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MATROID SECRETARY PROBLEM IN THE
RANDOM-ASSIGNMENT MODEL∗
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Abstract. The matroid secretary problem admits several variants according to the order in
which the matroid’s elements are presented and how the elements are assigned weights. As the
main result of this article, we devise the first constant competitive algorithm for the model in which
both the order and the weight assignment are selected uniformly at random, achieving a competitive
ratio of approximately 5.7187. This result is based on the nontrivial fact that every matroid can
be approximately decomposed into uniformly dense minors. Based on a preliminary version of
this work, Oveis Gharan and Vondrák [Proceedings of the 19th Annual European Symposium on
Algorithms, ESA, 2011, pp. 335–346] devised a 40e/(e − 1)-competitive algorithm for the stronger
random-assignment adversarial-order model. In this article we present an alternative algorithm
achieving a competitive ratio of 16e/(e− 1). As additional results, we obtain new algorithms for the
standard model of the matroid secretary problem: the adversarial-assignment random-order model.
We present an O(log r)-competitive algorithm for general matroids which, unlike previous ones, uses
only comparisons among seen elements. We also present constant competitive algorithms for various
matroid classes, such as column-sparse representable matroids and low-density matroids. The latter
class includes, as a special case, the duals of graphic matroids.
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1. Introduction. In the simplest form of the secretary problem, an employer
wants to select the best secretary among n applicants arriving in random order. Once
a secretary is interviewed, the employer must immediately decide whether to accept
or reject the applicant. Say that a secretary is a record if he or she is the best
applicant seen so far. If one is only interested in selecting the best secretary, then
the only strategies that make sense are those that outputs records. Lindley [20] and
Dynkin [11] have shown that the strategy that rejects the first �n/e� candidates and
then selects the first arriving record (if any) has a probability of at least 1/e of selecting
the best secretary. They have also shown that no algorithm can beat this constant.

An important generalization of this problem is known as the multiple choice secre-
tary problem (see [17]). The objective in this problem is to select a group of at most k
secretaries from a pool of n applicants having a combined value as large as possible.

Babaioff et al. [4] introduce the generalized secretary problem as a natural class
of extensions of the above setting in which the set returned by the algorithm must
obey certain combinatorial restrictions. In this problem, we are given a finite set E
with hidden nonnegative weights and a collection of feasible sets I ⊆ 2E closed under
inclusion. The collection I, known as the domain of the problem, describes the sets of
elements that can be simultaneously accepted. The elements of E are presented to an
online algorithm in random order. When an element is revealed, the algorithm learns
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its weight and decides whether or not to accept it while keeping the set of accepted
elements feasible at every step. This decision must be made before the next element
is revealed. The objective is to output a feasible set of maximum total weight. The
condition that the elements are presented in random order is not mandatory: we can
also consider variants in which the order is selected adversarially.

We remark that other lines of generalizations of the multiple choice secretary
problem with different objective functions have been considered before. These in-
clude, among others, minimizing the sum of the relative ranks of the selected elements
(studied by Ajtai, Megiddo, and Waarts [1]), the weighted and time discounted sec-
retary problems of Babaioff et al. [2], the J-choice K-best secretary problem studied
by Buchbinder, Jain, and Singh [7], and the submodular secretary problem of Bateni,
Hajiaghayi, and Zadimoghaddam [6].

The generalized secretary problem is of interest due to its connection to online
auctions. In both the original and multiple choice secretary problems, we can regard
the algorithm as an auctioneer having one or many identical items, and the secretaries
as agents arriving at random times, each having a different valuation for the item.
The goal of the algorithm is to assign the items to the agents as they arrive while
maximizing the total social welfare. In more complex situations, the auctioneer may
have access to a collection of goods that it wishes to assign to agents, subject to some
restrictions. In many cases, these restrictions can be modeled by matroid constraints.
For that reason, the matroid secretary problem, in which the feasible sets are the
independent sets of a matroid, is of special interest (see, e.g., [4]).

The difficulty of the matroid secretary problem changes depending on the infor-
mation available beforehand about the matroid, the weights, and the order in which
the elements are presented. In this work, we mostly restrict our attention to those
settings in which the matroid is fully known to the algorithm beforehand. Following
Oveis Gharan and Vondrák [26] we classify models of the matroid secretary problems
as follows:

1. Assignment of weights: An adversary selects a list W = {w1, . . . , wn} of
weights hidden to the algorithm which are then assigned to the elements of E.

(i) Adversarial-assignment : The list W is assigned to E via an adversarial
bijection.

(ii) Random-assignment : The list W is assigned to E via a uniform random
permutation. In other words, every element of e receives a unique, randomly chosen,
weight from W , disallowing repetitions.

2. Order of the elements:
(i) Adversarial-order : An adversary selects the ordering of the elements. This

order is unknown to the algorithm.
(ii) Random-order : The elements are presented in a uniform random order.

There are four models arising from combining the variants above. We assume that
the random choices are performed after the adversarial choices. For example, in the
adversarial-assignment random-order model, the adversary selecting the weights does
not know the order in which the elements are going to be presented. If randomness
is involved for both parameters, we assume the choices to be independent. The main
variant studied in the literature is the adversarial-assignment random-order model.
We call this the standard model of the matroid secretary problem.

It is worth noting that for both the classical and the multiple choice secretary
problems, the three models involving randomness coincide; therefore, these three mod-
els of the matroid secretary problem are direct extensions of the classical and multiple

D
ow

nl
oa

de
d 

01
/2

2/
14

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

180 JOSÉ A. SOTO

choice secretary problems, where the considered matroid is uniform.
A natural scenario to consider is when each element receives a weight independent

and identically distributed (i.i.d.) from a (known or unknown) fixed distribution at
the moment it is presented to the algorithm. This scenario can be seen as a par-
ticular case of random-assignment, in which the list W consists of weights selected
i.i.d. from that distribution beforehand. We denote as full information setting (resp.,
partial information setting) the model obtained in the way just described when the
distribution is known to the algorithm beforehand (resp., if it is not known).

The difficulty of the matroid secretary problem also changes depending on whether
the algorithm learns the actual weight of the elements or just the relative order of the
weights seen so far. See the surveys of Freeman [14] and Ferguson [13] for variations
of the classical secretary problem according to this parameter.

There is a long line of work on the standard model of the matroid secretary prob-
lem. Constant competitive algorithms are known for partition matroids (correspond-
ing to the classical [20, 11] and multiple choice secretary problems [17, 3]), transversal
matroids [5, 10, 18], graphical matroids [5, 18, 2], and laminar matroids [16]. It is
also known [5] that if a matroid admits a constant competitive algorithm in the stan-
dard model, then so do its restrictions and truncations. The best known competitive
ratio for general matroids is O(

√
log r), where r is the rank function of the matroid.

This recent result by Chakraborty and Lachish [9] improves on the previously best
O(log r)-competitive algorithm due to Babaioff, Immorlica, and Kleinberg [5].

Nonmatroidal domains have also been considered in the literature. Babaioff et al.
[3] show a 10e-competitive algorithm for knapsack domains even for the case where
both the weights and lengths are revealed online. Korula and Pál [18] give constant
competitive algorithms for certain intersections of partition matroids in the standard
model, namely, for matchings in hypergraphs whose edges have constant size.

Babaioff, Immorlica, and Kleinberg [5] have shown a particular domain for which
no algorithm has a competitive ratio smaller than o(logn/ log logn) even in a random-
order model with full information setting. However, matroid domains have the fol-
lowing property: If we are allowed to reject elements which have been previously
accepted, while keeping at every moment an independent set, then it is possible to
output the optimum independent set no matter in which order the elements are pre-
sented. This intuition motivated Babaioff et al. (see [5, 4]) to conjecture that the
matroid secretary problem admits a constant competitive algorithm, provided that at
least one of the order or the assignment is selected at random.

1.1. Main results. In this paper, we partially solve the above conjecture, de-
vising a constant-competitive algorithm (cf. Algorithm 4 in section 4) for the random-
assignment random-order model.

On a very high level our algorithm is based on a simple divide and conquer
approach: replace the matroid by a collection of matroids of a simpler class, apply a
constant-competitive algorithm in each one, and then return the union of the answers.
The simpler matroids we use are known as uniformly dense matroids.

Uniformly dense matroids are those for which the density of a set, i.e., the ratio
of its cardinality to its rank, is maximized on the entire ground set. The simplest
examples are precisely the uniform matroids. We show that uniformly dense matroids
and uniform matroids of the same rank behave similarly, in the sense that the distri-
bution of the rank of a random set is similar for both matroids. We use this fact to
devise a constant-competitive auxiliary algorithm (cf. Algorithm 2 in section 3) for
uniformly dense matroids.
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In order to extend the auxiliary algorithm to general matroids we exploit some
notions coming from the theory of principal partition of a matroid, particularly its
principal sequence. Roughly speaking, the principal sequence of a matroid M is a
decomposition of its ground set into a sequence of parts, each of which is the ground
set of a uniformly dense minor of M. Furthermore, if we select one independent
set in each of these minors, their union is guaranteed to be independent in M. By
employing separately the auxiliary algorithm on each of these minors, we can return
an independent set of M, while only increasing an extra factor of e/(e − 1) on the
competitive ratio. By comparing the weight of our solution to the optimum of certain
randomly defined matroids, we obtain a tighter analysis for the competitive ratio.

It is worth noting that a slightly weaker 2e2/(e− 1) ≈ 8.6-competitive algorithm
for this task has already been presented by the author in a conference version of this
paper [29]. Both presented algorithms are different but share the same divide and
conquer approach explained above. We remark that they are also the first algorithms
achieving a constant competitive ratio even for the weaker partial and full information
settings (under random-order) of the matroid secretary problem.

