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1. Introduction

In the study of nonlinear elliptic equations in bounded domains, non-existence results for entire
solutions of related limiting equations appear as a crucial ingredient. In the search for positive so-
lutions for semi-linear elliptic equations with nonlinearity behaving as a power at infinity, one is
interested in the non-negative solutions of the equation

�u + up = 0, in R
N . (1.1)

The question is for which value of p, typically p > 1, this equation has or has no solution. This has
been one of the motivations that has pushed forward the study of Liouville type theorems for general
equations in R

N and in unbounded domains like cones or exterior domains. On the other hand, the
understanding of structural characteristics of general linear or nonlinear operators has been another
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motivation for advancing the study of Liouville type theorems that have attracted many researchers.
See the work in [1,2,6,15,17]

If we consider the Pucci’s operators instead of the Laplacian, the question set above becomes very
interesting, since most of the techniques used in the case of the Laplacian are not available. The
Liouville type theorem for the equation analogous to Eq. (1.1) has not been proved in full generality,
but only in the radial case. On the other hand, the Liouville type theorem for non-negative solutions
of

M−u + up � 0, in R
N , (1.2)

has been studied in full extent by Cutrì and Leoni [11] and generalized in various directions by Felmer
and Quaas [12–14], Capuzzo-Dolcetta and Cutrì [10] and Armstrong and Sirakov in [3]. In all these
cases the solutions of the inequality are considered in the viscosity sense.

In a recent paper, Armstrong and Sirakov in [4] made significant progress in the understanding of
the structure of positive solutions of equations generalizing (1.2), shading light even for equations of
the form

�u + f (u) � 0, in R
N . (1.3)

They propose a general approach to non-existence and existence of solutions of the general inequality

Q (u) + f (x, u) � 0, in R
N , (1.4)

where the second order differential operator Q satisfies certain scaling property, it possesses funda-
mental solutions behaving as power asymptotically and it satisfies some other properties, common to
elliptic operators, like a weak comparison principle, a quantitative strong comparison principle and
a very weak Harnack inequality, see hypotheses (H1)–(H5) in [4]. Regarding the nonlinearity f , the
results in [4] unravel a very interesting property, that is, that the behavior of the function f only
matters near u = 0 and for x large. These results are new even for the case of (1.3). Moreover, the
authors in [4] are able to apply their approach to Eq. (1.4) in exterior domains without any boundary
condition, providing another truly new result.

It is the purpose of this article to extend the results described above in order to include elliptic
operators with first order term. The introduction of a first order term may brake the scaling prop-
erty of the differential operator and it allows for the appearance of non-homogeneous fundamental
solutions, not even asymptotically. Thus, the approach in [4] cannot be applied to this more general
situation and we have to find different arguments. Interestingly, to prove our results we use the more
elementary approach taken in the original work by Cutrì and Leoni, where the Hadamard property,
obtained through the comparison principle, is combined with the appropriate choice of a function
to test the equation. The underline principle is the asymptotic comparison between the solution of
the inequality and the fundamental solution. This can be interpreted as the interaction between the
elliptic operator, including first order term, and the nonlinearity (the zero order term).

We start the precise description of our results by recalling the definition of the Pucci’s operators.
In this paper we consider

M+(
r, D2u

) = Λ(r)
∑
ei�0

ei + λ(r)
∑
ei<0

ei (1.5)

and

M−(
r, D2u

) = λ(r)
∑
e �0

ei + Λ(r)
∑
e <0

ei, (1.6)

i i
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where e1, . . . , eN are the eigenvalues of D2u, λ,Λ : [0,∞) → R are continuous, λ0 and Λ0 are positive
constants and

0 < λ0 � λ(r) � Λ(r) � Λ0 < ∞, ∀r = |x|, x ∈ R
N . (1.7)

Our purpose is to study the non-negative solutions of

M−(
r, D2u

) + σ(r)|Du| + f (x, u) � 0 in Ω, (1.8)

with Ω = R
N or an exterior domain and σ : [0,∞) → R and f : Ω × (0,∞) → (0,∞) are continuous.

In this paper, by an exterior domain we mean a set Ω = R
N \ K connected, where K is a nonempty

compact subset of RN .
We consider the fundamental solutions for the second order differential operator ϕ,ψ : (0,∞) → R

given in (3.5) and (3.6), which are non-trivial radially symmetric solutions of

M−(
r, D2u

) + σ(r)|Du| = 0, x ∈R
N \ {0}, (1.9)

satisfying

(i) ψ is increasing and either limr→∞ ψ(r) = ∞ or limr→∞ ψ(r) = 0 and
(ii) ϕ is decreasing and either limr→∞ ϕ(r) = −∞ or limr→∞ ϕ(r) = 0.

Now we are in a position to make precise assumptions about the interaction between the differ-
ential operator and the nonlinearity. We assume:

( f1) f : Ω × (0,∞) → (0,∞), λ,Λ,σ : [0,∞) →R are continuous.
( f2) We have

lim
r=|x|→∞

r2

1 + σ−(r)r
f (x, s) = ∞,

uniformly on compact subsets of (0,∞). Here and in what follows σ− = max{−σ ,0}.

In order to state the next assumption we need a previous definition. Given μ > 0, a > 1, k > 0 and
τ > 0 we define

Ψk(τ ) = ϕ(aτ )

ϕ(τ )
inf

x∈Baτ \Bτ

{
r2

σ−(r)r + 1
inf

kϕ(ar)�s�μ

f (x, s)

s

}
. (1.10)

We assume:

( f3) If limr→∞ ϕ(r) = 0 we assume the existence of constants μ > 0 and a > 1 such that, defining

h(k) = lim sup
τ→∞

Ψk(τ ),

one of the following holds:
(i) for all k > 0 we have h(k) = ∞ or

(ii) for all k > 0 we have

0 < lim inf
τ→∞ Ψk(τ ) and lim

k→∞
h(k) = ∞ (1.11)
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and there is a constant C ∈R such that

rσ(r) > C, for all r > 0. (1.12)

Now we state our first Liouville type theorem for inequality (1.8) in R
N :

Theorem 1.1. Assume f satisfies ( f1), ( f2) and ( f3). Then inequality (1.8) in R
N does not have a non-trivial

viscosity solution u � 0.

We observe that hypothesis ( f3) does restrict f when limr→∞ ϕ(r) = −∞.
Regarding hypotheses ( f2) and ( f3) we would like to notice that they are natural extensions of

hypotheses (f2)–(f3) in [4], when σ �≡ 0 and the fundamental solution ϕ is not necessarily power-like.
Thus, we are generalizing the results in [4] in the case of a one-homogeneous differential operator
in R

N . It is also interesting to notice that hypotheses ( f2) and ( f3) appear explicitly and in a natural
way in our proof of the theorem.

When the condition (i) is satisfied we say that inequality (1.8) is sub-critical and when condi-
tion (ii) holds, we say it is critical. In the case of

�u + up � 0,

we say the inequality is sub-critical when p < N/(N − 2) and when p = N/(N − 2) it is critical. When
p > N/(N − 2) we say the inequality is super-critical and here the existence of positive solution
holds. Accordingly, we would like to define a notion of super-criticality the cases (i) and (ii) do not
hold. However, in Theorem 2.3 we provide an example where there is no solution in a super-critical
sub-region, showing that further study is required to understand the critical boundary.

In the case of an exterior domain, we need to consider also the interaction between the differential
operator and the nonlinearity at ∞. We need a definition in order to state our assumptions. Given
μ > 0, a > 1, k > 0 and τ > 0 we define

Ψ̃k(τ ) = ψ(τ )

ψ(aτ )
inf

x∈Baτ \Bτ

{
r2

σ−(r)r + 1
inf

μ�s�kψ(ar)

f (x, s)

s

}
.

Now we assume:

( f4) If limr→∞ ψ(r) = ∞ then we assume the existence of μ > 0 and a > 1, such that, defining

h̃(k) = lim sup
τ→∞

Ψ̃k(τ ),

one of the following holds:
(i) for all k > 0 we have h̃(k) = ∞ or

(ii) for all k > 0 we have

0 < lim inf
τ→∞ Ψ̃k(τ ) and lim

k→0+ h̃(k) = ∞ (1.13)

and there is a constant C ∈ R such that (1.12) holds.

