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Abstract

We survey several recent results on cycles of graphs and directed graphs of the following form:
‘Does there exist a set of cycles with a property P that generates all the cycles by operation
O?’. c© 2001 Published by Elsevier Science B.V.

1. Introduction

A graph G is k-edge-connected, k¿2, if there exist k edge-disjoint paths connecting
any pair of vertices of G. A graph G is k-connected if there exist k vertex-disjoint
paths connecting any pair of vertices of G.
A digraph D is strongly connected if there is a directed path from any vertex to

any other vertex of D.
It was proved by Robbins in [8] that a graph G is 2-edge-connected if and only if

G has a strongly connected orientation.
Given an undirected graph G = (V; E), the cycle space of G is the subspace of

GF[2]|E| generated by the incidence vectors of the cycles of G. The cycle space of a
directed graph D is the cycle space of the underlying undirected graph. A cycle basis
is a basis of the cycle space of G, equivalently a minimal set of elements of the cycle
space such that any cycle of G is a modulo 2 sum of some of them. Let D be a
digraph and let D be a set of subgraphs of D which are orientations of cycles. Then
D is called directed cycle basis if it is linearly independent and any incidence vector
of a cycle of the underlying graph of D is a modulo 2 sum of incidence vectors of
some directed circuits of D.
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The lattice generated by a set A of vectors is the set of all integer linear combinations
of vectors of A. It is a well-known fact (see e.g. [9]) that each lattice generated by a
Knite set of rational vectors has a basis, i.e., a set of linearly independent vectors (over
rationals) such that any other element of the lattice is an integer linear combination of
them.
Throughout the paper we denote by 	C ∈ {0; 1}|E| the incidence vector of the set

C ⊆E. For the sake of simplicity, we shall write 	e to indicate the incidence vector of
the set {e}. The degree of a vertex in a graph is the number of the edges incident with
the vertex. A graph is called eulerian if its vertices have even degrees. Each eulerian
graph is a union of edge-disjoint cycles.
A subdivision of an edge (arc) of a graph (directed graph) consists of replacing the

edge (arc) by a path (directed path) whose endvertices coincide with the endvertices
of the edge (arc), and whose intermediate vertices do not belong to the graph (directed
graph).
A subdivision of a graph (directed graph) is obtained by subdividing some of the

edges (arcs) of the graph (directed graph).

2. Cycles in digraphs

In this section we Krst describe a result of Galluccio and Loebl [1]. We show that
the directed cycle bases naturally deKned from an ear decomposition of a digraph are
bases of the lattice generated by the directed cycles as well. This result was used in
[1] as the main tool to characterize (p; q)-odd digraphs, p¿1, q¿p.

2.1. Directed cycle bases

A digraph D is even if and only if any subdivision of D contains a directed cycle
of length di@erent from 1mod 2. Even digraphs have been studied extensively for their
interesting connections with the Even Cycle Problem and other algebraic problems
[10–12].
A splitting of a vertex v of a digraph D consists in replacing v by two vertices v1

and v2 so that v1v2 is an arc, all arcs entering v enter v1 and all arcs leaving v leave
v2. The k-double-cycle C∗

k is the digraph arising from undirected cycle Ck of length
k by duplicating each edge and orienting the two copies in both directions. A weak
k-double-cycle is a digraph obtained from C∗

k by splitting some vertices and subdividing
arcs. If k is odd then a weak k-double cycle is also called a weak odd-double-cycle.
In [10], Seymour and Thomassen proved that a digraph is even if and only if it

contains a weak odd-double-cycle.
A digraph D is (p; q)-odd if and only if any subdivision of D contains a directed

cycle of length di@erent from p modulo q.
In [1] Galluccio and Loebl used the property of directed cycle bases we will describe

below to extend the characterisation of Seymour, Thomassen, to general (p; q)-odd
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digraphs: a digraph D is (p; q)-odd if and only if D contains a weak k-double-cycle
with (k − 2)p �= 0 mod q.
A digraph is strongly connected if and only if it may be built up from a vertex by

sequentially adding arcs (loops are allowed) and by subdividing arcs. This property
leads to the concept of ear decomposition. An ear decomposition of D is a sequence
D0; : : : ; Dt = D of subdigraphs of D such that D0 consists of a single vertex and no
arc, and each Di arises from Di−1 by adding a directed path Pi whose endvertices (not
necessarily distinct) belong to Di−1 while the arcs and intermediate vertices of Pi do
not. The paths Pi are called ears and the endvertices of Pi are called initial vertices
of the ear.
A digraph is strongly connected if and only if it has an ear decomposition. If

D0; : : : ; Dt = D is an ear decomposition of a strongly connected digraph D then each
Di, i = 1; : : : ; t is strongly connected as well.
It is well known that from each ear decomposition of a strongly connected digraph

it is possible to obtain a directed cycle basis by simply completing each new ear to
a directed cycle using a directed path in the already built subdigraph. Such directed
cycle bases will be called directed ear-bases.
Let us state now a basic result of [1] concerning the lattice generated by the directed

cycles of a digraph D.