As first noticed by Oveis Gharan and Vondrák [26] after the publication of a
first draft of this article, it is possible to apply the above methods to the stronger
random-assignment adversarial-order model. They devise a 40-competitive algorithm
for uniformly dense matroids in this model. By using our techniques, they modify it
to obtain a 40/(1− 1/e)-competitive algorithm for general matroids. In this article,
we also present an alternative algorithm for that model achieving a competitive ratio
of 16/(1− 1/e).

Our study of random-assignment models is organized as follows. In section 2, we
describe formally the problem and the divide and conquer approach. In section 3, we
focus on uniformly dense matroids and give algorithms for both random-assignment
models. In section 4, we present algorithms working on general matroids. To analyze
them, we use some technical results that are described later in sections 5 and 6.

For the reader’s convenience, we include below a list of our main algorithmic
results, in the order in which we prove them.

Theorem 1.1. There is a 4.92078-competitive algorithm (cf. Algorithm 2 in
subsection 3.1) for the random-assignment random-order model on uniformly dense
matroids.

Theorem 1.2. There is a 16/(1 − 1/e)-competitive algorithm (cf. Algorithm 3
in subsection 3.2) for the random-assignment adversarial-order model on uniformly
dense matroids.

Theorem 1.3. There is a 5.7187-competitive algorithm (cf. Algorithm 4 in sub-
section 4.1) for the random-assignment random-order model on general matroids.

Theorem 1.4. There is a 16/(1 − 1/e)-competitive algorithm (cf. Algorithm
5 in subsection 4.2) for the random-assignment adversarial-order model on general
matroids.

1.2. Additional results. Babaioff et al.’s conjecture is still open for the stan-
dard adversarial-assignment random-order model. In section 7, we present simple al-
gorithms for various matroid classes working on this model. We show a ke-competitive
algorithm for the case in which the matroid is representable by a matrix having at
most k nonzero entries per column. This result generalizes the 2e-competitive al-
gorithm for graphic matroids of Korula and Pál [18]. We also give algorithms for
general matroids having competitive ratios proportional to the density of the ma-
troid. Using this, we obtain a 3e-competitive algorithm for cographic matroids, and
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a k-competitive algorithm for matroids where each element is in a cocircuit of size at
most k.

For general matroids, we give a new O(log r)-competitive algorithm. Unlike the
O(log r)-competitive algorithm of Babaioff, Immorlica, and Kleinberg [5] and the
O(
√
log r)-competitive algorithm of Chakraborty and Lachish [9], ours does not use

the numerical value of the weights. It only needs the ability to make comparisons
among seen elements. This is a desirable property since the features revealed by the
elements may be of qualitative type (for example, the qualifications of a person apply-
ing for a job), but the actual value or profit may be an unknown increasing function
of the features revealed. In fact, all the algorithms presented in this article have the
mentioned desirable property.

2. Preliminaries. We use [n] to denote the set {1, 2, . . . , n}, Pr(E) to denote
the probability of a given event E , and E[X ] to denote the expected value of a random
variable X . We use subindices on Pr(·) and E[·] to be specific about the probability
space over which the probability or expectation is taken. We assume familiarity with
basic concepts in matroid theory. For an introduction, we refer the reader to Oxley’s
book [27].

Consider a matroidM = (E, I) with ground set E = {e1, . . . , en}. An adversary
selects a set W of n nonnegative weights w1 ≥ · · · ≥ wn ≥ 0, which are assigned to
the elements of the matroid using an ordering of E,

σ(1), σ(2), σ(3), . . . , σ(n),

defined by a bijective map σ : [n]→ E; i.e., the weight assignment is given by

w(σ(i)) = wi, i ∈ [n].

The elements are then presented to an online algorithm in the order

π(1), π(2), π(3), . . . , π(n),

defined by a certain bijective function π : [n]→ E. When an element is presented, the
algorithm must decide whether to add it to the current solution set, denoted as ALG,
under the condition that this set is independent (ALG ∈ I) at all times. The set
ALG is returned after all elements have been presented. The objective is to output a
set whose payoff, defined as w(ALG) =

∑
e∈ALG w(e), is as high as possible.

Depending on how the assignment σ and the ordering π are selected, we recover
the four models discussed in the introduction. Each of σ and π can be selected in
an adversarial way or uniformly at random. We further assume that when the ith
element of the stream, π(i), is presented, the algorithm only learns the relative order
of the current weight with respect to the previously seen ones ; i.e., it can compare
w(π(j)) with w(π(k)) for all j, k ≤ i, but it cannot use the numerical weight values.
Without loss of generality, we assume that there are no ties in W , because otherwise
we can break them using a random bijection τ : E → [n] (independent of W,σ, and
π): if there is a tie between two seen elements, we consider heavier the one having
larger τ -value.

To analyze the performance of the algorithm, we use its competitive ratio. This
quantity is usually defined as the ratio between the maximum possible payoff and
the algorithm’s payoff. Since there is randomness involved, expected values are used.
However, since the payoff can be zero, the previous ratio is not always well defined.
For that reason, we use the following definition: We say that a randomized algorithm
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returning a set ALG is α-competitive for some constant α ≥ 1 if, for any adversarial
selection that the model allows,

(2.1) E[αw(ALG)− w∗] ≥ 0.

In the above expression, the expectation is taken over both the random choices given
by the model and the random choices performed by the algorithm; and w∗ is the
maximum payoff of a feasible set under the current realization of the weights. The
competitive ratio of the algorithm is the minimum value of α for which this algorithm
is α-competitive.

Provided that E[w∗] �= 0, we can rewrite (2.1) in the more familiar form

(2.2)
E[w(ALG)]

E[w∗]
≤ 1

α
.

An interesting aspect of random-assignment models is that the quantity w∗ is a
random-variable itself. So, instead of studying the ratio of the expected outcomes
E[w(ALG)]

E[w∗] , one could also study the expectation of the ratio, i.e., E
[w(ALG)

w∗
]
. The

latter notion is, in the author’s opinion, not as robust as the first one. For instance,

in most cases E
[w(ALG)

w∗
]−1 �= E

[
w∗

w(ALG)

]
, so people who define competitive ratios for

online maximization problems as quantities smaller than one and those who define
them as quantities bigger than one would have trouble translating results from one
setting to the other. In this article we restrict ourselves to the ratio-of-expectation
notion. However, analyzing random-assignment models, or any model in which w∗ is
a random variable, using an expectation-of-ratio notion of competitiveness seems like
a good problem to work out in the future.

An important observation to keep in mind for the rest of this article is that even
though the maximum payoff w∗ depends on both W and σ, the set achieving this max-
imum payoff depends only on σ. Indeed, let OPTM(σ) be the lexicographic first base
of M under ordering σ. In other words, OPTM(σ) is the set obtained by applying the
greedy procedure that includes an element if it can be added to the previously included
ones while preserving independence inM, on the sequence σ(1), σ(2), . . . , σ(n). Stan-
dard matroid arguments imply that OPTM(σ) is a maximum independent set with
respect to any weight function v for which v(σ(1)) ≥ · · · ≥ v(σ(n)) ≥ 0. In particular,
this is true for the weight function w defined before and E[w∗] = Eσ[w(OPTM(σ))].

2.1. Divide and conquer. Given two or more matroids {Mi = (Ei, Ii)}i with
disjoint ground sets, their direct sum

⊕
iMi is the matroid with ground set

⋃
iEi

such that a set I is independent if for all i the set Ei ∩ I is independent inMi.
Consider this divide and conquer approach for any model of the matroid secretary

problem: Given M = (E, I), find a (possibly random) family F = {Mi = (Ei, Ii)}i
of matroids with disjoint ground sets satisfying the next three properties.
(i) Every independent set of

⊕
iMi is independent inM.

(ii) For each matroid Mi, we have access to an α-competitive algorithm Ai, with
α ≥ 1 for the same model of the matroid secretary problem.

(iii) There is a constant β ≥ 1 such that the (expected) maximum weight of an
independent set in

⊕
iMi is at least 1/β times the (expected) maximum weight

of an independent set inM.
Proposition 1. Let F = {Mi = (Ei, Ii)}i be a family of disjoint matroids

satisfying the above properties; then M admits an αβ-competitive algorithm.
Proof. Consider the procedure that runs algorithm Ai on each matroidMi in par-

allel and returns the union of their answers. This procedure is αβ-competitive.
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When the family F contains only uniform matroids, this approach corresponds
exactly to the β-partition property defined by Babaioff et al. in [2]. They show that the
standard matroid secretary problem can be reduced, for certain classes of matroids, to
the case of partition matroids, i.e., to disjoint sums of uniform matroids. In particular,
they use this approach to unify the results of [5].

In the following sections we use a slight variation of the divide and conquer
approach explained above to devise constant-competitive algorithms for random-
assignment models of the matroid secretary problem.

3. Uniformly dense matroids. Define the density γ(M) of a loopless ma-
troid1M = (E, I) with rank function rk: 2E → Z+ as the maximum over all nonempty
sets |X | of the quantity |X |/rk(X). The matroidM is uniformly dense if γ(M) is at-

tained by the entire ground set, that is, if |X|
rk(X) ≤ |E|

rk(E) for every nonempty X ⊆ E.

Examples of uniformly dense matroids include uniform matroids, the graphic ma-
troid of a complete graph, and all projective geometries PG(r − 1,F). The following
property of uniformly dense matroids is important for our analysis.

Lemma 3.1. Let (x1, . . . , xj) be a sequence of different elements of a uniformly
dense matroid of total rank r, chosen uniformly at random. The probability that
element xj is selected by the greedy procedure on that sequence is at least 1−(j−1)/r.

