
ELSEVIER Theoretical Computer Science 180 (1997) 229-241

Theoretical
Computer Science

Alternation on cellular automata ’

Martin Matamala *

Departumento de Ingenieria Matembtica, Fact&ad de Ciencias Fisicas y Matemriticas,
Universidad de Chile, Casilla 170-correo 3 Santiago, Chile

Received November 1995; revised December 1995
Communicated by E. Gales

Abstract

In this paper we consider several notions of alternation in cellular automata: non-uniform,
uniform and weak alternation. We study relations among these notions and with alternating
Turing machines. It is proved that the languages accepted in polynomial time by alternating
Turing machines are those accepted by alternating cellular automata in polynomial time for all
the proposed alternating cellular automata. In particular, this is true for the weak model where
the difference between existential and universal states is omitted for all the cells except the first
one. It is proved that real time alternation in cellular automata is strictly more powerful than
real time alternation in Turing machines, with only one read-write tape. Moreover, it is shown

that in linear time uniform and weak models agree.

Keywords: Cellular automata; Alternation; Nondeterminism

1. Introduction

A one-dimensional cellular automata (CA) is a bi-infinite line of identical finite

machines each being in a state which is represented by a symbol taken in a finite

alphabet Q. The transition function for all finite machines is given by a function

f: Q3 + Q. The new state for a finite machine is obtained by looking its own state,

x, and the states y and z of their right and left neighbors, respectively, and then

by computing f(z,x, y). A step on the cellular automata is achieved by computing,

simultaneously, a new state for each finite machine.

A conjiguration for a CA is a function C : Z + Q which assigns to each cell an

element q in Q. Let C, be a configuration for a CA at time t. Then a configuration at

time t + 1, Ct+t , is given by

C+,(i) = f(C,(i - l),C,(i),C,(i + 1)), i E Z.

’ This work was supported under grant CEE Marie Curie ERBCISTGT 920031

* E-mail: mmatamal@dim.uchile.cl

0304-3975/97/$17.00 @ 1997-Elsevier Science B.V. All rights reserved
PII SO304-3975(96)00214-9

230 M. Matamalal Theoretical Computer Science 180 (1997) 229-241

Cellular automata have been studied in several contexts [2,4,5,7, lo]. One of them

is to study cellular automata as language acceptors [5,9, IO]. In this sense, we consider

(U,#, Qa), where U is the input alphabet (a subset of Q), # is the quiescent state

having the quiescent property f(#, #, #) = # and Qa C Q is the set of accepting states.

Initially, an input u = uo . . .24,-l, Ui E U, i = 0,. . . , n - 1, is put in cells 0,. . . , n - 1

defining configuration Ct given by:

i < 0 or i>n
Cl(i) =

I

~~~#Uf)U, . ..U._,#.‘. 
4 i E (0,. ..,n- 1) . 

The input u is accepted if at some time the first cell enters an accepting state. 

As for Turing machines, several generalizations can be introduced in cellular au- 

tomaton models. Nondeterminism in finite automata or Turing machines gives to these 

devices the possibility of multiple transitions. So, the next state (next head state, next 

tape state, next move) for finite automata (Turing machine) can be chosen from a set 

of possible transitions. 

Nondeterminism was defined for cellular automata by Smith in [lo], where several 

language complexity results were obtained. In [8], it was studied another way to in- 

troduce nondeterminism on cellular automata. There, the authors relate their notion to 

space and time complexity classes in Turing machines. 

In model given in [lo], all the cells make an independent choice in the set of 

all possible next states given by a transition function f: Q3 -+ 28. We will call that, 

nonuniform model. 

An nonuniform nondeterministic cellular automata (NCA) is like a CA except that 

the transition function for the finite machines is a function f: Q3 + 2Q. So, a step in 

NCA is achieved by choosing, independently for each finite machine, a state belongs 

to f (x, y, z), where y is the state of the finite machine and, x and z are the states of 

its left and right neighbors, respectively. 

In the uniform version of the above definition, at each computation step some deter- 

mination for f is chosen, i.e. a function f I: Q3 --) Q such that f'(x,y,z) E f(x,y,z) 
for every (x,~,z) E Q3 and this determination is used to update the cells. 

We will see in Section 4 (Theorem 5) that the nonuniform models are at least as 

much powerful than uniform ones. This result will be obtained using a synchronization 

procedure. 

We denote a (U)NCA, defined as above, by A = (Q, f ). 
Another possible nondeterministic version consists in permitting nondeterministic 

transitions only in the first cell. So, we give the following definition. 

A weak nondeterministic cellular automata (WNCA) is like a CA but the transition 

function for cell at origin (the cell associated to position 0) is a function fo: Q --+ 2Q. 
We denote a WNCA by A = (Q, f, f o), where f: Q3 -+ Q is the transition function 

for any cell outside the origin. 

The notion of configuration for NCA, UNCA and WNCA is as for CA. If C, is a 

configuration at time t of a NCA (Q, f ), then a configuration at time t + 1, Ct+i, is 



M. Matamalal Theoretical Computer Science 180 (1997) 229-241 231 

such that 

G,l(i) E f(G(i - l), G(i), G(i + 1)). 

We impose that c,+l(i) = c(+l(j) whenever ct](i-i,i,i+l) = ctl+l,j,,+il, in the case 

of UNCA. This is equivalent to choose some determination f’ for f and update cells 

with this determination. 

For a WNCA, (Q, f, fo) the next configuration is given by 

G+i(i) = .f(G(i - l), G(i), G(i + 1 I), i # 0 

and 

G,l(O) E fo(Ct(-l),C,(O),C,(1)). 

We will prove that in polynomial time these models have the same power. This will 

be a consequence of simulation results. 

The results will be given in a more general framework by introducing the alternation 

in cellular automata. Alternation was introduced for finite automata and later for Tur- 

ing machines as models for parallel computations [3]. It consists to classify the states 

(head state) of a finite automaton (Turing machine) as existential or universal ones. 

An existential state, as in the nondeterministic case, is interpreted as an option in the 

computation, The universal ones are associated to transitions where the device makes 

two or more simultaneous actions. Since alternation is strongly related to nondetetmin- 

ism we will have three kinds of alternation in cellular automata: nonuniform, uniform 

and weak alternation. Other kinds of alternations could be defined but we will study 

only relations between these three models. This work will focus on suitable time or 

space restriction on models, so as to show where these models and Turing machines 

