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Face and iris localization is one of the most active research areas in image understanding for new appli-
cations in security and theft prevention, as well as in the development of human-machine interfaces. In
the past, several methods for real-time face localization have been developed using face anthropometric
templates which include face features such as eyes, eyebrows, nose and mouth. It has been shown that
accuracy in face and iris localization is crucial to face recognition algorithms. An error of a few pixels in
face or iris localization will produce significant reduction in face recognition rates. In this paper, we pres-
ent a new method based on particle swarm optimization (PSO) to generate templates for frontal face
localization in real time. The PSO templates were tested for face localization on the Yale B Face Database
and compared to other methods based on anthropometric templates and Adaboost. Additionally, the PSO
templates were compared in iris localization to a method using combined binary edge and intensity
information in two subsets of the AR face database, and to a method based on SVM classifiers in a subset
of the FERET database. Results show that the PSO templates exhibit better spatial selectivity for frontal
faces resulting in a better performance in face localization and face size estimation. Correct face localiza-
tion reached a rate of 97.4% on Yale B which was higher than 96.2% obtained with the anthropometric
templates and much better than 60.5% obtained with the Adaboost face detection method. On the AR face
subsets, different disparity errors were considered and for the smallest error, a 100% correct detection
was reached in the AR-63 subset and 99.7% was obtained in the AR-564 subset. On the FERET subset a
detection rate of 96.6% was achieved using the same criteria. In contrast to the Adaboost method, PSO
templates were able to localize faces on high-contrast or poorly illuminated environments. Additionally,
in comparison with the anthropometric templates, the PSO templates have fewer pixels, resulting in a
40% reduction in processing time thus making them more appropriate for real-time applications.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

tional Biometric Group, 2008). Face recognition is an important
segment of the biometrics market and it has been shown that in-

Real-time face localization is among the most active research
areas in image understanding because of new applications in hu-
man-machine interfaces, gesture recognition, face recognition,
surveillance, user verification and theft prevention (Le and Satoh,
2006; Yang et al., 2002; Perez et al., 2007, 2005, 2003; Chiang
et al., 2003). Also, face localization is one of the first steps in many
applications involving gaze estimation to aid handicapped individ-
uals or to control devices in complex technological environments
such as airplane cockpits, hospital operating rooms and industrial
control units (Park and Lim, 2001; Sirohey et al., 2002; Wang
et al., 2002; Yang et al., 2002). In addition, the biometrics world
market is predicted to almost triple in the next five years and face
recognition products represent 11.4% of the total market (Interna-
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creased error in face or iris localization will yield lower face recog-
nition rates (Campadelli et al., 2007). In (Campadelli et al., 2007)
using the XM2VTS face database it is shown that precision for iris
localization is critical for face recognition. Localization errors of
0.05 (maximum iris detection error divided by distance between
irises) resulted in a face recognition drop of nearly 20% for several
different methods. Therefore, it is very important to find better face
and iris localization methods to improve face recognition rates.
Accurate iris localization refers to the error minimization when
detecting the eye position, i.e., error as the distance between the
ground truth and the detected position of the eye. The minimiza-
tion of the error in iris localization is essential in many face recog-
nition algorithms. Fig. 1 shows the recognition rate as a function of
the standard deviation of the iris localization error (noise level) in
the FERET database for the four subsets (Fb, Fc, Dup1 and Dup2).
The face recognition algorithm is based on Gabor jets (Zou et al.,
2005), and was selected because it reaches one of the highest rec-
ognition rates in the FERET database published up to date. It can be
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Fig. 1. Recognition rate on the FERET database as a function of iris localization error.

observed that an error of 5 pixels (STD) produces a decrease in rec-
ognition rate between 10% and 25% on the different subsets of the
FERET database. These results emphasize the importance of accu-
rate iris detection for face recognition.

Methods for face localization have been classified into knowl-
edge based, feature invariant, template matching and appearance
based (Yang et al., 2002). Template-based face localization has pro-
ven to be accurate and appropriate for real-time applications in
man-machine interfaces (Maio and Maltoni, 2000; Jin et al,
2007; Kato et al., 2007; Phimoltares et al., 2007; Mohanty et al.,
2006; Perez et al., 2007; Ji, 2002; Ying et al., 2001). In previous re-
search the original method to detect faces using templates (Maio
and Maltoni, 2000) was extended to detect rotated faces and irises
in real time (Perez et al., 2007, 2009). A crucial part of this method
computes a line integral of a face template over a directional im-
age. A set of face templates is used to compute the line integral
to take into account face size (Maio and Maltoni, 2000; Perez
etal., 2007; Jin et al., 2007). A set of templates was built to consider
face anthropometric features such as eyes, eyebrows, nose, mouth
and lower part of the chin. These face features provide edges
mainly along horizontal or vertical directions within the face. Eyes,
eyebrows and mouth regions were assigned 0°, nose was assigned
90°, and chin was assigned a variable angle according to the tan-
gent vector to the chin contour capturing the face elliptical shape.
The upper part of the face was not considered in the template since
the hair style frequently introduces great variance in shape. These
templates are called anthropometric templates because they in-
clude the described distinctive face features (Perez et al., 2007,
2009). Although the results of this method are good, specially in
real-time applications, there is still space for face and iris localiza-
tion improvements. Therefore, a natural next step was to develop a
method to generate new templates that could improve the present
face and iris localization results and reduce computational time.