Proof. An element is selected by the greedy procedure only if it is outside the
span2 of the previous elements. Let Aj = {x1, . . . , xj} denote the set of the first j
elements of the sequence, and let n be the number of elements of the matroid. Then

Pr[xj is selected] = E

[
n− | span(Aj−1)|

n− (j − 1)

]
≥ n− E[rk(Aj−1)]n/r

n− (j − 1)
≥ 1− j − 1

r
,

where the first equality follows because element xj is chosen uniformly at random, the
next inequality holds because the matroid is uniformly dense, and the last one holds
because the rank of a set is always at most its cardinality.

For a simple application of the previous lemma, consider a uniform random set X
of j elements. The rank of X = {x1, . . . , xj} equals the cardinality of the set returned
by the greedy procedure on any ordering of its elements. By Lemma 3.1,

(3.1) E[rk(X)] ≥
j∑

i=1

max

{(
1− i− 1

r

)
, 0

}
=

min{j,r}∑
i=1

(
1− i− 1

r

)
.

Note that if j ≤ r, the right-hand side is j− j(j−1)
2r ≥ j/2, and if j ≥ r, the right-hand

side is r − r(r−1)
2r ≥ r/2. In any case, the expected rank of X is at least min{j, r}/2.

This shows that the rank of a random set in a uniformly dense matroid is close to what
it would be were the matroid uniform. The following lemma tightens this bound.

Lemma 3.2. Let X be a set of a fixed cardinality j whose elements are chosen
uniformly at random from a uniformly dense matroid. Then

(3.2) E[rk(X)] ≥ r

(
1−

(
1− 1

r

)j
)
≥ r

(
1− e−j/r

)
.

1A circuit is a minimal nonindependent set of a matroid. A loop is an element e such that {e}
is a circuit. A loopless matroid is a matroid having all singletons independent.

2The span of a set A ⊆ E is defined as the set of elements that, when added to A, do not increase
its rank, i.e., span(A) = {x ∈ E : rk(A ∪ {x}) = rk(A)}.
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In particular, E[rk(X)] ≥ min{j, r} (1− 1
e

)
.

Proof. Let (x1, . . . , xn) be a random ordering of the elements of E, and let Xj be
the set {x1, . . . , xj}. As j increases, the rank of Xj increases by one unit every time
xj is outside the span of the previous elements. Then, for all 1 ≤ j ≤ n,

E[rk(Xj)]− E[rk(Xj−1)] = Pr(xj �∈ span(Xj−1)) = E

[
n− |span(Xj−1)|

n− |Xj−1|
]

≥ E

[
n− rk(Xj−1)n/r

n− (j − 1)

]
≥ 1− E[rk(Xj−1)]

r
.

Therefore, the sequence Zj = E[rk(Xj)], for j = 0, . . . , n, satisfies

Z0 = 0; and Zj ≥ 1 + Zj−1

(
1− 1

r

)
for j ≥ 1.

Solving the previous recurrence yields

(3.3) Zj ≥
j−1∑
i=0

(
1− 1

r

)i

= r(1 −
(
1− 1

r

)j

) ≥ r(1 − e−j/r).

The function (1− e−x) is increasing; thus if j ≥ r, Zj ≥ r
(
1− e−j/r

) ≥ r
(
1− e−1

)
.

In addition, the function (1 − e−x)/x is decreasing; thus if j ≤ r, Zj ≥ j
(1−e−j/r)

j/r ≥
j(1− e−1).

3.1. Algorithm for the random-assignment random-order model. Lind-
ley [20] and Dynkin [11] have given a very simple e-competitive algorithm for the
classical secretary problem: Observe and reject the first �n/e� candidates and then
select the first arriving record (if any). In other words, we select the first element
whose value is higher than all the previous ones.

Our constant-competitive algorithm for uniformly dense matroids is based on the
same idea. Before explaining the details, it is useful to first modify the Lindley–
Dynkin algorithm by choosing the number of elements to “observe and reject” as a
binomial random variable with expectation np. This modification is very standard
and has proven to be useful for the matroid secretary problem (see, e.g., Kleinberg’s
algorithm [17] for the multiple choice secretary problem). The modified procedure is
depicted as Algorithm 1 below.

Algorithm 1. For the classical secretary problem over a set of n applicants.

1: Choose m from the binomial distribution Bin(n, p).
2: Observe and reject the first m elements—call this set the sample.
3: Accept the first record (if any) of the remaining elements.

The next lemma gives bounds for the probability that any specific element of the
stream appears in the output of Algorithm 1. This will be useful later.

Lemma 3.3. Let wi be the ith top weight of the stream. Algorithm 1 returns the
empty set with probability p, and it returns the singleton {wi} with probability at least

p

∫ 1

p

(1− t)i−1

t
dt.

D
ow

nl
oa

de
d 

01
/2

2/
14

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

186 JOSÉ A. SOTO

In particular, it returns {w1} with probability at least (−p ln p). Therefore, by
setting p = 1/e, we get an e-competitive algorithm for the classical secretary problem.

Proof. Consider the following offline simulation. Let w1 ≥ w2 ≥ · · · ≥ wn ≥ 0 be
the adversarial weights in nonincreasing order. Each weight wi selects an arrival time
ti in the open interval (0, 1) uniformly and independently at random. The simulation
processes the weights in order of arrival, rejecting those arriving before time p (the
set of those weights is called the sample). When a weight w arriving on or after time
p is processed, the simulation checks if w is a record of the sequence seen so far. In
that case, it returns {w} and halts; otherwise, it continues. If the simulation runs
out of elements, it returns the empty set. As the cardinality of the sampled set has
binomial distribution with parameters n and p, the set returned by this simulation
has the same distribution as the one returned by Algorithm 1. Hence, in what follows
we analyze the simulation.

Let wi be the ith top weight of the stream. The weight wi is selected by the
simulation if and only if the following events hold simultaneously:

(E1) The arrival time ti of wi is at least p.
(E2) The weight wi is a record.
(E2) There is no record in the time interval [p, ti).
Event E2 holds if and only if all (i−1) weights higher than wi arrive after time ti.

This happens with probability (1 − ti)
i−1. To analyze event E3, consider the set

A(ti) = {wj : tj < ti} of weights seen before the arrival of wi. If this set is empty,
then event E3 trivially holds. If A(ti) is not empty, let wA be its top weight and
tA be the arrival time of wA. No matter in what order the weights in A(ti) arrive,
wA is always the last record seen before ti. Hence, event E3 holds if and only if
tA < p. Furthermore, conditioned on the set A(ti) being nonempty, the variable tA is
a uniform random variable in (0, ti). Thence, for every t ∈ [p, 1] we have

Pr(E3 | ti = t, E2) = Pr(A(ti) = ∅ | ti = t, E2) + Pr(A(ti) �= ∅, tA < p | ti = t, E2)
= Pr(A(ti) = ∅ | ti = t, E2) + Pr(A(ti) �= ∅ | ti = t, E2)p/t
≥ p/t.

Since event E2 holds with probability (1−ti)
i−1, we conclude that the probability

of selecting wi in the simulation is

Pr(E1, E2, E3) =
∫ 1

p

Pr(E2, E3 | ti = t) ds =

∫ 1

p

Pr(E3 | ti = t, E2)(1− t)i−1 dt

≥
∫ 1

p

p(1− t)i−1

t
dt.

In particular, the probability that w1 is selected is
∫ 1

p
p
t dt = −p ln p. This is maxi-

mized by setting p = 1/e. For that value, the probability above also equals 1/e.
To finish the proof, note that the only way for the simulation to return an empty

set is for w1 to arrive before time p. This happens with probability p.
To obtain an algorithm for the random-assignment random-order model that

works on any uniformly dense matroid of n elements and total rank r, we propose
the following approach: Perform a random partition of the sequence of presented el-
ements into r consecutive groups, each one having roughly n/r elements. For each
group, apply Algorithm 1 to find its top-valued element and then try to include it
to the output set whenever this preserves independence. The detailed procedure is
depicted as Algorithm 2.
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Algorithm 2. For uniformly dense matroids of n elements and rank r in the random-
assignment random-order model.

1: ALG← ∅.
2: Select n values v1, . . . , vn uniformly at random from {1, . . . , r} and let Ni be the

number of times value i was selected.
3: Let E1 ⊆ E be the sequence of the firstN1 arriving elements, E2 ⊆ E the sequence

of the next N2 elements, and so on.
4: For each i in [r], run Algorithm 1 with parameter p (not necessarily p = 1/e) and

n = Ni on the sequence Ei. Mark the elements that are selected.
5: Whenever an element x is marked, check if ALG ∪ {x} is independent. If so, add

x to ALG.
6: Return the final set ALG.

Before analyzing Algorithm 2, it is convenient to define an auxiliary construction
that will be useful for the rest of the article.

For any matroid M = (E, I) of total rank r, the associated random partition
matroid R(M) = (E, I ′) is obtained as follows. Partition the set E into r classes,
where each element selects its own class independently and uniformly at random. A
set of elements in E is independent in R(M) if it contains at most one element of
each class. The following lemma states that the weight of the optimum base of R(M)
is at least a constant fraction of the weight of the optimum inM.

Lemma 3.4. Let w1 ≥ w2 ≥ · · · ≥ wn ≥ 0 be the set of weights determined by the
adversary. Then
(3.4)

Eσ,R(M)[w(OPTR(M)(σ))] ≥
(
1−

(
1− 1

r

)r) r∑
i=1

wi ≥ (1− 1/e)Eσ[w(OPTM(σ))].