De�nition 2.1. Let x be an integer vector indexed by the arcs of a digraph D. The
indegree of a vertex (of D) in x is the sum of the entries of x corresponding to the arcs
entering that vertex. The outdegree of a vertex (of D) in x is the sum of the entries
of x corresponding to the arcs leaving that vertex. An integer vector x is eulerian if
each vertex of D has its indegree equal to its outdegree. We denote E(D) the set of
eulerian vectors.

Theorem 2.2. Let D be a strongly connected digraph. Any directed ear-basis of D is a
basis of the lattice L(D) generated by the directed cycles of D. Moreover L(D)=E(D).

Proof: Let B = {	C1 ; : : : ; 	Cm} denote a directed ear-basis of D, i.e., a set of in-
cidence vectors of the directed cycles Ci obtained from an ear-decomposition
D0; D1; : : : ; Dm = D of D by completing the directed path Pi into a directed cycle of
Di. Let Bi = {	C1 ; : : : ; 	Ci}.
In order to prove the Krst part of the theorem, we need to show that the vectors

of B are linearly independent over the rationals and that the characteristic vectors of
directed cycles of D are integer linear combinations of them.
The linear independence follows from the construction of the directed ear-basis: for

each j¡ i6m Cj contains no arc of Pi while Ci contains Pi.
DeKne Ei to be the set of vectors of E(D) having non-zero components only on

arcs of Di. Hence E(D) = Em.
We will prove by induction on i that each element of Ei is an integer linear com-

bination of elements of Bi. This Knishes the proof of the theorem since the incidence
vector of each directed cycle of D is eulerian.
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Let � be any vector in Ei − Ei−1. Since � is eulerian, the components of � corre-
sponding to the arcs of Pi are equal, say p. Hence, the vector � − p	Ci belongs to
Ei−1, and the result follows from the induction hypothesis.

To conclude this subsection let us remark that the lattice generated by directed cycles
of a strongly connected digraph was considered also in [7] where several algebraic
properties were derived.

2.2. 2-chains

For a digraph D and two vertices s and t we deKne a directed path decomposition of
D from s to t like an ear decomposition with two di@erences. First, D0 is a directed path
from s to t. Second, Di is obtained from Di−1 by adding directed paths Pi;1; : : : ; Pi; ri
such that there exists a directed path Pi from s to t and Pi;j, j= 1; : : : ; ri are the parts
of Pi not in Di−1.
Let s; t be vertices a digraph D. D is called distribution digraph from s to t if any

arc of D belongs to a directed path from s to t.

Theorem 2.3. A digraph D is a distribution digraph from s to t if and only if it
admits an directed path decomposition from s to t.

Proof: Let D be a distribution digraph from s to t. First, we show that it admits a
directed path decomposition from s to t. We take D0 any directed path from s to t. If
it does not exist then D has no arc and the decomposition follows. Suppose that we
have already built Di. Let a be an arc not in Di. Since D is a distribution digraph a
belongs to a directed path Pi from s to t. Let Pi;1; : : : ; Pi; ri be the parts of Pi not in
Di. We add all these parts to Di−1 to get Di. This process may continue until Knally
we obtain Dm = D.
On the other hand if D0; : : : ; Dm is a directed path decomposition from s to t, where

D=Dm, we will prove that D is a distribution digraph. In fact, we will prove that for
each i the subdigraph Di is a distribution digraph. Clearly D0 is a distribution digraph.
Assume that Di−1 is a distribution digraph. Let a be an arc in Di\Di−1. Then a belongs
by deKnition to a directed path from s to t and hence Di is a distribution digraph.