For an exterior domain we have the following non-existence result:

Theorem 1.2. Assume Ω is an exterior domain and that f satisfies ( f1), ( f2), ( f3) and ( f4). Then inequality
(1.8) in Ω does not have a non-trivial viscosity solution u � 0.
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We observe hypothesis ( f4) does not restrict f when limr→∞ ψ(r) = 0.
As for ( f3), hypothesis ( f4) is the natural extension of (f4) in [4] to our case. Here we allow σ �≡ 0

and ψ not power-like, thus generalizing [4].
In case of ( f4) we may also define the notion of criticality for (1.8) in an analogous way as for

( f3). Since here the behavior of f is relevant at zero and infinity mixed cases appear, as for example,
an inequality critical at 0 and sub-critical at ∞ or vice versa.

In the proofs of Theorems 1.1 and 1.2 we use some basic properties of the functions

m(r) = inf
x∈Br

u(x), m0(r) = inf
x∈Br\Br0

u(x) and M(r) = inf
x/∈Br

u(x) (1.14)

in connection with the fundamental solutions, as given by the Hadamard property provided in Theo-
rem 4.3. Then we test the equation with an adequate function and we use the asymptotic assumptions
on f and the fundamental solutions to obtain a contradiction with the existence of non-trivial non-
negative solutions. In the proofs of our theorems we only consider a = 2.

The interaction between the elliptic operator and the nonlinearity, that is expressed in hypotheses
( f3) and ( f4), is not easy to understand in full generality. However, beyond the cases studied in [4],
there are many interesting examples that well illustrate the relevance of our results to understand
the general structure of solutions for these equations. In particular, in Section 2 we discuss some
examples for the inequality

�u + σ(r)|Du| + f (u) � 0, in R
N , (1.15)

which are not covered in the literature. In the first example we analyze the nonlinearity f (u) = up

with a function σ associated to a fundamental solution with oscillatory power, see (2.7). In this case,
it is interesting to observe the way the introduction of σ affects the critical power of the nonlinearity.
In the second example we analyze the case of f (u) = up(1 + log |u|)ν and a function σ providing a
fundamental solution matching the non-homogeneous nonlinearity, see (2.11). In this case we analyze
the range of p and ν for non-existence of solutions to (1.15).

For the existence of positive solutions of (1.8), it is natural to consider the super-critical assump-
tion, that is, the case when hypotheses ( f3) and ( f4) are not satisfied, which means

lim inf
τ→∞ Ψk(τ ) = 0 or lim sup

k→∞
h(k) < ∞

and

lim inf
τ→∞ Ψ̃k(τ ) = 0 or lim sup

k→0+
h̃(k) < ∞,

where h, h̃, Ψk and Ψ̃k were defined in ( f3) and ( f4). We observe that super-criticality holds when
h(k) = 0 or h̃(k) = 0 for any k > 0, but it is not true that under this notion of super-criticality a
positive solution of (1.8) always exists, as we see in Section 2 through an example.

In the last part of this article we consider a Liouville type theorem in the case f is a linear func-
tion, that is, f (x, s) = h(x)s, that interestingly can be proved using the same techniques considered in
the nonlinear case. This problem has been recently studied by Rossi [18] after some previous work by
Berestycki, Hamel and Nadirashvili [7], Berestycki, Hamel and Roques [8] and Berestycki, Hamel and
Rossi [9]. Rossi [18] proved a Liouville type theorem for general unbounded domains, assuming that

lim inf
x∈Ω, |x|→∞

u(x) + 1

dist(x, ∂Ω)
= 0. (1.16)
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It is clear that when Ω is an exterior domain then dist(x, ∂Ω) ∼ |x|, so that (1.16) implies a linear
growth constraint on u. Thus, it is interesting to investigate the existence or non-existence of positive
solutions of the corresponding equation when (1.16) does no longer hold. Here is our result:

Theorem 1.3. Let u be a non-negative viscosity solution of

M−(
r, D2u

) + σ(r)|Du| + h(x)u � 0 in Ω, (1.17)

where Ω is an exterior domain. Assume further that λ and Λ satisfy (1.7) and that

(h1) h : RN →R and σ : R+ →R are continuous, h is positive and σ is negative.
(h2) There exists a function κ :R+ →R+ of class C1 such that

lim
r→∞κ ′(r) = 0 (1.18)

and there is a constant μ � 1 such that

1 � κ(r) max
r−κ(r)�s�r

∣∣σ(s)
∣∣ � μ, for all r > 0. (1.19)

(h3) There exists a sequence rn → ∞ such that

lim
n→∞ inf

r∈(rn−κ(rn),rn)

{
h(r) − e

μ
λ0 (2Λ0 + 1)σ 2(r)

}
> 0. (1.20)

Then u ≡ 0.

Besides avoiding assumption (1.16) we observe that we are not assuming that σ is bounded as
in [18]. Examples of functions σ satisfying the hypotheses are given in Section 6.

This paper is organized as follows. In Section 2 we discuss the main theorems and provide exam-
ples. In Section 3 we find fundamental solutions and in Section 4 we prove the Hadamard property
for the functions given in (1.14). In Section 5 we prove the non-existence of Theorems 1.1 and 1.2. Sec-
tion 6 is devoted to the proof of the existence of Theorem 2.3 given in Section 2. Finally, in Section 7
we prove Theorem 1.3.

2. Discussion and examples

We devote this section to present various examples that illustrate the relevance of our results. We
start discussing the relation between σ and the fundamental solution, then we present two examples
for Theorem 1.1 and we conclude the section with a theorem related with the concept of super-
criticality. We concentrate our discussion on Theorem 1.1 regarding inequality (1.8) in R

N in the case
of the elliptic operator

Q (r, u) = �u + σ(r)|Du|. (2.1)

We may certainly construct examples for Theorem 1.2 regarding the inequality in an exterior domain
and for general Pucci operators as in our theorems.
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In Section 3 we study with details the fundamental solutions associated to the differential operator
in Eq. (1.8). We see that in the case of Q , the decreasing fundamental solution is given by

ϕ(r) = −
r∫

1

s1−N e
∫ s

1 σ (τ ) dτ ds + Lϕ,

where Lϕ is a constant so that when limr→∞ ϕ(r) exists, it becomes equal to 0, see Proposition 3.1
and its proof. With this formula we may construct many examples of fundamental solutions with
a whole variety of asymptotic behavior. We start showing the effect of the first order term on the
behavior of the fundamental solution. Our first example is for

σ(r) = d

dr
(sin r log r), r � 1,

properly extended to [0,1). Then we have, for a constant Lϕ ,

ϕ(r) = −
r∫

1

s1−N+sin(s) ds + Lϕ, r � 1. (2.2)

We observe that this fundamental solution does not behave like a power at infinity. The second
example is given by

σ(r) = d

dr

(
cos(log log r) log r

)
, r � e,

properly extended to [0, e). The associated fundamental solution does not behave like a power, not
even asymptotically. Its behavior is oscillatory, with slower rate than (2.2). For a third example we
consider

σ(r) = − d

dr

(
(α + 2 − N) log r + log log r

)
, r � e, (2.3)

extended to [0, e) as a continuous function with fundamental solution

ϕ(r) = −eα+1

r∫
e

s−1−α

log s
ds + Lϕ, r � e. (2.4)

This example is different from earlier ones since it is not oscillatory, but with an asymptotic behavior
which is not power-like because of its logarithmic term.

It is interesting to see that we may prescribe explicit fundamental solutions by providing functions
q like

ϕ(r) = e−q(r), r � 0, (2.5)

assuming that q is increasing and limr→∞ q(r) = ∞. It is easy to check that this fundamental solution
is obtained when the function σ is given by

σ(r) = N − 1 − q′(r) + q′′(r)
′ for r � 0. (2.6)
r q (r)
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In view of our examples later, we will require q to be such that rσ(r) is bounded. This condition is
not necessary to use Theorem 1.1, but under this condition ( f2) and ( f3) greatly simplify. Assume
that N � 3 and

q(r) = (N − 2) log r + 1

2
sin

(
log(log r)

)
log r, r > e. (2.7)

After some direct calculation, we see that q′(r) > 0 and, if σ is defined as in (2.6), rσ(r) is bounded.
In this case, the fundamental solution is

ϕ(r) = r−(N−2+ 1
2 sin(log log r)), r � e,

which is a power exhibiting an oscillatory exponent. In this situation we have

Theorem 2.1. Assume N � 3 and

1 < p <
N − 1

2

N − 5
2

, (2.8)

then there is no positive solution to the nonlinear inequality

�u + σ
(|x|)|Du| + up � 0, in R

N . (2.9)

This theorem shows the effect of the first order term on the critical exponent. It is interesting
to notice that the critical exponent is enlarged because the ‘dimension’ is decreased by 1/2, the
amplitude of the oscillatory power.