In the present paper, we present the research to design an im-
proved template for face localization. Preliminary results were ob-
tained using PSO to design templates in (Perez and Vallejos, 2006).
The method was applied on faces of the same person to detect his/
her face. Faces were not aligned and therefore an error resulted for
different persons. In the present paper faces are aligned using the
eyes as references. This improves significantly the PSO algorithm
convergence. Due to this improvement the PSO algorithm can be

now applied to any set of faces from different persons. The initial
population of the PSO algorithm was increased and stop criteria
was also modified based on the fitness value instead of number
of iterations. In (Perez and Vallejos, 2006) the method was assessed
only by visual inspection without an objective to measure face or
iris localization. In the present paper, we include objective mea-
sures for face and iris localization errors. In the present paper,
we added the iris localization stage which is compared to other
methods. The original method was applied only to two video se-
quences and now we added more video sequences, faces from Yale
B face database, AR face database and FERET database. We also in-
clude a comparison with three other methods including Adaboost-
based method, a combined binary edges and intensity method, and
a SVM-based method.

The search for these templates involves a high dimensional
space and therefore, an exhaustive search is not possible. Even
for the case of the smallest template in the proposed method with
a fixed number of points, the number of computations involved in
searching for all possible solutions is huge. Eq. (1) shows the size of
the search space for the smallest template of 30 x 40 pixels and for
a fixed number of 200 points

1200!

~2001(1200 — 200)!” (1)

Number of templates = 1200
plates = ( 200 )

The fact that face templates are usually larger than 30 x 40 pix-
els and that a variable number of points are allowed in each tem-
plate, justifies the choice of a heuristic algorithm to guide the
search. The proposed method for template optimization uses the
particle swarm optimization (PSO) algorithm because of its proven
effectiveness in heuristic search and relatively small computa-
tional time required (Eberhart and Kennedy, 1995). The PSO algo-
rithm was originally introduced by Eberhart and Kennedy (1995).
Several papers have expanded the original algorithm and analyzed
the convergence and stability (Clerc and Kennedy, 2002; Chatterjee
and Siarry, 2006; Eberhart and Shi, 1998, 1999; Shi and Eberhart,
1998; Trelea, 2003; Zhang et al., 2005).

In this paper, we use the particle swarm optimization (PSO)
algorithm to generate new templates to maximize the line integral
value while using a small number of points to decrease the compu-
tational time. Face size estimation, spatial selectivity, face and iris
localization rates are computed.
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2. Methodology
2.1. General context for template-based face detection

The directional image contains the main gradient angles ex-
tracted from the frontal face. The template is employed to compute
a line integral over the directional image. An ideal template should
produce a large detection value when it is located right over the
subject’s face and a low value elsewhere. As the directional image
changes with face gestures, face movements and illumination vari-
ations, the face template should represent the main features that
remain rather constant on the face. In the previous work, anthro-
pometric templates were created using this assumption including
information about eyes, eyebrows, nose, mouth and lower part of
the chin (Perez et al., 2007).

2.2. PSO template generation

The PSO algorithm is a relatively new combinatorial heuristic
algorithm based on the interaction of social systems such as fish
schooling and bird flocking. Since the introduction of the PSO algo-
rithm, several improvements have been proposed introducing new
parameters for intensive search as well as to avoid solution combi-
natorial explosion (Clerc and Kennedy, 2002; Shi and Eberhart,
1998).

The PSO algorithm simulates the individual (a particle) social
behavior moving in a multidimensional space. Each solution is
identified with an individual particle which has specific coordi-
nates in the search space. Each particle has a position (X;) and a
speed (V;) in the multidimensional space. The particle position
indicates the possible solution in the multidimensional space and
the speed indicates the amount of change between the current po-
sition and the previous one. The algorithm also stores the previous
best position (P;) of each particle. This information is used to adapt
the particle position in the solution space for the next iteration. At
initialization, the algorithm generates a random particle popula-
tion and each particle is initialized with a random position and
speed. The speed of each particle is initialized in the range

[—Vmax, Vmax), where (Vnax) is the maximum speed of the particles.
After the initial population has been generated, a fitness function is
evaluated for each particle position. The current result of the fit-
ness function is compared to the best previous result for each par-
ticle. If the current result is higher, the best previous particle is
replaced by the current one (P; = X;).

