Geostatistics applied to cross-well reflection seismic for imaging carbonate aquifers

Jorge Parra a,⁎, Xavier Emery b,c,1

a Southwest Research Institute, USA
b Department of Mining Engineering, University of Chile, Chile
c Advanced Mining Technology Center, University of Chile, Chile

ABSTRACT

Cross-well seismic reflection data, acquired from a carbonate aquifer at Port Mayaca test site near the eastern boundary of Lake Okeechobee in Martin County, Florida, are used to delineate flow units in the region intercepted by two wells. The interwell impedance determined by inversion from the seismic reflection data allows us to visualize the major boundaries between the hydraulic units. The hydraulic (flow) unit properties are based on the integration of well logs and the carbonate structure, which consists of isolated vuggy carbonate units and interconnected vug systems within the carbonate matrix. The vuggy and matrix porosity logs based on Formation Micro-Imager (FMI) data provide information about highly permeable conduits at well locations. The integration of the inverted impedance and well logs using geostatistics helps us to assess the resolution of the cross-well seismic method for detecting conduits and to determine whether these conduits are continuous or discontinuous between wells. A productive water zone of the aquifer outlined by the well logs was selected for analysis and interpretation. The ELAN (Elemental Log Analysis) porosity from two wells was selected as primary data and the reflection seismic-based impedance as secondary data. The direct and cross variograms along the vertical wells capture nested structures associated with periodic carbonate units, which correspond to connected flow units between the wells. Alternatively, the horizontal variogram of impedance (secondary data) provides scale lengths that correspond to irregular boundary shapes of flow units. The ELAN porosity image obtained by cokriging exhibits three similar flow units at different depths. These units are thin conduits developed in the first well and, at about the middle of the interwell separation region, these conduits connect to thicker flow units that are intercepted by the second well. In addition, a high impedance zone (low porosity) at a depth of about 275 m, after being converted to ELAN porosity, is characterized as a more confined low porosity structure. This continuous zone corresponds to a permeability barrier in the carbonate aquifer that separates the three connected conduits observed in the cokriging image. In the zones above and below this permeability barrier, the water production is very high, which agrees with water well observations at the Port Mayaca aquifer.

1. Introduction

This study aims to integrate geophysical information to constrain the mapping of conduits in the interwell region of an aquifer test site, located about 48 km west of the Atlantic Ocean and approximately 1.6 km east of the eastern boundary of Lake Okeechobee in Martin County, south Florida. Some of the conduits are so thin that they are observed only in the Formation Micro-Imager (FMI) logs at the well locations (Parra et al., 2009). Thicker conduits are delineated by geophysical data, obtained by ground penetrating radar (GPR) and seismic techniques (Cardimona et al., 1998; Dubreuil-Boisclair et al., 2011; McKenna and Poeter, 1995). In these studies, GPR and seismic measurements are based on cross-well transmission tomography with well separations ≤ 30 m. Cardimona et al. (1998) compared images of seismic reflections and GPR in a shallow aquifer. The results showed that seismic data imaged clay lenses, whereas low-frequency radar profiles did not provide clear results. In GPR measurements, depth of penetration is limited by the presence of clay minerals or high conductivity pore fluid. GPR waves can reach depths up to 30 m in low conductivity materials such as dry sand or granite. Clays, shale, and other high conductivity materials may attenuate or absorb GPR signals, greatly decreasing the depth of penetration to 1 m or less. In contrast, cross-well reflection seismic measurements can detect heterogeneities and rock physical properties with vertical and horizontal resolutions of 0.6 m and 3 m, respectively, at an interwell distance greater than 365 m (Parra et al., 2009). The goal of this study is to estimate porosity between well locations in order to identify the lateral extents of the rock...
structures and their connectivity, by combining cross-well reflection seismic data and well log data.

The problem with using densely sampled secondary information (such as seismic impedance) in addition to sparsely sampled well-log measurements is a longstanding issue in subsurface mapping applications, especially in oil reservoir modeling (Abrahamsen et al., 1997; Doyen, 1988; Doyen et al., 1996; Dubrule, 1998, 2003). Bayesian approaches, such as Bayesian maximum entropy (Christakos, 1990; Christakos and Li, 1998; Wibrin et al., 2006) and Bayesian data fusion (Bogaert and Fastbender, 2008), offer a flexible solution to account for secondary information and its uncertainty, while they avoid assuming linear relationships between the variables. An alternative way of integrating secondary information without the restriction of linear models is provided by machine learning algorithms, such as artificial neuronal networks, support vector regressions, and genetic algorithms (Besaw and Rizzo, 2007; Kanevski et al., 2003; Leite and Vidal, 2011; Matsoukas et al., 1999).

