
 + r − t). Then

lim
k→∞

∥∥U
(
B0−	

g
nk ,[
,r ]e

−(r−
)� B0
)
U−1−U

(
B0 − 	

ĝ
[
,r ]e

−(r−
)� B0
)
U−1

∥∥
1 =0.

Proof The proof is similar to that of Proposition 3.2 of [14], although here using the
conjugated kernels is crucial.
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Assume first that g(t) = 0 and write s = r −
. We begin by considering the second
operator in (a). Let ϕ(z) = √

1 + z2 and write

V (x, z) = (
es� − 	

g
[
,r ]

)
(x, z)e−2xsϕ(z)e−2zs and

W (z, y) = (
e−s� B0

)
(z, y)ϕ(z)−1e2zse2ys .

Then

U
(

B0 − 	
g
[
,r ]e

−s� B0

)
U−1 = V W.

Since

‖V W‖1 ≤ ‖V ‖2‖W‖2 (2.18)

(see [30]) it is enough to prove that ‖V ‖2 < ∞ and ‖W‖2 < ∞.
The estimate for ‖W‖2 is simple: using (1.9),

‖W‖2
2 =

∫

R2

dx dy
e−4s3/3+2(x+y)s

ϕ(x)2 Ai(x+y+s2)2 =
∫

R2

dx dy
e−4s3/3+2ys

ϕ(x)2 Ai(y + s2)2

=‖ϕ−1‖2
2

∞∫
−∞

dy e−4s3/3+2ysAi(y + s2)2.

The last integral is finite thanks to the bounds

|Ai(z)| ≤ Ce− 2
3 z3/2

for z ≥ 0, |Ai(z)| ≤ C for z < 0 (2.19)

for some constant C > 0 (see (10.4.59-60) in [1]), and thus ‖W‖2 < ∞.
For V , recalling that we are taking g(t) = 0, we may shift time by −(
 + r)/2 in

the definition of 	
g
[
,r ] to deduce that 	

g
[
,r ] = 	

g
[−s/2,s/2], and then by (1.15) we have

	
g
[
,r ](x, y) = e−(x−y)2/4s

√
4πs

Pb̂(−s/2)=x,b̂(s/2)=y

(
b̂(t) ≤ 0 on [−s/2, s/2]

)
.

Therefore

V (x, y) = ϕ(y)
e−(x−y)2/4s−2(x+y)s

√
4πs

Pb̂(−s/2)=x,b̂(s/2)=y

(
b̂(t) ≥ 0 for some t ∈ [−s/2, s/2]

)
.
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The last crossing probability equals e−xy/s if x ≤ 0, y ≤ 0 and 1 otherwise (see page
67 in [10]), and thus

‖V ‖2
2 = 1

4πs

∫

R2\(−∞,0]2

dx dy (1 + y2)
[
e−(x−y)2/4s−2(x+y)s]2

+ 1

4πs

∫

(−∞,0]2

dx dy (1 + y2)
[
e−(x+y)2/4s−2(x+y)s]2

. (2.20)

Both Gaussian integrals can be easily seen to be finite, so we have shown that
‖V ‖2 < ∞.

For the discrete time kernel we can use the same argument. To simplify notation
we will write the proof for the kernel of the form 	

g
n,[
,r ] (with g = 0), the same proof

works for 	x
t . We decompose the kernel as

U
(
B0 − 	

g
n,[
,r ]e

−(r−
)� B0
)
U−1 = VnW,

where

Vn(x, y)=ϕ(y)
e−(x−y)2/4s−2(x+y)s

√
4πs

Pb̂n(−s/2)=x,b̂n(s/2)=y

(
b̂n(s) ≤ 0 on [−s/2, s/2]

)

and b̂n is a discrete time random walk with Gaussian jumps with mean 0 and variance
s/n, started at time −s/2 at x , conditioned to hit y at time s/2, and jumping at times
tn
i = −s/2 + i−1

n−1 s, i ≥ 1 (in the case of a kernel 	x
t this random walk is not

time-homogeneous, but this does not introduce any issues below). We deduce that

(
e−(r−
)H − 	

g
n,[
,r ]

)
(x, y) = ϕ(y)√

4πs
e−(x−y)2/4s−2(x+y)s

·Pb̂n(−s/2)=x,b̂n(s/2)=y

(
b̂n(tn

i ) ≥ 0 for some i ∈ {1, . . . , n}
)

.

