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Abstract. Given W = M−1, with M a tridiagonal M -matrix, we show that there are two diag-
onal matrices D,E and two nonsingular ultrametric matrices U, V such that DWE is the Hadamard
product of U and V . If M is symmetric and row diagonally dominant, we can take D = E = I. We
relate this problem with potentials associated to random walks and study more closely the class of
random walks that lose mass at one or two extremes.
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1. Introduction. A result of Gantmacher and Krein [9] shows that for a non-
singular symmetric matrix A, its inverse A−1 is an irreducible and tridiagonal matrix
if and only if A is the Hadamard product of a weak type D-matrix and a flipped
weak type D-matrix. In McDonald et al. [16], the authors extend this result when
A is nonsymmetric and A−1 is a Z-matrix (for related results see Nabben [17]). In
this situation, an extra diagonal matrix is needed. We connect this type of result to
potentials of random walks. In what follows a random walk is a losing mass Markov
chain on I = {1, . . . , n} with nearest neighbor transition probabilities (here n is the
size of the matrices). In other words, it is a general birth and death chain on a finite
set.

We shall prove that the inverse of a tridiagonal irreducible M -matrix can be
written as the Hadamard product of two (or one in some extreme cases) special
nonsingular ultrametric matrices, after a suitable change by two diagonal matrices,
which can be taken as the identity if the M -matrix is symmetric and row diagonally
dominant (see Corollary 2.8). We also study this type of decomposition using even
simpler ultrametric matrices, but in this case we have to allow one, or both, of these
matrices to be singular (see Theorems 2.1 and 2.3). Conversely, if W = U � V is
the Hadamard product of two nonsingular ultrametric matrices U, V associated to
random walks, then W−1 is a tridiagonal M -matrix (see Theorem 2.3). We also give
necessary and sufficient conditions in terms of U, V so that W−1 is row diagonally
dominant. We also discuss the uniqueness of this decomposition and study the special
case where the random walk associated to W loses mass at one or two ends.

In what follows we denote by M−1 the class of inverse M -matrices. Given W =
M−1 ∈ M−1, we denote by G = {(i, j) : Mij < 0} the incidence graph of M out of
the diagonal. In most of this work we are interested in matrices for which G is linear
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Cedex, France (Claude.Dellacherie@univ-rouen.fr).
‡CMM-DIM, UMI-CNRS 2807, Universidad de Chile, 8370459 Santiago, Chile (smartine@dim.

uchile.cl, jsanmart@dim.uchile.cl).

831

D
ow

nl
oa

de
d 

01
/2

2/
14

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

832 C. DELLACHERIE, S. MARTINEZ, AND J. SAN MARTIN

(nearest neighbor); that is, (i, j) ∈ G if and only if |i − j| = 1. In particular, M is
tridiagonal.

An interesting subclass of M−1 is the class of potential matrices, which are the
matrices whose inverses are row diagonally dominant M -matrices. It is straightfor-
ward to show that a potential matrix W satisfies W−1 = θ(I−P ) for some constant θ
and a substochastic matrix P , that is, P ≥ 0, P� ≤ � with strict inequality at some
site i: (P�)i < 1. This decomposition is not unique, and if there exists one for which
θ = 1, we say that W is a sub-Markov potential. Even if the decomposition of W−1

is not unique, the graph G associated to W is the graph of one-step transitions of P .
Hence, G is linear if P is the transition kernel of a (nearest neighbor) random walk.

Recall that a substochastic matrix P is irreducible if for all i, j there exists m
such that Pm

ij > 0. For an irreducible substochastic matrix P , the series
∑

m≥0 P
m

is finite, and W = (I − P )−1 =
∑

m≥0 P
m is the potential of P . Thus, Wij is the

expected number of visits to site j when the Markov chain whose transition kernel is
P starts from site i. In applications potentials are interpreted in terms of electrical
networks (see, for example, [12, Chapter 2], [11, Chapters 7 and 8]).

Note that for all i �= j

(1.1) Wij = fW
ij Wjj ,

where fW
ij ∈ [0, 1] is the probability that the chain ever visits j starting from i. In

what follows we define fW
ii = 1 so that (1.1) is satisfied for all i, j. Irreducibility of P

is equivalent to W > 0; that is, all the entries of W are positive. For this reason we
say that an M -matrix is irreducible if its inverse is a positive matrix.

In general the Hadamard product of two potentials is not an inverse M -matrix.
For example, take the following ultrametric matrices (actually B is a permutation of
A):

A =

⎛⎜⎜⎝
2 2 2 2
2 4 4 4
2 4 6 6
2 4 6 8

⎞⎟⎟⎠ and B =

⎛⎜⎜⎝
2 2 2 2
2 8 6 4
2 6 6 4
2 4 4 4

⎞⎟⎟⎠ .

A difficult problem is to give conditions under which the Hadamard product of two
inverse M -matrices is again an inverse M -matrix. There are a few results in this
direction (see, for example, [19]). On the other hand, the square in the sense of
Hadamard of an inverse M -matrix is an inverse M -matrix, which was conjectured in
[18]. This is also true for every rth Hadamard power as long as r ≥ 1 (see [1], [2], and
[6]). The rth power, for r ≥ 1, of a potential is again a potential (see again [6] and
some results for fractional powers in [8]). This means that if a potential is realized by
an electrical network, then it is possible to construct another electrical network whose
potential is a power of the initial one. Nevertheless, to the best of our knowledge
there is no probabilistic mechanism that relates one network with the other. This
remains an important question in finite state Markov chain theory.

The decompositions studied in this paper, as well as those in [16], [17], allow us to
study the Hadamard powers of inverses of irreducible and tridiagonalM -matrices. We
show that the rth power of any of these matrices is again an inverse of an irreducible
tridiagonal M -matrix when r > 0 (see Theorem 2.9). Thus, for r ≥ 1 the rth power
of a potential associated to a transient irreducible random walk is again a potential
of another transient irreducible random walk. This provides a way to generate new
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random walks by using the Hadamard powers of random walk potentials. Further-
more, formula (2.4) below gives some probabilistic information on the random walk
associated to the powers of such matrices.

Moreover, we show that ifW,X are inverses of irreducible tridiagonalM -matrices,
then their Hadamard product W �X is an inverse of an irreducible and tridiagonal
M -matrix (see Theorem 2.10).

To give an insight into the results of this work, let us recall that a transient Markov
chain can be described uniquely by its potential. In many applications one measures
directly the number of visits between sites (a measurement of its potential) instead of
the transition frequencies of the underlying Markov chain. With this information one
could estimate the potential matrix and then the transition probabilities. The main
drawback of this approach is that structural restrictions for potentials are difficult to
state. Nevertheless, as a consequence of [9] and our Theorems 2.3, 2.6, and 2.7, this
approach is feasible for random walks.

For example, in the symmetric case, if W is a potential of a random walk, then W
is determined by two monotone sequences of positive numbers 0 < x1 ≤ x2 ≤ · · · ≤
xn, 0 < yn ≤ yn−1 ≤ · · · ≤ y1 such that

Wij = xi∧j yi∨j and xi =
Win

W1n
x1, yj =

W1j

W11
y1.

Thus, W must satisfy the structural equation and monotonicity

(1.2) Wij =
WinW1j

W1n
, 1 ≤ i ≤ j ≤ n, and W•n ↑, W1• ↓ .

This condition is close to being sufficient for having a potential of a random walk (see
Corollary 2.4 and formula (2.7)). Therefore, in applications if one wants to model
a random walk by specifying its potential, a restriction like (1.2) must be imposed.
Notice also that Theorem 2.6 discriminates between the ultrametric case and the non
ultrametric one by the disposition of the sites where the chain will lose mass (roots).
Thus, as a consequence of this result, if the model is not ultrametric, we expect to
have at least two nonconsecutive roots.

Notably, restriction (1.2) is stable under Hadamard positive powers, which is in
accordance with the fact that potentials are stable under Hadamard powers. On
the other hand, (1.2) is also stable under Hadamard products, an indication that
the product of two inverse tridiagonal M -matrices is again an inverse tridiagonal M -
matrix. The probabilistic consequences of this fact and how the restriction that both
graphs are linear intervenes in this property remain open questions.

Now we start with a concept that has revealed itself to be crucial in finite potential
theory and that will play a key role in this work.

Definition 1.1. Given a square matrix A, we say that μ is a (right) signed
equilibrium potential if Aμ = �, and a (right) equilibrium potential if in addition
μ ≥ 0. When A is nonsingular such a right signed equilibrium potential exists and
is unique, and we denote it by μA. In this situation, we say that i is a root for A if
(μA)i �= 0. The set of roots of A is denoted by R(A) = {i : (μA)i �= 0}, which is the
support of the signed measure μA.

The fact that W is a potential is equivalent to W ∈ M−1 and μW = W−1
� ≥ 0.

In this case (μW )i = θ(1−∑
j Pij), and therefore (μW )i > 0 if and only if

∑
j Pij < 1.