In the field of geostatistics, a secondary variable that is exhaustively known in space can be used to define a trend model for the variable of interest (also called the primary variable). To this end, one can combine spatial prediction and regression techniques, leading to the so-called “kriging with a trend model”, i.e., the guess field model (Chilès and Delfiner, 2012), regression kriging (Hengl et al., 2007) and external drift kriging (Goovaerts, 1997; Hudson and Wackernagel, 1994). The underlying trend model has been generated by a spatial random field Z_1 such that, at each location \mathbf{x}, one has:

$$E[Z_1(\mathbf{x})] = a + b\,Z_2(\mathbf{x}),$$

where a and b are numerical coefficients, Z_2 denotes the secondary variable, and $E[\cdot]$ stands for the mathematical expectation. The differences between the aforementioned approaches lie in how the regression model is calibrated and whether or not the regression coefficients (a and b) are known. From Eq. (1), it is seen that the dependence between the primary (Z_1) and secondary (Z_2) variables is essentially a functional dependence and that the secondary variable is considered as a deterministic field. An alternative to kriging with a trend model is cokriging, which allows one to predict a variable of interest at a given location from data on this variable as well as on one or several covariates (Goovaerts, 1997; Wackernagel, 2003; Leite and Vidal, 2011; Matsoukas et al., 1999).

Table 1: Main characteristics of kriging and cokriging predictors.

<table>
<thead>
<tr>
<th>Kriging with a trend</th>
<th>Simple cokriging</th>
<th>Ordinary cokriging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear functional dependence between primary and secondary variables (trend model)</td>
<td>No functional dependence between primary and secondary variables</td>
<td>No functional dependence between primary and secondary variables</td>
</tr>
<tr>
<td>No stochastic dependence between primary and secondary variables</td>
<td>Linear stochastic dependence (correlation) between primary and secondary variables</td>
<td>Linear stochastic dependence (correlation) between primary and secondary variables</td>
</tr>
<tr>
<td>Secondary variable exhaustively known</td>
<td>Secondary variable may be partially known</td>
<td>Secondary variable may be partially known</td>
</tr>
<tr>
<td>Implementation in a local neighborhood when too many primary data points are available</td>
<td>Implementation in a local neighborhood when too many primary or secondary data points are available</td>
<td>Implementation in a local neighborhood when too many primary or secondary data points are available</td>
</tr>
<tr>
<td>Need for the variogram of the primary variable only</td>
<td>No uncertainty in the mean values, generally taken as constant in space</td>
<td>Total uncertainty in the mean values, which are constant at the neighborhood scale</td>
</tr>
<tr>
<td></td>
<td>Need for a coregionalization model (direct and cross variograms)</td>
<td>Need for a coregionalization model (direct and cross variograms)</td>
</tr>
</tbody>
</table>

where the coefficients a and b are assumed known, while the expected values of Z_1 and Z_2 are unknown but locally constant in space. This way, the relationships between the primary and secondary variables stem not only from the correlation (second-order moment) between the associated random fields, but also from the functional dependence between their expected values (first-order moments). This variant is suitable when the variables are linearly related, which is the case for impedance and porosity.

For completeness, the stochastic simulation approach is considered as an alternative for incorporating data from different sources. Many algorithms have been proposed, based on Gaussian or indicator transforms, simulated annealing, or Bayesian models, among others (Dafflon et al., 2009; Deutsch and Cherry, 1994; Dubreuil-Boisclair et al., 2011; Goovaerts, 1997; Pebesma, 2004). Simulation allows one to assess spatial uncertainty through the construction of multiple outcomes that reproduce the spatial variability of the true unknown fields, but none of these outcomes is a good local predictor of the true fields. Simulation is out of the scope of this work, which aims at mapping porosity rather than constructing multiple outcomes of it.