A simple coupling argument (see the next paragraph) shows that the last probability
is less than the corresponding one for the Brownian bridge, and thus we obtain for
‖e−(r−
)H −	

g
n,[
,r ]‖2 the same bound as the one we get for ‖e−(r−
)H −	

g
[
,r ]‖2 from

(2.20). This bound is, in particular, independent of n, so we have proved (a) and (b).
To prove (c) we use again the above decompositions into V W and VnW . Our goal

is to show that ‖Vnk W − V W‖1 → 0 as k → ∞. Observe that, in the case g(t) = 0
which we are considering, we have ĝ = g. Since ‖Vnk W −V W‖1 ≤ ‖Vnk −V ‖2‖W‖2
by (2.18) and we already know that ‖W‖2 < ∞, all that is left is to show that

‖Vnk − V ‖2 −−−→
k→∞ 0.

Couple the Brownian bridge b̂ and the conditioned random walk b̂nk by simply letting
b̂nk (tnk

i ) = b̂(tnk
i ) for each i = 1, . . . , nk . Since the Brownian bridge hits the positive
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half-line whenever the conditioned random walk does, it is clear that

∣∣Vnk (x, y) − V (x, y)
∣∣ = e−(x−y)2/4s−2(x+y)s

√
4πs

qnk (x, y), (2.21)

where qnk (x, y) is the probability that the Brownian bridge b̂(t) hits the positive half-
line for t ∈ [−s/2, s/2] but not for any t ∈ {tnk

1 , . . . , tnk
nk }. Since every point is regular

for one-dimensional Brownian motion, qnk (x, y) ↘ 0 as k → ∞ for every fixed x, y,
and thus the monotone convergence theorem yields (2.21).

To extend the result to g ∈ H1([
, r ]) we note that everything in the above argument
deals with properties of a Brownian motion b(s) killed at the positive half-line. In the
general case we will have by (1.15) a Brownian motion b(s) killed at the boundary g(s)
or, equivalently, a process b̃(s) = b(s) − g(s) killed at the positive half-line. Using
the Cameron–Martin–Girsanov theorem we can rewrite the probabilities for b̃(s) in
terms of probabilities for b(s). Since g(s) is a deterministic function in H1([
, r ]),
the Radon–Nikodym derivative of b̃(s) with respect to b(s) has finite second moment,
and thus by using the Cauchy-Schwarz inequality we get (a) and (b) from the above
arguments. To get (c) observe that, in view of the comment preceding the proposition,

both 	
g
nk ,[
,r ] and 	

ĝ
[
,r ] involve avoiding the barrier defined by ĝ. Therefore the

claimed convergence follows from the above arguments as well because they only
depend on almost sure properties of the corresponding Brownian motion. 
�

3 Regularity and continuum statistics

We now use the Kolmogorov continuity criterion to prove the Hölder continuity of
the Airy1 process (we will explain later how to adapt the proof to the Airy2 case).
An important technical problem is that the kernel appearing inside the determinant in
(1.7) is not trace class.

To apply the Kolmogorov criterion we have to get an appropriate bound on

det(I − B0 + P̄aet� P̄be−t� B0) − det(I − B0 + P̄a B0).

To deal with the fact that the kernels above are not trace class, we have to conjugate by
a kernel U as in Proposition 2.3. The resulting bound in terms of trace norms gets bad
as a, b → −∞. To get around this, we use the Kolmogorov criterion in the following
unusual form.

Given a stochastic process X (t) and M > 0 we denote by X M (t) the truncated
process

X M (t) = X (t)1|X (t)|≤M + M1X (t)>M − M1X (t)<−M .