Proof of Theorem 2.1. The application of Theorem 1.1 requires to analyze the function Ψk in ( f3), since
all other hypotheses are satisfied. Using the definition of Ψk , that p > 1 and that rσ(r) is bounded,
we find that for r large

Ψk(r) = kp−1e−q(2r)p+q(r)+2 log r . (2.10)

Computing the exponent, from (2.7) we see that

−q(2r)p + q(r) = −(N − 2)p log 2 − p

2
sin

(
log

(
log(2r)

))
log 2

+
[
−(N − 2)(p − 1) − p

2
sin

(
log

(
log(2r)

)) + 1

2
sin

(
log

(
log(r)

))]
log r.

We claim that there exists a sequence {rn} such that limn→∞ rn = ∞,

lim
n→∞ sin

(
log(log 2rn)

) = −1 and lim
n→∞ sin

(
log(log rn)

) = −1.

Assume the claim is true now, then we get limn→∞ Ψk(rn) = +∞ if we have −(N − 2)(p − 1) + (p −
1)/2 + 2 > 0, which is exactly (2.8). To complete the proof we check the claim. We let rn be the
positive solution of the equation

sin

(
log(log(2rn)) + log(log(rn))

2

)
= −1, n ∈N,
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that satisfies limn→∞ rn = ∞. Then we have

sin
(
log

(
log(2rn)

)) + sin
(
log

(
log(rn)

)) = −2 cos

(
log(log(2rn)/ log(rn))

2

)
,

from where the claim follows, since

lim
n→+∞

[
sin

(
log

(
log(2rn)

)) + sin
(
log

(
log(rn)

))] = −2. �
Now we consider another example for the function

q(r) = (N − 2) log r + log(log r), r > e. (2.11)

Its associated fundamental solution is a power with a logarithmic factor

ϕ(r) = 1

rN−2 log r
, r � 1,

and rσ(r) is bounded, for σ as in (2.6). Next we apply Theorem 1.1 to the nonlinearity f (u) =
up(|log u| + 1)ν with differential term Q with σ as above.

Theorem 2.2. Assume that N � 3 and

1 < p <
N

N − 2
and ν ∈R, or

p = N

N − 2
and ν � − 2

N − 2
,

then there is no positive solution to the nonlinear inequality

�u + σ
(|x|)|Du| + up(|log u| + 1

)ν � 0 in R
N . (2.12)

This theorem provides an example of a non-existence result where the nonlinearity and the fun-
damental solution are not homogeneous and they match in such a way that the hypothesis ( f3) is
satisfied.

Proof of Theorem 2.2. In this case, the function Ψk in ( f3) is given by

Ψk(r) = kp−1e−q(2r)+q(r)+2 log r[∣∣log k − q(2r)
∣∣ + 1

]ν
. (2.13)

From here and (2.11) we have

−q(2r)p + q(r) = (N − 2)
(
(1 − p) log r − p log 2

) − p log
(
log(2r)

) + log(log r).

From here, there exists a constant C > 0 so that, for r large, we have

Ψk(r) � Ckp−1r(N−2)(p−1)(log r)(p−1)(log r − log k)ν .
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If p < N
N−2 with ν ∈ R or p = N

N−2 with ν > − 2
N−2 , then limr→∞ Ψk(r) = +∞. In the limit case, when

p = N
N−2 with ν = − 2

N−2 , we have limr→∞ Ψk(r) � Ckp−1, from where we complete the proof using
Theorem 1.1. �

In the examples discussed above the fact that f (s)/s is decreasing allowed to get the inner most
infimum easily. Then, the monotonicity of the remaining term in r allowed to get the second infimum
and thus Ψk was obtained explicitly. In what follows we give simplified versions of hypothesis ( f3).

Remark 2.1. In hypothesis ( f3), we may define the function h in a different way, namely we may
consider

h1(k) = lim inf
τ→∞ Ψk(τ ) or

h2(k) = lim inf|x|→∞
ϕ(ar)

ϕ(r)

r2

σ−(r)r + 1
inf

kϕ(ar)�s�μ

f (x, s)

s
.

These two definitions give rise to two stronger versions of hypothesis ( f3). We may use this condition
to deal with the example given by (2.7).

Remark 2.2. If we assume that there exists C ∈ R such that

2R∫
R

σ(r)dr � C > −∞ (2.14)

for each R > 1, for the function h2 defined above, we have

h2(k) = lim inf|x|→∞
r2

σ−(r)r + 1
inf

kϕ(ar)�s�μ

f (x, s)

s
.

In case f (x, u) = sp and assuming limr→∞ ϕ(r) = 0, the function h2 becomes

h2(r) = kp−1 lim
r→∞

r2ϕ(r)p−1

1 + σ−(r)r
.

We conclude this section discussing an example for the notion of super-criticality suggested by
( f3). For the power nonlinearity and the Laplacian

−�u + up � 0, x ∈ R
N ,

it is well known that a solution exists in the super-critical case, that is, when p > N
N−2 . In our case,

we defined super-critical inequality in the introduction, but our example below shows that this may
not be fully appropriate.

We assume that α and ν > 0 are positive numbers and p > 1. We let σ : [0,∞) → R as in (2.3)
and f : (0,∞) →R be as in

f (s) = sp(|log s| + 1
)ν

, s ∈ (0,∞). (2.15)
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Considering the corresponding fundamental solution given in (2.2), we get

lim
r→∞ϕ(r) = 0 and lim

r→∞
ϕ(r)

r−α(log r)−1
= eα+2α−1.

Next, given k > 0, we find positive constants C and R̄ such that for r > R̄

Ckp−1(log r − log k)ν

rα(p−1)−2(log r)(p−1)
� Ψk(r) � kp−1(log r − log k)ν

Crα(p−1)−2(log r)(p−1)
,

where Ψk was defined in (1.10). Then we obtain the following three cases:

(C1) sub-critical p <
2

α
+ 1, or p = 2

α
+ 1 and ν >

2

α
,

(C2) critical p = 2

α
+ 1 and ν = 2

α
,

(C3) super-critical p >
2

α
+ 1, or p = 2

α
+ 1 and ν <

2

α
.

And we obtain some non-existence and existence results as following:

Theorem 2.3. Suppose σ and f are given as above and Ω = R
N , then:

(i) If (C1) or (C2) holds, then (1.8) does not have a positive solution.
(ii) If

p = 2

α
+ 1 and 0 <

2

α
− 1 < ν <

2

α
, (2.16)

then (1.8) does not have a positive solution.
(iii) If p > 2

α + 1, then (1.8) has a positive solution.

We see that the sub-region for (p,α) given in (2.16) is super-critical, however we can prove non-
existence of a positive solution there. This fact shows that more analysis in needed to understand the
critical boundary in general.

3. Fundamental solutions and basic properties

In this section we construct the fundamental solutions of the nonlinear second order operator with
first order term given in (1.9). These special radial solutions are important tools for understanding the
behavior of general viscosity solutions of (1.9).