2. Data acquisition and processing

A cross-well survey was conducted at the Port Mayaca test site, Florida. This site is located about 48 km west of the Atlantic Ocean and approximately 1.6 km east of the eastern boundary of Lake Okeechobee in Martin County, south Florida. The measurements were taken between monitoring wells MF-37 and EXMP-1 (located at east coordinates 0 and 382.6 m, respectively), using a Z-Seis piezoceramic X series source and a 10-level hydrophone system (Parra et al., 2003, 2006, 2009). Multiple source and detector measurements were taken in the depth interval from 121.9 to 518.2 m. The objectives of the survey were to map the flow unit variability in the region between the two wells, to assess whether the high-resolution seismic survey could resolve and detect zones of high water production, and to map the matrix porosity and permeability. In this study, we consider the porosity logs from wells MF-37 and EXMP-1 and the P-wave impedance data obtained by inverting the cross-well reflection seismic measurements,
which were presented by Parra et al. (2009). The processing method used for inversion was a band-limited inversion algorithm described by Olderburg et al. (1983) and Parra et al. (2006). We selected the P-wave impedance rather than P-wave velocity, because the impedance image captures the variability of lateral structures in the limestone formation. The advantages of using reflections for cross-well imaging applications, as opposed to conventional direct arrival traveltime tomography, are: 1) imaging ability at and below the bottoms of the wells, where the reservoir is sometimes located; 2) improved vertical resolution over tomography; and 3) reduction of fundamental tomography imaging artifacts caused by aperture limitations and anisotropy (Beydoun et al., 1988; Khalil et al., 1993; Lazaratos, 1993).

From the seismic impedance section obtained by the inversion of reflection data, we selected a high water production zone below the top confining unit of the aquifer, at a depth between 250 m and 332 m, with a resolution of 3 m in the east–west direction and 0.6 m in depth (Fig. 1). The impedance image captures lateral heterogeneities in the interwell region that are not observed in the velocity tomogram given in Parra et al. (2009) and that will be used as secondary data to delineate the heterogeneities of the aquifer, where high water production has been observed (Bennett and Recrewnald, 2002).

In addition, the Elemental Log Analysis (ELAN, Schlumberger proprietary software) porosity (Fig. 2), vuggy porosity, matrix porosity, total porosity, and impedance logs were integrated with Formation Micro Image (FMI) data at the well locations, with a resolution of 0.15 m along the wells, to identify conduits that could be delineated with cross-well reflection seismic (Parra et al., 2009). ELAN depends on three porosity tools—density, neutron, and sonic—to calculate total porosity.

3. Geostatistical modeling of porosity and impedance data

To cross-correlate porosity (primary variable) with P-wave impedance (secondary variable), the latter variable was interpolated at the two wells by assigning to each well location the value of the closest P-wave impedance data. The analysis of correlation coefficients and scatter plots indicates that there is a moderate but significant dependence between P-wave impedance and ELAN porosity, with a correlation coefficient of 0.43, but no relevant dependence between P-wave impedance and other types of porosity (matrix, vuggy, and total porosity).

Hereafter we focus on the problem of predicting ELAN porosity in the interwell region, using P-wave impedance as a covariate. In Sections 3.1 and 3.2, these variables are viewed as outcomes of spatial random fields and are characterized by their first- and second-order moments (mean values and variograms). For inference purposes, we assume that these moments are invariant under a spatial translation (Chilès we assume that these moments are invariant under a spatial translation (Chilès and Delfiner, 2012)).

3.1. Modeling the relationship between mean values

The mean values of the variables for the well data are indicated in Table 2. Accordingly, there is an inverse relationship between the mean values of ELAN porosity and of P-wave impedance. This relationship can be modeled in the following way:

$$\text{mean porosity} + 1.402 \times 10^{-5} \text{mean impedance} = 0.615.$$

The model given by Eq. (2) is corroborated by plotting the porosity data as a function of the impedance data (Fig. 3) and checking that the experimental points fluctuate around the model given by Eq. (3). This can be done by considering the P-wave impedance data (Fig. 3A), as well as the impedance data logged at wells EXPM-1 and MF-37 (Fig. 3B), insofar as both types of impedance (P-wave impedance and logged impedance) are expected to have the same mean value.

