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Cross-well seismic reflection data, acquired from a carbonate aquifer at Port Mayaca test site near the eastern
boundary of Lake Okeechobee in Martin County, Florida, are used to delineate flow units in the region
intercepted by two wells. The interwell impedance determined by inversion from the seismic reflection
data allows us to visualize the major boundaries between the hydraulic units. The hydraulic (flow) unit prop-
erties are based on the integration of well logs and the carbonate structure, which consists of isolated vuggy
carbonate units and interconnected vug systems within the carbonate matrix. The vuggy and matrix porosity
logs based on Formation Micro-Imager (FMI) data provide information about highly permeable conduits at
well locations. The integration of the inverted impedance and well logs using geostatistics helps us to assess
the resolution of the cross-well seismic method for detecting conduits and to determine whether these con-
duits are continuous or discontinuous between wells. A productive water zone of the aquifer outlined by the
well logs was selected for analysis and interpretation. The ELAN (Elemental Log Analysis) porosity from two
wells was selected as primary data and the reflection seismic-based impedance as secondary data. The direct
and cross variograms along the vertical wells capture nested structures associated with periodic carbonate
units, which correspond to connected flow units between the wells. Alternatively, the horizontal variogram
of impedance (secondary data) provides scale lengths that correspond to irregular boundary shapes of
flow units. The ELAN porosity image obtained by cokriging exhibits three similar flow units at different
depths. These units are thin conduits developed in the first well and, at about the middle of the interwell
separation region, these conduits connect to thicker flow units that are intercepted by the second well. In
addition, a high impedance zone (low porosity) at a depth of about 275 m, after being converted to ELAN
porosity, is characterized as a more confined low porosity structure. This continuous zone corresponds to a
permeability barrier in the carbonate aquifer that separates the three connected conduits observed in the
cokriging image. In the zones above and below this permeability barrier, the water production is very high,
which agrees with water well observations at the Port Mayaca aquifer.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

This study aims to integrate geophysical information to constrain
the mapping of conduits in the interwell region of an aquifer test site,
located about 48 km west of the Atlantic Ocean and approximately
1.6 km east of the eastern boundary of Lake Okeechobee in Martin
County, south Florida. Some of the conduits are so thin that they are
observed only in the Formation Micro-Imager (FMI) logs at the well
locations (Parra et al., 2009). Thicker conduits are delineated by geo-
physical data, obtained by ground penetrating radar (GPR) and seismic
techniques (Cardimona et al., 1998; Dubreuil-Boisclair et al., 2011;
onio, TX 78023, United States.
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McKenna and Poeter, 1995). In these studies, GPR and seismicmeasure-
ments are based on cross-well transmission tomographywith well sep-
arations ≤30 m. Cardimona et al. (1998) compared images of seismic
reflections and GPR in a shallow aquifer. The results showed that seis-
mic data imaged clay lenses, whereas low-frequency radar profiles did
not provide clear results. In GPR measurements, depth of penetration
is limited by the presence of clay minerals or high conductivity pore
fluid. GPR waves can reach depths up to 30 m in low conductivity ma-
terials such as dry sand or granite. Clays, shale, and other high
conductivitymaterials may attenuate or absorb GPR signals, greatly de-
creasing the depth of penetration to 1 m or less. In contrast, cross-well
reflection seismic measurements can detect heterogeneities and rock
physical properties with vertical and horizontal resolutions of 0.6 m
and 3 m, respectively, at an interwell distance greater than 365 m
(Parra et al., 2009). The goal of this study is to estimate porosity between
well locations in order to identify the lateral extents of the rock
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structures and their connectivity, by combining cross-well reflection
seismic data and well log data.

The problem with using densely sampled secondary information
(such as seismic impedance) in addition to sparsely sampled well-log
measurements is a longstanding issue in subsurface mapping applica-
tions, especially in oil reservoir modeling (Abrahamsen et al., 1997;
Doyen, 1988; Doyen et al., 1996; Dubrule, 1998, 2003). Bayesian
approaches, such as Bayesian maximum entropy (Christakos, 1990;
Christakos and Li, 1998; Wibrin et al., 2006) and Bayesian data fusion
(Bogaert and Fasbender, 2008), offer a flexible solution to account for sec-
ondary information and its uncertainty, while they avoid assuming linear
relationships between the variables. An alternative way of integrating
secondary information without the restriction of linear models is provid-
ed by machine learning algorithms, such as artificial neuronal networks,
support vector regressions, and genetic algorithms (Besaw and Rizzo,
2007; Kanevski et al., 2003; Leite and Vidal, 2011;Matsoukas et al., 1999).