We start defining the dimension like numbers, which are relevant in our construction. We let
n, N : (0,∞) → R be the functions given by

n(r) =
{

Λ(r)
λ(r) (N − 1) + 1 if rσ(r) � Λ(r)(N − 1),

N if rσ(r) > Λ(r)(N − 1),
(3.1)

and

N(r) =
{

λ(r)
Λ(r) (N − 1) + 1 if rσ(r) > −λ(r)(N − 1), (3.2)

N if rσ(r) � −λ(r)(N − 1).
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We also need to consider the following functions

mλ(r) =
{

λ(r) if rσ(r) � Λ(r)(N − 1),

Λ(r) if rσ(r) > Λ(r)(N − 1)
(3.3)

and

Mλ(r) =
{

λ(r) if rσ(r) � −λ(r)(N − 1),

Λ(r) if rσ(r) > −λ(r)(N − 1).
(3.4)

Given r1 > 0 and constants Lϕ and Lψ we define the functions ϕ,ψ : (0,∞) → R as follows:

ϕ(r) = −
r∫

r1

se
∫ s

r1
(

σ (τ )
mλ(τ )

− n(τ )
τ ) dτ

ds + Lϕ (3.5)

and

ψ(r) =
r∫

r1

se
− ∫ s

r1
(

σ (τ )
Mλ(τ )

+ N(τ )
τ ) dτ

ds + Lψ . (3.6)

Proposition 3.1.

(i) The function ϕ defined in (3.5), is of class C1.1 and it satisfies Eq. (1.9). Moreover, ϕ is a decreasing function
and, by choosing the constant Lϕ adequately, it satisfies

lim
r→∞ϕ(r) = −∞ or lim

r→∞ϕ(r) = 0. (3.7)

(ii) The function ψ defined in (3.6) is of class C1.1 and it satisfies Eq. (1.9). Moreover, ψ is an increasing
function and, by choosing the constant Lψ adequately, it satisfies

lim
r→∞ψ(r) = ∞ or lim

r→∞ψ(r) = 0. (3.8)

The functions ϕ and ψ satisfying (3.7) and (3.8), respectively, are called fundamental solutions of
the operator (1.9).

Proof of Proposition 3.1. We recall that, given a C2 radially symmetric function u(x) = v(|x|), the
eigenvalues of D2u(x) are v ′′(r) with multiplicity 1 and v ′(r)/r with multiplicity N − 1.

(i) By the definition (3.5), we have

ϕ′(r) = −re
∫ r

r1
(

σ (τ )
mλ(τ )

− n(τ )
τ ) dτ

and ϕ′′(r) =
[

1 − n(r)

r
+ σ(r)

mλ(r)

]
ϕ′(r).

Then we readily see that ϕ′(r) < 0, so that ϕ is a decreasing function, and using (3.1) and (3.3) we
find that

ϕ′′(r) � 0 if rσ(r) � Λ(r)(N − 1) and

ϕ′′(r) < 0 if rσ(r) > Λ(r)(N − 1).
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Thus, whenever rσ(r) � Λ(r)(N − 1), we obtain

M−(
r, D2ϕ

) + σ(r)|Dϕ| = λ(r)ϕ′′(r) + Λ(r)
N − 1

r
ϕ′(r) − σ(r)ϕ′(r)

= λ(r)

[
ϕ′′(r) + n(r) − 1

r
ϕ′(r) − σ(r)

λ(r)
ϕ′(r)

]
= 0

and, whenever rσ(r) > Λ(r)(N − 1), we obtain

M−(
r, D2ϕ

) + σ(r)|Dϕ| = Λ(r)ϕ′′(r) + Λ(r)
N − 1

r
ϕ′(r) − σ(r)ϕ′(r)

= Λ(r)

[
ϕ′′(r) + N − 1

r
ϕ′(r) − σ(r)

Λ(r)
ϕ′(r)

]
= 0.

We conclude then, that ϕ is a solution of Eq. (1.9), it is of class C1,1 and, since ϕ is decreasing, the
limit in (3.7) exists. If it is bounded, we may find Lϕ so that ϕ has limit equal to zero.

(ii) can be proved in a completely analogous way. �
Remark 3.1. We observe that the functions ϕ and ψ are not necessarily convex or concave and that
they may change their concavity along r.

In what follows we derive various properties of the fundamental solutions that we need in the
sequel. We start with properties for the function ϕ .

Lemma 3.1. If limr→∞ ϕ(r) = 0, then there exists a sequence {rn} diverging to infinity such that

lim
n→∞ rnϕ

′(rn) = 0. (3.9)

Proof. This is equivalent to lim supr→∞ rϕ′(r) < 0 implies limr→∞ ϕ(r) = −∞, which is obviously
true. �
Proposition 3.2. Suppose limr→∞ ϕ(r) = 0 and assume that (1.12) holds, then there is a constant C0 > 0
such that

− rϕ′(r)
ϕ(r)

� C0, for all r � 1.

Proof. We first see that, from definition of ϕ and (1.12), we have

(rϕ′(r))′

ϕ′(r)
= rϕ′′(r) + ϕ′(r)

ϕ′(r)
= −n(r) + 2 + rσ(r)

mλ(r)
� C,

for a certain negative constant C and all r � 1. Then, since ϕ is decreasing,

(
rϕ′(r)

)′ � Cϕ′(r), for all r � 1.

Considering the sequence given in Lemma 3.1, we integrate to obtain

rnϕ
′(rn) − rϕ′(r) � C

(
ϕ(rn) − ϕ(r)

)
, for all n ∈ N.
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Then, taking limit as n → ∞ and using the hypothesis, we find

−rϕ′(r) � −Cϕ(r),

from where we conclude, taking C0 = −C . �
Proposition 3.3. Assume limr→∞ ϕ(r) = 0 and that σ satisfies

2r∫
r

σ(τ )dτ � C, (3.10)

for some C ∈R and for all r � 1. Then, there exists C0 > 0 such that

ϕ(2r)

ϕ(r)
� C0, for all r � 1.

Proof. By definition of ϕ and hypothesis (3.10), we have

ϕ′(2r)

ϕ′(r)
= 2e

∫ 2r
r (

σ (τ )
mλ(τ )

− n(τ )
τ ) dτ � 2ec(

∫ 2r
r σ (τ ) dτ )−C log 2 � C0,

for certain constants c, C and C0. Then, since ϕ is decreasing, we have

ϕ′(2r) � C0ϕ
′(r), for all r � 1.

Thus, integrating in [r, R], taking limit as R → ∞ and using the hypothesis we get the result. �
Next we obtain two other propositions, but now regarding the function ψ .

Proposition 3.4. Assume limr→∞ ψ(r) = ∞ and σ satisfies (1.12), then there exist C0 > 0 and r1 > 0 such
that

rψ ′(r)
ψ(r)

� C0, for all r � r1.

Proof. From (1.12) and definition of ψ we have

(rψ ′(r))′

ψ ′(r)
= rψ ′′(r) + ψ ′(r)

ψ ′(r)
= −N(r) + 2 − rσ(r)

Mλ(r)
� C,

for some C > 0. Let r1 be such that ψ(r1) > 0 and consider that

(
rψ ′(r)

)′ � Cψ ′(r),

then we integrate in [r1, r] and get

rψ ′(r)
ψ(r)

� C + r1ψ
′(r1) − Cψ(r1)

ψ(r)
� C + r1ψ

′(r1)

ψ(r1)
≡ C0,

for all r � r1 completing the proof. �
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Proposition 3.5. Assume limr→∞ ψ(r) = ∞ and σ satisfies (3.10), then there exist C0 > 0 and r1 > 0 such
that

ψ(r)

ψ(2r)
� C0, for all r � r1.

Proof. By definition of ψ and from (3.10) we have

ψ ′(r)
ψ ′(2r)

= 2−1e
∫ 2r

r (
σ (τ )

Mλ(τ )
+ N(τ )

τ ) dτ � 4C0,

for a certain positive constant C0, and then

ψ ′(r) � 4C0ψ
′(2r), for all r � 1.

We let r0 so that ψ(2r0) > 0 and we integrate from r0 to r to obtain

ψ(r)

ψ(2r)
� 2C0 + ψ(r0) − C0ψ(2r0)

ψ(2r)
.

From here we find r1 such that the desired inequality holds for all r � r1. �
4. The Hadamard property

The Hadamard property and the Liouville type theorems are based on the Strong Maximum Prin-
ciple and the Comparison Principle. Here we recall a version of these principles that are best suited
for our purposes. We start with the Comparison Principle for viscosity solutions:

Theorem 4.1. (See Ishii [16].) Let Ω ⊂ R
N be a bounded open set. Let λ, Λ and σ satisfy hypothesis ( f1) and

the functions λ and Λ satisfy (1.7). If u and v are respectively super- and sub-solutions in the viscosity sense
of

M−(
r, D2u

) + σ
(|x|)|Du| = 0, in Ω,

respectively and u � v on ∂Ω , then u � v in Ω .