differ or agree. 

The paper is organized as follows. Section 2 is devoted to definition of alternation on 

cellular automata and on Turing machine. Moreover, we define time complexity classes. 

In Section 3 we give simulations of alternating cellular automata models by alternating 

Turing machines (Theorem 1) and vice versa (Theorem 2). In the first case each step 

in the alternating cellular automata is simulated by O(n) steps in the alternating Turing 

machine, where n is the size of the current configuration in the alternating cellular 

automata. In the second case, n consecutive actualizations in alternating Turing machine 

are performed by 2n actualizations with a weak alternating cellular automata. Theorem 

1 is a natural extension of theorems given in [lo]. Theorem 2 uses a different technique. 

It consists in moving the Turing machine tape representation around the Turing machine 

head representation which will be fixed at the origin cell of the cellular automata. It 

is easy to see that this simulation can be extended to uniform cellular automata and 

nonuniform ones. So, polynomial time restrictions are equivalent in all models. 

In Section 4 we study special time restrictions: real time and linear time. In the 

former, we prove that there exists a language which is recognized by a cellular automata 

in real time and which is not recognized in real time by any alternating Turing machine, 

with only one read-write tape. 



232 M. Matamalal Theoretical Computer Science 180 (1997) 229-241 

Relations between weak and uniform models will be given, permitting to conclude 

that in linear time both models agree. To complete these relations we prove that the 

nonuniform model is the most powerful of all the proposed models. 

2. Definitions 

2.1. Alternation on cellular automata and Turing machines 

An acceptor (uniform) (weak) alternating cellular automata (U)(W)ACA is a 4- 

tuple d = (u,#,Qa,A) where A = (Q,J,(fo)) is a (U)(W)NCA whose states are 

partitioned into existential and universal. U c Q is the input alphabet, # is the quiescent 

state and Qa G Q is the set of accepting states. The (U)(W)NCA satisfies the quiescent 

I= {#I 

property given by 

f(#, #, #) = {#I f o(#, #, # 

and # cannot be created. 

In order to define when an input is accepted by an (U)(W)ACA we introduce the 

notion of computation tree [l]. A computation tree, T(,ol,u), for a (U)(W)ACA d 

on input u, is a finite tree whose nodes are labeled by configurations and whose root 

is labeled by Ci. 

A computation tree for an ACA is built as follows: 

Let a be a configuration with r+s nonquiescent states. Cells il, . . . , is are in existential 

states and cells jl , . . . ,j, are in universal ones. 

The node labeled by tx has K children labeled by configurations /?l,l,...,l, . . , ~lJQ,-.J+ 

where 

We choose ~6 E f(c+i, aik, tlik+i ) for k = 1,. . . ,s and then we build configurations 
fi’,‘,..., 1,. . .) B”‘,“‘,...> n, as follows: 

For every (Ii , . . . , I,), p”‘“““(ik) = a&, k = 1,. . . ,s and pl”.““‘(jk) = qf,, k = 1,. . . , Y. 

So, configurations pi,‘,-.,‘, _ _ _ , pnl,n2-nr agree in sites ik and may differ in sites jk. 

For WACA and UACA models the ConJigurations are divided into universal and 

existential. A configuration is existential (resp. universal) when the state at origin is 

existential (resp. universal). 

A computation tree for WACA or UACA is a tree such that the children of any 

internal node labeled by an universal (existential) configuration include all (one) of 

the next configurations. 

A tree T(&‘,u) is accepting if all its leaves are accepting conjgurations, i.e., con- 

figurations where the state at origin belongs to Qa. We say that an ACA, UACA 

or WACA & accepts u if there exists an accepting tree for & on u. The language 



M. Matamalal Theoretical Computer Science 180 (1997) 229-241 233 

accepted by a (W)(U)ACA d is given by 

L(.Pe) = {u/.d accepts 24}, 

An alternating Turing machine (ATM) is a generalization of a nondeterministic Tur- 