The support of μW is exactly the set of those indexes i for which P is losing mass,
and we say that P is substochastic at those sites. We note that if there exists a path
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(of positive probability) connecting k with a root i, which does not contain j, then
fW
kj < 1 and so Wkj < Wjj . On the other hand, if every path (of positive probability)

that connects k with any root also contains j, then fW
kj = 1 and Wkj = Wjj . So, if

W−1 is irreducible and tridiagonal, and, for example, i ≤ j, R(W ) ∩ [1, j) = ∅, then
fW
ij = 1, but if R(W ) ∩ [1, j) �= ∅, then fW

ij < 1.
Let us recall the definition of an ultrametric matrix (see [14]).
Definition 1.2. A nonnegative symmetric matrix U is said to be ultrametric if

(UL) ∀i, j, k we have Uij ≥ min{Uik, Ukj}.
Remark 1.1. Notice that by taking j = i in (UL) one obtains for all i: Uii ≥

max{Uij, Uji : j �= i}. If this inequality is strict for all i, we shall say that U is strictly
ultrametric.

The following special class of ultrametric matrices will play an important role.
Definition 1.3. The symmetric matrix U of size n will be called a linear ultra-

metric matrix if there exist k ∈ {1, . . . , n} positive numbers x1, . . . , xn such that

(1.3) x1 ≥ x2 ≥ · · · ≥ xk−1 ≥ xk ≤ xk+1 ≤ · · · ≤ xn

and Uij is given by

Uij = min{xs : i ∧ j ≤ s ≤ i ∨ j} =

⎧⎪⎨⎪⎩
xi∨j if i, j ≤ k,

xi∧j if i, j ≥ k,

xk otherwise.

We shall say that U is in class L(k) to emphasize the dependence on k. We call
x1, . . . , xn the characteristics of U .

Matrices in L(1) are a special case of D-matrices introduced by Markham [13]. In
the same vein, L(n) are a special case of flipped D-matrices. Also, matrices in L(k)
are a special case of cyclops with eye k+ in the notation of [16]. In particular, U can
be described by blocks as

U =

(
A xkE

xkE
′ B

)
,

where A is an L(k) matrix of size k determined by x1 ≥ · · · ≥ xk > 0, B is an L(1)
matrix of size n− k determined by 0 < xk+1 ≤ · · · ≤ xn, and E is a matrix of ones of
the appropriate size and xk ≤ xk+1.

If A is a matrix indexed by I and J ,K are nonempty subsets of I, then, as is
customary, AJK denotes the submatrix of A by selecting the rows in J and columns
in K. If there is no possible confusion, we use the notation AJ instead of AJJ .

Remark 1.2. If J ⊆ {1, . . . , k} has cardinal p ≥ 1 and U ∈ L(k), then UJ ∈ L(p).
Similarly, if J ⊆ {k, . . . , n}, then UJ ∈ L(1).

Every linear ultrametric matrix is an ultrametric matrix. The following theorem
collects known results about these matrices and shows the connection between them
and symmetric random walks.

Theorem 1.4.

(i) Assume that U ∈ L(k). Then, U is nonsingular if and only if there are strict
inequalities in (1.3).

(ii) Assume that U ∈ L(k) is nonsingular. Then, U−1 = θ(I − P ) for some
constant θ and a symmetric irreducible substochastic and tridiagonal matrix
P that loses mass only at k.
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(iii) Assume that P is a symmetric irreducible substochastic and tridiagonal ma-
trix. Then U = (I − P )−1 is an ultrametric matrix if and only if one of the
following two cases occurs:

(iii.1) R(U) = {k}, in which case U ∈ L(k).
(iii.2) R(U) = {k, k + 1}; that is, the roots are adjacent. In this case U =

V1 � V2, where V1 ∈ L(k), V2 ∈ L(k + 1) are nonsingular.
Part (iii.2) will be generalized in Theorem 2.6 to the case where the potential

has more than two roots or has two roots in the general position. A formula for the
tridiagonal matrix U−1 when U ∈ L(k), 2 ≤ k ≤ n− 1, is given by

(1.4)

U−1
11 = −U−1

12 = −U−1
21 = 1

U11−U22
,

∀ i ≤ n− 1, U−1
i,i+1 = U−1

i+1,i =
−1

|Ui+1,i+1−Uii| ,

∀ 2 ≤ i ≤ n, i �= k, U−1
ii = −U−1

i,i−1 − U−1
i,i+1,

U−1
kk =

Uk+1,k+1

UkkUk+1,k+1−U2
kk

+ 1
Uk−1,k−1−Ukk

.

When U ∈ L(1), we have

(1.5)

U−1
11 = 1

U11
+ 1

U22−U11
,

∀i ≤ n− 1, U−1
i,i+1 = U−1

i+1,i =
−1

Ui+1,i+1−Uii
,

∀ 2 ≤ i ≤ n, U−1
ii = −U−1

i,i−1 − U−1
i,i+1.

In both cases we assume implicitly that U−1
n,n+1 = 0. A similar formula holds when

U ∈ L(n).
2. Main results.
Theorem 2.1. Let M be a tridiagonal irreducible M -matrix, of size n, with

inverse W = M−1. Then, there exist two positive diagonal matrices D,E such that
(DWE)−1 is an irreducible symmetric tridiagonal and row diagonally dominant M -
matrix, and, moreover,

(2.1) DWE = U�V

for some U ∈ L(1) and V ∈ L(n). If M is row diagonally dominant, we can take
D = I, and if M is symmetric, we can take D = E.

All diagonal matrices D,E for which X = DWE is a symmetric potential are
constructed in the following way. Take ρ ∈ Rn to be any nonnegative nonzero vector
and define D = D(ρ) as

(2.2) ∀i, Dii =
1

(Wρ)i
.

Next define E = E(a, ρ) as the solution of the iteration: E11 = a > 0, and

(2.3) ∀i ≥ 2, Eii =
DiiEi−1,i−1

Di−1,i−1

Wi,i−1

Wi−1,i
.

The right equilibrium potential of X is μX = E−1ρ.
In particular, if we choose ρ = e1 = (1, 0, . . . , 0)′ as the first vector in the canonical

basis of Rn, and we consider D = D(e1), E = E(1, e1) then DWE = U is a
symmetric potential with an inverse that is an irreducible tridiagonal row diagonally
dominant M -matrix, and its right equilibrium potential is μU = e1. Hence, U ∈ L(1).
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In the last part of the previous theorem we have shown that for some special D
and E the matrix DWE ∈ L(1). This is a special case of the general decomposition
given in (2.1), where V = ��

′ is the matrix full of ones. The importance of this
special decomposition is that every potential of a random walk can be changed to a
linear ultrametric matrix through two diagonal matrices.

Using this transformation and formula (1.5) we obtain a formula forW−1 in terms
of W , where W−1 is an irreducible tridiagonal M -matrix. This formula is

(2.4)

W−1
ij = 0 if |i− j| > 1,

∀i ≤ n− 1,

{
W−1

i,i+1 =
−Wi,i+1Wi1Wi+1,1

Wi+1,i+1Wi+1,iW 2
i1−WiiWi,i+1W 2

i+1,1
,

W−1
i+1,i = W−1

i,i+1
Wi+1,i

Wi,i+1
,

∀2 ≤ i ≤ n− 1, W−1
ii = −W−1

i,i−1
Wi−1,1

Wi1
−W−1

i,i+1
Wi+1,1

Wi,1
,

W−1
11 = −W−1

12
W2n

W1n
, W−1

nn = −W−1
n,n−1

Wn−1,1

Wn,1
.

Remark 2.1. Recall that each diagonal entry of an ultrametric matrix dominates
its corresponding column (and row) and this property is stable under Hadamard
products. Thus, if W = U �V is the Hadamard product of two ultrametric matrices,
then its diagonal entries dominate the corresponding column.

In the next result we show uniqueness of the decomposition W = U � V up to a
multiplicative constant.

Proposition 2.2. Assume that W = U � V = Ũ � Ṽ for some U, Ũ ∈ L(1) and
V, Ṽ ∈ L(n). Then there exists a > 0 such that Ũ = aU and Ṽ = 1

aV .

Proof. Let 0 < x1 ≤ · · · ≤ xn, 0 < x̃1 ≤ · · · ≤ x̃n, y1 ≥ · · · ≥ yn > 0, and

ỹ1 ≥ · · · ≥ ỹn > 0 be the collection of numbers defining U, Ũ, V , and Ṽ , respectively.
We define a = x̃1/x1. We note that for all i we have Wi1 = x1yi = x̃1ỹi, and therefore
for all i we obtain yi = aỹi, which implies that V = aṼ . Similarly, we obtain that
Ũ = aU , and the result is shown.