To prove this lemma, we need Chebyshev’s sum inequality (see, e.g., [21]), which
states that if a1 ≥ a2 ≥ · · · ≥ ar and b1 ≥ b2 ≥ · · · ≥ br, then

∑r
i=1 aibi ≥

1
r (
∑r

i=1 ai) (
∑r

i=1 bi) .
Proof of Lemma 3.4. For i ∈ [r], element σ(i) ∈ E receiving weight wi is in

OPTR(M)(σ) if and only if elements σ(1), . . . , σ(i−1) are assigned to a different class

of R(M) than the one of σ(i). Then Pr(σ(i) ∈ OPTR(M)(σ)) = (1− 1/r)i−1. Note
that both ((1 − 1/r)i−1)i=1,...,r and (wi)i=1,...,r are nonincreasing sequences. Using
Chebyshev’s sum inequality, we have

Eσ,R(M)[w(OPTR(M)(σ))] ≥
r∑

i=1

wi

(
1− 1

r

)i−1

≥
(
1

r

r∑
i=1

(
1− 1

r

)i−1
)(

r∑
i=1

wi

)

=

(
1−

(
1− 1

r

)r) r∑
i=1

wi.

We conclude by using that
∑r

i=1 wi is a trivial upper bound on w(OPTM(σ)).
In what follows, we give two different analyses for Algorithm 2. In the first one,

we compare the weight of the outcome with the optimum of the random partition
matroid R(M). This approach does not lead to the best competitive ratio. However,
as we will see later, this analysis is more useful for dealing with general matroids. In
the second analysis, we directly compare the weight of the outcome to the sum of the
top r weights of the matroid, obtaining a much better competitive ratio for uniformly
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dense matroids. Observe, in particular, that the second analysis of Theorem 3.5 below
implies Theorem 1.1, which is the first of our main results.

Theorem 3.5. Let ALG be the set returned by Algorithm 2 when applied to a
uniformly dense matroid M of total rank r.
(i) For p ∈ (0, 1), we have

Eσ,π[w(ALG(σ))] ≥ γ1(p) · Eσ,R(M)[w(OPTR(M)(σ))],

where γ1(p) =
1

(1− p)
(1 − e−(1−p))(−p ln p).

This is optimized by setting p = p1 ≈ 0.433509. By Lemma 3.4, this algorithm
is ((1 − 1/e)γ1(p1))

−1 ≈ 5.7187-competitive.
(ii) For p ∈ (0, 1), we have

Eσ,π [w(ALG(σ))] ≥ γ2(p) ·
r∑

i=1

wi,

where γ2(p) =
p(1− e−(1−p))

1− p

∫ 1

p

1− e−t

t2
dt.

This is optimized by setting p = p2 ≈ 0.384374. Thus, the competitive ratio of
this algorithm is at most 1/(γ2(p2)) ≈ 4.92078.

Proof. We analyze Algorithm 2 using a two-step offline simulation.
Step 1. Every weight wi of the adversarial list selects a color c(wi) in [r] uniformly

at random. Let Wj be the collection of weights selecting color j. For every color j,
present the weights of Wj in uniform random order to Algorithm 1 with parameter p.
This algorithm returns either a singleton weight or an empty set. Let T be the
collection of returned weights. Note that T contains at most one weight of each color.

Step 2. Randomly assign to each weight in T a different element of the ground set
to obtain a set X(T ) ⊆ E. Finally, apply the greedy procedure on the elements X(T )
in uniform random order. Let ALG ⊆ E be the obtained set and W (ALG) ⊆ W be
the corresponding set of weights.

It is straightforward to check that the distributions of ALG and W (ALG) remain
unchanged if we apply the greedy procedure on X(T ) in random order or if we apply
it in increasing ordering of their colors (this follows from the random-assignment
assumption). We use a random order in step 2 because it makes our analysis simpler.
From here, we deduce that the set of elements ALG and the set of weights W (ALG)
returned by the two-step simulation have the same distributions as the corresponding
ones returned by Algorithm 2.

Consider a fixed weight w ∈W . In what follows we estimate the probability that
w is included in W (ALG), conditioned on the fact that w is selected in the first step,
i.e., w ∈ T . For that, let t be a number between 1 and r. Because of the way it was
constructed, W (ALG) is a uniform random subset of T of size rk(X(T )). Hence,

Pr[w ∈W (ALG) |w ∈ T, |T | = t] =
E[rk(X(T ))]

t
≥ r

t

(
1−

(
1− 1

r

)t
)
,(3.5)

where the last inequality comes from (3.2) of Lemma 3.2.
In order to remove the conditioning on |T | = t, we compute the expected value

of the right-hand side of (3.5), conditioned on the event that w ∈ T . The random
variable |T | equals one unit (since w ∈ T ) plus the number of colors different from
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c(w), for which Algorithm 1 returns a nonempty set in step 1 of the simulation. For
each color, Algorithm 1 returns a nonempty set with probability at most3 (1 − p)
(see Lemma 3.3). Therefore, the variable |T | is stochastically dominated by one plus
the sum of r − 1 Bernoulli random variables (one for each color different from c(w))
with parameter (1 − p). As the right-hand side of (3.5) is decreasing in |T | we can
effectively replace |T | by the quantity 1+k, where k is a random variable chosen from
the binomial distribution Bin(r − 1, 1− p), to obtain that

Pr(w ∈W (ALG) | w ∈ T ) ≥ Ek∼Bin(r−1,1−p)

[
r

1 + k

(
1−

(
1− 1

r

)1+k
)]

=

r−1∑
k=0

[
r

1 + k

(
1−

(
1− 1

r

)1+k
)](

r − 1

k

)
(1− p)kpr−1−k

=
1

1− p

r−1∑
k=0

(
r

k + 1

)[
(1− p)k+1pr−(k+1) −

(
1− 1

r

)k+1

(1− p)k+1pr−(k+1)

]
.(3.6)

Using the binomial theorem, the right-hand side of (3.6) is equal to

[1− pr]− [((1− 1
r )(1 − p) + p)r − pr]

1− p
=

1− (1− 1−p
r

)r
1− p

≥ 1− e−(1−p)

1− p
.(3.7)

We have thus obtained that Pr(w ∈ W (ALG) | w ∈ T ) ≥ 1−e−(1−p)

1−p . Let us use

this bound to conclude the analysis of (i). Recall that Algorithm 1 returns the best
weight of each class with probability −p ln p (see Lemma 3.3). Hence, for each color
class j ∈ [r], the expected weight of T ∩Wj is at least −p ln p fraction of the maximum
weight w∗

j in Wj (set w
∗
j = 0 for the pathological case where Wj is empty). Therefore,

E[ΣW (ALG)] ≥
r∑

j=1

1− e−(1−p)

1− p
E[Σ(T ∩Wj)] ≥ γ1(p)

r∑
j=1

E[w∗
j ],

where γ1(p) =
1−e−(1−p)

1−p (−p ln p). This concludes the proof of part (i).

The analysis for part (ii) is a refinement of the previous one. For this one, we
directly compute the probability that the simulation selects each one of the top r
weights in the adversarial list. Let wi, for i ≤ r, be the ith top weight. Let Eij be
the event that wi is the jth top weight of its own color class. Note that Eij holds if
and only if exactly j − 1 weights in {w1, . . . , wi−1} are in the same color class as wi.
Since each weight selects a color uniformly at random in [r], we have

(3.8) Pr(Eij) =
{(

i−1
j−1

) (
1
r

)j−1 (
1− 1

r

)i−j
if j ≤ i,

0 otherwise.

Using (3.8), Lemma 3.3, and the binomial theorem, we obtain that the probability

3The reason this is not exactly (1− p) is the pathological case where the color class is empty. In
this case the algorithm will always return an empty set.

D
ow

nl
oa

de
d 

01
/2

2/
14

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

190 JOSÉ A. SOTO

that wi is added to the set T is

Pr(wi ∈ T ) =
i∑

j=1

Pr(wi ∈ T | Eij) Pr(Eij)

=

i∑
j=1

p

∫ 1

p

(1 − t)j−1

t
dt

(
i− 1

j − 1

)(
1

r

)j−1 (
1− 1

r

)i−j

=

∫ 1

p

p

t

i∑
j=1

(
i− 1

j − 1

)(
1− t

r

)j−1 (
1− 1

r

)i−j

dt

=

∫ 1

p

p

t

(
1− t

r
+ 1− 1

r

)i−1

dt = p

∫ 1

p

(1− t/r)i−1

t
dt.(3.9)

The equation above implies that the sequence (Pr(wi ∈ T ))i=1,...,r is nonincreasing in
i. Using (3.6), (3.7), and Chebyshev’s sum inequality, we conclude that

E[ΣW (ALG)] ≥ 1− e−(1−p)

1− p

r∑
i=1

wi Pr(wi ∈ T )

≥ 1− e−(1−p)

1− p

(
r∑

i=1

wi

)
p

∫ 1

p

1

r

r∑
i=1

(1− t/r)i−1

t
dt

=
1− e−(1−p)

1− p

(
r∑

i=1

wi

)
p

∫ 1

p

1− (1− t/r)r

t2
dt

≥ 1− e−(1−p)

1− p

(
r∑

i=1

wi

)
p

∫ 1

p

1− e−t

t2
dt.

The second part of the above analysis for Algorithm 2 gives the tightest compet-
itive ratio (≈ 4.92078). It is worth noting that this ratio is better than that of the
algorithm for uniformly dense matroids presented in the conference version of this pa-
per [29]. We also remark that even though the first part of the analysis is not as tight,
it is much more useful (see section 4) to obtain a tighter analysis of the algorithm
that we propose for general matroids.