ing machine (NTM), which is defined analogously to ACA. The states in an ATM are 

divided into existential and universal ones. The definition of a configuration is slightly 

different than that for CA’s: it describes the current state of the machine, the contents 

of the tape (we suppose only one tape is used) and the position of the read-write head. 

A new configuration is obtained by performing a step in the Turing machine, i.e., by 

reading the tape symbol and, in a nondeterministic way, computing the new head state, 

the new tape symbol and the next head move. A configuration is existential (universal) 

if the head state is an existential (universal) one. A computation tree for an ATM M 

on input u, T(M,u), is a finite tree whose nodes are labeled by configurations of M 

on u, such that the root is the initial configuration and the children of any internal 

node labeled by a universal (existential) configuration include all (one) of the next 

configurations. The notion of accepting tree, acceptance and language accepted by A4 

are analogous to those of alternating cellular automata. 

2.2. Lunguages and complexity classes 

We say that LY, an ATM or (W)(U)ACA, is t(n)-time bounded if for any u E L(.d) 

there exists an accepting tree whose height is less than tt’juj), where ju\ is the length 

of the input word u. 

We define, for a (U)(W)ACA and for an ATM the following complexity classes: 

(W)(U)ACA(t(n)) = {L(d)/& is a (W)(U)ACA t(n)-time bounded}, 

ATM(t(n)) = {L(d)/d is an ATM t(n)-time bounded}. 

3. Simulating ACA in ATM 

In this section, we prove that the evolution of an ACA C can be simulated by an 

ATM M. A4 simulates one step of C for a configuration of size n in 3n + 5 steps. 

In the first n + 1 steps, A4 moves from left to right copying the state in cell i into 

cell i + 1. In the following 2(n + 2) steps, M moves from right to left making the 

actualization of all the cells. 

Theorem 1. Let C be an ACA. Then there exists an ATM M such that L(C) = 

L(M). If C has time complexity t(n) then M has time complexity O(t2(n)). 

Proof. The simulation of one step of C can be done through 3n + 5 steps of M. Set 

!&=Qcx{R,LH}U{ > h w w ere w is the accepting state, and the alphabet 

4~ = 4?c u <Qc x {*)I u Q:: u <Q$ x {*)I. 



234 M. Matamalal Theoretical Computer Science 180 (1997) 229-241 

Let c( be the current configuration of C with nonquiescent states lying through j to 

j + n, then the associated configuration of A4 is such that: 

0 cell 0 contains (“*“). 

0 cell i # 0 contains ai. 

l M’s head scans cell j and A4 is in state (#,R). 

One step of C on a is simulated as follows by M: 

First, M moves rightwards until it reads # (on cell j + n). If M is in state (p,R) 

and reads q (resp. (q, *)), then it enters state (q,R), writes (q, p) (resp. (q, p, *)) and 

moves rightwards. 

Second, M is in state (p,R) and reads #, then it enters state (#,L), writes (#, p) 

and makes no move. 

Third, M moves leftwards until it finds # (on cell j - 1). If M is in state (r,L) and 

reads (q, p) (resp. (q, p, *)), then M enters state (q,H), writes (p, r) (resp. (p, r, *)) 

and makes no move. At this moment, M reads (p, r) and is in state (q,H). So, if s E 

f(p,q,r), then M enters state (q,L), may write s (resp. (s, *)) and moves leftwards. 

Fourth, M is in state (p,R), reads # then, M enters state (#, H), write (#, p) and 

makes no move. Now, if s E f(#, #, p) then M enters state (#,R), may write s and 

makes no move. 

At the beginning of each step, M’s tape looks as follows: 

I#lajlaj+ll.. #ao, *)I. * -IC(i+n_ll# 

After the first and second steps M’s tape is given by 

#cljoLj+l -..(a~,*)...CCj+~-l # # 
# OIj ... a-1 ... oIj+,_2 aj+-l# 

M’s head is at cell j + n and M is in state (#,L). 

We show M’s tape during the third step. At the begin of this step it looks as follows: 

# aj aj+i . . . (a0, *) ’ . . ak ak+l . . . Sj+,-1 Sj+n # 

# aj .” a-1 “‘ak__l ak . . . 

M’s head is at cell k + 1 and M is in state (ak+&L). 