Next we have the Strong Minimum Principle:

Theorem 4.2. (See Bardi and Da Lio [5].) Let u be a super-solution in the viscosity sense of

M−(
r, D2u

) + σ
(|x|)|Du| = 0, in Ω.

If u attains its minimum at an interior point of Ω , then u is a constant.

Now we are in a position of proving the Hadamard property, a nonlinear Hadamard theorem.
This theorem allows to obtain estimates for the behavior of super-solutions of (1.9) with respect to
fundamental solutions. We have

Theorem 4.3. Let Ω = R
N or an exterior domain and suppose that u ∈ C(Ω) is a positive viscosity super-

solution of (1.9) in Ω . We let r0 > 0 be such that Bc
r ⊂ Ω and r0 < r1 < r2 . Then
0
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(i) if Ω =R
N , for the functions m(r) defined in (1.14) we have

m(r) � ϕ(r) − ϕ(r1)

ϕ(r2) − ϕ(r1)
m(r2) + ϕ(r2) − ϕ(r)

ϕ(r2) − ϕ(r1)
m(r1), r1 < r < r2, (4.1)

(ii) if Ω is an exterior domain, m0(r) is defined as in (1.14) and r1 is large enough then for all r1 < r < r2 we
have

m0(r) � ϕ(r) − ϕ(r1)

ϕ(r2) − ϕ(r1)
m0(r2) + ϕ(r2) − ϕ(r)

ϕ(r2) − ϕ(r1)
m0(r1), (4.2)

(iii) if Ω is an exterior domain, and the function M(r) is defined as in (1.14), for r0 < r < r1 we have

M(r1)

ψ(r1) − ψ(r0)
� M(r)

ψ(r) − ψ(r0)
. (4.3)

Proof. (i) It is clear that m(r) is positive and non-increasing. By Proposition 3.1, we know that the
function Φ(r) = C1(ϕ(r) − ϕ(r1)) + C2 with

C1 = m(r2) − m(r1)

ϕ(r2) − ϕ(r1)
> 0 and C2 = m(r1)

satisfies (1.9) for 0 < r1 < r2 and Φ(r1) = m(r1) and Φ(r2) = m(r2). By the Comparison Principle
(Theorem 4.1), we have

u(x) � Φ(x), x ∈ Br2 \ Br1 . (4.4)

But, also by the Comparison Principle (Theorem 4.1), we have that m(r) = min{u(x) | x ∈ R
N , |x| = r},

so the conclusion follows from (4.4).
(ii) In the case of m0 we observe that by the Strong Maximum Principle either m0(r) is constant

for all r � r0 or m(r) = min{u(x) | x ∈ R
N , |x| = r}, for all r � r1 and r1 large enough. Then the result

is obtained in the same way as for m.
(iii) Let r1 > r0 and

Φ(r) := M(r1)
ψ(r) − ψ(r0)

ψ(r1) − ψ(r0)
, r ∈ (r0, r1),

which satisfies (1.9) and we see that Φ(r1) = M(r1) � u(x), for all |x| = r1 and 0 = Φ(r0) � u(x) for
all |x| = r0. Then, by the Comparison Principle, we have

M(r1)
ψ(r) − ψ(r0)

ψ(r1) − ψ(r0)
� u(x),

for all r0 � r = |x| � r1. On the other hand, by the Strong Maximum Principle we see that either M(r)
is equal to a constant for all r � r0 or

M(r) = min
{

u(x)
∣∣ x ∈R

N , |x| = r
}
, for all r � r0.

This completes the proof. �
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From Theorem 4.3 we have

Corollary 4.1. Assume that u is a non-negative viscosity solution of (1.8) in Ω , the whole space or an exterior
domain, then we have:

(i) If limr→∞ ϕ(r) = 0, then

m(r) � m(r1)

ϕ(r1)
ϕ(r) and m0(r) � m0(r1)

ϕ(r1)
ϕ(r), for all r � r1 � r0.

(ii) If limr→∞ ϕ(r) = −∞, then

m(r) � m(r1) and m0(r) � m0(r1), for all r � r1 � r0.

Proof. Since ϕ is decreasing, the result follows directly from Theorem 4.3 taking r2 → ∞ in (4.1) and
in (4.2). �

The next proposition provides additional properties of m, m0 and M .

Proposition 4.1. Suppose u is a positive viscosity solution of (1.8). Let

g(r) := min|x|=r
u(x).

Then there exists r̄ such that g is either strictly increasing or strictly decreasing for r > r̄ . Either m0(r) is
constant and M(r) = g(r) strictly increasing or m0(r) = g(r) is strictly decreasing and M(r) is constant for
r > r̄ .

Proof. Let r1 < r2 < r3 and g(r1) � g(r2) and g(r3) � g(r2), then u has a minimum point x ∈ Br3 \ Br1 ,
which contradicts with Minimum Principle. Then g(t) may change monotonicity just once. So g is
decreasing strictly or increasing strictly or first increasing and then decreasing. In the third case,
let r̄ be such that g is decreasing for r � r̄. From here the result follows if we define m0(r) =
minr̄�|x|�r u(x). �
5. Proof of Theorems 1.1 and 1.2

In this section we prove Theorems 1.1 and 1.2. The idea of the proof is to assume (1.8) has a
solution and use an appropriate test function in order to get the behavior of u at infinity, which in
view of our hypothesis is incompatible with the Hadamard property proved in the previous section.

Proof of Theorem 1.1. If the fundamental solution satisfies ϕ(r) → −∞, then by Corollary 4.1 we have

m(r) � m(r1) for r � r1.

Since m(r) is a non-increasing, we conclude that u attains an interior minimum, but then by the
Strong Minimum Principle u is constant. From here u ≡ 0 since f (x, s) > 0 if s > 0 from our assump-
tion ( f1).

If ϕ(r) → 0, then we consider two cases: critical and sub-critical equations.
Sub-critical Case. We assume hypothesis ( f3) in case (i) holds. We may assume that u > 0 by the

Strong Minimum Principle. From Corollary 4.1 we have

m(r) � m(r1)

ϕ(r )
ϕ(r). (5.1)
1
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We also see that m(r) is strictly decreasing. Considering 0 < τ < R as parameters, we define the test
function

ζ(x) = m(τ )

[
1 −

{
(|x| − τ )+
(R − τ )

}3]
.

We observe that ζ(x) � 0 < u(x) for |x| � R , ζ(x) ≡ m(τ ) < u(x) for |x| < τ and since m is strictly
decreasing, ζ(x̄) = u(x̄) at some x̄ with |x̄| = τ . Therefore, u −ζ attains a non-positive global minimum
at some point xτ

R such that τ � |xτ
R | < R . By definition of viscosity solution we have

f
(
xτ

R , u
(
xτ

R

))
� −M−(

r, D2ζ
(
xτ

R

)) − σ
(∣∣xτ

R

∣∣)∣∣Dζ
(
xτ

R

)∣∣. (5.2)

Since ζ is radial we directly compute the right hand side and get

f
(
xτ

R , u
(
xτ

R

))
� 3Λ(|xτ

R |)m(τ )

(R − τ )3

{
2 +

(
N − 1

|xτ
R | − σ(|xτ

R |)
Λ(|xτ

R |)
)(∣∣xτ

R

∣∣ − τ
)
+

}(∣∣xτ
R

∣∣ − τ
)
+.