Then for each particle (X;), the index g(i) of the particle with the
best previous fitness value within a neighborhood around the par-
ticle is determined. Particles are modified according to:

Vit +1) = w-Vi(t) + @y - (Py = X;i(0)) + @3 - (Pgiy — Xij(£)),  (2)
Xi(t+1) =X;(t) + Vit + 1), (3)

where ¢, and ¢, are random numbers in the range [0- - - ¢ ,,,]. Gen-
erally ¢,,.,., is equal to 2, but can change with different implemen-
tations. In this equation, w is the inertia parameter (Shi and
Eberhart, 1998).

The PSO method is applied to frontal faces to generate a set of
templates for different face sizes. One alternative for this method
is to use faces from different subjects to generate a generic PSO
template. Another alternative is to create personalized templates
by using a set of faces from the same subject to create the PSO tem-
plates. Fig. 2 shows a block diagram of the template generation by
the PSO algorithm.

2.2.1. Preprocessing

The method needs a small set of segmented frontal face images
in order to apply the PSO algorithm. Therefore, the first step to
generate the PSO templates is to segment the frontal face by deter-
mining the parameters (x1,X2,¥;,Y,, T) shown in Fig. 3. The vertical
face position and size are within the interval [y, — Ay;,y, + Ays]
and the horizontal face position and size are within the interval
[x1,X2]. On the vertical axis y, y; corresponds to the center of the
eyebrows and y, to the center of the mouth. Variables x; and x,
are the distances to the left and right borders of the face, respec-
tively, with the nose located at the center of the face. Ay, is the dis-
tance between the center of the eyebrows and the upper limit of
the face. Ay, is the distance between the center of the mouth
and the lower limit of the face. The latter two are computed by
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Fig. 2. Block diagram for the PSO template generation method.
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Fig. 3. Parameters for manual frontal face segmentation.

using anthropometric measurements. The segmented faces are
converted to gray scale and normalized in size. Then, a directional
image is computed (Maio and Maltoni, 2000; Perez et al., 2007) as
shown in Fig. 4. The directional image contains the average of the
tangent vectors in a 3 x 3 window in the normalized gray scale
segmented image. A larger window could also be used to calculate
the directional image to obtain a coarse template of the face,
improving computation time but lowering accuracy on the final
template set. Considering different face sizes, the resulting set of
directional images is used by the PSO algorithm. Eye positions
are used to align faces in order to make the PSO algorithm converge
to a solution.

2.2.2. Template initialization

In the method proposed in this paper, each pixel in the template
represents an angle between 0° and 180°, quantized in steps given
by 180/w,, where (wy) = 36 resulting in steps of 5°. Angle informa-
tion is then stored for each template pixel in values ranging from 0
to 36. Therefore, pixel values above 36 do not belong to the tem-
plate. This angle discretization is not a critical parameter. A larger
step size in the angle discretization provides faster convergence at
the expense of less precise angular fitting on the final template. For
the PSO template optimization, the position of each particle is
defined by a vector of size N equal to the number of pixels of the

(b)

Fig. 4. (a) Segmented frontal face; (b) directional image of (a).

template. The range for each pixel in the template (X;;,) depends
on the quantization used in the directional image (w;) = 36 and on
a margin, [mg], that allows to define regions of the particle position
that are not a part of the template. This range is given by
[0,wq + 2 - mg]. A component of the vector representing the particle
position that falls within the allowed range will be present in the
PSO template, otherwise it will not belong to the template. Only
components of the vector that are part of the template are consid-
ered for the line integral computation (fitness). Fig. 5 and Eq. (4)
show the range where a PSO template pixel or the vector compo-
nent for the particle position will be considered to belong to the
PSO template. IM;,,, represents the module of point (I, m) of parti-
cle (X;) and MM;,,, is the angle at point (I, m) of particle (X;).

For each vector component the allowed or not allowed ranges
are defined as follows (4):

(1, Xigm — mg)
(0,0)

Xiim € Mg, Wy 4+ mg],
Xitm ¢ [Mg, wg + mg].

(M1, M) = { )

Speed initialization is performed randomly in the range
[~w4, Wy]. Position of each particle is initialized by assigning a ran-
dom number for each pixel in the interval [0, w, + 2 - mg]. Speed is
also initialized by assigning a random number for each pixel in the
range [—wy, Wq]. A modification of a particle position will change
the value of each PSO template pixel, changing its angular informa-
tion. This angular information may take a value within the interval
[mg, wq + mg], or may take a value out of the allowed range, disap-
pearing from the PSO template. The speed of each particle modifies
each particle position according to Eq. (13). Particle size depends
on the size of the template to be generated.