In the field of geostatistics, a secondary variable that is exhaustively
known in space can be used to define a trend model for the variable of
interest (also called the primary variable). To this end, one can combine
spatial prediction and regression techniques, leading to the so-called
“kriging with a trend model”, i.e., the guess field model (Chilès and
Delfiner, 2012), regression kriging (Hengl et al., 2007) and external
drift kriging (Goovaerts, 1997; Hudson and Wackernagel, 1994). The
underlying trendmodel is that the primary variable has been generated
by a spatial random field Z1 such that, at each location x, one has:

E Z1 xð Þf g ¼ aþ bZ2 xð Þ; ð1Þ

where a and b are numerical coefficients, Z2 denotes the secondary vari-
able, and E{.} stands for themathematical expectation. The differences be-
tween the aforementioned approaches lie in how the regressionmodel is
calibrated and whether or not the regression coefficients (a and b) are
known. From Eq. (1), it is seen that the dependence between the primary
(Z1) and secondary (Z2) variables is essentially a functional dependence
and that the secondary variable is considered as a deterministic field.

An alternative to kriging with a trend model is cokriging, which
allows one to predict a variable of interest at a given location from
data on this variable as well as on one or several covariates (Goovaerts,
1997; Wackernagel, 2003; Wackernagel et al., 2002). Here, all the vari-
ables are viewed as outcomes of spatial random fields, commonly with
the assumption that their expected values are constant in space or, at
least, constant at a local scale. In such a case, the relationship between
the primary and secondary variables is reduced to a stochastic depen-
dence, controlled by cross-correlation between the random fields.
Cokriging variants include simple cokriging, in which the mean values
of the random fields are assumed known, and ordinary cokriging, in
which themean values are unknown. The former implies littleflexibility,
as no uncertainty in the means can be taken into account (a reason
global means are usually considered), while the latter often gives little
importance to the secondary variable, as theweights assigned to second-
ary data sum to zero (Goovaerts, 1997). Several studies have compared
Table 1
Main characteristics of kriging and cokriging predictors.

Kriging with a trend Simple cokriging

Linear functional dependence between primary and
secondary variables (trend model)

No functional dependence between
variables

No stochastic dependence between primary and
secondary variables

Linear stochastic dependence (corre
primary and secondary variables

Secondary variable exhaustively known Secondary variable may be partially
Implementation in a local neighborhood when too
many primary data points are available

Implementation in a local neighbor
primary or secondary data points ar
No uncertainty in the mean values,
constant in space

Need for the variogram of the primary variable only Need for a coregionalization model
variograms)
the performance of krigingwith a trend predictors and cokriging predic-
tors (Asli and Marcotte, 1995; Goovaerts, 2000; Juang and Lee, 1998;
Pardo-Igúzquiza, 1998), but no clear conclusion can be drawn as to
which is better. The main characteristics of the predictors are listed in
Table 1.

For this study, we combined the advantages of cokriging and kriging
with a trendmodel, by considering both a functional dependence and a
stochastic dependence between the primary and secondary variables.
These variables are considered as outcomes of cross-correlated random
fields (as in simple or ordinary cokriging), but with the following addi-
tional restriction that modifies Eq. (1):

E Z1 xð Þf g ¼ aþ bE Z2 xð Þf g; ð2Þ

where the coefficients a and b are assumed known, while the expected
values of Z1 and Z2 are unknown but locally constant in space. This way,
the relationships between the primary and secondary variables stem
not only from the correlation (second-order moment) between the as-
sociated random fields, but also from the functional dependence be-
tween their expected values (first-order moments). This variant is
suitablewhen the variables are linearly related,which is the case for im-
pedance and porosity.