3.2. Algorithm for the random-assignment adversarial-order model.
After the first publication [29] of some of the results of this article, Oveis Gharan and
Vondrák [26] have devised a 40-competitive algorithm for uniformly dense matroids
on the random-assignment adversarial-order model. Using the techniques present in
this article (see subsection 4.2), they obtain a 40e/(e− 1)-competitive algorithm for
general matroids.

In what follows we devise an alternative algorithm for uniformly dense matroids
of rank r in this model that is similar to Algorithm 2. We start by creating a random
partition of the matroid’s ground set into r groups, or color classes, of roughly the
same size. Unlike Algorithm 2, the partition used is independent of the order in which
the elements are presented. Afterwards, we use a modification of Algorithm 1 to find
and mark the heaviest element of each color class. We do this in a coupled way: the
sample of a color class (that is, the set of unconditionally rejected elements) consists of
all those elements seen in a certain first fraction of the stream. Finally, we try to add
each marked elements to the output set. But unlike Algorithm 2, we only do this step
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with certain probability (otherwise, we discard the element). The complete procedure
is depicted as Algorithm 3 below. This algorithm depends on the two parameters p
and q in (0, 1).

Algorithm 3. For uniformly dense matroids of n elements and rank r in the random-
assignment adversarial-order model.

1: ALG← ∅.
2: Assign to each element of the matroid a color j ∈ [r] uniformly at random.
3: Choose m from the binomial distribution Bin(n, p).
4: Observe and reject the first m elements of the stream, denoting this set as the

sample.
5: for each element x arriving on or after time p do
6: if the color j of x has not been tagged as completed yet and x is the heaviest

element seen so far with color j, then
7: Tag color j as completed.
8: With probability q ignore x and continue.
9: Otherwise, check if ALG ∪ {x} is independent. If so, add x to ALG.

10: end if
11: end for
12: Return the set ALG.

The next offline simulation algorithm will be useful in analyzing Algorithm 3.
Given a set of weights W , a sorted list E of matroid elements, and two values p, q ∈
(0, 1), do the following steps.

Step 1. Select, for every weight w ∈W , an arrival time t(w) in the open interval
(0, 1) uniformly at random. Assign to the weight with the kth smallest arrival time,
the corresponding kth element e(w) of the adversarially sorted list.

Step 2. Select, for very weight w ∈W , a color c(w) ∈ [r].
Step 3. For each color j ∈ [r] do the following: among all the weights of color

j arriving on or after time p, mark the first one (if any) that is larger than all the
weights of color j arriving before time p.

Step 4. Independently toss a coin for each color with probability of heads equal
to q. Unmark the weights whose coin came up heads.

Step 5. Apply the greedy procedure on the elements that are still marked in
increasing arrival order. Return the answer of this procedure.

To analyze Algorithm 3, it is enough to study the output of the simulation.
Proposition 2. The sets of elements and weights that the above simulation

return have the same distribution as the corresponding ones returned by Algorithm 3
in the random-assignment adversarial-order model.

Proof. The first step of the simulation is just a reinterpretation of the model: every
matroid element of the adversarial list is assigned to a weight selected uniformly at
random from W . The second step indirectly assigns a uniform random color in [r]
to each matroid element, mimicking line 2 of Algorithm 3. In the third step, the
simulation skips all the elements arriving before time p. Since the number of those
elements has binomial distribution with parameters p and n, we conclude that the set
of skipped element behaves exactly as the sample defined in line 4 of Algorithm 3.

Observe that at most one weight of each color is marked in the third step of the
simulation and that each marked weight is the first record of its color class arriving
in the time interval [p, 1). A similar situation occurs in Algorithm 3: If K denotes
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the set of elements passing the test of line 6, then K contains at most one element of
each color and each element in K is the first nonsampled record of the subsequence
defined by its color. This means that K has the same distribution as the set L of
matroid elements assigned to those weights that were marked at the end of the third
step of the simulation.

To conclude the proof of the proposition, note that the output of Algorithm 3 is
obtained by applying the greedy procedure on the subset of K obtained by dropping
each element with probability q, in their order of appearance. This is exactly what
the fourth and fifth steps of the simulation do on set L.

The partition matroid on E whose independent sets are those containing at most
one element of each color (in the simulation) behaves exactly as the random partition
matroidR(M) associated toM that we defined in the previous section, so we consider
it as such. We will show that the output of the simulation contains a significant
fraction of the optimum independent set of R(M). This, together with Proposition
2 and Lemma 3.4, will be enough to prove that Algorithm 3 is constant-competitive.

More precisely, say that a color j ∈ [r] is successful if either the heaviest weight
of color j appears in the output of the simulation or no weight in the stream has color
j.

Proposition 3. Every color is successful with probability at least p(1−p)q(1−q).
Before proving this proposition, let’s use it to prove the main theorem of this

section.
Theorem 3.6. Let ALG be the set returned by Algorithm 3 when applied to a

uniformly dense matroid M of total rank r in the random-assignment adversarial-
order model. Then

Eσ[w(ALG(σ))] ≥ pq(1− p)(1 − q) · ER(M),σ[w(OPTR(M)(σ))].

By Lemma 3.4, Algorithm 3 is 16/(1− 1/e) ≈ 25.31-competitive for p = q = 1/2.
Proof. Propositions 2 and 3 imply that the total weight returned by Algorithm 3

is at least p(1 − p)q(1 − q) times the expected weight of the optimum of the random
partition matroid R(M).

We remark here that Theorem 3.6 implies the second of our main results, Theorem
1.2. The only part left is to prove Proposition 3.

Proof of Proposition 3. We prove the following stronger claim instead. Fix an
arbitrary coloring c∗ : W → [r]. Then, conditioned on the event that c∗ is the coloring
selected in the second step of the simulation, every color is successful with probability
at least p(1− p)q(1− q).

Without loss of generality, relabel the colors so that the nonempty color classes
are 1, . . . , s. We assume that 2 ≤ s ≤ r, as for the pathological case in which s = 1
we can use the proof of Lemma 3.3 to show that the only nonempty color class is
successful with probability at least (−p ln p)(1− q) ≥ p(1− p)q(1 − q).

It is enough to show that the claim holds for the first color class. Let v1 and v2
be the two top weights of color class 1. If this class has only one element, let v2 be
an arbitrary different weight of the list (to simplify our later discussion, assume that
v2 is not the top weight of its own color class). By definition, color 1 is successful if
weight v1 appears in the output of the algorithm. In what follows, we estimate the
probability that this event occurs.

Let A be the (random) set of weights arriving before time p and B = W \A the
weights arriving on or after time p. Furthermore, let Y ⊆ W be the set of weights
marked in the third step and X ⊆ Y the set of weights that are still marked at the
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end of Step 4. For every set V of weights, let e(V ) be the associated collection of
elements (i.e., e(V ) = {e(v) : v ∈ V }).

Condition on the event that v1 ∈ B and v2 ∈ A. Under this condition, weight v1
will definitely be marked in the third step of the simulation (i.e., v1 ∈ Y ). In order
for v1 to be part of the output of the simulation, it is enough that this weight is not
unmarked in the fourth step (i.e., v1 ∈ X) and that the element e1 = e(v1) assigned
to weight v1 is outside the span of the set of elements assigned to other weights in X
(i.e., e1 �∈ span(e(X \ {v1}))). Then

Pr(v1 is selected by the algorithm | v1 ∈ B, v2 ∈ A)

≥ Pr(v1 ∈ X and e1 �∈ span(e(X \ {v1})) | v1 ∈ B, v2 ∈ A)

= (1− q) Pr(e1 �∈ span(e(X \ {v1})) | v1 ∈ B, v2 ∈ A).(3.10)

If we fix the sets B, Y ′ = Y \ v1, and X ′ = X \ v1, then the element e1 is a
uniformly random element of e(B \ Y ′). Therefore, using that X ′ ⊆ Y ′ ⊆ B, the
probability that e1 is not spanned by e(X ′) is

|e(B \ Y ′) \ span(e(X ′))|
|e(B \ Y ′)| =

∣∣∣e(B) \
(
span(e(X ′)) ∪ (e(Y ′) \ e(X ′))

)∣∣∣
|B| − |Y ′| .(3.11)

As the matroid is uniformly dense, | span(e(X ′))| ≤ n
r rk(e(X

′)) ≤ n
r |X ′|. Therefore,

using that X ′ ⊆ Y ′, we conclude that (3.11) is at least

|B| − (nr |X ′|+ |Y ′| − |X ′|)
|B| − |Y ′| = 1−

(n
r
− 1

) |X ′|
|B| − |Y ′| .(3.12)

It follows that the probability that v1 is selected by the algorithm is at least

p(1− p)(1− q)

(
1− n− r

r
E

[ |X ′|
|B| − |Y ′|

∣∣∣∣ v1 ∈ B, v2 ∈ A

])
.(3.13)

We need to upper bound the expectation in the expression above. For each
k ∈ {1, . . . , s}, let Yk be the indicator variable for the event that the top weight
of color k arrives after time p (note that under the condition that v1 ∈ B, Y1 is
deterministic and equal to 1). Define also n − s other indicator random variables,
(Ys+1, . . . , Yn), one for each weight that is not the top weight of its color. Each of
these indicates the event that its associated weight arrives after time p. Without loss
of generality associate Yn to weight v2 (note that under the condition that v2 ∈ A,
Yn is deterministic and equal to 0). Finally, for each k ∈ {1, . . . , s}, let Xk be the
indicator random variable for the event that color k is not unmarked. We will use the
independent indicator variables just defined to express |B|, |X ′|, and |Y ′|.