Lemma 3.1 Let X (t) be a real valued stochastic process defined for t in some interval
I ⊆ R. Assume that the following two conditions hold:
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Local behavior and hitting probabilities of the Airy1 process 623

1. There is a dense subset J of I such that limK→∞ P(|X (t)| ≤ K ∀ t ∈ J ) = 1.
2. There are α, β > 0 satisfying the following: for each M > 0 there is an ε > 0

and c > 0 such that

E

(
|X M (t) − X M (s)|α

)
≤ c|t − s|1+β

for all s, t ∈ I with |t − s| < ε.

Then X (t) has a version on I with Hölder continuous paths with exponent β
α

.

The lemma follows immediately from the usual Kolmogorov criterion, which,
applied to 2, shows that there is a version of X (t) such that, for each M > 0, X M (t)
is Hölder continuous with exponent β

α
. Such a function cannot be discontinuous if it

is bounded on a dense set.
In view of this lemma, after we verify the first condition (which we do in the next

result) it will be enough to consider the truncated process AM
1 (t). Throughout this

section all Fredholm determinants will be computed on L2(R), while c and c′ will
denote positive constants whose values may change from line to line.

Lemma 3.2 Fix L > 0 and write DL(n) = { k
2n+1 L , k = −2n, . . . , 2n}. Then

lim
M→∞ P(A1(t) ≤ M ∀ t ∈ ∪n>0 DL(n)) = 1.

Proof By Theorem 1, Proposition 2.3(c) and the bound

∣∣det(I + Q1) − det(I + Q2)
∣∣ ≤ ‖Q1 − Q2‖1e‖Q1‖1+‖Q2‖1+1 (3.1)

for trace class operators Q1 and Q2 (see [30]), we have

P(A1(t) ≤ M ∀ t ∈ ∪n>0 DL(n)) = lim
n→∞ P(A1(t) ≤ M ∀ t ∈ DL(n))

= det
(
I − B0 + 	M[−L/2,L/2]e−L� B0

)
,

where 	M[−L/2,L/2] denotes 	
g
[−L/2,L/2] with g(t) = M and, we recall, the operator

inside the determinant is trace class after conjugating by U as in Proposition 2.3. Using
(3.1) again we deduce that it is enough to show that

lim
M→∞

∥∥U
(
B0 − 	M[−L/2,L/2]e−L� B0

)
U−1

∥∥
1 = 0. (3.2)

Following the proof of Proposition 2.3(a) we have

∥∥U
(
B0 − 	M[−L/2,L/2]e−L� B0

)
U−1

∥∥
1 ≤ ‖V ‖2‖W‖2

with V and W as in that proof. Recall that W does not depend on M and has finite
Hilbert–Schmidt norm, so all we need is to show that ‖V ‖2 → 0. To estimate this last
norm we can proceed exactly as in the arguments leading to (2.20), only replacing s
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624 J. Quastel, D. Remenik

by L and the barrier at 0 for the Brownian bridge by a barrier at M , so that the corre-
sponding crossing probability is now e−(x−M)(y−M)/L for x, y ≤ M and 1 otherwise.
We obtain, after some simple manipulations,

‖V ‖2
2 = 1

4π L

∫

R2\(−∞,M]2

dx dy (1 + y2)
[
e−(x−y)2/4L−2(x+y)L]2

+ 1

4π L

∫

(−∞,0]2

dx dy (1 + y2)
[
e−(x+y)2/4L−2(x+y)L−2M L]2

.

The last two integrals are easily seen to go to 0 as M → ∞, and (3.2) follows. 
�
Next we verify the second condition in Lemma 3.1. By the stationarity of A1 we

may take s = 0.

Lemma 3.3 Fix δ > 0. Then there is a t0 ∈ (0, 1) and n0 ∈ N such that for 0 < t <

t0, n ≥ n0 and M = (3 log(t−(1+n)))1/3 we have

E([AM
1 (t) − AM

1 (0)]2n) ≤ ct1+(1−δ)n

where the constant c > 0 is independent of δ, n0 and t0.

Proof By the stationarity of the Airy1 process

E([AM
1 (t) − AM

1 (0)]2n1AM
1 (0)∧AM

1 (t)<−M ) ≤ (2M)2n 2P(A1(0) < −M).