2.2.3. Evaluation

A fitness function is defined and computed for each particle.
Since the line integral value provides a measure of similitude be-
tween the template and the directional image (Perez et al.,
2007), the fitness function is the line integral value of the template
over the face directional image. The line integral f¥ for particle i is
given by (5)

Ng—1 Ny Ny

1
fik = NR .PM Z Z ZIMi.l,m

I 'h=0 =0 m=0

In Eq. (5), Iy, ,,, indicates that the component of the face direc-
tional image, h, at position (I,m) is present. Ny is the number of
frontal faces, N,, is the particle width, Ny is the particle height,
and PM; is the total number of points of particle X;. Particle X; rep-
resents a template. The index k indicates the iteration number. Fac-
tor o;mn, called “angular similarity” (Perez et al., 2007),
corresponds to the angle difference at a particular coordinate in
the PSO template and the angle measured at the directional image
I, from face h. This factor is defined as,

0 ny, Wytmp Wy +2-mp
| | | | >
- e —e g
my Wd Mg
.

'

%(_/

Allowed range

Not allowed
range

Not allowed

range

Fig. 5. Particles initialization range where PSO template pixels (or vector compo-
nents) are allowed.



C.A. Perez et al./Pattern Recognition Letters 31 (2010) 857-868 861

Oitmp =90° =2
-min MMy — L, |, 1807 = MMy — 1

%mh

) ®

where I, = angle at point (I,m) for face h.
The line integral values in each template position (I, m) for each
particle are stored for the next iteration as follows,

" IinBl (lfefh " Gilhm — (1- Irefh.l.m) ’ 900)

ilm — NR . (7)

The line integral value computed for each particle is penalized
by a factor that takes into account the total number of points in
each particle, i.e., the total number of points in the PSO template.
This factor provides a preference for those templates with fewer
points and therefore the time required in the line integral compu-
tation will be lower. Computational time is very important in real-
time applications.

Finally if the stop criterion is satisfied, the algorithm stops and
goes to the Multiresolution stage where the next template size is
optimized, otherwise it iterates until the criterion is met. When
all template sizes are computed the algorithm stops. The following
criteria are used:

e Threshold value: If the line integral value is above the threshold
the algorithm stops. The maximum value for the line integral
is 18 and the threshold was set at 15 which is a value above
the line integral value obtained for the anthropometric tem-
plates (Perez et al., 2007).

e Maximum number of iterations: The algorithm stops when the
maximum number of iterations has been reached.

2.2.4. Particle modification
The particle position and velocity are modified according to the
following:

e Best particle: For each particle, if the line integral value (f¥) in the
current iteration k is negative, the best particle is modified only
if the components of the line integral (fX,,) are greater than the
previous values, i.e.,

if £ > max {f, ] = Pun = Xin. ®)

If the actual line integral value (f¥) is positive, the individual
terms of the best particle are modified only if the components
of the line integral (f% ) are greater than the previous values
or if these values are below the threshold Tp; as follows:

if fk k k
if fiim > max. { ,»j,m} or  fiim < To = Pitm = Xiim. 9

Threshold value Tp, allows for a faster convergence of the PSO
template and improves template quality by filtering out irrele-
vant points.

e Best particle within a neighborhood: For each particle the line
integral values are compared within a neighborhood of the par-
ticle. The index of the best particle within the neighborhood is
stored as g(i). T indicates the neighborhood size.

N Kk 1

a0 = max {mx ()} 10)

e Inertia parameter: It was chosen as a decreasing function of the
line integral value to improve convergence. The inertia parame-
ter as proposed in (Chatterjee and Siarry, 2006; Eberhart and Shi,
1998; Shi and Eberhart, 1998) is

w:[ f%r (11)

where I' takes alternating values with a period of 15 iterations as
I' = 0.5 for local search and I = 1.5 for global search. A non-linear
decreasing function has been used previously for I' in (Chatterjee
and Siarry, 2006; Eberhart and Shi, 1999).

The particles are changed according to

Vitm(E+1) =w-Vin(t) + @ - (Piym — Xiym(t))
+ @y - (Pgyim — Xitm(t)), (12)
Xigm(t+1) = Xigm(t) + Vigm(t 4+ 1). (13)

2.2.5. Multiresolution

In this stage, the PSO template size is increased and parameters
are changed to transform the scale in order to have templates for
different face sizes. The best template for each size is stored after
this stage. Templates are optimized for face sizes within the range
120-240 pixels height with a step of 2 pixels. However, angular
information stored in the templates is compressed in a factor given
by the directional image used (Maio and Maltoni, 2000; Perez et al.,
2007), resulting in 61 templates that fall within the range 30 x 40
pixels to 60 x 80 pixels. Larger template size requires longer com-
putational time on the PSO optimization. As an example, on a com-
puter Athlon64 3000+, 1 GB RAM, the smallest template (30 x 40)
takes approximately 1.5 min to optimize, while the largest tem-
plate (60 x 80) takes 15 min.