If |xτ
R | = τ , then f (xτ

R , u(xτ
R)) � 0, contradicting ( f1). Thus, we may assume that τ < |xτ

R | < R and we
have

f
(
xτ

R , u
(
xτ

R

))
� Cm(τ )

1 + σ−(|xτ
R |)(R − τ )

(R − τ )2
, (5.3)

for certain constant C > 0. Now use the hypothesis ( f3)(i) to find a sequence {rn} diverging to infinity
so that

lim
n→∞Ψk(rn) = h(k1) = ∞, (5.4)

with k1 = m(r1)/ϕ(r1). We let τ = rn , R = 2rn and xn = xrn
2rn

, and recall that rn � |xn| � 2rn . Next we
see that u(xn) → 0 as n → ∞, because (5.3) gives

|xn|2 f (xn, u(xn))

4(1 + σ−(|xn|)|xn|) � Cm(rn),

that contradicts ( f2) if u(xn), or a subsequence, is bounded away from zero. Then we use the mono-
tonicity of m(r)/ϕ(r) given by (5.1) and the fact that u(xn) � m(2rn) to obtain

ϕ(2rn)

ϕ(rn)

r2
n

1 + σ−(|xn|)rn

f (xn, u(xn))

u(xn)
� C . (5.5)

But this contradicts (5.4), since by (5.1) u(xn) � m(2rn) � k1ϕ(2rn), so that (5.5) gives that Ψk(rn) is
bounded, completing the proof in this case.

Critical Case. If case ( f3)(ii) holds then there is no contradiction in case h(k1) < ∞. In this case,
arguing as above, we obtain u(xn) → 0 and, using hypothesis (1.12) and Proposition 3.3

r2
n f (xn, u(xn)) � C, (5.6)
u(xn)
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for any sequence {rn} diverging to ∞. At this point we claim that

lim
r→∞

m(r)

ϕ(r)
= ∞. (5.7)

Assuming for a moment that (5.7) holds, we find Mk for every k so that u(x) � kϕ(x), for all |x| � Mk ,
consequently, from (5.6) we obtain that

Ψk(rn) � r2
n f (xn, u(xn))

u(xn)
� C,

for n large. Since the sequence {rn} is arbitrary, we conclude that h(k) � C for all k, which is a
contradiction that completes the proof of the theorem.

Now we prove the claim (5.7). Let Ωτ = {x ∈ R
N : |x| > τ, u(x) < μ}, where τ > r1 and μ > 0

appears in ( f3). Ωτ is open and nonempty. Next we consider the function

Γ (x) := −ϕ
(|x|) logϕ

(|x|)
and choose r̄ � r1 such that m(τ ) � μ and Γ (x) � μ, for all |x| = τ � r̄. Then we use (5.1) and the
monotonicity of ϕ to find

|x|2
ϕ(|x|) f

(
x, u(x)

)
� k1

|x|2
1 + σ−(|x|)|x|

f (x, u(x))

u(x)

� k1
|x|2

1 + σ−(|x|)|x| inf
k1ϕ(|x|)�s�μ

f (x, s)

s

� k1
ϕ(2τ )

ϕ(τ )
inf

y∈B2τ \Bτ

|y|2
1 + σ−(|y|)|y| inf

k1ϕ(|y|)�s�μ

f (y, s)

s

� k1Ψk1(τ ).

From here, taking τ = |x| and using (1.11) we obtain

f
(
x, u(x)

)
� C

ϕ(|x|)
|x|2 , (5.8)

for certain constant C , for all x ∈ Ωr̄ . On the other hand, computing directly and using Proposition 3.2
we find C0 > 0 such that

M−(
r, D2Γ

) + σ(r)|DΓ | � −C0
ϕ(|x|)
|x|2 , |x| � r̄. (5.9)

Then we let C̃ := min{ C
C0

,−k1/ logϕ(r̄),1} and from (1.8), (5.8) and (5.9) we obtain

M−(
r, D2(u + ε)

) + σ(r)
∣∣D(u + ε)

∣∣ � C̃
(
M−(

D2Γ
) + σ(r)|DΓ |),

for all x ∈ Ωr̄ and ε > 0. By the choice of C̃ we have then

u(x) + ε � m(r̄) � k1ϕ(r̄) = k1

− logϕ(r̄)
Γ (r̄) � C̃Γ (r̄), for all x ∈ ∂ Br̄
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and, since limr→∞ Γ (r) = 0, there is R such that

u(x) + ε � ε � Γ (R) � C̃Γ (R), for all x ∈ ∂ B R .

We also have u(x) = μ � C̃Γ (|x|) for x ∈ (B R \ Br̄) ∩ ∂Ωr̄ , thus

u(x) + ε � C̃Γ
(|x|), x ∈ ∂(B R ∩ Ωr̄).

Then we use Comparison Principle and then take R → ∞ and ε → 0+ to get

u(x) � C̃Γ
(|x|), x ∈ Ωr̄,

which implies (5.7). �
Remark 5.1. If we have a non-negative super-solution u of (1.9) and the fundamental solution ϕ
satisfies ϕ(r) → −∞ then u has to be constant. This result is usually known as Liouville property.

Now we prove Theorem 1.2 on the Liouville property in an exterior domain.

Proof of Theorem 1.2. According to Proposition 4.1 for some r̄ � r0:

Case 1: m0(r) is strictly decreasing and M(r) is constant for r > r̄ or
Case 2: M(r) is strictly increasing and m0(r) is constant for r > r̄.

We recall the new definition of m0 given in the proof of Proposition 4.1, for notational convenience,
we just write m instead of m0, from now on.

Proof in Case 1: If ϕ(r) → 0 as r → ∞, the proof follows step by step that of Theorem 1.1. A small
change is needed in the complementary case: Given r̄ < r1 < r2 we use inequality (4.2) and that
m(r2) � 0, to find

m(r) � m(r1)

(
1 − ϕ(r)

ϕ(r2)

)
for r ∈ [r1, r2]. (5.10)

Then, we let r2 → ∞ obtain m(r) � m(r1) for r � r1, which is impossible since m(r) is strictly de-
creasing.

Proof in Case 2 and sub-critical: We consider the test function

ζ
(|x|) = M(R)

[
1 −

{
(R − |x|)+
(R − τ )

}3]
,

where R > τ � r̄ are parameters. As in the proof of Theorem 1.1, we see that u − ζ attains a non-
positive global minimum at some point xτ

R such that τ < |xτ
R | � R and u(xτ

R) � M(R). Then, by the
definition of viscosity solution and computing the differential operator we obtain

f
(
xτ

R , u
(
xτ

R

))
� C M(R)

1 + σ−(|xτ
R |)(R − τ )

(R − τ )2
. (5.11)

Assume that limr→∞ ψ(r) = 0 then, by Theorem 4.3 we have that M(R) is bounded. Let us choose
{rn} diverging to infinity and let τ = rn , R = 2rn and write xn = xrn

2rn
. We notice that rn � |xn| � 2rn

and u(xn) � M(2rn), so that u(xn) is bounded. But then, from (5.11), we find that
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r2
n

1 + σ(|xn|)rn
f
(
xn, u(xn)

)
� C M(2rn), (5.12)

contradicting ( f2).
Now we assume that limr→∞ ψ(r) = ∞ and we take, without loss of generality, that ψ(r0) = 0.

From (4.3) and (5.11) we have

f (xτ
R , u(xτ

R))

u(xτ
R)

�
f (xτ

R , u(xτ
R))

M(τ )
� C

ψ(R)

ψ(τ )

1 + σ−(|xτ
R |)(R − τ )

(R − τ )2
. (5.13)

Next we use the hypothesis ( f4)(i) to find {rn} diverging to infinity so that

lim
n→∞ Ψ̃k1(rn) = h̃(k1) = ∞, (5.14)

with k1 = M(r̄)/ψ(r̄). We let τ = rn , R = 2rn and we write xn = xrn
2rn

. We notice that rn � |xn| � 2rn

and u(xn) � M(2rn), so that u(xn) � k1ψ(2rn), where this last inequality comes from (4.3). Again we
have (5.12), but now we conclude that M(2rn) and consequently, M(rn) and u(xn) diverge to infinity.
Now, from (5.13) we have the following inequality that contradicts (5.14)

ψ(rn)

ψ(2rn)

r2
n

1 + σ(|xn|)rn

f (xn, u(xn))

u(xn)
� C .

Proof in Case 2 and critical: Under hypothesis ( f4)(ii) then there is no contradiction in case h̃(k1) < ∞.
Arguing as above, using hypothesis (1.12) and Proposition 3.4 we obtain

r2
n f (xn, u(xn))

u(xn)
� C, (5.15)

for any sequence {rn} diverging to ∞. At this point we claim that

lim
r→∞

M(r)

ψ(r)
= 0. (5.16)

Assuming that the claim is true, for every k there is Mk so that

M(r) � kψ(r), for all r � Mk,

consequently, from (5.15), we obtain that

Ψ̃k(rn) � r2
n f (xn, u(xn))

u(xn)
� C

for all n large and then

lim sup
n→∞

Ψ̃k(rn) � C .