Now P(A1(0) < −M) = FGOE(−2M) ≤ ce− 1
3 M3

as M → ∞ by the results of [2].
Hence we get

E([AM
1 (t) − AM

1 (0)]2n1AM
1 (0)∧AM

1 (t)<−M ) ≤ c(2M)2nt1+n ≤ ct1+(1−δ)n

if t is small enough. Thus it will be enough to prove the estimate

q(t) := E([AM
1 (t) − AM

1 (0)]2n1AM
1 (0)∧AM

1 (t)≥−M ) ≤ ct1+(1−δ)n (3.3)

for small enough t .
Let F(a, b) = P(A1(0) ≤ a,A1(t) ≤ b) and G(a) = P(A1(0) ≤ b). Since

∂2

∂a∂b G(a ∧ b) = 0 except when a = b we have

q(t) =
∞∫

−M

da

∞∫
−M

db (a − b)2n ∂2

∂a∂b
[F(a, b) − G(a ∧ b)].
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Local behavior and hitting probabilities of the Airy1 process 625

Truncating the upper limits at K > 0 for a moment and integrating by parts the integral
becomes

K∫
−M

da

(
(a−K )2n ∂

∂a
[F(a, K )−G(a)]−(a + M)2n ∂

∂a
[F(a,−M)−G(−M)]

)

+
K∫

−M

da

K∫
−M

db 2n(a − b)2n−1 ∂

∂a
[F(a, b) − G(a ∧ b)]

=−2

K∫
−M

da
(

2n(a−K )2n−1[F(a, K )−G(a)]−2n(a+M)2n−1[F(a,−M)−G(−M)]
)

−
K∫

−M

da

K∫
−M

db 2n(2n − 1)(a − b)2(n−1)[F(a, b) − G(a ∧ b)]

(note that we have cancelled some boundary terms). We will see below in (3.9) that

|F(a, K ) − G(a)| ≤ cM3/2e1+cM3/2

∞∫

t−1/2(K−a)

dx e−x2/4,

whence it is easy to see that the first integral on the right side above vanishes as
K → ∞. We deduce then that

q(t) = 4n

∞∫
−M

da (a + M)2n−1[G(−M) − F(a,−M)]

+2n(2n − 1)

∞∫
−M

da

∞∫
−M

db (a − b)2(n−1)[G(a ∧ b) − F(a, b)]. (3.4)

We will estimate the last double integral, the first integral in the last line can be
estimated similarly. Since the integrand is symmetric, it will be enough to restrict the
integral to the case −M ≤ a ≤ b. Using the definitions of F and G and Theorem 1
we have

F(a, b) − G(a ∧ b) = det(I − B0 + P̄aet� P̄be−t� B0) − det(I − B0 + P̄a B0).

(3.5)

Recall that the operator inside the first determinant is trace class after conjugating by
the kernel U introduced in Proposition 2.3. We will use the bound

∣∣det(I + Q1) − det(I + Q2)
∣∣ ≤ ‖Q1 − Q2‖1e‖Q1−Q2‖1+2‖Q2‖1+1, (3.6)
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626 J. Quastel, D. Remenik

which follows directly from (3.1), to estimate the difference of determinants in (3.5),
so our first task will be to estimate the trace norms of the operators

Q2 − Q1 = U
(
P̄aet� P̄be−t� B0 − P̄a B0

)
U−1 and Q1 = U

(
P̄a B0 − B0

)
U−1

for −M ≤ a ≤ b.
We will use a different approach, and in particular a different choice of the kernel

U , than the one used in the proof of Proposition 2.3. In what follows we will write
x̃ = 21/3x and ỹ = 21/3 y. Let

U f (x) = e−(t+α)x̃φ(x̃), where φ(x) = e−αx 1x≥−21/3 M + 1x<−21/3 M

and α = M−1. We bound first the norm of Q1. Using the identity

∞∫
−∞

duAi(a + u)Ai(b − u) = 2−1/3Ai(2−1/3(a + b))

we have

Q1 = −21/3 Q1
1 Q2

1 with Q1
1(x, u) = 1x≥ae−(t+α)x̃φ(x̃)−1Ai(x̃ + u)e(t+α/2)u,

Q2
1(u, y) = e(t+α)ỹφ(ỹ)Ai(ỹ − u)e−(t+α/2)u . (3.7)

Now (using the fact that a ≥ −M)

‖Q1
1‖2

2 =
∞∫

a

dx

∞∫
−∞

du e−2t x̃ Ai(x̃ + u)2e(2t+α)u

=
∞∫

a

dx e−(4t+α)x̃

∞∫
−∞

duAi(u)2e(2t+α)u .