An orientation of a cycle is called 2-chain if it consists of two directed paths with
the same origin and the same destination. From a directed path decomposition of D
from s to t it is easy to construct a directed cycle basis consisting of 2-chains. Let
us call such basis a 2-chain basis. Hence previous theorem shows that for distribution
digraphs there exists a 2-chain basis.
This result was used in [6] in an urban transportation problem known as the users’

equilibrium problem with inelastic demand: a descent gradient algorithm was proposed
to obtain the equilibrium in the network (all users perceiving the same cost). The
algorithm uses as descent directions those given by a 2-chain basis.
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3. Cycles in graphs

In this section we turn our attention to undirected graphs. Let G be a 2-edge-connected
undirected graph. Is there a natural set of cycles which form a basis of the lattice of
cycles of G? This question was answered aMrmatively by Galluccio, Loebl in [1]. We
will describe the result below.
A binary code is a subspace of GF[2]m. The characteristic vectors of cycles of a

graph, and in general the characteristic vectors of cycles of a binary matroid, form a
binary code. The lattices generated by the cycles of binary matroids were studied by
Lovasz and Seres in [5].
The result of Galluccio and Loebl led Hochstaettler and Loebl [2] to formulate the

following conjecture: ‘The lattice generated by a binary code always has a basis of
codewords.’ The conjecture was proved to be true for instance for regular matroids
and at present the best result towards proving the conjecture is obtained by Fleiner et
al. in [3].
Each cycle of an undirected graph is contained in its 2-connected component and

these components are edge-disjoint. Hence we may restrict ourselves to 2-connected
graphs when studying the cycles of undirected graphs.
A graph is called eulerian if all of its vertices have even degree.
An ear decomposition of a (2-connected) graph G is a sequence G1; : : : ; Gt = G

of subgraphs of G such that G1 is a cycle and each Gi, i¿ 1, arises from Gi−1 by
adding a path Pi whose endvertices are distinct and belong to Gi−1 while the edges
and intermediate vertices of Pi do not. The paths Pi are called ears and the endvertices
of Pi are called initial vertices of the ear.
A graph is 2-connected if and only if it has an ear decomposition; from an ear

decomposition we may obtain a cycle basis, i.e., a basis of the vector space over
GF [1] generated by the incidence vectors of the circuits, by completing each new ear
to a circuit using a path in the already built subgraph. Such cycle bases are called
ear-bases.
An ear decomposition G1; : : : ; Gt =G of G will be called correct ear decomposition

if each Gi, i = 2; : : : ; t, is a subdivision of a 3-edge-connected graph (possibly with
parallel edges).

Theorem 3.1. Let G be a subdivision of a 3-edge-connected graph. Then G has a
correct ear-decomposition.

Proof: Let Gi, i¿2, be a subdivision of a 3-edge-connected graph H and let Gi be a
subgraph of G. Call an ear Pi+1 correct if the initial vertices of Pi+1 are not subdividing
vertices of the same edge of H . Observe that if Pi+1 is correct then Gi+1 is a subdivision
of a 3-edge-connected graph.
If a correct ear Pi+1 does not exist then let S be an edge of H with a subdividing

vertex connected by an edge to a vertex of G−Gi. The terminal edges of the subdivision
of S in Gi must form a 2-edge-cut of G, which is a contradiction.



180 M. Loebl, M. Matamala /Discrete Mathematics 233 (2001) 175–182

De�nition 3.2. Let G be a subdivision of a 3-edge-connected graph. Let G1; : : : ; Gt=G
be a correct ear decomposition of G.
An improved ear-basis A(G) =A(Gt) is recursively deKned as follows:

1. A(G2) consists of all three cycles of G2.
2. Let i¿ 2 and Gi be obtained from Gi−1 by adding the ear Pi.

We distinguish three cases:
(i) if the endvertices of Pi have degree greater than 2 in Gi−1 then A(Gi) is

obtained from A(Gi−1) by adding an arbitrary circuit C1
i of Gi containing Pi;

(ii) if one endvertex of Pi have degree 2 in Gi−1 then let e1; e2 be two edges
of Gi−1 incident with that vertex. Then A(Gi) is obtained from A(Gi−1) by
adding two circuits C1

i ; C
2
i of Gi, C1

i containing Pi and e1 and C2
i containing

Pi and e2;
(iii) if both endvertices of Pi have degree 2 in Gi−1 then let e1; e2 and f1; f2 be

two pairs of edges of Gi−1 incident with each endvertex of Pi. Since the ear
decomposition is correct, e1; e2; f1; f2 do not belong to a subdivision of the
same edge in Gi−1.
Then A(Gi) is obtained from A(Gi−1) by adding three circuits C1

i ; C
2
i ; C

3
i of

Gi, C1
i containing Pi and e1; f1, C2

i containing Pi and e2; f1, and C3
i containing

Pi and e1; f2.