Example 2.1. When M is not row diagonally dominant, a decomposition like
W = U � V may not exist, and the use of the diagonal matrices is necessary. Take,
for example,

W =

⎛⎝35 20 25
20 16 20
25 20 35

⎞⎠ ,

whose inverse is the irreducible tridiagonal M -matrix

M =

⎛⎝ 0.1 −0.125 0
−0.125 0.375 −0.125

0 −0.125 0.1

⎞⎠ .

We point out that M is row diagonally dominant only for the second row. A simple
inspection shows that W is not the Hadamard product of linear ultrametric matrices
(see Remark 2.1 and Theorem 2.3(ii)).

Theorem 2.3. Let U ∈ L(1), let V ∈ L(n) be of size n, and consider W = U�V .

(i) W is nonsingular if and only if for all i = 1, . . . , n− 1

Ui+1,i+1Vii > UiiVi+1,i+1,
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which is equivalent to

Wn,i+1W1,i

W1n
> Wi,i+1.

In particular, W is nonsingular if U and V are nonsingular.
In what follows we assume that W is nonsingular with inverse M = W−1.
(ii) M is an irreducible tridiagonal M -matrix, which is row diagonally dominant

at rows 1, n.
(iii) M is strictly diagonally dominant at row 1 if and only if

(2.5) (U22 − U11)(U33V22 − U22V33) > 0.

Since V22 ≥ V33 > 0 a sufficient condition for this to happen is that U33 >
U22 > U11, which is the case when U is nonsingular. That is, if U is nonsin-
gular, M is strictly row diagonally dominant at row 1.
Similarly, M is strictly diagonally dominant at row n if and only if

(2.6) (Vn−1,n−1 − Vnn)(Un−1,n−1Vn−2,n−2 − Un−2,n−2Vn−1,n−1) > 0.

Again, since 0 < Un−2,n−2 ≤ Un−1,n−1, a sufficient condition is that Vn−2,n−2

> Vn−1,n−1 > Vnn which is the case when V is nonsingular. That is, if V is
nonsingular, M is strictly row diagonally dominant at row n.

(iv) When n ≥ 3, we define for any i ∈ {2, . . . , n− 1} the set J = {i− 1, i, i+1}.
The matrix WJ is nonsingular, and its inverse N(i) is a tridiagonal M -
matrix, which is row diagonally dominant at rows 1, 3 (strictly row diagonally
dominant in the case UJ and VJ are nonsingular).

(v) Either of the following two conditions is necessary and sufficient for M to be
row diagonally dominant at row i ∈ {2, . . . , n− 1}:
(2.7) (Ui+1,i+1−Ui−1,i−1)(Vi−1,i−1−Vii)≥(Uii−Ui−1,i−1)(Vi−1,i−1−Vi+1,i+1),

(2.8) N(i) is row diagonally dominant at row 2.

Furthermore, M is strictly row diagonally dominant at row i if there is a
strict inequality in (2.7), which is equivalent to saying that N(i) is strictly
row diagonally dominant at row 2.
When U and V are nonsingular, (2.7) and (2.8) are equivalent to

(2.9) U−1
i,i−1V

−1
i,i+1 ≥ U−1

i,i+1V
−1
i,i−1.

(vi) If U and V are sub-Markov potentials, that is, U−1 = I − P, V −1 = I − Q
with P,Q substochastic matrices, then the diagonal of M is bounded by one:

∀i, Mii ≤ 1.

As consequence of these theorems, we obtain the following result.
Corollary 2.4. Assume that W is a symmetric nonsingular matrix with inverse

M = W−1. The following two conditions are equivalent:
(i) M is a tridiagonal irreducible row diagonally dominant M -matrix.
(ii) W = U � V , where U ∈ L(1), V ∈ L(n), and (2.7) is satisfied for all i ∈

{2, . . . , n− 1}.
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Under either of these two equivalent conditions we have

(2.10) Mij =

⎧⎪⎨⎪⎩
(W{1,2,3})

−1
ij if i = 1, j = 1, 2,

(W{i−1,i,i+1})
−1
2,j−i+2 if 2 ≤ i ≤ n− 1, |i− j| ≤ 1,

(W{n−2,n−1,n})−1
3,j−n+3 if i = n, j = n− 1, n.

If, in addition, U and V are sub-Markov potentials, then W is also a sub-Markov
potential.

Proof. (i)⇒(ii) follows from Theorem 2.1. (ii)⇒(i) follows from Theorem 2.3.
That (2.10) holds under each one of these conditions follows from the proof we will
do by induction of Theorem 2.3. In particular, we will show (see (3.8)) that for all
3 ≤ p ≤ n

(W{1,2,3})
−1
11 = (W{1,...,p})

−1
11 ,

(W{1,2,3})−1
12 = (W{1,...,p})−1

12 .

The other cases in (2.10) follow similarly. Finally, if U and V are sub-Markov poten-
tials, then by Theorem 2.3(vi) Mii ≤ 1 for all i, which, together with the fact that M
is a row diagonally dominant M -matrix, shows that M = I−N for some substochastic
matrix N . Thus W is a sub-Markov potential.

Remark 2.2. It may happen that W = U � V is nonsingular and U ∈ L(1), V ∈
L(n) are singular. Indeed, consider the example

W =

⎛⎝2 1 1
1 1 1
1 1 2

⎞⎠ =

⎛⎝1 1 1
1 1 1
1 1 2

⎞⎠�
⎛⎝2 1 1
1 1 1
1 1 1

⎞⎠ .

Moreover, if W = A � B with A ∈ L(1), B ∈ L(n), then both A,B are singular.
Notice that in this case W ∈ L(2).

The following result gives conditions to have U and V be nonsingular.
Proposition 2.5. Assume that U ∈ L(1), V ∈ L(n), and consider W = U � V ,

which is, of course, a symmetric matrix.
(i) A necessary and sufficient condition to have U and V be nonsingular is that

for all i = 1, . . . , n− 1

(2.11) Wi,i+1 < min{Wii,Wi+1,i+1}.
Hence, using Theorem 2.3(i), this condition implies that W is nonsingular.

(ii) Assume that W is nonsingular and that M = W−1 is a tridiagonal irreducible
row diagonally dominant M -matrix. Then, U is nonsingular if and only if M
is strictly diagonally dominant at row 1. Similarly, V is nonsingular if and
only if M is strictly diagonally dominant at row n.

Proof. (i) Consider 0 < x1 ≤ x2 ≤ · · · ≤ xn and y1 ≥ y2 ≥ · · · ≥ yn > 0 the
numbers defining U and V . Since Wi,i+1 = xiyi+1,Wi+1,i+1 = xi+1yi+1,Wii = xiyi,
condition (2.11) is equivalent to saying that x’s are strictly increasing and y’s are
strictly decreasing, which is equivalent to U and V being nonsingular (see Theorem
1.4).

(ii) If U is nonsingular, then from Theorem 2.3(iii), we get that M is strictly
diagonally dominant at row 1. To prove the converse we assume that M is strictly di-
agonally dominant at row 1. Without loss of generality we also assume that M = I−P

D
ow

nl
oa

de
d 

01
/2

2/
14

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INVERSE M -MATRICES AND RANDOM WALKS 839

with P symmetric, substochastic, irreducible, tridiagonal and strictly substochastic at
row 1. The Markov chain associated to P loses mass at least at node 1, which, together
with the fact that P is tridiagonal, implies that fW

i,i+1 < 1 for all i = 1, . . . , n− 1.
We denote by 0 < x1 ≤ x2 ≤ · · · ≤ xn and y1 ≥ y2 ≥ · · · ≥ yn > 0 the numbers

defining U and V . Since xiyi+1 = Wi,i+1 = fW
i,i+1Wi+1,i+1 < Wi+1,i+1 = xi+1yi+1,

we conclude that the x’s are strictly increasing and therefore U is nonsingular. The
conclusions for V follow similarly.

Remark 2.3. If W = U � V , then condition (2.11) is sufficient for W being
nonsingular. On the other hand, if W is nonsingular, then the 2× 2 matrix W{i,i+1}
is positive definite, because W is an inverse M -matrix. In particular its determinant
is positive, or, equivalently,

Wi,i+1 <
√
WiiWi+1,i+1.

Thus, condition (2.11) is a strengthening of the necessary condition for W to be
positive definite, namely, that each principal minor of size 2 must be positive.

The aim of the next result is to show that if W is the potential of a symmet-
ric irreducible random walk, then it is either a linear ultrametric potential or the
Hadamard product of two nonsingular linear ultrametric potentials.