Since this inequality holds for all sequence {rn} diverging to infinity, we find that h̃(k) � C for all k,
contradicting ( f4)(ii).
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Thus, we only need to prove (5.16) to complete the proof. We define the open set Ωr̄ := {x ∈
Ω, |x| > r̄, u(x) < 3k1ψ(|x|)}, which is nonempty since, given r > r̄ we can find x̄ with |x̄| = r and
u(x̄) = M(r) � k1ψ(r) < 3k1ψ(r).

Assume our claim is not true, then there exists k̃ ∈ (0,k1] such that

lim
r→∞

M(r)

ψ(r)
= k̃. (5.17)

Then we have

k̃ψ
(|x|) � M

(|x|) � k1ψ
(|x|), |x| > r̄,

and k̃ψ(|x|) � u(x) for all x ∈ Ωr̄ . From here and monotonicity of ψ we find

|x|2
ψ(|x|) f

(
x, u(x)

)
� k̃

ψ(|x|)
ψ(2|x|) inf

y∈B2|x|\B |x|

|y|2
1 + σ−(|y|)|y| inf

μ�s�k̃ψ(2|y|)
f (y, s)

s

� k̃Ψ̃k̃

(|x|).
Then, from (1.13), there exists c > 0 such that

f
(
x, u(x)

)
� c

ψ(|x|)
|x|2 , x ∈ Ωr̄ . (5.18)

Next we define the auxiliary function

Γ̃ (r) = ψ(r)

logψ(r)
, r = |x|.

Computing directly we obtain

M−(
r, D2Γ̃

) + σ(r)|DΓ̃ | � logψ(r) − 1

log2 ψ(r)

(
M−(

r, D2ψ
) + σ(r)|Dψ |)

− Λ
logψ(r) − 2

log3 ψ(r)

(ψ ′(r))2

ψ(r)
.

Since ψ is the fundamental solution, by Proposition 3.4 we get

M−(
r, D2Γ̃

) + σ(r)|DΓ̃ | � −C
ψ(r)

r2 log2 ψ(r)
.

On the other hand we can find r1 < r2 < r3 such that

log
(
ψ(r1)

) = n2, log
(
ψ(r2)

) = 2n2 and log
(
ψ(r3)

) = 3n2,

with n ∈ N to be chosen later. We define

w(x) := M(r3)

˜
(
Γ̃ (r) − Γ̃ (r1)

)
, x ∈ Br3 \ Br1 .
Γ (r3)
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There exists n0 > 0 such that, for n � n0 and x ∈ (Br3 \ Br1 ) ∩ Ωr̄ , we have

M−(
r, D2 w

) + σ(r)|D w| � −C
ψ(r)

r2 log2(ψ(r))

M(r3) logψ(r3)

ψ(r3)

� − f (x, u) � M−(
D2u

) + σ(r)|Du|,

where we used (5.18). Next we prove that

u(x) � w
(|x|), x ∈ ∂

(
(Br3 \ Br1) ∩ Ωr̄

)
.

This is obvious for |x| = r3 or |x| = r1. For x ∈ (Br3 \ Br1 ) ∩ ∂Ωr̄ we have

w(x) = M(r3) log ψ(r3)

ψ(r3)

(
ψ(r)

log ψ(r)
− ψ(r1)

logψ(r1)

)

� k1ψ(r)
logψ(r3)

logψ(r)
� k1ψ(r)

log ψ(r3)

logψ(r1)
= 3k1ψ(r) = u(x).

Then we apply the Comparison Principle to obtain

u(x) � w(x) = M(r3) log ψ(r3)

ψ(r3)

(
ψ(r)

logψ(r)
− ψ(r1)

logψ(r1)

)
,

for x ∈ (Br3 \ Br1) ∩ Ωr̄ . Then we take x ∈ ∂ Br2 ∩ Ωr̄ , and we get

M(r2) � M(r3) log ψ(r3)

ψ(r3)

(
ψ(r2)

logψ(r2)
− ψ(r1)

logψ(r1)

)

and then

M(r2)

ψ(r2)
� M(r3)

ψ(r3)

(
3

2
− 3

en2

)
,

which is impossible if n is large enough, in view of (5.17). �
6. Proof of Theorem 2.3

In this section we prove Theorem 2.3. We observe that part (i) is a consequence of Theorem 1.1.
In order to prove part (ii) we need a preliminary lemma. Given δ > 0 we define

Uδ(r) = ϕ(r)
(− logϕ(r)

)δ
, (6.1)

where r > r̄ � e and r̄ is such that ϕ(r̄) < 1.

Lemma 6.1. Assume the hypothesis of Theorem 2.3 and let u > 0 be a solution of (1.8). Then, for any δ > 0,
there exists Cδ ∈ (0,1) such that

u(x) � CδUδ

(|x|), |x| � r̄.
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Proof. By direct computation we find a constant c > 0 such that

M−(
r, D2Uδ

) + σ
(|x|)|DUδ| � −c

(log |x|)−2+δ

|x|2+α
. (6.2)

On the other hand, by Hadamard theorem, there exists c > 0 such that u(x) � cϕ(|x|), for r � r̄ and
then there exists C̃ > 0 such that

f (x, u) � f
(
x, cϕ

(|x|)) � C̃
(log |x|)ν−p

|x|αp
, for all |x| � r̄. (6.3)

If 0 < δ � δ0 = 1 + ν − 2
α and ε > 0 and using (6.2) and (6.3) we get

M−(
r, D2Uδ

) + σ
(|x|)|DUδ| � M−(

r, D2(u + ε)
) + σ

(|x|)∣∣D(u + ε)
∣∣, |x| � r̄.

By appropriately choosing C and R we find that

u(x) + ε � C Uδ

(|x|), x ∈ ∂(B R \ Br̄),

thus, by the Comparison Principle and letting R → ∞ and ε → 0, we obtain

u(x) � C Uδ

(|x|), x ∈ Bc
r̄ . (6.4)

For δ ∈ (δ0, (2 + 2
α )δ0], we use (6.4) with δ = δ0 to get, as in (6.3), that

f (x, u) � f
(
x, C Uδ0

(|x|)) � C̃
(log |x|)ν−p+δ0 p

|x|αp
. (6.5)

Then, by making C̄ smaller if necessary, we obtain

M−(
r, D2Uδ

) + σ
(|x|)|DUδ| � − f (x, u), (6.6)

for all δ ∈ (δ0, (2 + 2
α )δ0]. Then we use the Comparison Principle as before to prove that, for certain

constant C , we have u(x) � C Uδ(|x|), for x ∈ Bc
r̄ . Repeating the argument we can prove similar result

for every δ > 0. �
Proof of Theorem 2.3(ii). We assume that there exists a positive solution u of (1.8). By arguments as
in the proof of Theorem 1.1, we find xr

R such that r < |xr
R | < R and

u
(
xr

R

)p(∣∣log u
(
xr

R

)∣∣ + 1
)ν � 3m(r)

Λ(xr
R)(N + 1) + σ−(|xr

R |)(R − r)

(R − r)2
.

From here and the monotonicity of r → m(r)
ϕ(r) , we obtain

u
(
xr

R

)p−1(∣∣log u
(
xr

R

)∣∣ + 1
)ν � C

ϕ(r)

ϕ(R)

1 + σ−(|xr
R |)(R − r)

2
.

(R − r)
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At this point we choose R = 2r, we write xr = xr
2r and we obtain

|xr |2u(xr)
p−1(∣∣log u(xr)

∣∣ + 1
)ν � C, (6.7)

for certain positive constant C . From here we easily conclude that u(xr) → 0, as r → ∞. Now we
choose δ > 0 such that

ν − 2

α
+ 2δ

α
> 0

and we use Lemma 6.1 to obtain

|xr |2u(xr)
p−1(∣∣log u(xr)

∣∣ + 1
)ν � |xr |2

(
CδUδ(xr)

)p−1(∣∣log CδUδ(xr)
∣∣ + 1

)ν
.