The following theorem is proved in [1].

Theorem 3.3. Let G be a subdivision of a 3-edge-connected graph H. Any improved
ear-basis of G is a basis of the lattice generated by the circuits of G. Moreover; this
lattice contains all vectors of form 2F; where F is the set of the edges of the path
of G obtained by subdividing an edge of H.

4. About Robbins’ theorem

As mentioned in the introduction, it was proved by Robbins in [8] that a graph G is
2-edge-connected if and only if G has a strongly connected orientation. It was observed
by Greenberg and Loebl [4] that this theorem has a linear algebra generalisation.

Theorem 4.1. Let L⊂Rd be a lattice and let A⊂L. There exists s ∈ {1;−1}A such
that each element of L is a non-negative integer linear combination of {s(a)a; a ∈ A}
if and only if the following two conditions are satis7ed:

1. Each element of L is an integer linear combination of A;
2. For each z ∈ A; 0 =

∑
a∈A bz(a)a where bz(a) is integer for each a and bz(z) �= 0.

Proof: Condition 1 is clearly necessary. To show that condition 2 is necessary let s
exist and assume that for a ∈ A, s(a)=1. Since −a ∈ L, we have that −a=∑

b∈A s
′(b)b



M. Loebl, M. Matamala /Discrete Mathematics 233 (2001) 175–182 181

where s′(b) = 0 or s′(b) has the same sign as s(b) for each b ∈ A. Adding a to both
sides, we get condition 2 for a.

Let us prove that the two conditions are suMcient. In fact, we will prove a stronger
statement:

Claim: Let us assume that A ∪ {−a; a ∈ A} generates L; and let A′ ⊂A and s′ ∈
{1;−1}A′

is given with the following property P: For each z ∈ A; 0 =
∑

a∈A bz(a)a
where bz(a) is integer for each a, bz(z) �= 0 and for a′ ∈ A′, if bz(a′) �= 0 then it has
the same sign as s′(a′).

Let b ∈ A− A′. Then s′ may be extended to s′′ ∈ {1;−1}A′∪{b} so that P is valid
for s′′.

Proof: For a contradiction assume that s′ cannot be extended to A′ ∪{b}. Hence if we
let s′′(b) = 1 then P is violated for some x ∈ A and if we let s′′(b) = −1 then P is
violated for some y ∈ A. Since P holds for s′ we have that x �= y and
0 =

∑
a∈A bx(a)a where bx(x) �= 0, bx(a′) = 0 or it has the same sign as s′(a′) for

each a′ ∈ A′ and bx(b) is negative; by the choice of y we also have bx(y) = 0.
0 =

∑
a∈A by(a)a where by(y) �= 0, by(a′) = 0 or it has the same sign as s′(a′) for

each a′ ∈ A′ and by(b) is positive; by the choice of x we also have bx(y) = 0.
Without loss of generality assume that −bx(b)¿by(b).
Then 0=

∑
a∈A(bx(a)+ by(a))a, and if we let b′y(a)= bx(a)+ by(a) for each a ∈ A

then b′y(y) �= 0, b′y(a
′)=0 or it has the same sign as s′(a′) for each a′ ∈ A′ and b′y(b)

is negative of equals zero. When we let s′′(b) =−1 property P is satisKed for y and
s′′, which contradicts the choice of y.

Remark 1. Theorem 4.1 indeed generalises the Robbins’ theorem: Let G = (V; E) be
a graph with vertices v1; : : : ; vn. For any pair of vertices vi; vj of G, i¡ j, let x(i; j) ∈
{0; 1;−1}n be a vector whose components are all equal to zero except x(i; j)i = 1
and x(i; j)j = −1. Let L be the lattice generated by all the vectors x(i; j), and let
A = {x(i; j); {vi; vj} ∈ E}. Then G has a strongly connected orientation if and only if
s from Theorem 4.1 exists for A. Moreover, the two conditions of Theorem 4.1 are
equivalent to G being connected (condition 1) and each edge belonging to a cycle
(condition 2). This is equivalent to G being 2-edge-connected.

Theorem 4:1 has an interesting consequence.

Corollary 4.2. Let L be a lattice and A⊂L such that each element of L is an integer
linear combination of A− {a}, for any a ∈ A. Then s from Theorem 4:1 exists.

Remark 2. It may be observed that subdivisions of 3-connected graphs satisfy condi-
tion 4:2 and thus s from Theorem 4.1 always exists. It may be interesting to investigate
which properties does the set of all such s have.
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