2.2.6. Iris localization

Iris localization uses the same method proposed in our previous
work with anthropometric templates (Perez et al., 2007). Based on
the face anthropometry the region where the eyes are most prob-
ably located is determined . An iris template is then applied in that
region that searches for the iris-sclera border. The method has
shown great accuracy in iris localization (Perez et al., 2007).

2.3. Metrics

2.3.1. Measuring face detection rate

The face localization method determines a rectangular box con-
taining the face. Boxes are represented by their center location
(x,¥), width t and height t/0.75. In order to measure the correct-
ness of face localization, the output box is compared against a
manually marked box, ground truth, for each face. Two different
criteria have to be accomplished in order to classify a localized face
as correct (Verschae and del Solar, 2003; Verschae et al., 2008):

1. Distance between face centers has to be less than P times the
sum of both widths. P was chosen equal to 0.25

Voo =% + (1 =31 < P- (6 + ). (14)

2. An area-based criterion establishes that the localized face width
should not double that of the ground truth

(t1<t2/\t2<2~t1)\/(f2<t1/\t1<2~t2). (15)

Fig. 6 shows the ground-truth box (white) and a localized face
box (black). In this case, the localized face box does not meet the
distance between both centers’ criteria.

2.3.2. Measuring iris localization
To measure iris localization error, we used the same metrics ap-
plied in (Song et al., 2006). The relative error is then defined by:
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Fig. 6. Example of ground-truth box (white) and face localized box (black).

_ max((jdl, d) 7 (16)
Ir

where d, is the left eye disparity, i.e. the distance between the man-
ually localized left iris position and the automatically localized po-
sition, d, is the right eye disparity, and dj, is the Euclidean distance
between the manually localized left and right eyes. The detection is
considered to be correct if err < 0.25.

2.4. Tests

2.4.1. Yale B face database

This database (Georghiades et al., 2001) contains images of 10
different subjects, each in nine different poses. For each pose, pic-
tures were taken under 64 illumination conditions, provided by a
single light source located in different angles. An image with ambi-
ent (background) light was also taken for each pose given a total of
5850 images (10 subjects x 9 poses x 65 illumination conditions).

For the test on Yale B database, a generic as well as a personal-
ized PSO template was used. Personalized templates were created
for each person, using four images per subject. These images were
selected from the frontal pose dataset of each individual (pose 0).

Fig. 7b shows the four images selected to create the PSO template
for subject yaleBO1 of Yale B database. Fig. 7a shows the images
used to generate our generic PSO templates and correspond to pic-
tures of four students from the Electrical Engineering Department.

Tests were performed on Yale B database to compare face local-
ization performance of the PSO templates, the anthropometrics
templates (Perez et al.,, 2007) and Adaboost (Jones and Viola,
2003) method in a database with different lighting conditions,
changing pose and with some degree of face rotation. The Adaboost
method implementation was trained using bootstraping and 5000
examples of faces and 5000 examples of non-faces, resulting in a
cascade detector with 24 stages.

2.4.2. AR face database

The method based on the PSO templates was compared to the
method that uses combined binary edges and intensity informa-
tion (Song et al., 2006) for iris localization. In (Song et al., 2006)
the method was applied on two subsets of the AR face database
(Martinez and Benavente, 1998), AR-63 and AR-564. We applied
the PSO template method to the same subsets of the AR face data-
base and therefore, results on iris localization may be directly com-
pared. Both the generic and personalized PSO templates for the AR
subsets were employed. The personalized templates were obtained
by using faces contained in the AR database for the PSO algorithm
that were not part of the AR-63 or AR-564 subsets. We also tested
our method against the method proposed in (Campadelli et al.,
2009) that is based on Support Vector Machines trained on opti-
mally chosen Haar wavelet coefficients. The algorithm presents
very interesting results on several databases using the same met-
rics applied in our paper to iris localization. Full results for the
AR face database are presented and also separated into six catego-
ries for different expressions (neutral, smile and anger) and light
conditions (side light left, side light right and all lights).

2.4.3. FERET face database

Tests on iris localization for different relative errors were per-
formed on a subset of the FERET database and compared to an
SVM-based method (SVM2) as published in (Campadelli et al.,
2007). The SVM2 method was selected because it yielded very

(b)

Fig. 7. (a) Four images used to create the generic PSO templates. Subjects correspond to four students at the Electrical Engineering Department, Universidad de Chile. (b) Four
images of subject yaleBO1 of Yale B database used to create a personalized PSO template.
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good results in iris localization and because it was already com-
pared to several other methods in (Campadelli et al., 2007). Addi-
tionally, we compared to the method proposed in (Campadelli
et al., 2009) that improved the results obtained in (Campadelli
et al., 2007) and also added mouth localization. Both methods
use the same metrics for iris localization error that we use and
therefore, a direct comparison is possible. The subset consisted of
300 images randomly selected from subsets fa and fb of the FERET
database. A personalized set of templates was obtained by using
eight faces from FERET that were not part of the 300 test images.