For completeness, the stochastic simulation approach is considered as
an alternative for incorporating data from different sources. Many algo-
rithms have been proposed, based on Gaussian or indicator transforms,
simulated annealing, or Bayesian models, among others (Dafflon et al.,
2009; Deutsch and Cockerham, 1994; Dubreuil-Boisclair et al., 2011;
Goovaerts, 1997; Pebesma, 2004). Simulation allows one to assess spatial
uncertainty through the construction of multiple outcomes that repro-
duce the spatial variability of the true unknown fields, but none of
these outcomes is a good local predictor of the true fields. Simulation
is out of the scope of this work, which aims at mapping porosity rather
than constructing multiple outcomes of it.

2. Data acquisition and processing

A cross-well survey was conducted at the Port Mayaca test site,
Florida. This site is located about 48 km west of the Atlantic Ocean
and approximately 1.6 km east of the eastern boundary of Lake
Okeechobee in Martin County, south Florida. The measurements were
taken between monitoring wells MF-37 and EXPM-1 (located at east
coordinates 0 and 382.6 m, respectively), using a Z-Seis piezoceramic
X series source and a 10-level hydrophone system (Parra et al., 2003,
2006, 2009). Multiple source and detector measurements were taken
in the depth interval from121.9 to 518.2 m. The objectives of the survey
were to map the flow unit variability in the region between the two
wells, to assess whether the high-resolution seismic survey could re-
solve and detect zones of high water production, and tomap thematrix
porosity and permeability. In this study, we consider the porosity logs
from wells MF-37 and EXPM-1 and the P-wave impedance data
obtained by inverting the cross-well reflection seismic measurements,
Ordinary cokriging

primary and secondary No functional dependence between primary and secondary
variables

lation) between Linear stochastic dependence (correlation) between
primary and secondary variables

known Secondary variable may be partially known
hood when too many
e available

Implementation in a local neighborhood when too many
primary or secondary data points are available

generally taken as Total uncertainty in the mean values, which are constant at
the neighborhood scale

(direct and cross Need for a coregionalization model (direct and cross
variograms)
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which were presented by Parra et al. (2009). The processing method
used for inversion was a band-limited inversion algorithm described
by Olderburg et al. (1983) and Parra et al. (2006). We selected the
P-wave impedance rather than P-wave velocity, because the imped-
ance image captures the variability of lateral structures in the lime-
stone formation. The advantages of using reflections for cross-well
imaging applications, as opposed to conventional direct arrival travel-
time tomography, are: 1) imaging ability at and below the bottoms of
thewells,where the reservoir is sometime located; 2) improved vertical
resolution over tomography; and 3) reduction of fundamental tomogra-
phy imaging artifacts caused by aperture limitations and anisotropy
(Beydoun et al., 1988; Khalil et al., 1993; Lazaratos, 1993).

From the seismic impedance section obtained by the inversion of re-
flection data, we selected a high water production zone below the top
confining unit of the aquifer, at a depth of between 250 m and 332 m,
with a resolution of 3 m in the east–west direction and 0.6 m in depth
(Fig. 1). The impedance image captures lateral heterogeneities in the
interwell region that are not observed in the velocity tomogram given
in Parra et al. (2009) and that will be used as secondary data to delin-
eate the heterogeneities of the aquifer, where high water production
has been observed (Bennett and Recrenwald, 2002).

In addition, the Elemental Log Analysis (ELAN, Schlumberger propri-
ety software) porosity (Fig. 2), vuggy porosity, matrix porosity, total po-
rosity, and impedance logs were integrated with FormationMicro Image
(FMI) data at the well locations, with a resolution of 0.15 m along the
wells, to identify conduits that could be delineatedwith cross-well reflec-
tion seismic (Parra et al., 2009). ELAN depends on three porosity tools –
density, neutron, and sonic – to calculate total porosity.
3. Geostatistical modeling of porosity and impedance data

To cross-correlate porosity (primary variable) with P-wave im-
pedance (secondary variable), the latter variable was interpolated at
the two wells by assigning to each well location the value of the clos-
est P-wave impedance data. The analysis of correlation coefficients
and scatter plots indicates that there is a moderate but significant de-
pendence between P-wave impedance and ELAN porosity, with a cor-
relation coefficient of −0.43, but no relevant dependence between
P-wave impedance and other types of porosity (matrix, vuggy, and
total porosity).