Theorem 2.6. Assume that M = W−1 is a symmetric irreducible tridiagonal
and row diagonally dominant M -matrix. Then

(i) R(W ) = {k} if and only if W ∈ L(k);
(ii) |R(W )| ≥ 2 if and only if W = U � V , where U ∈ L(k), V ∈ L(m) are

nonsingular and k = minR(W ),m = maxR(W ).
Remark 2.4. When |R(W )| ≥ 2, the decomposition given by this theorem is not

unique. We shall see that there are

1 + (k − 1) + (n−m)

degrees of freedom in such decomposition.
As a converse of the previous theorem, we have the following result.
Theorem 2.7. Assume that U ∈ L(k), V ∈ L(m) are nonsingular of size n

(without loss of generality we assume k ≤ m). Then W = U � V is nonsingular,
and M = W−1 is an irreducible tridiagonal M -matrix. The sum of row i is zero for
i /∈ {k ≤ j ≤ m} and it is strictly positive for i ∈ {k,m}. When k < i < m, M is row
diagonally dominant at row i if and only if (2.7) holds, that is,

(Ui+1,i+1 − Ui−1,i−1)(Vi−1,i−1 − Vi,i) ≥ (Ui,i − Ui−1,i−1)(Vi−1,i−1 − Vi+1,i+1).

There is a strict inequality in this formula if and only if M is strictly diagonally
dominant at row i.

We summarize some of these results in the next corollary.
Corollary 2.8. Assume that W is a nonsingular positive matrix and denote by

M its inverse. Then, M is an irreducible tridiagonal M -matrix if and only if there
exist two positive diagonal matrices D,E such that X = DWE is a symmetric poten-
tial and X is a linear ultrametric matrix or the Hadamard product of two nonsingular
linear ultrametric matrices U, V . The first case occurs when X has one root. In the
second case the roots of X are contained in the convex set determined by the roots of
U and V . If M is row diagonally dominant we can take D = I and if M is symmetric
we can take D = E.

Theorem 2.9. Assume that W−1 is an irreducible tridiagonal M -matrix of size
n. Then, for all r > 0 the matrix W (r), the rth Hadamard power of W , is nonsingular
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and its inverse is an irreducible tridiagonal M -matrix. If W is a potential (respec-
tively, sub-Markov potential) and r ≥ 1, then W (r) is also a potential (respectively,
sub-Markov potential).

For r < 0 the matrix W (r) is nonsingular, its inverse C(r) is an irreducible
tridiagonal matrix, and the following properties hold:

(i) sign(det(W (r))) = (−1)n+1.
(ii) If n ≥ 2, then for all i, j we have

C(r)ij is

⎧⎪⎨⎪⎩
< 0 if i = j,

> 0 if |i − j| = 1,

= 0 otherwise.

(iii) If W is symmetric, then the eigenvalues of W (r) are negative, except for the
principal one, λ1, which is positive and with maximal absolute value.

In this theorem the sign function is given by

sign(x) =

⎧⎪⎨⎪⎩
1 if x > 0,

0 if x = 0,

−1 if x < 0.

Theorem 2.10. Assume that W and X are nonsingular and W−1, X−1 are two
irreducible tridiagonal M -matrices. Then the Hadamard product W �X is again the
inverse of an irreducible tridiagonal M -matrix.

Proof. There exist diagonal matrices D, D̃, E, Ẽ and nonsingular matrices U, Ũ ∈
L(1) such that

DWE = U, D̃XẼ = Ũ .

Then

U � Ũ = (DWE)� (D̃XẼ) = DD̃(W �X)EẼ

is again a nonsingular matrix in L(1), and the result follows.

3. Proof of main results. We start with a useful result about principal sub-
matrices of inverse tridiagonal irreducible M -matrices.

Lemma 3.1. Assume W = M−1 is the inverse of an irreducible tridiagonal M -
matrix indexed by I = {1, . . . , n}. Let J = {�1 < · · · < �p} ⊂ I, and let X = WJ
be a principal submatrix of W . Then X−1 is an irreducible tridiagonal M -matrix. If
W is a (sub-Markov) potential, then X is also a (sub-Markov) potential. Moreover,
if μ = μW is the right equilibrium potential of W , then

(3.1) μX ≥ μ|J −MJJ cM−1
J cJ cμ|J c ≥ μ|J ,

and �(R(X)) := {�i : i ∈ R(X)} ⊇ R(W ) ∩ J .
Consider i = �s for some s = 1, . . . , p. If {i, i + 1} ⊆ J , then X−1

s,s+1 = Mi,i+1.

Furthermore, if {i− 1, i, i+ 1} ⊆ J , then X−1
s,s+t = Mi,i+t for t ∈ {−1, 0, 1}. Finally,

if {1, 2} ⊆ J , we have X−1
1k = M1k for k ∈ {1, 2} (a similar relation holds when

{n− 1, n} ⊂ J ).
Proof. We assume that J = {�1 < · · · < �p} � I. It is well known that X

is an inverse M -matrix (see [10, p. 119]), and since W > 0, we know that X−1 is
irreducible.
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Using the inverse by block formula we obtain

(3.2) X−1 = MJJ −MJJ cM−1
J cJ cMJ cJ .

For the rest of the proof, we denote Y = M−1
J cJ c .

The set J induces a partition on J c = {l1 < · · · < ln−p}, in at least one atom,
given by the sets [�s, �s+1] ∩ J c, where �s, �s+1 ∈ J are consecutive in this subset,
together with the sets [1, �1] ∩ J c and [�p, n] ∩ J c. Denote the nonempty atoms by
A1, . . . ,Ar. The fact that M is tridiagonal implies that MAaAb

= 0 for a �= b. This
block structure of MJ cJ c is also present in Y . Therefore we have the formula, for
�s = i < j = �t,

X−1
st = Mij − Ci+1,j−1Mi,i+1Ylq,lrMj−1,j ,

where Ci+1,j−1 = 1 if i + 1, j − 1 belong to the same atom in J c and lq = i + 1,
lr = j − 1. When i + 1 or j − 1 does not belong to J c or they belong to different
atoms, we take Ci+1,j−1 = 0.

Thus, if there exists k ∈ J such that i < k < j, we conclude that X−1
st = 0 and

therefore X−1 is a tridiagonal M -matrix.
Similarly, we obtain that

(3.3) X−1
ss = Mii − Ci+1,i+1Mi,i+1Ylq,lqMi+1,i − Ci−1,i−1Mi,i−1Ylq′ ,lq′Mi−1,i,

from which the last part of the lemma follows (here lq′ = i − 1 when this element
belongs to J c).

Assume now that W is a potential, that is, μ = M�I ≥ 0. Then, we get

MJJ �J = μ|J −MJJ c�J c ,
MJ cJ c�J c = μ|J c −MJ cJ �J .

Since Y = M−1
J cJ c ≥ 0 and −MJJ c ≥ 0, we get

MJJ�J = μ|J −MJJ cY μ|J c +MJJ cYMJ cJ �J ,

which yields

μX = X−1
�J = MJJ �J −MJJ cYMJ cJ�J = μ|J −MJJ cY μ|J c ≥ μ|J .

Thus X is a potential, and �(R(X)) ⊇ R(W ) ∩ J .
Finally, assume that W is a sub-Markov potential. We have to prove that X is

also a sub-Markov potential, which given that X is a potential, amounts to showing
that the diagonal elements of X−1 are bounded above by 1. This follows from (3.3)
because X−1

ss ≤ Mii ≤ 1.
Proof of Theorem 1.4. (i) The property follows from the fact that a positive

ultrametric matrix is nonsingular if and only if all rows are different (see [15] or [4]).
(ii) Every nonsingular ultrametric matrix is a potential. When U ∈ L(k), the

kth column is constant and therefore U−1
� = 1

xk
ek, where ek is the kth vector of

the canonical basis in Rn. Thus, the only root of U is k. That U−1 is tridiagonal
follows, for example, from Theorem 3 in [4], because the tree matrix extension of U
is supported by a path or linear tree (see also Theorem 4.10 in [17]).

(iii) Assume that U−1 is tridiagonal, that is, its incidence graph is a path. For
a nonsingular ultrametric matrix, all the roots are connected (see Theorem 4 in [4]),
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and so U can have one root or two adjacent roots. Conversely, assume that U has
only one root at k. For i ≤ j ≤ k we have Uij = fU

ijUjj = Ujj . Similarly, if k ≤ i ≤ j,
we have Uij = Uii. Finally, for the case i ≤ k ≤ j one has Uij = Ukj = Ujk = Ukk.
Thus, U ∈ L(k) with characteristics xi = Uii.

Finally, assume that U has two consecutive roots at k, k + 1; then according to
Theorem 4.10 in [17] U is ultrametric. The fact that U = V1�V2 with V1 ∈ L(k), V2 ∈
L(k + 1) is a particular case of what we will prove in Theorem 2.6.

Now, we turn to the proof of the main results.
Proof of Theorem 2.1. Assume first that M is a symmetric tridiagonal irreducible

row diagonally dominant M -matrix. Consider W = M−1. The proof is done by
induction on the order n of the matrix M . For n = 1 the result is obvious. So assume
that the result holds for every symmetric row diagonally dominant matrix of order at
most n− 1. Without loss of generality we can assume that M = I− P , where P is a
substochastic tridiagonal matrix. We decompose M and W by blocks as follows:

M =

(
1− P11 −ζ′

−ζ N

)
and W =

(
W11 a′

a T

)
.