2.4.4. Video sequences

The PSO templates were compared with the anthropometric
templates (Fig. 8) by computing the line integral value of the tem-
plate over the directional images on a database composed of four
video sequences as shown in Table 1. Each video sequence is com-
posed of frontal faces from one individual but different video se-
quences correspond to different individuals. Personalized PSO
templates were created for this test, one set for each person. Addi-
tionally, the spatial selectivity of PSO templates and anthropomet-
ric templates was assessed by computing the line integral within a
window of 11 x 11 pixels around the face center. Also, the compu-
tational time employed by the line integral computation for face
localization was compared for the anthropometric and PSO
templates.

3. Results
3.1. PSO templates

Fig. 9 shows results of the evolution of a PSO template through
1000 iterations. Fig. 9a shows the first randomly initialized tem-
plate. Fig. 9b—f shows the template for iteration number (b) 15,
(c) 100, (d) 300, (e) 700 and (f) 1000. It can be observed that the
number of pixels in the PSO template decreases as the number of
iterations increases and therefore the number of computations in-
volved in the line integral over the directional image will be
reduced.

Fig. 10a, d and g shows three frontal faces, b, e and h shows the
corresponding directional images and c, f and i shows the resulting
PSO templates, respectively. By comparing the PSO template to the
anthropometric template of Fig. 8, it can be observed that the first
one fits better to the directional image.

The PSO templates were compared to the anthropometric tem-
plates in face localization in four video sequences. The total num-
ber of pixels in the template determines the number of
computations to evaluate the line integral. A template with the
smallest number of pixels will yield small computational time. A
template with the largest line integral value when computed on
the directional image over the face value will produce better face
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Fig. 8. Anthropometric template.

Table 1
Video-sequence database to test the PSO templates.

Video sequence Number of frames

Template selection Test Total
1 466 230 696
2 202 175 377
3 306 523 829
4 395 214 609
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Fig. 9. Evolution of the PSO algorithm for 1000 iterations. Templates are shown for:
(a) random initialization; (b) iteration number 15; (c) iteration number 100; (d)

iteration number 300; (e) iteration number 700, and (f) final template at iteration
1000.

localization. Table 2 shows the resulting number of pixels for the
personalized PSO templates, the generic PSO templates and for
the anthropometric templates. As expected, personalized PSO tem-
plates had fewer points than both anthropometric and generic PSO
templates.

An important result of using PSO templates is that the compu-
tational time required to localize a face was reduced to 60% of that
employed by an anthropometric template as shown in Table 3. The
computational time was measured in video sequence 2 employing
an Athlon XP 2000+, 1.67 GHz computer with 512 MB RAM. An-
other important advantage of the PSO templates is that they can
be automatically generated from a small set of frames. In contrast,
the anthropometric templates require to select manually the re-
gions for the main facial features: eyes, eyebrows, nose, mouth
and chin.

3.2. Face size estimation

The error in the face size estimation was computed as the error
of the difference between the template size computed value and
the ground truth for four video sequences (a-d). Error is presented
relative to face size. Fig. 11a and b shows the error in the face size
estimation for the anthropometric templates (black level) and the
PSO templates (gray level) applied to video sequences 3 and 4 as a
function of the frame number. It can be observed that the face size
estimation error is always lower in the PSO template relative to the
anthropometric template.
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Fig. 10. Frontal faces (a, d, g), corresponding directional images (b, e, h), and corresponding final PSO templates (c, f, i).

Table 2

Total number of pixels in the resulting PSO templates and in the anthropometric
templates.
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frames the line integral value is greater in the PSO templates than
in the anthropometric templates.

3.4. Spatial selectivity

Template Number of pixels
Anthropometric 24,429
Personalized PSO templates 15,528
Generic PSO templates 18,768

Table 3
Comparison of the average computational time required to detect a face.