Observe that for every nonempty color class k ∈ {2, . . . , s}, a weight of color k
is marked in the second step of the simulation if and only if Yk = 1. From here it is
easy to see that |Y ′| =∑s

k=2 Yk, |X ′| =∑s
k=2 XkYk, and |B| =

∑n
k=1 Yk. Therefore,

E

[ |X ′|
|B| − |Y ′|

∣∣∣∣ v1 ∈ B, v2 ∈ A

]
=

s∑
k=2

E

[
XkYk

1 +
∑n−1

j=s+1 Yj

]
.(3.14)

By symmetry, all (s−1) terms in the above summation have the same expectation.
Noting that Xk, Yk, and the denominator are mutually independent, we conclude that
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(3.14) is equal to

(s− 1)(1− q)(1− p)E

[
1

1 +
∑n−1

j=s+1 Yj

]
.(3.15)

Since each Yj is a Bernoulli random variable of parameter 1− p, we can compute
the expected value in (3.15) as follows:

E

[
1

1 +
∑n−1

j=s+1 Yj

]
=

n−s−1∑
i=0

1

1 + i

(
n− s− 1

i

)
(1 − p)ipn−s−1−i

=
1

(1 − p)(n− s)

n−s−1∑
i=0

(
n− s

i+ 1

)
(1− p)i+1pn−s−(i+1)

=
1− pn−s

(1 − p)(n− s)
≤ 1

(1− p)(n− s)
.(3.16)

By putting all together and using that s ≤ r ≤ n, we have

Pr(Color 1 is successful) ≥ p(1− p)(1− q)

(
1− n− r

r
· (s− 1)(1− q)

n− s

)

≥ p(1− p)(1− q)

(
1− n− r

r
· (r − 1)(1− q)

n− r

)
≥ p(1− p)(1− q)q.(3.17)

This concludes the proof.
The attentive reader may observe that the above analysis is not very tight. There

are many ways in which a weight can be marked: If we let v1, . . . , vi be the top
i weights of the first color class, and we are in the situation where vi arrives before
time p, v1 arrives after time p, and all v2, . . . , vi−1 arrive after v1, then the weight v1 is
marked. In the proof above we only considered the case i = 2. A more careful analysis
would improve our bound on the competitive ratio. For instance, let us consider the
case i = 3 in the above scenario. By conditioning on the event that the time t(v3) is
smaller than p, and on the time t ≥ p of arrival of v2, we can show that

Pr(v1 is selected by the algorithm | t(v3) < p, t = t(v2))

≥ (t− p)(1− q)E

[
|B(t)| − (nr − 1

) |X ′(t)| − |Y ′(t)|
|B(t)|

∣∣∣∣∣ t(v3) < p, t = t(v2), v1 ∈ B(t)

]

= (t− p)(1− q)

(
1−

(n
r
(1− q) + q

)
E

[ |Y ′(t)|
|B(t)|

∣∣∣∣ t(v3) < p, t = t(v2), v1 ∈ B(t)

])
,

where B(t), Y ′(t), and X ′(t) are, respectively, the sets of weights arriving in the time
interval (p, t), the set of weights marked in (p, t) of color different from 1, and the set
of weights in Y ′(t) that are not unmarked. Using arguments similar to those in the
proof of Proposition 3, we can estimate the probability above and finally obtain that

Pr(Color 1 is successful due to case i = 3)

≥ p(1− q)

∫ 1

p

(t− p)

(
1−

(n
r
(1 − q) + q

) r − 1

t(n− 2)

)
dt.
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This expression is not easily simplified; however, if the matroid has high density,
namely, if n ≥ 2r, then

(
n
r (1− q) + q

)
r−1
n−2 ≤ (1−q)+q/2 = 1−q/2. Therefore, when

the matroid has density at least 2, the probability that a color is successful (due to
the disjoint cases i = 2 and i = 3) is at least

p(1− p)q(1− q) + p(1− q)

∫ 1

p

(t− p)(t− (1− q/2))

t
dt.

The expression above is optimized when we select p ≈ 0.51399 and q ≈ 0.523138,
giving a lower bound of approximately 0.0652158. In particular, by selecting these
values of p and q, we have that Algorithm 3 is (0.0652158(1− 1/e))−1 ≈ 24.2575681-
competitive for uniformly dense matroids of density at least 2.

It is possible to further improve the bound for the competitive ratio of Algorithm
3 by considering cases where i ≥ 4; unfortunately, in order to simplify the resulting
expressions we require higher matroid density and more cumbersome analysis. We
will not pursue that goal in this article; however, we do remark that it is possible
to obtain an algorithm having competitive ratio strictly better than 16/(1− 1/e) for
uniformly dense matroids of arbitrary density. Indeed, if the density of the matroid
is high, we use Algorithm 3; if not, we use Algorithm 8 for low-density matroids that
we describe in subsection 7.3 (that algorithm works for any model of the matroid
secretary problem, including random-assignment adversarial-order).

4. Algorithms for random-assignment models in general matroids. In
order to devise constant competitive algorithms for general matroids, we use some
technical result involving matroids constructed using the theory of principal partition.
In what follows, we state the results we need, and how to use them. The discussion
of these results is deferred to section 5.

LetM = (E, I) be a matroid and L its set of loops. By Theorem 5.1 (see section
5), there exists a particular collection of uniformly dense matroids (Mi = (Ei, Ii))ki=1,
called principal minors ofM\L, such that the family {L,E1, . . . , Ek} partitions the
ground set E.

Define the matroidM′ and the random matroid Q′ as

M′ = U(L, 0)⊕
k⊕

i=1

Mi, Q′ = U(L, 0)⊕
k⊕

i=1

R(Mi),

where U(X, r) denotes the uniform matroid on a set X with rank r and R(N ) denotes
the random partition matroid associated to N . In section 5 we prove the following
technical lemmas.

Lemma 4.1. Any independent set of M′ is independent in M.
Lemma 4.2. For every adversarial list of weights w1 ≥ w2 ≥ · · · ≥ wn ≥ 0,

Eσ,Q′ [w(OPTQ′(σ))] ≥
(
1− 1

e

)
Eσ [w(OPTM(σ))].

In subsections 4.1 and 4.2 we use the above lemmas together with the divide and
conquer idea of subsection 2.1 to devise constant competitive algorithms for general
matroids.
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4.1. Random-assignment random-order model. Consider Algorithm 4 de-
picted below.

Algorithm 4. For general matroids in the random-assignment random-order model.

1: Compute the principal minors (Mi)
k
i=1 of the matroid obtained by removing the

loops ofM.
2: Run Algorithm 2 (with parameter p) for uniformly dense matroids in parallel on

eachMi and return the union of the answers.

As the set returned is independent in the matroidM′ = U(L, 0)⊕⊕i∈[k]Mi, it is

also independent inM (see Lemma 4.1). Therefore, the algorithm is correct. To esti-
mate its competitive ratio, we use part (i) of the analysis of Algorithm 2 for uniformly
dense matroids. Theorem 3.5 states that, when applied on a uniformly dense matroid
N , Algorithm 2 with parameter p returns a set of expected weight at least γ1(p)
times the expected weight of the optimum in the random partition matroid R(N ).
The random partition matroid Q′ associated to M contains a summand R(Mi) for
every uniformly dense matroidMi. Since every summand is treated independently in
Algorithm 4, we conclude that, in expectation, this algorithm recovers γ1(p)-fraction
of the optimum weight of the random partition matroid Q′.

Lemma 4.3. Let ALG be the set returned by Algorithm 4. Then

(4.1) Eσ,π[w(ALG)] ≥ γ1(p)Eσ,Q′ [w(OPTQ′(σ))].

Proof. The only ingredient left is to argue that Algorithm 2 is effectively applied
over an instance of the random-assignment random-order model. Observe that the
random bijection σ : [n]→W used to assign the weights in W to the elements of the
matroid can be viewed as the composition of a random partition of [n] and W into
blocks of sizes (|L|, |E1|, |E2|, . . . , |Ek|), and a collection of random bijections between
the corresponding blocks. Conditioned on the random partition, each block receives
a hidden list of weights which are assigned uniformly at random to the elements of
the block. To complete the proof we only need to observe that the elements within
each block are presented to Algorithm 2 in a uniform random order.

Now we are ready to give a bound on the competitive ratio of Algorithm 4. The
next theorem implies, in particular, our third main result, Theorem 1.3.

Theorem 4.4. For p = p1 ≈ 0.433509, Algorithm 4 is 1/(γ1(p1)(1 − 1/e)) ≈
5.7187-competitive for the random-assignment random-order model of the matroid sec-
retary problem.

Proof. The proof follows directly from Lemmas 4.3 and 4.2.

4.2. Random-assignment adversarial-order model. Oveis Gharan and Von-
drák [26] noticed that by combining their 40-competitive algorithm for uniformly dense
matroids on the random-assignment adversarial-order model with our techniques, one
can get a 40/(1− 1/e)-competitive algorithm for general matroids. We improve this
result by using Algorithm 3 instead. Consider the procedure depicted as Algorithm 5
below, whose correctness follows from Lemma 4.1.

Theorem 3.6 states that for every uniformly dense matroid N of total rank r,
Algorithm 3 returns a set of expected weight at least 1/16 times the expected weight of
the optimum in the random partition matroidR(N ). In particular, since each matroid
Mi is uniformly dense, and since within each Mi there is a random assignment of
weights (see the proof of Lemma 4.3), Algorithm 5 recovers in expectation 1/16 times
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Algorithm 5. For general matroids in the random-assignment adversarial-order
model.

1: Compute the principal minors (Mi)
k
i=1 of the matroid obtained by removing the

loops ofM.
2: Run Algorithm 3 for uniformly dense matroids in parallel on eachMi and return

the union of the answers.

the optimum weight of the partition matroid Q′. Therefore, we have the following
theorem.