By (2.19) the last integral in u is bounded by c(t + α)−1/2, and then

‖Q1
1‖2 ≤ c(t + α)−3/4e−c(t+α)a ≤ c′M3/4,

where the second inequality follows from the choiceα and M and the fact that a ≥ −M .
For Q2

1 we have

‖Q2
1‖2

2 =
∞∫

−∞
dy

∞∫
−∞

du e2(t+α)ỹφ(ỹ)2Ai(ỹ − u)2e−(2t+α)u

=
∞∫

−∞
dy eα ỹφ(ỹ)2

∞∫
−∞

duAi(−u)2e−(2t+α)u .
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The u integral is bounded by c(t + α)−1/2 as before, while the y integral equals

−M∫
−∞

dy eα ỹ +
∞∫

−M

dy e−α ỹ ≤ cα−1eαM

so we also have ‖Q2
1‖2 ≤ cM3/4. Using these two estimates with (2.18) and (3.7) we

conclude that

‖Q1‖1 ≤ cM3/2. (3.8)

Now we need to bound ‖U (Q2 − Q1)U−1‖1. Recall that we are assuming a ≤ b,
so that P̄a(et� P̄b − P̄bet�) = −P̄aet� Pb. Then

U (Q2 − Q1)U
−1(x, y) = −1x≤ae−(t+α)x̃φ(x̃)−1

∞∫
b

dz
1√
4π t

e−(x−z)2/4t

·e−2t3/3−(z+y)t Ai(z + y + t2)e(t+α)ỹφ(ỹ)

= −
∞∫

−∞
dz̃

1√
4π

e−z̃2/41√
t z̃≥b−x 1x≤ae−(t+α)x̃φ(x̃)−1

·e−2t3/3−(x+y+√
t z̃)t Ai(x + y + √

t z̃ + t2)e(t+α)ỹφ(ỹ)

where we performed the change of variables z = x +√
t z̃. We regard this as an average

of the kernels Cz̃(x, y) given by

Cz̃(x, y) = 1√
t z̃≥b−x, x≤aφ(x̃)−1e−2t3/3−(x+x̃)t−(y−ỹ)t−α(x̃−ỹ)+t3/2 z̃

× Ai(x + y + √
t z̃ + t2)φ(ỹ),

so that

∥∥U (Q2 − Q1)U
−1

∥∥
1 ≤

∞∫
−∞

dz̃
1√
4π

e−z̃2/4‖Cz̃‖1 ≤
∞∫

b−a√
t

d z̃
1√
4π

e−z̃2/4‖Cz̃‖1,

where the second inequality follows from the fact that Cz̃ vanishes for
√

t z̃ < b − a.
The same argument as the one used to estimate ‖Q1‖1 with only a bit of extra arithmetic
gives the same bound for ‖Cz̃‖1 and thus we get

∥∥U (Q2 − Q1)U
−1

∥∥
1 ≤ cM3/2�(t−1/2(b − a))

with �(x) = ∫ ∞
x dz e−z2/4 (in fact a better bound can be obtained in this case without

much difficulty, but we will not need it below).
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Using the bounds on
∥∥U Q1U−1

∥∥
1 and

∥∥U (Q2 − Q1)U−1
∥∥

1 in (3.5) and (3.6) we
deduce that

∣∣F(a, b) − G(a ∧ b)
∣∣ ≤ cM3/2�(t−1/2(b − a))e1+cM3/2

≤ ct−1�(t−1/2(b − a)) (3.9)

by our choice of M . Therefore

∞∫
−M

da

∞∫
−M

db (a − b)2(n−1)[G(a ∧ b) − F(a, b)]

≤ ct−1

∞∫
−M

da

∞∫
−M

db (a − b)2(n−1)�(t−1/2(b − a))

= ctn−3

∞∫
−M

da

∞∫
−M

db (a − b)2(n−1)�(b − a).