Hereafter we focus on the problem of predicting ELAN porosity in
the interwell region, using P-wave impedance as a covariate. In
Sections 3.1 and 3.2, these variables are viewed as outcomes of spatial
random fields and are characterized by their first- and second-order
moments (mean values and variograms). For inference purposes,
we assume that these moments are invariant under a spatial transla-
tion, at least at a small scale (assumption of local stationary) (Chilès
and Delfiner, 2012).
Fig. 1. P-wave impedance (g/cm3) (ft/s) used as secondary data for variogram analysis
and cokriging. Well log impedances computed from density and velocity logs from
wells MF-37 and EXPM-1 are superimposed to provide better visual comparison to
the P-wave impedance.
3.1. Modeling the relationship between mean values

The mean values of the variables for the well data are indicated in
Table 2. Accordingly, there is an inverse relationship between the
mean values of ELAN porosity and of P-wave impedance. This rela-
tionship can be modeled in the following way:

mean porosityþ 1:402� 10−5mean impedance ¼ 0:615: ð3Þ

The model given by Eq. (2) is corroborated by plotting the porosity
data as a function of the impedance data (Fig. 3) and checking that
the experimental points fluctuate around the model given by Eq. (3).
This can be done by considering the P-wave impedance data (Fig. 3A),
as well as the impedance data logged at wells EXPM-1 and MF-37
(Fig. 3B), insofar as both types of impedance (P-wave impedance and
logged impedance) are expected to have the same mean value.

3.2. Modeling the spatial correlation structure

The P-wave impedance map (Fig. 1) shows a strong anisotropy,
with much greater spatial continuity along the east–west direction
than along the vertical direction (direction of the wells). To model
the spatial continuity, variograms are calculated along these two di-
rections. Because two variables (ELAN porosity as the primary vari-
able and P-wave impedance as the secondary variable) are under
consideration, three variograms can be defined:

(1) Direct variogram of ELAN porosity

We define the ELAN porosity as Z1 (viewed as a spatial random
field) and the spatial location as x. The direct variogram of ELAN po-
rosity for a lag separation vector h is defined as:

γ1 hð Þ ¼ 1
2
E Z1 x þ hð Þ−Z1 xð Þ½ �2
n o

: ð4Þ

Experimentally, this variogram is estimated by calculating the
mean squared difference between porosity data at locations separat-
ed by h (Chilès and Delfiner, 2012; Goovaerts, 1997). It is quite easy
to calculate the experimental variogram along the vertical direction
(well direction) for lag distances that are a multiple of 0.15 m
(Fig. 4A). In the east–west direction, the calculation is limited to a sin-
gle lag distance of 382.6 m, which corresponds to the distance that
separates the two wells (Fig. 4B).

(2) Direct variogram of P-wave impedance

The direct variogram of P-wave impedance (denoted by Z2) for a
lag separation vector h is defined as:

γ2 hð Þ ¼ 1
2
E Z2 x þ hð Þ−Z2 xð Þ½ �2
n o

: ð5Þ

This variogram can be estimated along the vertical direction for
lag distances that are a multiple of 0.6 m (Fig. 4C) and along the east–
west direction for lag distances that are a multiple of 3 m (Fig. 4D).
These distances correspond to the grid mesh at which the P-wave
impedance is available.

(3) Cross variogram between ELAN porosity and P-wave impedance

This variogram allows us to model the joint correlation structure of
ELAN porosity and P-wave impedance. It is defined as:

γ12 hð Þ ¼ 1
2
E Z1 x þ hð Þ−Z1 xð Þ½ � Z2 x þ hð Þ−Z2 xð Þ½ �f g: ð6Þ

To calculate the experimental variogram, we consider porosity
data at the well locations along with P-wave impedance data at the
same locations. The calculations are performed for lag distances that



Fig. 2. ELAN porosity well logs between depths of 250 m and 332 m, used as primary data for variogram analysis and cokriging.

Table 2
Mean values of ELAN porosity and P-wave impedance.

ELAN porosity P-wave impedance

Well MF-37 0.3760 17,074.2
Well EXPM-1 0.4082 14,777.1
Average 0.3921 15,925.6
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are a multiple of 0.6 m along the vertical direction (Fig. 4E) and for a
single distance of 382.6 m along the east–west direction (Fig. 4F). It
should be noted that the cross variogram has negative values, which
is consistent with the negative correlation observed between the
two variables: if ELAN porosity at location x+h is greater than at
location x, then the reverse should happen for P-wave impedance,
which implies a negative value for the cross variogram (Eq. (6)).