Theorem 4.5. Let ALG be the set returned by Algorithm 5 when applied on a
uniformly dense matroid. Then

(4.2) Eσ[w(ALG)] ≥ 1

16
Eσ,Q′ [w(OPTQ′(σ))].

By Lemma 4.2, Algorithm 5 is 16/(1 − 1/e) ≈ 25.31-competitive for the random-
assignment adversarial-order model of the matroid secretary problem.

The previous theorem implies our fourth main result, Theorem 1.4.

5. Uniformly dense minors of a matroid. In this section we revisit some
useful concepts coming from the theory of principal partitions of discrete systems.
For a thorough introduction to this area, we refer the reader to a monograph by
Narayanan [24] and a survey by Fujishige [15].

The main result we need from this theory (which follows, e.g., from [15, Theo-
rem 3.11] or [8]) states that every loopless matroid M contains a nice collection of
uniformly dense minors.4

Theorem 5.1 (principal sequence of a loopless matroid). Let M = (E, I) be
a loopless matroid. Then there are a unique sequence of sets ∅ = F0 � F1 � F2 �

· · · � Fk and a unique sequence of nonnegative real values λ1 > λ2 > · · · > λk ≥ 1
satisfying that the matroidMi = (M/Fi−1)|(Fi\Fi−1) is uniformly dense with density

λi = |Fi\Fi−1|
rkM(Fi)−rkM(Fi−1)

for every 1 ≤ i ≤ k. Moreover, if for every i, Ii is an

independent set ofMi, then the set
⋃k

i=1 Ii is independent in M.
The sequence ∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fk = E is called the principal sequence of

the matroidM; λ1 > · · · > λk ≥ 1 is the associated sequence of critical values, and
M1, . . . ,Mk are known as the principal minors ofM. Polynomial time algorithms to
compute the principal sequence of a given matroid can also be found in the literature
(see, e.g., [25] or [24, Chapters 10 and 11]). These sequences have been extensively
studied in the past under different names (see, e.g., [23, 30, 25]), but unfortunately, as
with many other concepts coming from a theory developed mainly in Japan, they are
still not well known in the western world. To keep our discussion self-contained, in
section 6 we include a proof of Theorem 5.1 using only elementary matroid arguments.

The rest of this section is devoted to the study the properties of certain direct
sums of matroids which can be constructed using Theorem 5.1. In particular, we
prove Lemmas 4.1 and 4.2 that we used in section 4. We start by giving a formal
definition of the matroidsM′ and Q′ involved in both lemmas.

Consider a general (not necessarily loopless) matroid M = (E, I) and let L be
its set of loops. Let (Fi)

k
i=0, (λi)

k
i=1, and (Mi)

k
i=1 be the principal sequence, critical

values, and principal minors of the loopless matroid M \ L. Also, for every i ∈ [k],

4A minor of M is a matroid obtained by deleting or contracting elements from M.
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let Ei = Fi \ Fi−1 and ri denote the ground set and the total rank of matroid Mi.
Recall also that the density γ(Mi) of the matroidMi is equal to λi = |Ei| /ri.

The family {L,E1, . . . , Ek} is a partition of the ground set E. Define the matroid

M′ with ground set E and independent set family I(M′) =
{⋃k

i=1 Ii : Ii ∈ I(Mi)
}
.

In other words, if U(X, r) is the uniform matroid on set X having rank r, then

M′ = U(L, 0)⊕
k⊕

i=1

Mi.

Recall the definition of the random partition matroid R(Mi) associated to Mi.
In R(Mi), each element of Ei receives a color in [ri] uniformly at random. Let Bij be
the set of elements in Ei that are assigned color j. The independent sets of R(Mi)
are those subsets of Ei having at most one element in each part Bij . Consider the
random matroid Q′ obtained by replacing each summandMi ofM′ by the matroid
R(Mi). That is,

Q′ = U(L, 0)⊕
k⊕

i=1

R(Mi) = U(L, 0)⊕
k⊕

i=1

ri⊕
j=1

U(Bij , 1).

Now we show some properties ofM′ and Q′. We start by proving Lemma 4.1 of
the previous section, i.e., that every independent set ofM′ is independent inM.

Proof of Lemma 4.1. This follows directly from the definition of each Mi =
(M/Fi−1)

∣∣
Ei

and from Theorem 5.1.
The following theorem is the main result of this section. It states that random

independent sets in Q′ are likely to have large rank in the original matroidM.
Theorem 5.2. Let X� be a uniform random subset of 	 elements of E, where

1 ≤ 	 ≤ n. Then

(5.1) EX�,Q′ [rkQ′(X�)] ≥
(
1− 1

e

)
EX�

[rkM(X�)].

In order to prove Theorem 5.2, we need two technical lemmas.
Lemma 5.3. For every 1 ≤ 	 ≤ n and every 1 ≤ i ≤ k,

EX�,Q′ [rkQ′(X� ∩ Ei)] ≥ ri
(
1− exp(−λi	/n)

)
.

Proof. Given that the partition {L,E1, . . . , Ek} of E is fixed beforehand, the
value on the left-hand side depends only on X� and on the subpartition {Bij}j∈[ri]

of Ei. As these objects are chosen independently at random, we can assume they
are constructed as follows: We first select X� ⊆ E uniformly at random. Then every
element e ∈ Ei chooses a color j ∈ {1, . . . , ri} uniformly at random and is assigned to
Bij . Let X�,j be the set of elements in X� having color j; therefore,

EX�,Q′ [rkQ′(X� ∩ Ei)] =

ri∑
j=1

Pr(X�,j ∩ Ei �= ∅) =
ri∑
j=1

(1− Pr(X�,j ∩ Ei = ∅)) .(5.2)

Focus on the jth term of the sum above and condition on the size t of X�,j. Under
this assumption, X�,j is a uniform random subset of E of size t. From here,

Pr
(
X�,j ∩Ei = ∅

∣∣ |X�,j | = t
)
=

(
n−|Ei|

t

)(
n
t

) =

t−1∏
�=0

(
1− |Ei|

n− 	

)
≤
(
1− |Ei|

n

)t

.
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By removing the conditioning and using that t is a binomial random variable with
parameters 	 and 1/ri,

Pr(X�,j ∩ Ei = ∅) ≤
�∑

t=0

(
1− |Ei|

n

)t

·
(
	

t

)(
1

ri

)t(
1− 1

ri

)�−t

=

(
1

ri

(
1− |Ei|

n

)
+

(
1− 1

ri

))�

=

(
1− |Ei|

nri

)�

.

Replacing this in (5.2), and using that λi = |Ei| /ri, we have

EX�,Q′ [rkQ′(X� ∩ Ei)] ≥ ri

(
1−

(
1− λi

n

)�
)
≥ ri

(
1− exp(−λi	/n)

)
.

Consider a uniform random set X� of size 	 in E. The rank of X� in Q′|Ei =
R(Mi) is simply the number of subparts in {Bi1, . . . , Biri} this set intersects. If Ei

has high density (say λi ≥ n/	), then we expect Ei to contain |Ei| (	/n) ≥ ri elements
of X�. As they are roughly equally distributed among the subparts of Ei, we expect
the rank of X� ∩ Ei to be close to ri. On the other hand, if the set Ei has low
density, then we expect it to contain less than ri elements of X�, and so the rank of
X� ∩ Ei should be close to its expected cardinality. The following lemma formalizes
this intuition.

Lemma 5.4. For every 1 ≤ 	 ≤ n and every 1 ≤ i ≤ k,

EX�,Q′ [rkQ′(X� ∩ Ei)] ≥
(
1− 1

e

)
min

{
EX�

[|X� ∩ Ei|], ri
}

=

{
(1− 1/e) ri if λi ≥ n/	,

(1− 1/e) |Ei| 	/n if λi ≤ n/	.

Proof. First note that EX�
[|X� ∩ Ei|] = |Ei| (	/n). This quantity is larger than

or equal to ri if and only if λi ≥ n/	. Suppose that this is the case. Using Lemma
5.3 and that the function (1− e−x) is increasing, we obtain

EX�,Q′ [rkQ′(X� ∩ Ei)] ≥
(
1− exp(−λi	/n)

)
ri

≥
(
1− 1

e

)
ri =

(
1− 1

e

)
min

{
EX�

[|X� ∩ Ei|], ri
}
.

Suppose now that λi ≤ n/	. Since the function (1− e−x)/x is decreasing, we obtain

EX�,Q′ [rkQ′(X� ∩ Ei)] ≥
(
1− exp(−λi	/n)

)
λi	/n

riλi	/n ≥
(
1− 1

e

)
|Ei| 	/n

=

(
1− 1

e

)
min

{
EX�

[|X� ∩ Ei|], ri
}
.

Now we are ready to prove Theorem 5.2.
Proof of Theorem 5.2. Since the densities (λi)

k
i=1 form a decreasing sequence,

there is an index i∗ such that λi ≥ n/	 if and only if 1 ≤ i ≤ i∗. The set
⋃i∗

i=1 Ei is
equal to the set Fi∗ in the principal sequence of the matroidM\L. Let F = L∪Fi∗ .
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Every set in the principal sequence has the same rank in bothM and Q′. Using
this fact, properties of the rank function, and Lemma 5.4, we have

EX�
[rkM(X�)] ≤ EX�

[rkM(X� ∩ F ) + rkM(X� ∩ (E \ F ))]

≤ rkM(Fi∗) + EX�
[|X� ∩ (E \ F )|]

=

i∗∑
i=1

ri +

k∑
i=i∗+1

|Ei|(	/n).

≤
∑k

i=1 EX�,Q′ [rkQ′(X� ∩ Ei)]

(1 − 1/e)
=

EX�,Q′ [rkQ′(X�)]

(1 − 1/e)
.