Using the standard estimate �(x) ≤ ce−x2/4 as x → ∞ it is not hard to see that the
last integral is bounded by cM2(n−1). Using this in the second integral in (3.4), and
recalling that a similar estimate holds for the first integral, we deduce that

q(t) ≤ cn2 M2(n−1)tn−3

and thus, using our choice of M , (3.3) follows. 
�
Proof of Theorem 2 The last two lemmas allow to check the hypotheses of Lemma
3.1, which yields the result for the Airy1 case.

The proof for the Airy2 case is slightly simpler because the operators involved are
trace class, and can be obtained by adapting the preceding arguments as we explain
next.

The one-point marginal of A2, which is given by the Tracy–Widom GUE distri-

bution, satisfies the tail estimate FGUE(−M) ≤ ce− 1
12 |M|3 (see [31]). Choosing now

M = (12 log(t−(1+n)))1/3 it is not hard to check that the main argument used in the
case of the Airy1 process works in exactly the same way if we change our determi-
nantal formulas to the corresponding ones for A2. Thus all we need to do is to obtain
an analogous estimate on the difference

F(a, b) − G(a ∧ b) = det(I − KAi + P̄ae−t H P̄bet H KAi)

− det(I − KAi + P̄a KAi)

for −M ≤ a ≤ b. Recall that the operators inside these determinants are trace class
in this case, so there will be no need to conjugate. Proceeding as in the proof for A1
we need to bound the trace norms of the operators
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Local behavior and hitting probabilities of the Airy1 process 629

Q2 − Q1 = P̄ae−t H P̄bet H KAi − P̄a KAi and Q1 = P̄a KAi − KAi.

We start with Q1, which we rewrite as −(Pae−αH N )(N−1eαH KAi) with α = M−1

and N the multiplication operator N f (x) = ϕ(x) f (x) with ϕ(x) = (1 + x2)1/2 (the
choice of ϕ is not particularly important). It is easy to check (see (3.3) in [14]) that

∥∥N−1eαH KAi
∥∥2

2 < cα−1

for some c > 0. On the other hand,

∥∥Pae−αH
∥∥2

2 =
∞∫

a

dx

∞∫
−∞

dy
∫

R2

dλ dλ̃ e−α(λ+λ̃)Ai(x−λ)Ai(y−λ)Ai(x−λ̃)Ai(y−λ̃)

=
∞∫

a

dx

∞∫
−∞

dλ e−2αλAi(x − λ)2 =
∞∫

a

dx e−2αx

∞∫
−∞

dλ e−2αλAi(−λ)2

≤ cα−3/2e−2αa, (3.10)

where we used (2.19) as before. Using these two bounds together with (2.18), our
choice of α and the fact that a ≥ −M , we get

‖Q1‖1 ≤ cα−5/4e−αa ≤ c′M5/4. (3.11)

We turn next to the trace norm of Q2 − Q1. Recalling that H = −� + x and
defining the multiplication operator (eαξ f )(x) = eαx f (x) (the reason we use the
letter ξ instead of x in the definition is that we will use the operator at points other
than x below), one can derive formally, using the Baker-Campbell-Hausdorff formula,
that

e−t H = et�et3/3+t2∇e−tξ ,

where et2∇ f (x) = f (x + t2) (see [27] for a similar computation). This formula
can then be checked directly by integration using (2.15) and therefore we may write,
similarly to the Airy1 case,

(Q2 − Q1)(x, y) = 1x≤a

∞∫
−∞

dz
1√
4π t

e−(x−z)2/4t (et3/3+t2∇e−tξ Pbet H KAi)(z, y)

= 1x≤a

∞∫
−∞

dz̃
1√
4π

e−z̃2/4(et3/3+t2∇e−tξ Pbet H KAi)(
√

t z̃ + x, y)