Here ζ′ = (P12, 0, . . . , 0) ≥ 0, ζ′� ≤ 1 − P11, a
′ = (W12, . . . ,W1n), N is a tridiagonal,

symmetric row diagonally dominant M -matrix, and, moreover, N� − ζ ≥ 0. From
Lemma 3.1 T is also a sub-Markov potential, and T−1 is tridiagonal. Then, by the
induction hypothesis there exist two ultrametric matrices R,S, where R ∈ L(1) and
S ∈ L(n − 1) such that T = R � S. We denote by 0 < x2 ≤ x3 ≤ · · · ≤ xn and
y2 ≥ y3 ≥ · · · ≥ yn > 0 the numbers defining R and S, respectively.

The fact that P is tridiagonal and symmetric implies that for i ≥ 2

Wi1 = fW
i2 W21 = fW

i2 W12 = fW
i2 fW

12 W22

= fW
12 Wi2.

We take x1 = x2f
W
12 , which verifies 0 < x1 ≤ x2. Then W21 = x1y2,W31 =

x1y3, . . . ,Wn1 = x1yn. Finally, we take y1 = W11/x1 ≥ W21/x1 = y2. We define
U ∈ L(1) associated to 0 < x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn, and V ∈ L(n) associated to
y1 ≥ y2 ≥ y3 ≥ · · · ≥ yn > 0 to get W = U � V , and the result is proved in this case.

Now, consider M a general irreducible tridiagonal M -matrix. Then, there exists
a positive diagonal matrix F (see [10, Theorem 2.5.3]) such that L = MF is a row
diagonally dominant M -matrix. If M is a row diagonally dominant M -matrix, we
can take F = I. Clearly L is also tridiagonal and irreducible. Now, we look for a
diagonal matrix G such that GL is also symmetric. The condition is that GiiLi,i−1 =
Gi−1,i−1Li−1,i for i = 2, . . . , n. We take G11 = F11, and we define inductively, for
i ≥ 2,

Gii = Gi−1,i−1
Li−1,i

Li,i−1
.

The diagonal of G is positive by construction. Thus, H = GMF is a symmetric
tridiagonal irreducible M -matrix, and

H� = G(MF�) ≥ 0.

Hence, H is also row diagonally dominant, and there exist two ultrametric matrices
U ∈ L(1), V ∈ L(n) such that H−1 = U�V = F−1M−1G−1. Thus, we takeD = F−1

and E = G−1.
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If M is symmetric, we obtain for i ≥ 2

Gii = Gi−1,i−1
Li−1,i

Li,i−1
= Gi−1,i−1

Mi−1,iFii

Mi,i−1Fi−1,i−1
= Gi−1,i−1

Fii

Fi−1,i−1
.

The solution is G = F , which that implies H = FMF is a symmetric tridiagonal row
diagonally dominant M -matrix, and we obtain D = E = F−1.

Take D,E diagonal matrices with positive diagonal elements. Let us now assume
that X = DWE is a symmetric potential and consider μ its right equilibrium poten-
tial. Then DWEμ = �, and if we define ρ = Eμ, we obtain a nonzero, nonnegative
vector. Obviously we get that D = D(ρ), as defined in (2.2). Since X is symmetric,
we get that E must satisfy (2.3). Also we obtain that μ = E−1ρ.

Conversely, assume that D,E are constructed as in (2.2) and (2.3). The matrix
X = DWE is a nonsingular matrix with an inverse X−1 = E−1MD−1. Thus, X−1

is an irreducible tridiagonal M -matrix. On the other hand, XE−1ρ = DWρ = �,
which means that X−1 is a row diagonally dominant matrix. The only thing left to
be proved is that X is symmetric. This is equivalent to proving that E−1MD−1 is
symmetric, which follows from the fact that for an irreducible tridiagonal M -matrix
M with inverse W it holds that (see formula (2.4))

Mi,i+1

Mi+1,i
=

Wi,i+1

Wi+1,i
.

Finally, if we take ρ = e1, then U = DWE is a symmetric potential whose
inverse is an irreducible symmetric tridiagonal row diagonally dominant M -matrix.
Hence, (U)−1 = θ(I−P ) for some constant θ and an irreducible symmetric tridiagonal
substochastic matrix P . Since the right equilibrium potential of U is μU = e1, we get
that P loses mass only at the first row. Then, from Theorem 1.4 we conclude that
U ∈ L(1).

The proof of Theorem 2.3 requires the next lemma, which is essentially the result
we want to show for dimension 3.

Lemma 3.2. Consider the tridiagonal symmetric substochastic matrices

P =

⎛⎝1− x− z x 0
x 1− x− y y
0 y 1− y

⎞⎠ and Q =

⎛⎝1− p p 0
p 1− p− q q
0 q 1− q − s

⎞⎠,
where 0 < x, 0 < y < 1, 0 < z, x+ z < 1, x + y ≤ 1 and similarly 0 < p < 1, 0 < q,
0 < s, p+ q ≤ 1, q + s < 1. Then A = (I− P )−1 ∈ L(1), and B = (I−Q)−1 ∈ L(n).
The matrix W = A � B is nonsingular, and N = W−1 is the tridiagonal M -matrix
given by

N =

⎛⎜⎜⎜⎜⎝
β
α − γ

α 0

− γ
α

ε
αδ − η

δ

0 − η
δ

θ
δ

⎞⎟⎟⎟⎟⎠,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

α = pqz + psz + qsx + qsz;
β = (x+ z)pqsz;
γ = xpqsz;
ε = (pqzx + pqzy + psyx + pszx + pszy + qsyx + qszx + qszy)zqsx;
δ = qxz + syx + sxz + syz;
θ = (q + s)sxyz;
η = qsxyz.

The following inequalities hold:

0 < γ < β < α, 0 < ε < αδ, and 0 < η < θ < δ.
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Thus, N is strictly row diagonally dominant at rows 1, 3, and the diagonal elements
of N are smaller than 1. The sum of the second row is

s2z2qx(qx− py)

αδ
.

Hence, N is a tridiagonal row diagonally dominant M -matrix if and only if

(3.4) qx− py ≥ 0,

and in this case we have N = I−R for a substochastic matrix R, which is stochastic
at the second row if and only if equality holds in (3.4).

Proof. The proof is direct using MAPLE.
Proof of Theorem 2.3. (i) The result follows from formula (2.10). When U and V

are nonsingular they are inverse M -matrices and therefore they are positive definite
matrices. Hence, W is positive definite and a fortiori nonsingular.

For proving parts (ii)–(vi) we shall first assume that U and V are nonsingular.
(ii)–(iv) We show by induction on n the size of W that M = W−1 is a tridiagonal

M -matrix, which is strictly row diagonally dominant at rows 1, n. When the order is
1 or 2 the result is trivial. The case of order 3 is just Lemma 3.2.

Thus, we assume that the result is true up to order n − 1, and we shall prove it
for order n ≥ 4. Without loss of generality we assume that U−1 = I− P and V −1 =
I−Q, where P,Q are symmetric substochastic kernels, which are also irreducible and
tridiagonal. Moreover, P loses mass only at 1 and Q only at n. We decompose the
matrices W and M in the following blocks:

W =

(
X Vnnu

Vnnu
′ VnnUnn

)
and M =

(
Ω −ζ
−ζ′ α

)
,

where X = W{1,...,n−1}, u′ = (Un1, . . . , Un,n−1).
In what follows we denote by ei ∈ Rn−1 the ith vector of the canonical basis. The

basic computation we need is, for i = 1, . . . , n− 1,

(Xen−1)i = Un−1,iVn−1,i = Vn−1,n−1Ui,n−1 = Vn−1,n−1f
U
i,n−1Un−1,n−1.

On the other hand Ui,n = Un,i = fU
n,n−1Un−1,i = Un−1,i = Ui,n−1. This means that

(3.5) Xen−1 = Vn−1,n−1u.

Then, using the formulas for the inverse by blocks, we get that

Ω =

(
X − Vnn

Unn
uu′

)−1

= X−1 + γen−1e
′
n−1,

with

γ =
Vnn

Vn−1,n−1(Vn−1,n−1Unn − VnnUn−1,n−1)
> 0.

Note that γ is well defined and positive because Un−1,n = fU
n−1,nUnn < Unn and

Vn−1,n = fV
n−1,nVnn = Vnn, but Vn,n−1 = fV

n,n−1Vn−1,n−1 < Vn−1,n−1.
The induction hypothesis implies that X−1 is a tridiagonal M -matrix strictly

row diagonally dominant at rows 1 and n − 1. We conclude that Ω is a tridiagonal
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INVERSE M -MATRICES AND RANDOM WALKS 845

M -matrix that is strictly row diagonally dominant at rows 1 and n− 1, because the
nonnegative term γen−1e

′
n−1 modifies just the diagonal element Ωn−1,n−1.

The equation for ζ is VnnΩu− VnnUnnζ = 0, and therefore

Unnζ = X−1u+ γUn−1,nen−1 =

(
1

Vn−1,n−1
+ γUn−1,n

)
en−1,

which gives

(3.6) ζ =
1

Vn−1,n−1Unn − VnnUn−1,n−1
en−1.