Template Average time (ms) Standard deviation
Anthropometric 28.5 0.0068
PSO 18.6 0.0053

3.3. Line integral

Fig. 11c and d shows the line integral value computed for each
frame of video sequences 3 and 4 for the PSO template (gray level)
and anthropometric template (black). It can be observed that for all

The spatial selectivity of the PSO and anthropometric templates
was assessed by computing the line integral value within a win-
dow of 11 x 11 pixels around the face center. Fig. 12a shows the
original image, Fig. 12b shows the line integral value for the win-
dow of 11 x 11 pixels around the face center represented in gray
levels for the PSO templates and Fig. 12c shows the line integral va-
lue within the 11 x 11 pixels window for the anthropometric tem-
plates. Darker gray levels mean lower values of line integral, with
black being the lowest and white being the highest. Fig. 13a shows
the line integral value along a line in the x axis crossing the face
center horizontally. Fig. 13b shows the line integral value along a
vertical line in the y axis across the face center. In Figs. 12 and
13, it can be observed that the PSO template provides a narrower
spatial tuning around the face center providing a larger line inte-
gral value and a higher slope when the line integral is computed
away from the face center. Therefore, the PSO template shows
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Fig. 11. (a) and (b): Frame by frame relative error in the face size estimation between the anthropometric templates (black) and the PSO template (gray level) applied to video
sequences 3 and 4. Error is relative to face size; (c) and (d): line integral value for the PSO template (gray level) and the anthropometric template (black) applied to video
sequences 3 and 4 as a function of the frame number.

(b)

Fig. 12. (a) Original image; (b) line integral value computed with the PSO template in an 11 x 11 window around the face center; (c) line integral value computed with the
anthropometric template in an 11 x 11 window around the face center.
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Fig. 13. (a) Line integral value computed along the x axis across the face center with the PSO template (gray) and anthropometric template (black). The computation was

performed along 11 pixels through the face center; (b) line integral value computed along the y axis across the face center with the PSO template (gray) and anthropometric
template (black). The computation was performed in 11 pixels through the face center.

higher spatial tuning to localize faces when compared to anthropo-

metric templates.
Table 4

Yale B face localization rates.

3.5. Face localization rates

Method Det. rate (%)

Personalized PSO templates 82.65 3.5.1. Yale B database

Generic PSO template 81.92 ’ .T.bl 4 sh f localizati for Yale B f. datab
T e 81.74 able 4 shows face loca 1zatlop rates for Yale B face database
Adaboost 60.54 for PSO templates, anthropometric templates and Adaboost face

localization method. It can be observed that the highest face

Fig. 14. Examples of correct face localization.
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Table 5
Iris localization rates for two subsets of the AR face database.
Relative error (err)
1 0.8 0.50 0.40 0.33 0.25 0.15 0.05
Song et al. (2006) AR-63 96.8 96.8 96.8 96.8 96.8 96.8 N/A N/A
Song et al. (2006) AR-564 96.6 95.9 924 90.2 89.7 86.5 N/A N/A
Anthropometric templates AR-63 100 100 100 100 100 100 100 74.1
Anthropometric templates AR-564 100 99.7 99.7 99.3 99.3 98.7 98.1 88.1
Generic PSO templates AR-63 100 100 100 100 100 100 100 75.6
Generic PSO templates AR-564 100 100 100 99.7 99.5 99.3 98.8 87.3
Personalized AR PSO templates AR-63 100 100 100 100 100 100 100 77.8
Personalized AR PSO templates AR-564 100 100 100 99.8 99.7 99.7 99.1 88.6
Table 8

localization rate was obtained for the PSO templates. Also, it is
shown that PSO as well as anthropometric templates performed
better than the Adaboost face localization method. Since Yale B
database has strong changes in illumination conditions, the tem-
plate-based methods are more robust than Adaboost. Examples of
correct face localization in the Yale B face database are shown in
Fig. 14.

3.6. Iris localization

3.6.1. AR face database

Table 5 shows the results of iris localization for the anthropo-
metric templates, the generic PSO templates and the personalized
AR PSO templates in the AR-63 and AR-564 subsets of the AR face
database. Results of the method proposed by Song et al. (2006) in
iris localization is also shown for comparison. It can be observed
that anthropometric templates reached better iris localization than
the method of Song et al. by approximately 10% for the most
restrictive criterion. Iris localization with the PSO templates, both
generic and personalized, resulted in even a lower error reaching
100% precision for normalized error err = 0.25. Even for normal-
ized errors of 0.15 and 0.05 PSO templates reached the highest iris
localization rates.

In Table 6, it can be observed that PSO templates reached better
results for iris localization than those of the best method published
until today on the AR face database. Table 7 shows the perfor-
mance of our algorithm across different partitions of the AR face
database for different face expression and illumination conditions.
Performance is lower for the smile expression. The performance of
PSO templates is similar to the other methods for different illumi-
nation conditions.

Table 6
Comparison of iris localization as a function of the relative error (err) for Campadelli
et al. (2009) and PSO templates on the AR face database.

Relative error (err)

0.25 0.20 0.15 0.10 0.05

98.0
99.4

96.7
99.0

93.7 76.8
95.9 87.9

Campadelli et al. (2009) 99.3
PSO templates 99.7

Table 7
Iris localization performance on the subsets of the AR face database with different
expressions and illumination.