3.2. Modeling the spatial correlation structure

The P-wave impedance map (Fig. 1) shows a strong anisotropy, with much greater spatial continuity along the east–west direction than along the vertical direction (direction of the wells). To model the spatial continuity, variograms are calculated along these two directions. Because two variables (ELAN porosity as the primary variable and P-wave impedance as the secondary variable) are under consideration, three variograms can be defined:

(1) Direct variogram of ELAN porosity

We define the ELAN porosity as Z_1 (viewed as a spatial random field) and the spatial location as \mathbf{x}. The direct variogram of ELAN porosity for a lag separation vector \mathbf{h} is defined as:

$$\gamma_1(\mathbf{h}) = \frac{1}{2} \mathbb{E} \left(|Z_1(\mathbf{x} + \mathbf{h}) - Z_1(\mathbf{x})|^2 \right).$$

Experimentally, this variogram is estimated by calculating the mean squared difference between porosity data at locations separated by \mathbf{h} (Chilès and Delfiner, 2012; Goovaerts, 1997). It is quite easy to calculate the experimental variogram along the vertical direction (well direction) for lag distances that are a multiple of 0.15 m (Fig. 4A). In the east–west direction, the calculation is limited to a single lag distance of 382.6 m, which corresponds to the distance that separates the two wells (Fig. 4B).

(2) Direct variogram of P-wave impedance

The direct variogram of P-wave impedance (denoted by Z_2) for a lag separation vector \mathbf{h} is defined as:

$$\gamma_2(\mathbf{h}) = \frac{1}{2} \mathbb{E} \left(|Z_2(\mathbf{x} + \mathbf{h}) - Z_2(\mathbf{x})|^2 \right).$$

This variogram can be estimated along the vertical direction for lag distances that are a multiple of 0.6 m (Fig. 4C) and along the east–west direction for lag distances that are a multiple of 3 m (Fig. 4D). These distances correspond to the grid mesh at which the P-wave impedance is available.

(3) Cross variogram between ELAN porosity and P-wave impedance

This variogram allows us to model the joint correlation structure of ELAN porosity and P-wave impedance. It is defined as:

$$\gamma_{12}(\mathbf{h}) = \frac{1}{2} \mathbb{E} \left(|Z_1(\mathbf{x} + \mathbf{h}) - Z_1(\mathbf{x})||Z_2(\mathbf{x} + \mathbf{h}) - Z_2(\mathbf{x})| \right).$$

To calculate the experimental variogram, we consider porosity data at the well locations along with P-wave impedance data at the same locations. The calculations are performed for lag distances that
are a multiple of 0.6 m along the vertical direction (Fig. 4E) and for a single distance of 382.6 m along the east–west direction (Fig. 4F). It should be noted that the cross variogram has negative values, which is consistent with the negative correlation observed between the two variables: if ELAN porosity at location \(x + h \) is greater than at location \(x \), then the reverse should happen for P-wave impedance, which implies a negative value for the cross variogram (Eq. (6)).

Several interesting features can be seen in the experimental variograms. First, the shapes of the direct and cross variograms along the vertical direction are similar, with a dampened periodic behavior. Second, the variogram of P-wave impedance along the east–west direction increases at large distances, which may reflect a large range structure or a trend between the two wells. The other two variograms are mostly unknown in this direction but, based on what is observed for the vertical direction, one can assume that their shapes are similar to that of the direct variogram of P-wave impedance.

The experimental variograms are fitted by using combinations of the following five basic nested structures (Chilès and Delfiner, 2012):

- A nugget effect (\(NUG \)).
- Two anisotropic short- to medium-range spherical models — one (\(SPH1 \)) with ranges of 60 m (east–west direction) and 1.5 m (vertical direction), and the other (\(SPH2 \)) with ranges of 90 m (east–west direction) and 3 m (vertical direction).
- One anisotropic dampened periodic model (\(BESSEL-J \)), with a scale factor of 3.7 m (corresponding to a half-period of about 14 m) along the vertical direction (to account for periodicity) and infinite along the east–west direction (no observed periodicity).
- One anisotropic large-range cubic model (\(CUB \)), with a range of 750 m along the east–west direction (to account for the large-scale structure or trend) and infinite along the vertical direction (no observed trend).