From the choice of δ and the definition of Uδ we see that the right hand side diverges to infinity,
while from (6.7) the left hand side is bounded. This is a contradiction that completes the proof. �

We continue by proving the existence of a positive solution.

Proof of Theorem 2.3(iii). We consider the function U (x) = ϕ(|x|)θ , where θ ∈ (0,1) will be chosen
later. By direct computation we find a constant C > 0 and R > 0 so that

M−(
r, D2U

) + σ
(|x|)|DU | � −C

(log(|x|))−θ

|x|2+αθ

for |x| > R . On the other hand, we have

U p(x)
(∣∣log U (x)

∣∣ + 1
)ν � C |x|−αθ p(

log
(|x|))ν−θ p

.

Now we choose

θ = 1

2

(
1 + 2

α

1

p − 1

)
< 1

and we use our assumption p > 2
α + 1 to obtain θ < 1 and (p − 1)θ > 2

α . From here we find R̄ > R
such that for all x ∈ Bc

R̄

M−(
r, D2U

) + σ
(|x|)|DU | + U p(x)

(∣∣log U (x)
∣∣ + 1

)ν � 0. (6.8)

We notice that Uε(x) = εU (x) also satisfies (6.8) if ε is small, since

M−(
r, D2Uε(x)

) + σ
(|x|)∣∣DUε(x)

∣∣ � −Cε, x ∈ B R̄ \ B 1
2

and

Uε
p(x)

(∣∣log Uε(x)
∣∣ + 1

)ν = o(ε), x ∈ B R̄ \ B 1 ,

2
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for ε > 0 small enough and C > 0. Thus (6.8) can be extended to Bc
1
2

. Finally we let w be the unique

radial solution of the problem

{
λ�(w) + σ

(|x|)|D w| = −1, in B1,

w(x) = 0, on ∂ B1,
(6.9)

and let wε = εw , with ε > 0. It is easy to see that there exists ε0 small so that wε0 satisfies (1.8)
in B1. Since w is positive in B1, there exists ε1 > 0 such that wε0(x) > Uε1 (x) for |x| = 1/2. On the
other hand Uε1 → ∞ as r → 0, so there exists r ∈ (0, 1

2 ) such that w(x) = Uε1 (x) for all |x| = r. Now
we define V (x) = Uε1 if x ∈ Bc

r and V (x) = wε0 if x ∈ Br , which is a solution of (1.8) in R
N , completing

the proof. �
7. Liouville property for f (x, u) = h(x)u

In this section we study the Liouville type theorem for Eq. (1.17) in exterior domains, when the
functions h and σ satisfy (h1), (h2) and (h3). Before continuing we give two examples of functions
satisfying (h2):

Example 1. σ is a negative function such that lim infr→∞ σ(r) = c0, for some c0 < 0. Then there is R0
such that c0/2 � σ(r) � 2c0 for all r � R0 and we can choose κ(r) ≡ − 1

c0
.

We observe that if limr→0 σ(r) = 0, we may change σ by σ − ε, with ε > 0 and small enough so
that inequality (1.17) and (h3) are still satisfied.

Example 2. If σ is of class C1 and satisfies

lim
r→∞σ(r) = −∞ and lim

r→∞σ ′(r)/σ 2(r) = 0,

then we just let κ = 1/σ . If σ is not C1, but the first limit still holds and 1/σ is convex, or if it does
not differ too much from a convex function, then taking κ as an appropriate approximation of 1/σ
will work.

Lemma 7.1. Assume σ and κ satisfy hypotheses (h1) and (h2). Then ϕ(r) → 0 and ψ(r) → ∞ as r → ∞, and
for ε > 0, there exists R̄ > R0 such that

ϕ(r − κ(r))

ϕ(r)
� (1 + ε)e

μ
λ0 and

ψ(r)

ψ(r − κ(r))
� (1 + ε)e

μ
λ0 , ∀r � R̄.

Proof. As we have observed above, we may always assume that |σ(r)| � σ0 > 0 for all r. We also see
from (1.18) that for r � R̄ we have κ(r) � r/2, for large. Next we see that

r∫
r−κ(r)

n(τ )

τ
dτ � C

r∫
r−κ(r)

1

τ
dτ � C

κ(r)

r − κ(r)
� 2C

κ(r)

r
. (7.1)

By definition of ϕ and for ε > 0, we find R̄ > 0 large such that

(ϕ(r − κ(r)))′

(ϕ(r))′
= ϕ′(r − κ(r))(1 − κ ′(r))

ϕ′(r)
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= (
1 − κ ′(r)

)
exp

( r−κ(r)∫
r

(
σ(τ )

mλ(τ )
− n(τ )

τ

)
dτ

)

�
(
1 − κ ′(r)

)
exp

(
κ(r)

λ0

(
max

r−κ(r)�s�r

∣∣σ(s)
∣∣ + 2Cλ0

r

))

� (1 + ε)e
μ
λ0 ,

where we have used (7.1) and (1.19). Then we have

(
ϕ

(
r − κ(r)

))′ � (1 + ε)e
μ
λ0

(
ϕ(r)

)′
, r > R̄.

Integrating in [r, R], letting R go to infinity and using the fact that ϕ(r) → 0 we get the result.
Proceeding as above, for ε > 0 there exists R̄ so that

(
ψ(r)

)′ �
(

1 + 1

2
ε

)
e

μ
λ0

(
ψ

(
r − κ(r)

))′
, r > R̄.

Then we integrate in [R̄, r] and we divide by ψ(r − κ(r)) to get

ψ(r)

ψ(r − κ(r))
− ψ(R̄)

ψ(r − κ(r))
�

(
1 + 1

2
ε

)
e

μ
λ0

(
1 − ψ(r − κ(r))

ψ(R̄ − κ(R̄))

)
.

Using that ψ(r) → ∞ as r → ∞, we get the result. �
Proof of Theorem 1.3. If u � 0 is a non-trivial solution of (1.17), then

M−(
r, D2u

) + σ
(|x|)|Du| � 0, x ∈ Ω

and u > 0 in Ω . Then we use Proposition 4.1 to consider two cases in the proof, depending on the
behavior of m0(r) and M(r), as defined in (1.14).

Case 1. m0(r) is strictly decreasing and M(r) is constant for r > r̄. We consider the test function

ζ(x) = m0(r)

[
1 −

{
(|x| − r)+
(R − r)

}3]
,

where r, R are parameters such that R > r > max{r̄, r0}. Proceeding as in the proof of Theorem 1.1,
we obtain xr

R such that r < |xr
R | < R and

h
(∣∣xr

R

∣∣)u
(
xr

R

)
� 3Λ(xr

R)m0(r)

(R − r)3

{
2 +

(
N − 1

|xr
R | − σ(|xr

R |)
Λ(xr

R)

)(∣∣xr
R

∣∣ − r
)}(∣∣xr

R

∣∣ − r
)
.

From here we obtain

h
(∣∣xr

R

∣∣)u
(
xr

R

)
� 3m0(r)

{
2Λ0 + |σ(xr

R)|(R − r) + (N − 1)(R − r)r−1

(R − r)2

}
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and then, by the monotonicity of r → m0(r)
ϕ(r) ,

h
(∣∣xr

R

∣∣) � 3
ϕ(r)

ϕ(R)

{
2Λ0 + |σ(xr

R)|(R − r) + (N − 1)(R − r)r−1

(R − r)2

}
. (7.2)

Next we choose r = R − κ(R) with R � R̄ , and we use Lemma 7.1 to find

h
(|xR |) � (1 + ε)e

μ
λ0

{2Λ0 + |σ(xr
R)|κ(R) + (N−1)κ(R)

R−κ(R)

(κ(R))2

}
. (7.3)

From here, taking R = rn as in the hypothesis, we obtain

lim
n→∞ inf

r∈(rn−κ(rn),rn)

[
h(r) − (1 + ε)e

μ
λ0 (2Λ0 + 1)σ 2(r)

]
� 0.

If ε > 0 is chosen properly, we obtain a contradiction with (1.20).

Case 2. M(r) is strictly increasing and m0(r) is constant for r > r̄. In this case we replace m0 by M(r)
in the definition of the test function and we repeat step by step the proof, using Theorem 4.3 and the
properties of ψ given in Lemma 7.1. �
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