Neutral Smile Anger Side lights All lights
err =0.10 98.5 89.3 95.7 97.4 97.9
err = 0.25 100 98.9 100 100 100
AUC 88.4 80.5 84.8 86.1 85.4

Comparison of iris localization as a function of the relative error (err) for (Campadelli
et al, 2009), SVM2 (Campadelli et al., 2007), anthropometric templates and PSO
templates on FERET database.

Relative error (err)

0.25 0.20 0.15 0.10 0.05
99.7 99.3 99.3 97.3 67.7

Campadelli et al. (2009)

SVM2 95.9 95.0 91.4 89.5 67.7
Anthropometric templates 92.1 91.9 88.7 84.6 74.1
PSO templates 96.6 95.0 923 89.0 76.0

3.6.2. FERET face database

Table 8 shows the results of iris localization for the anthropo-
metric templates and PSO templates for a subset of the FERET face
database as used in (Campadelli et al., 2007). The table also shows
the results reported in (Campadelli et al., 2007) for the method
called SVM2 in a similar subset of the FERET database. This allows
the comparison of our method to a previous method that obtained
very good results in iris localization in the FERET database. The
method SVM2 was advantageously compared to several other
methods in iris localization in (Campadelli et al., 2007) and there-
fore our proposed PSO template also compares advantageously to
those other methods. In Table 8 it can be observed that PSO tem-
plates reached the highest iris localization for relative errors of
0.05, 0.15, 0.2 and 0.25. It is important to highlight the significant
improvement for the most demanding error criteria used
(err = 0.05). In Table 8 it can be observed that the method pro-
posed in (Campadelli et al., 2009) performed better than all other
methods for all errors of 0.05, 0.15, 0.2 and 0.25. One of the advan-
tages of our proposed method is fast computation that takes
150 ms to achieve iris localization (including coarse face detection,
face localization and iris localization) on a Pentium 4, 3.0 GHz, 1 GB
RAM computer. The module that performs iris localization takes
only 5 ms which permits a real-time implementation in a face rec-
ognition access control which we have in operation.

4. Conclusion

Precision of face and iris localization methods has proven to be
essential in many applications including face recognition. Previous
anthropometric template-based methods for face localization use
face features commonly recognized by the human visual system
such as eyes, eyebrows, nose, mouth and chin as the key features
in the template. In this paper, a new method has been developed
to generate PSO templates based on the PSO algorithm. The meth-
od was applied to the frontal face detection problem to four video
sequences, the Yale B face database, the AR face database and FER-
ET database. Results show the advantages of the PSO templates
over the anthropometric templates. PSO templates maximize the
response of the line integral performed over the directional image
to localize the face. Results show that the line integral values are
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larger and the face size estimation is better with the PSO templates
compared to the anthropometric templates. The method also al-
lows control of the maximum number of points in the template
thus reducing the computational time, allowing real-time process-
ing. Test on Yale B face database shows the robustness of template-
based methods in extreme lighting conditions and in faces with
small rotations. The PSO templates were compared to the Adaboost
method for face localization showing improved results in the Yale
B face database. We also tested the PSO templates in the iris local-
ization problem and compared the results to those proposed re-
cently in (Song et al., 2006; Campadelli et al., 2007; Campadelli
et al., 2009). An improved performance in iris localization in com-
parison with Song et al. (2006) and Campadelli et al. (2007) but
lower performance than Campadelli et al. (2009) on the FERET
database was shown. On the AR database our iris localization
method performed better than the other published methods. An
important aspect of our methodology is that it can be applied in
real time. Another important result is that PSO templates can be
personalized for a particular user or situation, improving its selec-
tivity and computational time even more. This is a common case in
human-machine interfaces for handicapped individuals. PSO tem-
plates also showed improved spatial selectivity relative to the
anthropometric templates. The method could be extended by using
templates for partially occluded faces, weighting more the part of
the template/face that is available. In the case of Yale B dataset
where part of the face is not available due to non-homogeneous
illumination, methods for illumination compensation could be
used as a preprocessing algorithm. There are several methods for
illumination compensation available based on discrete Cosine
Transform (DCT) (Perez and Castillo, 2008), local normalization
(LN) (Perez and Castillo, 2008) and self-quotient image (SQI) (Perez
and Castillo, 2009). In a recent paper (Perez et al., 2009) we ex-
tended the anthropometric template-based face and iris detection
to rotated faces. In (Perez et al., 2009) templates were created for
rotated faces in angles (—40°,40°) in coronal axis and (—45°,45°)
in transversal axis. The PSO templates could be extended in the fu-
ture to rotations as demonstrated for anthropometric templates. In
this case PSO templates would have to replace anthropometric
templates and we expect to find similar results as in the present
paper for frontal faces, i.e., increased selectivity and reduced com-
putational cost.
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