Several interesting features can be seen in the experimental
variograms. First, the shapes of the direct and cross variograms along
the vertical direction are similar, with a dampened periodic behavior.
Second, the variogram of P-wave impedance along the east–west direc-
tion increases at large distances, which may reflect a large range struc-
ture or a trend between the two wells. The other two variograms are
mostly unknown in this direction but, based on what is observed for
the vertical direction, one can assume that their shapes are similar to
that of the direct variogram of P-wave impedance.

The experimental variograms are fitted by using combinations of
the following five basic nested structures (Chilès and Delfiner, 2012):

• A nugget effect (NUG).
• Two anisotropic short- to medium-range spherical models — one
(SPH1)with ranges of 60 m (east–west direction) and 1.5 m (vertical
direction), and the other (SPH2) with ranges of 90 m (east–west
direction) and 3 m (vertical direction).

• One anisotropic dampened periodic model (BESSEL-J), with a scale
factor of 3.7 m (corresponding to a half-period of about 14 m)
along the vertical direction (to account for periodicity) and infinite
along the east–west direction (no observed periodicity).

• One anisotropic large-range cubicmodel (CUB),with a range of 750 m
along the east–west direction (to account for the large-scale structure
or trend) and infinite along the vertical direction (no observed trend).
The above ranges and scale factors were chosen by trial and error
to fit the slope changes of the experimental variograms at short and
medium distances (case of the SPH models), the period along the ver-
tical direction (case of the BESSEL-J model), and the slope and behav-
ior at large distances along the east–west direction (case of the CUB
model). To complete the specification of each model, we determined
the contribution of each basic structure to each variogram using an
iterative procedure (Emery, 2010) that provided the models that
minimize the squared deviations between experimental and fitted
variograms. The final model is:

γ11 hð Þ ¼ 0:059� 10−4NUGþ 12:0� 10−4 SPH1þ 6:11� 10−8SPH2
þ 6:47� 10−4BESSELJ þ 11:0� 10−4 CUB

γ12 hð Þ ¼ −0:012NUG−0:232SPH1−0:372SPH2
−29:0BESSELJ−86:8CUB

γ22 hð Þ ¼ 24:90NUGþ 46:50SPH1þ 2:28� 106 SPH2
þ 1:85� 106BESSELJ þ 7:00� 106CUB:

ð7Þ

As shown in Fig. 4, the periodic behavior along the vertical direction
is well reproduced. Compared to the direct variograms, the cross

image of Fig.�2


Fig. 3. Scatter plots of ELAN porosity (ordinate) versus A) P-wave impedance, and B)
logged impedance, computed from density and velocity logs.
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variogram has a smoother behavior near the origin, which is explained
because the less regular structures (NUG, SPH1, and SPH2) have a small
contribution (Eq. (7)). The fitting along the east–west direction mainly
relies on the variogramof P-wave impedance and on a single point (at a
distance of 382.6 m) for the variogram of ELAN porosity and for the
cross variogram.

4. Spatial prediction of porosity

Having specified the spatial dependence between ELAN porosity
and P-wave impedance, it is now possible to predict the porosity in
the interwell region via cokriging. A particular type of cokriging is
used in which the mean values of porosity and impedance are as-
sumed unknown, but related through Eq. (3) (Emery, 2012). This
allows the mean values to vary spatially at a large scale, although
they are considered as locally constant, and also creates a functional
dependence relationship between the two variables.

The input parameters for cokriging are the primary and secondary
data (ELAN porosity at the well locations and P-wave impedance in
the interwell region), the relationship between the mean values of
porosity and impedance (Eq. (3)), the modeled direct and cross
variograms (Eq. (7)), and the ‘local neighborhood.’ The local neigh-
borhood was designed to include up to 49 data points of the interwell
region (P-wave impedance data contained in a moving window of
size 25 m×5 m centered at the location of interest) and up to 48
well data points (porosity data at well logs with a depth difference
of no more than 2.5 m from the depth of the location of interest).
The prediction was performed at the nodes of the grid on which the
P-wave impedance is known (interwell section). The predicted po-
rosity is displayed in Fig. 5A. The prediction globally exhibits the
same structure as the P-wave impedance (Fig. 1), with a negative
correlation.