=
∞∫

b−a−t2√
t

d z̃
1√
4π

e−z̃2/4Cz̃(x, y),
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where Cz̃ = P̄aet3/3+(
√

t z̃+t2)∇e−tξ Pbet H KAi and we have used the fact that Cz̃
vanishes for

√
t z̃ < b − a − t2. Proceeding as above we write, with α = M−1,

‖Cz̃‖1 ≤ ‖P̄aet3/3+(
√

t z̃+t2)∇e−tξ Pbe(t−α)H ‖2‖eαH KAi‖2

≤ ‖P̄aet3/3+(
√

t z̃+t2)∇e−tξ Pb‖op‖Pbe(t−α)H ‖2‖eαH KAi‖2,

where ‖ · ‖op denotes the operator norm in L2(R) and we have used (2.11). The first

norm on the second line can be easily bounded by ce−2t3/3−tb−t3/2 z̃ , while for the
other two norms we have already obtained ‖Pbe(t−α)H ‖2 ≤ c(α − t)−3/4e(t−α)b and
‖eαH KAi‖2 = (2α)−1/2 in the derivation of (3.11). Since we are only interested in
the case

√
t z̃ ≥ b − a − t2, we have e−2t3/3−tb−t3/2 z̃ ≤ et3/3−2tb+ta and then

‖Cz̃‖1 ≤ c(α − t)−3/4α−1/2et3/3−(t+α)b+ta ≤ c′M5/4,

where we have used the again our choice of M and α and the fact that −M ≤ a ≤ b.
Plugging this in the above formula for Q2 − Q1 we get

‖Q2 − Q1‖1 ≤ cM5/4�(t−1/2(b − a − t2)).

This estimate, together with the one for ‖Q1‖1, allows to derive the an estimate
analogous to (3.9):

∣∣F(a, b) − G(a ∧ b)
∣∣ ≤ cM5/4�(t−1/2(b − a − t2))e1+cM5/4

≤ ct−1�(t−1/2(b − a − t2)).

Comparing with (3.9), the only difference is the additional shift by −t3/2 in the error
function �, but it is easy to see that this does not introduce any difficulty, and the rest
of the proof follows as for A1. 
�

Finally we turn to the continuum statistics formula for the Airy1 process.

Proof of Theorem 4 Using the time reversal invariance of the Airy1 process and the
notation introduced before Proposition 2.3 we have

P
(A1(t1) ≤ g(t1), . . . ,A1(tnk ) ≤ g(tnk )

) = P
(A1(t1) ≤ ĝ(t1), . . . ,A1(tnk ) ≤ ĝ(tnk )

)
= det

(
I − B0 + 	

ĝ
nk ,[
,r ]e

−(r−
)� B0

)
L2(R)

,

where nk = 2k . Since, by Theorem 2, A1 has a continuous version, the probability on
the left side converges to P(A1(t) ≤ g(t) ∀t ∈ [
, r ]), and thus it is enough to show
that

lim
k→∞ det

(
I − U

(
B0 − 	

ĝ
nk ,[
,r ]e

−(r−
)� B0
)
U−1

)
L2(R)

= det
(

I − U
(
B0 − 	

g
[
,r ]e

−(r−
)� B0
)
U−1

)
L2(R)

,
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Local behavior and hitting probabilities of the Airy1 process 631

where nk = 2k . Since A �→ det(I + A) is a continuous function on the space of trace
class operators by (3.1), the identity follows readily from Proposition 2.3(c). 
�

4 Local Brownian property of Airy1

Note that, by stationarity and time reversibility, it is enough to study the finite dimen-
sional distribution of A1 at times s = 0 < t1 < · · · < tn . We have the following
formula for the Airy1 process conditioned at a point.