Finally we compute α = Mnn, which is given by

α =
(
VnnUnn − V 2

nnu
′X−1u

)−1
=

Vn−1,n−1

Vnn(Vn−1,n−1Unn − VnnUn−1,n−1)
.

Since Vn−1,n−1 > Vnn we obtain that the sum of the row n is positive, and n is
connected only to n − 1 and n (|Mn,n−1| > 0,Mnn > 0). The connections of M on
{1, . . . , n−1} are the same as in X−1 (including the connection (n−1, n−1), because
X−1

n−1,n−1 > 0), and then the induction hypothesis shows that M is tridiagonal. With
respect to the row sums, the only one that can change sign in {1, . . . , n − 1}, with
respect to the ones in X−1, is that associated to row n − 1 because the vector ζ is
null out of the node n− 1.

Thus, we have proved that M is a tridiagonal M -matrix, and the row sum of row
n is positive (by symmetry the row sum of the row 1 is also positive). This proves
in particular (iii). Since W is a positive matrix and its inverse is an M -matrix, we
deduce that W−1 is irreducible. We also have proved (iv) because WJ = UJ � VJ
and according to the extra hypothesis the three matrices are nonsingular (they are
principal matrices of inverse M -matrices).

(v) To investigate the other row sums we have to look more closely at the previous
induction and use the fact that the row sums of M in {1, . . . , n−2} and those of X−1

are the same.
Taking i ∈ {2, . . . , n − 1}, we shall prove that condition (2.9) is necessary and

sufficient to have a nonnegative row sum at row i in M . Since n ≥ 4 we choose
J = {i− 1, i, i+ 1}. By Lemma 3.1 we have that

(U−1
J )2,k−i+2 = U−1

ik , (V −1
J )2,k−i+2 = V −1

ik

holds for k ∈ J . Lemma 3.2 gives a necessary and sufficient condition for N =
(UJ � UJ )−1 to be a row diagonally dominant M -matrix, which written in terms of
U, V is

U−1
i,i−1V

−1
i,i+1 ≥ U−1

i,i+1V
−1
i,i−1.

We conclude that (2.9) and (2.8) are equivalent (also the equivalence between their
corresponding strict counterparts).

As we add states to this initial set J , the only row sums that can be modified
are those associated to nodes i− 1 and i+1 (depending on which side we add nodes).
Hence, the row sum associated to node i at the final stage on the matrixM is the same
as the row sum of the second row in N , showing that (2.9) is necessary and sufficient
forM to be row diagonally dominant at row i (again there is a correspondence between
their strict counterparts).
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846 C. DELLACHERIE, S. MARTINEZ, AND J. SAN MARTIN

Now, we show that conditions (2.9) and (2.7) are equivalent. For that purpose
consider μ ∈ R3 to be the unique solution of (UJ � VJ )μ = �. This solution is

μ =

⎛⎝μ1

μ2

μ3

⎞⎠ = N�,

which implies that μ2 is the sum of the second row of N . Thus, condition (2.9) is
equivalent to μ2 ≥ 0. According to Cramer’s rule we get

(3.7) μ2 det(UJ � VJ ) =

∣∣∣∣∣∣
Ui−1,i−1Vi−1,i−1 1 Ui−1,i−1Vi+1,i+1

Ui−1,i−1Vi,i 1 Ui,iVi+1,i+1

Ui−1,i−1Vi+1,i+1 1 Ui+1,i+1Vi+1,i+1

∣∣∣∣∣∣ .
Since UJ � VJ is a positive definite matrix, the sign of μ2 is the same as the sign of

(Ui+1,i+1 − Ui−1,i−1)(Vi−1,i−1 − Vi,i)− (Ui,i − Ui−1,i−1)(Vi−1,i−1 − Vi+1,i+1),

and the equivalence is shown.
(vi) The result is straightforward when n = 1, 2. The case when n = 3 is done in

Lemma 3.2. By Lemma 3.1, we obtain

M11 = (W{1,2,3})−1
11 ,

Mii = (W{i−1,i,i+1})
−1
22 when 2 ≤ i ≤ n ,

Mnn = (W{n−2,n−1,n})−1
33 ,

and the theorem is proved under the extra hypothesis that U and V are nonsingular.
We now show (ii)–(v) without the assumption that U and V are nonsingular.
(ii), (iv) Denote by 0 < x1 ≤ · · · ≤ xn and y1 ≥ · · · ≥ yn > 0 the numbers

associated to U and V , respectively. For ε > 0 we consider xε
i = xi+iε and yεi = yi+iε.

Then clearly 0 < xε
1 < · · · < xε

n and yε1 > · · · > yεn. Thus, the ultrametric matrices
they induce, U(ε), V (ε), are nonsingular. What we have proved, applied to the matrix
W (ε) = U(ε) � V (ε), gives that W−1(ε) is a tridiagonal M -matrix, which is strictly
diagonally dominant at rows 1, n. Since W (ε) → W as ε ↓ 0 and W is assumed to
be nonsingular, we conclude that M = W−1 is a tridiagonal M -matrix that is row
diagonally dominant at rows 1, n. This shows (ii) and (iv).

(v) In order to prove that (2.7) is equivalent to W−1 being row diagonally domi-
nant at row i, we note that the proof we have done in the restricted case relies on two
facts. First, we have to prove that the condition is necessary and sufficient to have a
row diagonally dominant at the second row of W−1

J . This was done in (3.7).
The second fact to be proved is that the row sum of node i does not change as

we add more nodes until we arrive to I. Assume that i < n − 1. As we have done
before, we decompose W and W−1 into blocks as follows:

W =

(
X Vnnu

Vnnu
′ VnnUnn

)
and W−1 =

(
Ω −ζ
−ζ′ α

)
.

The fact that W−1 is tridiagonal implies that ζ = aen−1 for some a > 0. a has to be
positive; otherwise node n cannot connect to any other node, and Wjn = 0 for j < n,
which is not possible. Moreover,

a =
1

Vn−1,n−1Unn − VnnUn−1,n−1
,
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INVERSE M -MATRICES AND RANDOM WALKS 847

where we note that (Vn−1,n−1Unn−VnnUn−1,n−1)Un−1,n−1Vnn = det(W{n−1,n}) > 0.
Also we have

(3.8) Ω =

(
X − Vnn

Unn
uu′

)−1

= X−1 +
Vnn

Vn−1,n−1
a en−1e

′
n−1.

The row sums of W−1 and X−1 are the same on {1, . . . , n − 2}. The rest is done
by induction. If i = n− 1, we decompose the matrices in blocks indexed by {1} and
{2, . . . , n} and proceed as before.

(iii) To show that (2.5) is equivalent to M being strictly row diagonally dominant
at row 1, we proceed as in the proof of (iv). This condition is exactly that the inverse
ofW{1,2,3} is strictly row diagonally dominant at row 1. This row sum does not change
as we add more states proving the desired equivalence. Similarly, (2.6) is equivalent
to the property that the inverse of W{n−2,n−1,n} is strictly row diagonally dominant
at row n. The rest of the argument is analogous.

Proof of Theorem 2.6. In what follows we assume that M = I − P for a sub-
stochastic matrix P .

(i) The proof follows immediately from Theorem 1.4.
(ii) Here we take J = {k ≤ j ≤ m} to be the smallest interval containing R(W ),

which by hypothesis has size at least 2. According to Lemma 3.1, X = WJ is a
potential matrix. Its inverse is an irreducible tridiagonal row diagonally dominant
M -matrix and R(X) + (k − 1) ⊇ R(W ) ∩ J ⊇ {k,m}.

The case k = 1 and m = n, that is, X = W , follows from Theorem 2.1 and
Proposition 2.5. Thus, without loss of generality, for the rest of the proof we can
assume that k > 1. Again Theorem 2.1 and Proposition 2.5 imply that X = R�S for
nonsingular R ∈ L(1), S ∈ L(m− k+1) of size m− k+1. The idea is now to extend
these two matrices to a decomposition of W . We shall give an idea of how to extend
this decomposition to K = {k − 1 ≤ j ≤ m}. Let us consider WK, the restriction of
W to K, that is,

WK =

(
Wk−1,k−1 w′

w X

)
,

with w = (Wk−1,k, . . . ,Wk−1,m)′ = (Wkk , . . . ,Wkm)′ because fW
k−1,k = 1. Using that

w′ = X1• is the first row of X (X•1 is the first column of X) we rewrite WK as

WK =

(
Wk−1,k−1 X1•

X•1 X

)
.

Since fW
k,k−1 < 1 we have that Wk−1,k−1 strictly dominates the values in X1•. Indeed,

for j = k, . . . ,m we have

Wkj = Wk−1,j = Wj,k−1 = fW
j,k−1Wk−1,k−1 < Wk−1,k−1.