The above ranges and scale factors were chosen by trial and error to fit the slope changes of the experimental variograms at short and medium distances (case of the SPH models), the period along the vertical direction (case of the \(BESSEL-J \) model), and the slope and behavior at large distances along the east–west direction (case of the \(CUB \) model). To complete the specification of each model, we determined the contribution of each basic structure to each variogram using an iterative procedure (Emery, 2010) that provided the models that minimize the squared deviations between experimental and fitted variograms. The final model is:

\[
\begin{align*}
\gamma_{11}(h) &= 0.059 \times 10^{-4}NUG + 12.0 \times 10^{-4}SPH1 + 6.11 \times 10^{-8}SPH2 \\
&\quad + 6.47 \times 10^{-4}BESSELJ + 11.0 \times 10^{-8}CUB \\
\gamma_{12}(h) &= -0.012NUG - 0.232SPH1 - 0.372SPH2 \\
&\quad - 29.0BESSELJ - 86.8CUB \\
\gamma_{22}(h) &= 24.90NUG + 46.50SPH1 + 2.28 \times 10^{8}SPH2 \\
&\quad + 1.85 \times 10^{8}BESSELJ + 7.00 \times 10^{6}CUB.
\end{align*}
\]

(7)

As shown in Fig. 4, the periodic behavior along the vertical direction is well reproduced. Compared to the direct variograms, the cross

![Fig. 2. ELAN porosity well logs between depths of 250 m and 332 m, used as primary data for variogram analysis and cokriging.](image)

Table 2

<table>
<thead>
<tr>
<th></th>
<th>ELAN porosity</th>
<th>P-wave impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well MF-37</td>
<td>0.3760</td>
<td>17,074.2</td>
</tr>
<tr>
<td>Well EXPM-1</td>
<td>0.4082</td>
<td>14,777.1</td>
</tr>
<tr>
<td>Average</td>
<td>0.3921</td>
<td>15,925.6</td>
</tr>
</tbody>
</table>
The interwell region), the relationship between the mean values of data (ELAN porosity at the well locations and P-wave impedance in dependence relationship between the two variables. This allows the mean values to vary spatially at a large scale, although they are considered as locally constant, and also creates a functional relationship between the primary data (porosity) upon the secondary data (impedance), deriving the residuals of the regression at each well location, and kriging these residuals at the target grid nodes. As the variogram of the residuals can only be calculated along the vertical drill hole direction, an isotropic variogram model is considered for kriging (namely, an exponential model with a practical range of 2 m), and the anisotropic features of porosity are assumed to be taken into account through the regression model (Eq. (1)).

For comparison, two other ways to predict porosity were tested:

- Traditional ordinary cokriging (Fig. 5B), which is similar to the proposed cokriging approach, except that it accounts only for the variogram model and ignores the relationship between the mean values of porosity and impedance (Eq. (3));
- Regression kriging (Fig. 5C), which consists of fitting a linear regression of the primary data (porosity) upon the secondary data (impedance), deriving the residuals of the regression at each well location, and kriging these residuals at the target grid nodes. As the variogram of the residuals can only be calculated along the vertical drill hole direction, an isotropic variogram model is considered for kriging (namely, an exponential model with a practical range of 2 m), and the anisotropic features of porosity are assumed to be taken into account through the regression model (Eq. (1)).

On one hand, ordinary cokriging provides a map with many fewer details than the other two methods. This can be explained because a property of ordinary cokriging is to assign weights to the secondary data that sum to zero. This implies that the secondary variable (P-wave impedance) makes a small contribution to the prediction in comparison to the primary variable (ELAN porosity) (Goovaerts, 1997). This is the cost incurred by taking into account only the stochastic dependence relationship between the primary and secondary variables, which is not strong (the correlation coefficient is −0.43), and ignoring the functional dependence relationship between these variables.

On the other hand, regression kriging leads to a more contrasted map, which is almost a linear transformation of the impedance map (Fig. 1). This is because the residual has a short range variogram of 2 m, so that its prediction in the interwell region by simple kriging is practically equal to its mean value, i.e., 0. Apart from variogram analysis (assumption of isotropy for the residual variogram), an inconvenient aspect of this approach is that the prediction of porosity at a given location depends only on the collocated impedance data, thus it is sensitive to any inaccuracy in this data. For instance, the local artifact (vertical band) in the impedance map near the east coordinate (190 m) also appears in the porosity map (Fig. 5C). Ideally, the impedance variable should vary smoothly in space, with no abrupt fluctuation, to be considered an accurate measure of the trend in the porosity (Eq. (1)).

The proposed approach (cokriging with linearly related means, Fig. 5A) provides a more detailed and contrasted map than ordinary cokriging and regression kriging. Furthermore, unlike regression kriging, the local artifact in the impedance map (vertical band around the east location at 190 m) is hardly perceptible in the porosity map. This is because the predicted porosity at a given location no longer depends on collocated impedance data, but on a weighted average of the impedance data situated around the target location (one could even consider the case of missing impedance data, for which a porosity prediction could still be obtained). The weighting rests on the joint spatial correlation structure of the primary and secondary variables, hence the importance of considering a stochastic dependence between these variables in addition to a functional dependence.