For comparison, two other ways to predict porosity were tested:

• Traditional ordinary cokriging (Fig. 5B), which is similar to the pro-
posed cokriging approach, except that it accounts only for the
variogram model and ignores the relationship between the mean
values of porosity and impedance (Eq. (3));

• Regression kriging (Fig. 5C), which consists of fitting a linear regres-
sion of the primary data (porosity) upon the secondary data (imped-
ance), deriving the residuals of the regression at each well location,
and kriging these residuals at the target grid nodes. As the variogram
of the residuals can only be calculated along the vertical drill hole
direction, an isotropic variogram model is considered for kriging
(namely, an exponential model with a practical range of 2 m), and
the anisotropic features of porosity are assumed to be taken into ac-
count through the regression model (Eq. (1)).

On one hand, ordinary cokriging provides a map with many fewer
details than the other two methods. This can be explained because a
property of ordinary cokriging is to assign weights to the secondary
data that sum to zero. This implies that the secondary variable
(P-wave impedance) makes a small contribution to the prediction
in comparison to the primary variable (ELAN porosity) (Goovaerts,
1997). This is the cost incurred by taking into account only the sto-
chastic dependence relationship between the primary and secondary
variables, which is not strong (the correlation coefficient is −0.43),
and ignoring the functional dependence relationship between these
variables.

On the other hand, regression kriging leads to a more contrasted
map, which is almost a linear transformation of the impedance map
(Fig. 1). This is because the residual has a short range variogram of
2 m, so that its prediction in the interwell region by simple kriging
is practically equal to its mean value, i.e., 0. Apart from variogram
analysis (assumption of isotropy for the residual variogram), an in-
convenient aspect of this approach is that the prediction of porosity
at a given location depends only on the collocated impedance data,
thus it is sensitive to any inaccuracy in this data. For instance, the
local artifact (vertical band) in the impedance map near the east coor-
dinate (190 m) also appears in the porosity map (Fig. 5C). Ideally, the
impedance variable should vary smoothly in space, with no abrupt
fluctuation, to be considered an accurate measure of the trend in
the porosity (Eq. (1)).

The proposed approach (cokriging with linearly related means,
Fig. 5A) provides a more detailed and contrasted map than ordinary
cokriging and regression kriging. Furthermore, unlike regression kriging,
the local artifact in the impedance map (vertical band around the east
location at 190 m) is hardly perceptible in the porosity map. This is
because the predicted porosity at a given location no longer depends
on collocated impedance data, but on a weighted average of the imped-
ance data situated around the target location (one could even consider
the case of missing impedance data, for which a porosity prediction
could still be obtained). The weighting rests on the joint spatial correla-
tion structure of the primary and secondary variables, hence the impor-
tance of considering a stochastic dependence between these variables
in addition to a functional dependence.

5. Discussion

The experimental variograms provide information on the struc-
ture of the aquifer. The variograms along the vertical direction for
the primary and secondary data have similar shapes. Although the
nugget effect may reflect well data measurement errors and does
not contribute to the final porosity image, the structures with ranges

image of Fig.�3


Fig. 4. Experimental (circles) and modeled (solid lines) variograms for ELAN porosity and P-wave impedance, along vertical and east–west directions.
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of 1.5 and 3 m are delineated by the ELAN porosity image (Fig. 5A).
These correspond to interconnected conduits embedded in layered
structures, which are formed by low and high impedance zones
(Fig. 1). These impedance zones are obtained by the inversion of re-
flection data that provide the layered boundaries between the carbon-
ate rock formations.

image of Fig.�4


Fig. 5. Comparison of ELAN porosity images obtained by cokriging with (A) linearly
related means, (B) ordinary cokriging, and (C) regression kriging.
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The impedance contrasts between these flow units are observed
as pseudo periodic shapes in the vertical variograms of the primary
and secondary data and the cross variogram as well, with a period
of between 21 and 27 m. This variogram characteristic relates to per-
meable carbonate units that are associated with interconnected ma-
trix porosity having an average porosity greater than 40% and can
be better visualized in the cokriging image (Fig. 5A) with the help
of well logs.