Let us now introduce the numbers associated to R and S:

0 < xk < xk+1 < · · · < xm and yk > yk+1 > · · · > ym > 0,

respectively. In particular X1• = xk(yk, . . . , ym). Hence, if we take xk−1 > xk and
yk−1 > yk such that xk−1yk−1 = Wk−1,k−1 > Wkk = xkyk, we get

WK =

(
xk−1 xk�

′
m−k+1

xk�m−k+1 R

)
�
(

yk−1 (yk, . . . , ym)
(yk, . . . , ym)′ S

)
.

D
ow

nl
oa

de
d 

01
/2

2/
14

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

848 C. DELLACHERIE, S. MARTINEZ, AND J. SAN MARTIN

The rest of the proof is done by an argument based on induction. The matrix U
constructed (from the x’s) belongs to L(k), and V belongs to L(m).

Proof of Theorem 2.7. W is a positive definite matrix, and therefore it is non-
singular. On the other hand, there exist U1, U2 ∈ L(1) and V 1, V 2 ∈ L(n) such
that U = U1 � V 1 and V = U2 � V 2. Then W = (U1 � U2) � (V 1 � V 2) is the
Hadamard product of U1�U2 ∈ L(1) and V 1�V 2 ∈ L(n). Hence, M is an irreducible
tridiagonal M -matrix (see Theorem 2.3).

Consider J = {i : k ≤ i ≤ m}. Then, WJ = UJ � VJ is again an inverse
M -matrix, and UJ ∈ L(1), VJ ∈ L(m− k + 1) are nonsingular of size m− k + 1 (see
Remark 1.2). In particular R = W−1

J is an M -matrix, which is strictly row diagonally
dominant at the first and last row. Now take the vector

ν = R�m−k+1 ∈ Rm−k+1,

the signed equilibrium potential of WJ . We know that ν1 > 0 and νm−k+1 > 0,
because of Theorem 2.3(ii). Consider μ ∈ Rn, the following extension of ν:

μi =

{
0 if i /∈ J ,

νi−k+1 if i ∈ J .

Let us prove that Wμ = �. For that purpose we compute

(Wμ)i =
∑
j

UijVijμj =
∑
j∈J

UijVijνj−k+1.

There are three cases to analyze: i < k, i ∈ J , and i > m. In the first case we use
the fact that for i < k and j ∈ J

Uij = Ukj , Vij = Vkj ,

and therefore this case is reduced to the second one. Similarly, the third case is
reduced to the second one. Hence, we are left with i ∈ J in which case

(Wμ)i =
∑
j∈J

UijVijνj−k+1 =
∑
j∈J

(WJ )i−k+1,j−k+1νj−k+1 = (WJ ν)i−k+1 = 1.

Therefore, μ = W−1
� = M� is the right signed equilibrium potential of W . In

particular, the row sums of M are 0 at rows i /∈ J . Also the row sums at rows k,m
are strictly positive. Finally, M is row diagonally dominant at row i : k < i < m if
and only if νi−k+1 ≥ 0 or, equivalently, R is diagonally dominant at row i− k+1. By
Theorem 2.3(v) this is equivalent to

(Ui+1,i+1−Ui−1,i−1)(Vi−1,i−1−Vi,i) ≥ (Ui,i−Ui−1,i−1)(Vi−1,i−1−Vi+1,i+1).

Similarly, M is strictly diagonally dominant at row i if there is a strict inequality in
the last formula.

Proof of Theorem 2.9. If W−1 is an irreducible tridiagonal M -matrix, then W
is an entrywise positive matrix, and there exist two positive diagonal matrices D,E
and a nonsingular U ∈ L(1) such that

DWE = U.
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Hence, for all r ∈ R we get

D(r)W (r)E(r) = U (r).

For r > 0 we have that U (r) ∈ L(1) is nonsingular and therefore W (r) is also non-
singular. Moreover, (W (r))−1 = E(r)(U (r))−1D(r). Since U (r) ∈ L(1), its inverse is a
symmetric tridiagonal row diagonally dominant M -matrix. Hence, W (r) is the inverse
of an irreducible tridiagonal M -matrix.

When W is a potential and r ≥ 1, the fact that W (r) is also a potential (respec-
tively, sub-Markov potential) follows from Theorem 2.2 (respectively, Theorem 2.3)
in [6].

Now, let us assume that W−1 is a tridiagonal irreducible M -matrix and r < 0.
In order to prove (i), (ii) we can assume without loss of generality that W = U . We
shall prove the desired properties by induction on n, the size of U . The cases n = 1, 2
are obtained immediately. So we assume the properties hold up to dimension n− 1,
and we shall prove them for dimension n ≥ 3. Also we shall assume that r = −1. The
general case follows from the fact W (r) = (W (−r))(−1).

Take 0 < x1 ≤ x2 ≤ · · · ≤ xn, the numbers defining U . Then we have

T = W (−1) =

⎛⎜⎜⎜⎜⎝
1
x1

1
x1

· · · 1
x1

1
x1

1
x2

· · · 1
x2

...
...

. . .
...

1
x1

1
x2

· · · 1
xn

⎞⎟⎟⎟⎟⎠ .

Now, we partition T and T−1 (here for the moment we assume it exists) in blocks of
sizes n− 1 and 1 as

T =

(
A a
a′ 1

xn

)
, T−1 =

(
Ω ζ
ζ′ z

)
,

where a′ = ( 1
x1
, 1
x2
, . . . , 1

xn−1
). The equations for Ω, z and ζ are

Ω = (A− xnaa
′)−1 ,

z = ( 1
xn

− a′A−1a)−1 ,

ζ = −zA−1a .

The induction hypothesis implies that A is nonsingular. The important relation for
solving these equations is Aen−1 = a, which implies that

1

xn
− a′A−1a =

1

xn
− a′en−1 =

1

xn
− 1

xn−1
< 0

and z = xnxn−1

xn−1−xn
< 0.

On the other hand, we have

Ω = (A− xnaa
′)−1

= A−1 + αen−1e
′
n−1,

with α = xnxn−1

xn−1−xn
= z < 0. Finally, we get

ζ = −zen−1 .
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The induction hypothesis implies that A−1 is an irreducible tridiagonal matrix, with
negative diagonal elements and positive elements in the upper and lower next diago-
nals. The same is true for Ω and also for T−1 since (T−1)nn < 0. Finally, from the
well-known formula for the determinant of a matrix by blocks

det(W (−1)) = det(A)

(
1

xn
− a′A−1a

)
=

det(A)

z
,

we get that sign(det(W (−1))) = −sign(det(A)), and the proof of (i), (ii) is complete.

(iii) The proof is done by induction on n, the size of W . When n = 1, 2, the proof
is straightforward. So we assume that the property holds up to dimension n− 1. Let
λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of W (r). We take X = W{1,...,n−1} to be

a principal submatrix of W , and we consider the ordered set of eigenvalues for X(r)

given by μ2 ≥ μ3 ≥ · · · ≥ μn. Since X(r) is a principal submatrix of W (r), we have
by Cauchy’s interlace theorem for eigenvalues

λ1 ≥ μ2 ≥ λ2 ≥ · · · ≥ λk−1 ≥ μk ≥ λk ≥ · · · ≥ μn ≥ λn,

where k = 2, . . . , n. The matrix X , of size n − 1, satisfies the induction hypothesis,
and therefore μ2 > 0 > μ3, which implies that λn ≤ λn−1 ≤ · · · ≤ λ3 < 0 < λ1. We
need to prove that λ2 < 0. For that purpose we use that

det(W (r)) =

n∏
k=1

λk, det(X(r)) =

n∏
k=2

μk

and sign(det(W (r))) = −sign(det(X(r))). This implies that necessarily λ2 < 0. That
λ1 is maximal in absolute value follows from the Perron–Frobenius theorem.

Remark 3.1. Note that W (0) is the constant matrix of ones, and so it is singular
(unless the dimension of W is one). On the other hand, if W is a potential and
0 < r < 1, the matrix W (r) is not in general a potential, as the following example
shows. Take the matrices

U =

⎛⎜⎜⎝
1 1 1 1
1 4 4 4
1 4 9 9
1 4 9 16

⎞⎟⎟⎠ ∈ L(1), V =

⎛⎜⎜⎝
25 16 9 1
16 16 9 1
9 9 9 1
1 1 1 1

⎞⎟⎟⎠ ∈ L(4).

The matrix W = U � V is a potential (check numerically, or use Theorem 2.3), but
T = W (1/2) is an inverse M -matrix that is not row diagonally dominant (the sum of
the third row of T−1 is negative).

Remark 3.2. For r < 0, the inverse of W (r), which we denoted by C(r), has the
sign pattern opposite to an M -matrix, but clearly −C(r) is not an M -matrix because
its inverse is an entrywise negative matrix.