The first sub-step leaves M’s tape as follows 

8 aj aj+i ’ (a0, *) . . . ak ak . . . Sj+,-1 Sj+n # 

# aj ‘.’ a-1 “‘ak__lak+2”’ 

M is in state (ak+i,H) and M’s head is at cell k + 1. 

The second sub-step, leaves M’s tape as follows: 

# Uj aj+l . . (ao, *) . . ak Sk+1 . . ’ Sj+,_l Sj+n # 

# aj ... a-1 “‘&-_I ... 

M is in state (ak+l ,L) and M’s head is at cell k. 



M. Matamalai Theoretical Computer Science 180 (1997) 229-241 235 

The simulation finishes when A4 finds the symbol #. At this time M’s tape looks as 

follows: 

A4 is in state (#,R) and M’s head is at cell j - 1. 

The simulation of one transition of C takes (n + 1) + 2(n + 2) = 3n + 5 steps, then 

we get the quadratic bound: 

States of the form (q,H) will be existential if q is existential (resp. are universal if 

q is universal). Other states lead to deterministic moves. 

Now, since accepting configurations in C were defined as having an accepting state 

in the origin, the accepting state w is entered in M’s head when a state (8) appears 

in the origin, with q an accepting state. 0 

Now, we want to give the inverse result, i.e., we want to simulate the behavior 

of an ATM into an ACA. Next theorem shows how to simulate the evolution of an 

ATM into a WACA. We could make it by associating a pair (z) to the scanned 

symbol and leave unchanged the other cells position. Since M could make nonde- 

terministic transitions in any position, the WACA should go at the first position to 

make the simulation of M’s transition and then came back to the position where M’s 

head should move. This solution is ‘sequential’ like and we should obtain a simulation 

of M’s evolution in quadratic time. We can improve this result with a more parallel 

solution. 

Theorem 2. Let M be an ATM. Then there exists a WACA C accepting L(M). IJ 

M has t(n)-time complexity then C has 2t(n)-time complexity. 

Proof. The idea is to move M’s tape around the origin. M’s head will always be at 

origin represented by vector states 
n 

0 
4 where a E (0, 1) is a control character, 4 is 

the state of M and cr is the symbol slanned by M. When M moves right (resp. left) 

two families of signal, (‘f ) and (‘f ) (resp. ( “> and (If) ) are produced moving M’s 

head representation one position to the left (resp. right) of the origin. Signals (‘p) and 

( > 
‘” move rightwards while signals (‘f) and ‘f; move leftwards. 

( ) 
Before giving formal proof we show in an example how the simulation evolves. 

Suppose the evolution on M is 

# a0 a1 . ..an_.# 
v 

+ #ah rJ’1 cT2...(T,_,# 4cJ;o; 02 g3...fJn-,#+ 
v v 

40 4 4; 

+ #ah ai 0:. . .a,-,#+ # ah ay...a,_t# 
V V 

4; 9;’ 



236 M. Matamala J Theoreiicaf Curnputer Science 180 (1997) 229-241 

These steps are simulated in C by 

# # 

# # 

# # 

# # 

# # 

# 00 01 62 Q3 

0 

# 0 

00 01 62 (73 

40 

# 
# (2) (;$ (z) (T3 (;) ‘76 (;I”) # 

# (f) # (p1) df (I) (74 (it) # # 

and signal evolutions are given by 



M. Matamalal Theoretical Computer Science 180 (1997) 229-241 231 

when M’s transition is (q,c) -+ (q’,c’, I) and 

when M’s transition is (q,c) -+ (q’,c’,r). Here, symbol ? at position i signifies that 

the information to update site i is incompleted. 

Let (ql,yf,il) be the configuration at time t for M. It can be proved, by induction 

on t that: 

w>o 
0 

. c*‘+‘(o) = qr 

0 

l yj> lC?‘+Iqj) = ‘l;,+i 

Y:, 
l M moves right at time t then Vj 2 2 

Yi,-j+l Yi,-j+l # # 

otherwise 

0 kt moves left at time t then vj’jb2 

C 2f+2+jl{_j_l,_j) = 

d-j-1 d-j-1 # # 
otherwise 

Therefore, each transition in M is simulated by two steps in C. 



238 M. Matamalal Theoretical Computer Science 180 (1997) 229-241 

States 
0 

L are existential (resp. universal) when q is existential (resp. universal). 
9 

All other states are deterministic. Moreover, 

Q:, = /q accepting state for M 

So, any accepting computation tree for M on u has associated an accepting computation 

tree of C on u with twice its height. 0 

Remark 1. For UACA and for ACA we can make an analogous construction ob- 