In particular, two thin conduits are observed near well MF-37
(east coordinate 0 m) at 265 mand270 mdepth. Both conduits laterally
increase in porosity up to about 150 m to the east, where they connect
to a thicker flow unit of higher porosity that is intercepted by well
EXPM-1 (east coordinate 382.6 m). A second conduit observed at a
depth of 295 m near well MF-37 forms a flow unit that increases
laterally in porosity toward a higher porosity flow unit that is also
intercepted by well EXPM-1. The last conduits near well MF-37 are
observed at a depth of about 320 m and have structural characteristics
similar to those of the upper flow unit. The connectivity of these three
flow units can also be visualized in the ordinary cokriging image
(Fig. 5B), but without the lateral variable thicknesses that are captured
by the proposed cokriging approach.

In addition, Fig. 5A shows a continuous low porosity structure be-
tween both wells in the depth interval of 275–290 m. The presence
of this low porosity zone connected between both wells is sustained
by low porosity signature characteristics observed in both well logs.
Within this structure there is a carbonate unit 7–8 m thick that is not
connected between the matrix and the vuggy carbonate that sepa-
rates the upper and lower water production zones. As a result, the
low porosity structure in the depth interval of 275–290 m is consid-
ered a permeability barrier in the aquifer by Bennett and Recrenwald
(2002).

The east–west direction variograms show intermediate (60–90 m)
and large (>300 m) ranges that characterize lateral and uniform struc-
tures above and below the low porosity structure. These lateral struc-
tures are observed approximately every 60 m in the cokriged porosity
image, which outlines the major irregular boundary shapes of the
flow units. In addition, the zone of 260–275 m depth clearly shows
the porosity connectivity from well MF-37 to well EXPM-1. At well
MF-37, conduits about 3 m thick are developed to form a heteroge-
neous structure that, at 180 m from well MF-37, merges into a thicker
and more porous/continuous flow unit, which is intercepted by well
EXPM-1. These structural features are not outlined by the P-wave
impedance image but are clearly identified in the cokriged porosity
image. This image is consistent with the flow unit connectivity that is
supported by the high water production and hydrology conditions of
the aquifer. These conditions are also observed in the depth interval at
305–320 m, where the structure pattern is similar to that of the depth
interval at 250–290 m. The porosity image outlines themajor carbonate
units well, but thin conduits of 0.15–0.3 m are not delineated by
cokriging due to the limited resolution of the cross-well reflection seis-
mic data. For example, a thin conduit of 0.1 m observed in FMI logs
(Parra et al., 2009) at a depth of 283.5 m in well MF-37 that carries
water to well EXPM-1 is not captured by the cokriging image. This
conduit,which is in a zoneof high impedance in the horizontal direction
interval of 0–180 m (low porosity), merges into a higher porosity inter-
val intercepted by well EXPM-1 at a depth of 290 m. We expect that
this conduit is associated with secondary porosity (vugs) developed in
a brittle limestone.
6. Conclusions

Cross-well seismic reflection data provide information on the
intrinsic properties of the formation and, with well log data (Parra
et al., 2009), resolve conduits (interconnected vuggy porosity)
seen in the porosity well logs. The ELAN porosity image clearly
shows the variation of the flow units in the interwell region. This
was achieved by a complete variogram analysis and cokriging. The
vertical variograms of the primary and secondary data, as well as the
cross variogram, show the presence of a nested structure that is associ-
ated with periodic flow units in the aquifer. The east–west direction
variograms show intermediate and large range structures that charac-
terize lateral and uniform structures above and below the low porosity
zone at a depth of about 275 m. These lateral structures are observed ap-
proximately every 60 m in the ELAN porosity image in the horizontal
east–west direction, which outlines the major irregular boundary
shapes of the flow units. These units are observed at depths of 265 m,
295 m and 320 m in the cokriging image and are formed by thin con-
duits intercepted by well MF-37 that merge into thicker and more po-
rous structures intercepted by well EXPM-1.

The cokriging method provides a good description of highly in-
terconnected vuggy porosity that is associated with high water
production. The high impedance zone at about 275 m, after being
transformed to porosity, is more uniform; it is shown as a continuous,
lower porosity structure that is considered a permeability barrier in
carbonate aquifers. In zones above and below the permeability barrier,
water production is very high, which agrees with water well observa-
tions (Bennett and Recrenwald, 2002). Although the porosity image
outlines themajor flow units, thin conduits of 0.15–0.3 m are not cap-
tured by cokriging because of the limited resolution of the current
cross-well reflection seismic technique.

image of Fig.�5
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