5. Discussion

The experimental variograms provide information on the structure of the aquifer. The variograms along the vertical direction for the primary and secondary data have similar shapes. Although the nugget effect may reflect well data measurement errors and does not contribute to the final porosity image, the structures with ranges...
of 1.5 and 3 m are delineated by the ELAN porosity image (Fig. 5A). These correspond to interconnected conduits embedded in layered structures, which are formed by low and high impedance zones (Fig. 1). These impedance zones are obtained by the inversion of reflection data that provide the layered boundaries between the carbonate rock formations.

Fig. 4. Experimental (circles) and modeled (solid lines) variograms for ELAN porosity and P-wave impedance, along vertical and east-west directions.
Within this structure there is a carbonate unit 7–8 m thick that is not connected between the matrix and the vuggy carbonate that separates the upper and lower water production zones. As a result, the low porosity structure in the depth interval of 275–290 m is considered a permeability barrier in the aquifer by Bennett and Recrenwald (2002).

The east–west direction variograms show intermediate (60–90 m) and large (>300 m) ranges that characterize lateral and uniform structures above and below the low porosity structure. These lateral structures are observed approximately every 60 m in the cokriged porosity image, which outlines the major irregular boundary shapes of the flow units. In addition, the zone of 260–275 m depth clearly shows the porosity connectivity from well MF-37 to well EXPM-1. At well MF-37, conduits about 3 m thick are developed to form a heterogeneous structure that, at 180 m from well MF-37, merges into a thicker and more porous/continuous flow unit, which is intercepted by well EXPM-1. These structural features are not outlined by the P-wave impedance image but are clearly identified in the cokriged porosity image. This image is consistent with the flow unit connectivity that is supported by the high water production and hydrology conditions of the aquifer. These conditions are also observed in the depth interval at 305–320 m, where the structure pattern is similar to that of the depth interval at 250–290 m. The porosity image outlines the major carbonate units well, but thin conduits of 0.15–0.3 m are not delineated by cokriging due to the limited resolution of the cross-well reflection seismic data. For example, a thin conduit of 0.1 m observed in FMI logs (Parra et al. 2009) at a depth of 283.5 m in well MF-37 that carries water to well EXPM-1 is not captured by the cokriging image. This conduit, which is in a zone of high impedance in the horizontal direction interval of 0–180 m (low porosity), merges into a higher porosity interval intercepted by well EXPM-1 at a depth of 290 m. We expect that this conduit is associated with secondary porosity (vugs) developed in a brittle limestone.

6. Conclusions

Cross-well seismic reflection data provide information on the intrinsic properties of the formation and, with well log data (Parra et al. 2009), resolve conduits (interconnected vuggy porosity) seen in the porosity well logs. The ELAN porosity image clearly shows the variation of the flow units in the interwell region. This was achieved by a complete variogram analysis and cokriging. The vertical variograms of the primary and secondary data, as well as the cross variogram, show the presence of a nested structure that is associated with periodic flow units in the aquifer. The east–west direction variograms show intermediate and large range structures that characterize lateral and uniform structures above and below the low porosity zone at a depth of about 275 m. These lateral structures are observed approximately every 60 m in the ELAN porosity image in the horizontal east–west direction, which outlines the major irregular boundary shapes of the flow units. These units are observed at depths of 265 m, 295 m and 320 m in the cokriging image and are formed by thin conduits intercepted by well MF-37 that merge into thicker and more porous structures intercepted by well EXPM-1.

The cokriging method provides a good description of highly interconnected vuggy porosity that is associated with high water production. The high impedance zone at about 275 m, after being transformed to porosity, is more uniform; it is shown as a continuous, lower porosity structure that is considered a permeability barrier in carbonate aquifers. In zones above and below the permeability barrier, water production is very high, which agrees with water well observations (Bennett and Recrenwald, 2002). Although the porosity image outlines the major flow units, thin conduits of 0.15–0.3 m are not captured by cokriging because of the limited resolution of the current cross-well reflection seismic technique.
Acknowledgments

The South Florida Water Management District provided the well logs and cross-well reflection seismic data set. We thank Jonathan Parra for preparing the data for processing and interpretation analysis.

References