Lemma 4.1 For 0 < t1 < · · · < tn,

P (A1(t1) ≤ x + y1, . . . ,A1(tn) ≤ x + yn | A1(0) = x)

= − 1

2F ′
GOE(2x)

P(A1(0) ≤ x,A1(t1) ≤ x + y1, . . . ,A1(tn) ≤ x + yn)

· tr

[(
I − B0 + 	

(x,y+x)

(0,t) e−tn� B0

)−1
δx et1�	

y+x
t e−tn� B0

]
(4.1)

where 	x
t is defined in (2.17) and (0, t) and (x, y + x) are notations for the vectors

(0, t1, . . . , tn) and (x, y1 + x, . . . , yn + x).

Note again that the analogous formula is true for Airy2. We remark that in the
trace appearing in (4.1) we should be conjugating by the operator U introduced before
Proposition 2.3 to make sure that the operator is trace class. The same is true for the
calculations that follow. To simplify the argument we will ignore these conjugations
and skip some details throughout this section, we hope that at this point the reader can
fill in the necessary arguments.

Proof of Lemma 4.1 Note first that

P(A1(t1) ≤ x + y1, . . . ,A1(tn) ≤ x + yn | A1(0) = x)

= 1

2F ′
GOE(2x)

∂h P
(A1(0) ≤ h, A1(t1) ≤ x + y1, . . . ,A1(tn) ≤ x + yn

)∣∣
h=x

= 1

2F ′
GOE(2x)

∂h det
(

I − B0 + 	
(x,y+x)

(0,t) e−tn� B0

)∣∣∣
h=x

,

where we have used the fact that P(A1(0) ≤ x) = FGOE(2x) and Theorem 1. Now
recall (see [30]) that if {A(β)}β≥0 is family of trace class operators which is Fréchet
differentiable (in trace class norm) at β = h then

∂h det(I + A(h)) = det(I + A(h))tr[(I + A(h))−1∂h A(h)]. (4.2)

The result now follows from computing the Fréchet derivative of 	
(h,y+x)

(0,t) , which can
be shown without difficulty (after introducing the necessary conjugations) to make
sense in trace class norm. 
�
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Proof of Theorem 3 We study the last line of (4.1) and to make it easier to read we
call L = B0 + 	

(x,y+x)

(0,t) e−tn� B0. Note first of all that it is given explicitly by

tr[(I − L)−1δx et1�	
y+x
t e−tn� B0]

=
∞∫

−∞
dz et1� P̄x+y1 · · · e(tn−t1)� P̄x+yn (x, z)

∞∫
−∞

du e−tn� B0(z, u) (I − L)−1(u, x).

Shifting z by x and using the translation invariance of the heat operators we can rewrite
the trace as

∞∫
−∞

dz et1� P̄y1 · · · e(tn−tn−1)� P̄yn (0, z)

∞∫
−∞

du e−tn� B0(z + x, u) (I − L)−1(u, x).

If we put in the Brownian scaling t �→ εt, y �→ √
εy we get

∞∫
−∞

dz eεt1� P̄√
εy1

· · · eε(tn−t1)� P̄√
εyn

(0, z)

∞∫
−∞

du e−εtn�

×B0(z + x, u) (I − Lε)
−1(u, x),

where Lε is defined in the obvious way by introducing the Brownian scaling in L .
Since the heat operators are invariant under this scaling we can change z �→ √

εz to
see that this is equal to

∞∫
−∞

dzet1� P̄y1 · · · e(tn−tn−1)� P̄yn (0, z)

∞∫
−∞

due−εtn�B0(
√

εz+x, u) (I −Lε)
−1(u, x).

Combined with d
dx FGOE(2x) = −FGOE(2x)

∫ ∞
−∞ du B0(x, u)

(
I − B0 + P̄x B0

)−1

(u, x), which follows easily from (4.2), we obtain (1.10) from this and (4.1). Now
(1.12) goes to 1 as ε → 0 by the continuity of Airy1 proved in Theorem 1. On the
other hand, one can show that Lε converges to L as ε → 0 in trace class norm, which
implies (see [30]) that (I − Lε)

−1 → (I − L)−1 in the same sense. Using this it
is not hard to show by the dominated convergence theorem that (1.11) goes to 1 as
ε → 0. This implies the convergence of the finite dimensional distributions to those
of Brownian motion, and thus concludes the proof. 
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