taining real time simulations. It is due to the fact that UACA and ACA can make 

nondeterministic transition in any cell. 

Previous results prove that polynomial time languages for (W)(U)ACA and ATM 

agree. This fact came from polynomial simulation of these models. 

Now, we analyze another time restrictions: linear and real time. 

4. Real and linear time on ATM and ACA 

4.1. rATMcrACA 

In this subsection, we prove that there exists a Ianguage recognized in real time by 

a deterministic CA and which is not recognized by an ATM in real time. 

This language is the palindrome set defined by 

~={w~U*/w=w’}, wherew=wiw2...wn andw’=w,...w2wi. 

Proposition 1. 9 E rCA and P 4 rATM. 

Proof. The former affirmation is proved in [5] for cellular automaton where the input 

is put step by step in the first cell and later in [lo] it was proved also for the cellular 

automata defined like those defined here. 

In order to prove the second affirmation we observe that if there were an ATM 

accepting 9 it should read all its inputs to give any answer. So, since we want to 

make it in real time the machine at time i reads the ith position and moves right. 

Since the machine cannot read symbols already read then it has to works like a finite 

automata. In [3,6] it is proved that the power of a finite automata, nondeterministic 

finite automata and alternating finite automata are the same when they work as language 

recognizers. Furthermore, it is known that 22’ is not a regular language which concludes 

the proof. 0 

Corollary. rATM c rACA. 



M. Matamalal Theoretical Computer Science I80 (1997) 229-241 239 

Proof. Since CA(t(n)) &ACA(t(n)) from Proposition 1 we get that 9 E rACA. From 

Remark 1 we know that rATM 5 rACA and so the result holds. q 

4.2. Linear time in ACA 

In this subsection, we prove that UACA and WACA agree in linear time. For that we 

prove two theorems which execute the simulation of UACA by WACA and reciprocally 

of WACA by UACA. 

Theorem 3. Let C be a WACA. Then, there exists a UACA C’ such that L(C) = 
L(C’). If C is t(n)-time bounded then C’ is t(n)-time bounded. 

Proof. Let J‘, fo and Q be the transition functions and the state set for C. We define 

the transition function for C’ g as f in states which belong to Q and as f. in states 

which belong to {*} x Q. 

Let T(C,u) be a computation tree for C on u. We build a computation tree, T(C’, u) 
for C’ on u, which is accepting if and only if T(C, u) is accepting. Let a a configuration 

in T(C, u). We associate in T(C’, u) a configuration @(a) given by 

@(a): . ..a_.... * ( > c(, . ..q.. 

UO 

It is easy to see that the children for @(c() in T(C’,u) are @(p’) where p’ are the 

children of CI in T(C, u) 0 

Theorem 4. Let C be an UACA. Then there exists a WACA C’ such that L(C) = 

L(C’). If C is t(n)-time bounded then C’ is 0(2t(n)) time bounded. 

Proof. Let T(C,u) be an accepting tree for u. Let p be its height. We build an 

accepting tree T(C’, u) for u of height 2p. Let qh, h 3 1 a configuration labeling a 

node in T(C, u), at level h, let ei, e2, . , eh be the choices leading from the root to czh 

and .‘,EI ,..., ~8 the configurations labeling the path in T(C, u) defined by the choices 

el,. . . ,eh. We associates to fxh a configuration in T(C’,u), @ = @(ah,crh-‘, ,cz”, 

eh,...,eo) given by 

The transition in C’ transforms @ into @’ given by 



240 M. Matamalai Theoretical Computer Science 180 (1997) 229-241 

States (i) are existential for C’ if and only if u is existential for C (universal other- 

wise). So, when E; is an existential state, &h will have only one child in T(C,u), ah+’ 

which is obtained by updating c? via some determination of f. In this case @(ah) will 

have @‘(ah) as the only child and eh+l gives the determination chosen by C. Then 

updating once more C’ we obtain a configuration @“(ah), which is equal to @(czh+l). 

When ~1 is an universal state, @h will have as children all the configurations obtained 

from gh by applying some determination off. So, @(ah) will have as children all the 