4. Potentials associated to random walks that lose mass only at the two
ends. The aim of this section is to characterize the potentials associated to random
walks on I = {1, · · · , n} that lose mass exactly at 1, n. As we know from Theorem
2.6 these potentials (at least the symmetric ones) are the Hadamard product of two
nonsingular ultrametric matrices, one of them in L(1) and the other in L(n). We shall
see that this decomposition has a very special form.
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Consider the simplest random walk on {1, . . . , n} losing mass at 1 and reflected
at n; that is, P 01 = P 01(n) is the n× n matrix given by

(4.1) ∀i, j, P 01
ij =

{
1/2 if |i− j| = 1 or i = j = n,

0 otherwise.

This matrix is stochastic except at i = 1. According to Theorem 1.4, the matrix
U01 = (I− P 01)−1 is ultrametric and, moreover, is given by

(4.2) ∀i, j, U01
ij = 2(i ∧ j).

It can be checked directly that U01 = I + U01P 01, proving that U01 = (I − P 01)−1.
We also note that the matrix U10 obtained from U01 by

∀i, j, U10
ij = U01

n+1−i,n+1−j = 2([n+ 1− i] ∧ [n+ 1− j]) = 2(n+ 1− (i ∨ j))

is also ultrametric and is the potential of the random walk P 10 which loses mass at n
and is reflected at 1. Also we note that P 01, P 10 are tridiagonal.

The random walk on {1, . . . , n} that loses mass at 1 and n has a kernel P 00 =
P 00(n) given by

(4.3) ∀i, j, P 00
ij =

{
1/2 if |i − j| = 1,

0 otherwise.

This matrix is stochastic except at 1 and n, and it is tridiagonal. The matrix W 00 =
(I− P 00)−1 is a potential and is given by

(4.4) W 00
ij =

2

n+ 1
(i ∧ j)(n+ 1− (i ∨ j)) =

2

n+ 1
(i ∧ j)([n+ 1− i] ∧ [n+ 1− j]) .

We note that W 00 is not only symmetric but also is symmetric with respect to the
change (i, j) → (n+ 1− i, n+ 1− j).

The main observation is thatW 00 is proportional to the Hadamard product U01�
U10, where U01 is the ultrametric potential of the standard random walk that loses
mass at node 1 (see (4.2)) and U10 is the one that loses mass at node n. Indeed we
have

W 00 =
1

2(n+ 1)
U01 � U10.

This is a part of a general result that we now state.
Theorem 4.1. Consider the matrix W indexed by I = {1, . . . , n} and given by

(4.5) Wij = zi∧j(m− zi∨j)dj ,

where 0 < z1 < z2 < · · · < zn < m and dj > 0 for all j. We note that W is
symmetric if and only if (dj) is constant. Then, W is a potential matrix with inverse
W−1 = θ(I−P ), where θ is a constant and P is an irreducible tridiagonal substochastic
matrix, which is stochastic except at 1 and n, and, moreover,

(4.6)

W−1
ij = 0 if |i− j| > 1,

W−1
11 = 1

d1m

(
1
z1

+ 1
z2−z1

)
, W−1

nn = 1
dnm

(
1

m−zn
+ 1

zn−zn−1

)
,

∀i ≤ n− 1, W−1
i,i+1 = − 1

dim(zi+1−zi)
, W−1

i+1,i = − 1
di+1m(zi+1−zi)

,

∀2 ≤ i ≤ n− 1, W−1
ii = −W−1

i,i−1 −W−1
i,i+1 .
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Conversely, assume that P is an irreducible tridiagonal substochastic matrix,
which is stochastic except at 1 and n; then there exist z,m, d as before such that
W = (I − P )−1 has a representation like (4.5). In order to compute d, first calculate

a1 = 1 and ai+1 = ai
Pi,i+1

Pi+1,i
for i = 1, . . . , n− 1. Then, d is obtained from

(4.7) di =
ai

max{aj : j = 1, . . . , n} ≤ 1 .

Clearly, if P is symmetric, we have dj = 1 for all j. Moreover, m and z can be
calculated as

(4.8)

m2 = 1
d1(1−P11−P12)

+
n−1∑
j=1

1
djPj,j+1

+ 1
dn(1−Pnn−Pn,n−1)

,

∀ i ≥ 1, zi =
1

md1(1−P11−P12)
+

i−1∑
j=1

1
mdjPj,j+1

.

Remark 4.1. This result bears some similarities to the case of one-dimensional
diffusions on the interval [0, 1] killed at both ends. In this context W plays the role
of G, the Green potential of such diffusions. For example, in the case of Brownian
motion killed at 0, 1, the Green potential is given by

G(x, y) = 2(x ∧ y)(1− (x ∨ y)),

which is the analogue of (4.4).

Proof of Theorem 4.1. Assume that W has a representation like (4.5), where
dj = 1 for all j; that is,

Wij = zi∧j(m− zi∨j).

The first thing to notice is that W = U �V , where U , V are the ultrametric matrices
given by

Uij = zi∧j , Vij = (m− zi) ∧ (m− zj).

It is straightforward to show that both U ∈ L(1), V ∈ L(n) are nonsingular. Hence,
U and V are symmetric inverse M -matrices and therefore positive definite. Thus,
W is a positive definite matrix and a fortiori nonsingular. It is straightforward to
see that U, V satisfy relations (2.7) with equality for all i = 2, . . . , n − 1. Hence,
W−1 = θ(I−P ), where θ is a constant and P is an irreducible tridiagonal substochastic
matrix, which is stochastic except at 1 and n (see Theorem 2.3(iii)).

Formula (4.6) for W−1 follows from formula (2.4), by using the symmetry of W
and the fact that Wi1 = z1(m− zi). This shows the result when W is symmetric.

In the general case, W̃ = WD, where W is symmetric and D is a diagonal matrix,
with strictly positive diagonal entries. Since W̃−1 = D−1W−1, we conclude the proof
of the first part.

Now we assume that P is an irreducible tridiagonal substochastic matrix such
that P is stochastic except for the rows 1, n. At the beginning we shall assume
that P is symmetric. We shall prove that W = (I − P )−1 has a representation like
(4.5). For that purpose we use representation (4.6) for W−1 = I− P . First, consider

D
ow

nl
oa

de
d 

01
/2

2/
14

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INVERSE M -MATRICES AND RANDOM WALKS 853

α(1) = 1
1−P11−P12

, which is well defined because P is substochastic at 1. Notice that
α(1) represents the unknown mz1. In general, for i = 2, . . . , n we define

α(i) = α(i− 1) +
1

Pi−1,i
.

Also note here that α(i) represents mzi. Then, the formula for W−1
nn in (4.6) and the

symmetry of P suggest that

m2 = α(n) +
1

1− Pnn − Pn,n−1
,

which is well defined because P is substochastic at n. Then, we obtain

∀i ≥ 1, α(i) = 1
1−P11−P12

+
i−1∑
j=1

1
Pj,j+1

,

m2 = 1
1−P11−P12

+
n−1∑
j=1

1
Pj,j+1

+ 1
1−Pnn−Pn,n−1

.

Given α(i), i = 1, . . . , n, and m, we can define zi = α(i)/m, which gives the formula
(4.8).

It is clear that 0 < z1 < z2 < · · · < zn < m. The matrix A defined by Aij =
zi∧j(m−zi∨j) is, according to what we have proved, a potential matrix, and its inverse
is given by formula (4.6). This shows that A = W , and the result is proved in this
case.

Assume now that P is not symmetric. Take a1 = 1, and define inductively for
i = 1, . . . , n− 1

ai+1 = ai
Pi,i+1

Pi+1,i
.

We define di = ai

max{aj :j=1,...,n} ≤ 1 and the associated diagonal matrix D. It is

straightforward to show that DP is symmetric. The symmetric matrix Q defined by

I−Q = D(I− P ),

that is, Qij = (1 − di)δij + diPij , is again irreducible tridiagonal and substochastic.
Moreover, Q is symmetric and stochastic except at rows 1, n. Hence, there exist z,m
such that T = (I−Q)−1 satisfies

Tij = zi∧j(m− zi∨j).

Let W = (I − P )−1; then W = TD. Hence, Wij = Tijdj , and then W has a
representation like (4.5), showing the result.

Remark 4.2. Assume that W is symmetric. The decomposition (4.5) is unique;
that is, if for all i, j

(4.9) Wij = zi∧j(m− zi∨j) = z̃i∧j(m̃− z̃i∨j),

then m̃ = m and z = z̃ on I. So, if J = {�1 < · · · < �k} ⊆ I and we define V = WJ ,
then clearly for all 1 ≤ s, t ≤ k we have

Vst = W	s	t = z	s∧	t(m− z	s∨	t) = us∧t(m− us∨t),
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with us = z	s . In particular m is the same quantity for all the principal submatrices
of W . Thus, m may be computed, for example, from W{1,2} and is given by

m2 =
(W11W22 −W 2

12)
2

(W11 −W12)(W22 −W12)W12
.

Acknowledgments. We are indebted to the anonymous referees and the editor
for comments and suggestions that improved the presentation of this work.
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