configurations Qji< ah) given by 

@j(Mh) : ” ’ (d$) ( iF21) (a (;;) (2 ( 4) (a8 
-2 a2 

where j E {1,2,. . . ,K} and K = niEej If(i 0 

Corollary. 1 UACA = 1 WACA. 

Proof. Since O(2n) = O(n) the proof comes directly from the last theorems. 0 

Theorem 5. UACA(t(n)) &AC4 (t(n)). 

Proof. Let C be an UACA given by (Q, f, U, Qa, #). Let C’ = (Q’, g, U, QL, #) be the 

ACA simulating C. We take Q’ = (0, 1, . . . , K} x Q U Q where K is the number of 

possible determinations for f. We define the maps (pi, i = 1,2. qp’ is defined from Q’ 

into Q. It is the identity function over Q and is the second projection over the set 

(031,. . ., K} x Q. (p2 is the first projection over the set (0, 1, . . . , K} x Q and is defined 

as 1 over Q. Function g is defined as follows: 

cj = fj(t#?(u), 4’(v), #l(w)>, j = 1,. . . ,K} 

if +2(u) = 952(u) = 42(w) # 0, 

otherwise. 

So, at time t31 the nonquiescent part of a configuration for C’ will be 
0 

‘: c; ’ 

. ..> 0 
4 
c: . 

Let C’ be an accepting configuration for C on u at time t. Since acceptance is 

defined in the cell at origin, C’ must be sure that its accepting configurations are only 

those obtained by uniform elections on cell that may modify the values of cell at origin 

at time t. At time s < t, these cells are those belonging to {-(t - s), . . . , (t - s)}. It is 

easy to see, by induction on t that if ef is the value of the first coordinate (for these 

cells being in a non-quiescent state) of the ith cell at time t then ef # 0 if and only if 



M. Maramalal Theoretical Computer Science 180 (1997) 229-241 241 

Vl <I’ <t t7’j E {i - (t - t’), i + t - t’} e$’ = e:‘. So, accepting trees for C on u have 

associated at least one accepting tree for C’ on U. 

5. Conclusion 

It was proved that alternating cellular automata and alternating Turing machine have 

the same power when there are no restrictions in the sources. This is true even when 

polynomial restriction is made on the time. This is no longer true when we considered 

real time since we can then separate the class defined by alternating cellular automata 

and alternating Turing machine. 

We observe that all the results obtained here apply to the nondeterministic case when 

we consider only existential states. 

From Theorems 1, 2 and 3 we have seen that general alternation in cellular automata 

is as powerful as weak alternation when we consider the polynomial time class. This 

could be interesting for simulation of alternation, in particular random simulation, be- 

cause our result says that if simulation time is reasonably larger (polynomial), then one 

can make random choices only in the first position and still obtain the same language 

complexity. 

References 

[I] J.L. BalcBzar, _I. Diaz and J.Gabarr6. Structural Complexity II, EATCS monograph Series, Vol. 22 

(Springer, Berlin, 1990). 

[2] W. Bucher and K. Culik II, On real time and linear time cellular automata, RAIRO Inform. Theor. 18 
(4) (1984) 307-325. 

[3] A.K. Chandra, D.C. Kozen and L.J. Stockmeyer, Alternation, J. ACM 28 (1981) 114-133. 

[4] J.H. Changa, O.H. Ibarra and A. Vergis, On the power of one-way communication. J. ACM 35 (3) 
(I 988) 697-726. 

[S] S.N. Cole, Real-time computation by n-dimensional iterative arrays of finite-state machines, IEEE Trans 

comput. cl8 (14) (1969) 349-365. 

[6] J.E. Hopcroti and J.D. Ullman, Introduction to Automata theory, Languages and Compuration 
(Addison-Wesley, Reading, MA, 1979). 

[7] 0. Ibarra and T. Jiang, On one-way cellular arrays, SIAM J. Comput. 16 (6) (1987) 1135-I 154. 

[8] K. Krithivasan and M. Mahajan. Nondeterministic, probabilistic and alternating computations on 

cellular array models, preprint, Department of Computer Science and Engineering, lndian Institute of 

Technology, Madras 600 036, India. 

[9] J. Mazoyer and N. Reimen, A linear speed-up theorem for cellular automata, Theoret. Comput. Sci 
101 (1992) 59-98. 

[lo] A.R. Smith Ill, Real-time language recognition by one-dimensional cellular automata, J. Compur. 
System Sci. 6 (1972) 223-253. 