Next, we prove a lemma that translates the result of Theorem 5.2 to a more useful
setting for the matroid secretary problem. Let E be a set of size n. Consider two arbi-
trary distributions over matroids on E, and letM1 andM2 be chosen independently
according to those distributions.

Lemma 5.5. Let α ≥ 0 be a nonnegative constant. The following are equivalent:
(i) For all 1 ≤ 	 ≤ n,

(5.3) EX�,M1 [rkM1(X�)] ≥ αEX�,M2 [rkM2(X�)],

where X� is a cardinality 	 subset of E selected uniformly at random, indepen-
dently from any random choice defining the matroids.

(ii) For every adversarial list of weights w1 ≥ w2 ≥ · · · ≥ wn ≥ 0,

(5.4) Eσ,M1 [w(OPTM1(σ))] ≥ αEσ,M2 [w(OPTM2(σ))],

where σ : [n]→ E is a bijective map selected uniformly at random, independently
from any random choice defining the matroids.

Proof. We start by rewriting Eσ,M[w(OPTM(σ))] in a more useful way. Let
Xσ

� = {σ(1), σ(2), . . . , σ(	)} be the (random) set of elements in E receiving the top 	
weights of the adversarial list of weights. Note that

Pr(σ(	) ∈ OPTM(σ)) = Pr(rkM(Xσ
� )− rkM(Xσ

�−1) = 1)

= Eσ,M[rkM(Xσ
� )]− Eσ,M[rkM(Xσ

�−1)]

= EX�,M[rkM(X�)]− EX�−1,M[rkM(X�−1)],

where for the last line we used that Xσ
� is a uniform random set of 	 elements. Then

Eσ,M[w(OPTM(σ))] =

n∑
�=1

w� Pr(σ(	) ∈ OPTM(σ))

=

n∑
�=1

w�

(
EX�,M[rkM(X�)]− EX�−1,M[rkM(X�−1)]

)

= wnEXn,M[rkM(Xn)] +

n−1∑
�=1

(w� − w�+1)EX� ,M[rkM(X�)].(5.5)

Assume that condition (i) holds; then each term forM1 in the above sum is at least
α times the corresponding term for M2, implying that condition (ii) holds. On the
other hand, if condition (i) does not hold, then there is an index 	 for which

EX�,M1 [rkM1(X�)] < αEX�,M2 [rkM2(X�)].
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Consider the sequence of weights given by w1 = w2 = · · · = w� = 1 and w�+1 =
· · · = wn = 0. For this sequence,

Eσ,M1 [w(OPTM1(σ))] = EX�,M1 [rkM1(X�)]

< αEX�,M2 [rkM2(X�)] = αEσ,M2 [w(OPTM2(σ))].

We can use the results in this section to prove Lemma 4.2.
Proof of Lemma 4.2. The inequality follows directly from Theorem 5.2 and Lemma

5.5.

6. Principal sequence revisited. In this section we offer a self-contained, con-
structive proof of Theorem 5.1.

Consider a loopless matroidM = (E, I) that is not uniformly dense, and let E1

be a maximum cardinality set achieving the density ofM. That is,

γ(M) = max
∅�=X⊆E

|X |
rk(X)

=
|E1|

rk(E1)
,(6.1)

and |E1| ≥ |X | for any set X achieving the same density.
We claim that the matroid M1 = M|E1 , obtained by restricting M to the set

E1, is uniformly dense with density λ1 = γ(M). Indeed, since the rank function of
M1 is equal to that of M, every subset of E1 has the same density in both M and
M1, making E1 the densest set inM1, with density |E1| /rk(E1) = γ(M) = λ1.

Consider now the matroid M′
1 =M/E1 obtained by contracting E1 in M. We

can show that this matroid is loopless and has density strictly smaller than M1.
Indeed, recall that the rank function of the contracted matroid (see, e.g., [27]) is

rkM′
1
(X) = rkM(E1 ∪X)− rkM(E1) for all X ⊆ E \ E1.

Hence, if x ∈ E \ E1 is a loop ofM′
1, then rkM(E1 ∪ {x}) = rkM(E1), and so

|E1 ∪ {x}|
rkM(E1 ∪ {x}) =

|E1|+ 1

rkM(E1)
>

|E1|
rkM(E1)

,

contradicting the definition of E1. Therefore,M′
1 is loopless. By maximality of E1,

every set X with ∅ �= X ⊆ E \ E1 satisfies

|E1 ∪X |
rkM(E1 ∪X)

<
|E1|

rkM(E1)
.

Hence,

|X |
rkM′

1
(X)

<

|E1|
rkM(E1)

(rkM(E1 ∪X)− rkM(E1))

rkM(E1 ∪X)− rkM(E1)
=

|E1|
rkM(E1)

,

implying that γ(M′
1) < γ(M). Thus, we have the following lemma.

Lemma 6.1. Let M = (E, I) be a loopless matroid on E1 that is not uniformly
dense, and E1 the unique maximum cardinality set with γ(M) = |E1| /rkM(E1).
Then the matroid M1 =M|E1 is uniformly dense with density λ1 = γ(M) and the
matroid M′

1 =M/E1 is loopless with density strictly smaller than γ(M).
Proof. The only missing step to prove is that E1 is unique. Indeed, suppose that

there are distinct sets E1 and E′
1 of the same cardinality achieving the density λ1 of

M, in particular, rkM(E1) = rkM(E′
1). By submodularity of the rank function,

|E1 ∪ E′
1|

rkM(E1 ∪ E′
1)
≥ |E1|+ |E′

1| − |E1 ∩ E′
1|

rkM(E1) + rkM(E′
1)− rkM(E1 ∩ E′

1)
.
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Using that λ1 = |E1| /rkM(E1) = |E′
1| /rkM(E′

1) ≥ |E1 ∩ E′
1| /rkM(E1∩E′

1), we have

|E1 ∪ E′
1|

rkM(E1 ∪ E′
1)
≥ λ1 (rkM(E1) + rkM(E′

1)− rkM(E1 ∩ E′
1))

rkM(E1) + rkM(E′
1)− rkM(E1 ∩ E′

1)
= λ1.

Thus, E1 ∪ E′
1 is a set strictly larger than E1 with the same density, contradicting

E1’s choice.
If the loopless matroidM′

1 is not uniformly dense, we can use the above lemma
in this matroid to find a second uniformly dense matroidM2 =M′

1|E2 with density

λ2 = γ(M′
1) =

|E2|
rkM′

1
(E2)

=
|E2|

rkM(E1 ∪ E2)− rkM(E1)
< λ1

and a loopless matroid M′
2 = M′

1/E2 of strictly smaller density. Here, E2 is the
maximum cardinality set achievingM′

1’s density. By repeating this process we obtain
a sequence of sets (E1, . . . , Ek) partitioning E and a sequence of values λ1 > λ2 >

· · · > λk ≥ 0. Furthermore, for every 0 ≤ i ≤ k, define Fi =
⋃i

j=1 Ei. The sequences

(Fi)
k
i=0 and (λi)

k
i=1 are exactly the ingredients we need to prove Theorem 5.1.

Proof of Theorem 5.1. We know from properties of matroids that contractions
and deletions (restrictions) commute (see [27]). Therefore, the matroids Mi =
(M/Fi−1)|(Fi\Fi−1), for 1 ≤ i ≤ k, coincide with the uniformly dense matroids con-
structed iteratively using Lemma 6.1. The density condition in the statement of the
theorem also holds since

γ(Mi) =
|Ei|

rkMi(Ei)
=

|Ei|
rkM(Ei ∪ Fi−1)− rkM(Fi−1)

.

To finish the proof, let Ii be an independent set of matroidMi for every i ∈ [k]. We

prove by induction that
⋃j

i=1 Ii is independent in M|Fj . The claim trivially holds
for j = 1. For 2 ≤ j ≤ k, the fact that Ij is independent in Mj = (M/Fj−1) |Ej =(M|Fj

)
/Fj−1 implies that Ij ∪ J is independent in M|Fj for any J independent in

M|Fj−1 . By setting J =
⋃j−1

i=1 Ii we conclude the proof.
For an example illustrating the principal sequence of a graphic matroid, we refer

the reader to [24, section 11.4.3].

7. Results for the adversarial-assignment random-order model. Con-
stant competitive algorithms for the adversarial-assignment random-order model of
the matroid secretary problem remain elusive.

Unfortunately, uniformly dense matroids are as hard as general matroids in this
model: Any algorithm A for uniformly dense matroids can be modified into an al-
gorithm for general matroids having the same competitive ratio as A. This follows
from a result of Lai and Lai [19] stating that every matroid M is a restriction of
a uniformly dense matroid M′. The algorithm for M would virtually complete the
matroidM′ by adding a dummy set of zero weight elements and then run algorithm
A on M′, simulating the augmented input in such a way that the dummy elements
arrive uniformly at random similarly to the real ones.

In 2007, Babaioff et al. proposed an O(log r)-competitive algorithm for the stan-
dard model. This procedure has many features, including that it does not need to
know the matroid beforehand; it only needs to know the number of elements and
to have access to an oracle for testing independence only on subsets of elements it
has already seen. Nevertheless, this algorithm makes use of the actual values of the
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weights being revealed. We start this section by presenting a new algorithm having
the same features but using only the relative order of the weights and not their nu-
merical values. Later, we show new constant-competitive algorithms in this model for
certain matroid classes.

Remark. During the realization of this work, Chakraborty and Lachish [9] pro-
posed an improved O(

√
log r)-competitive algorithm for this problem. In its current

form, their algorithm relies on the numerical values of the observed weights. It is
not clear whether their techniques can be adapted to the setting in which the only
available information is the relative order of the observed weights.

7.1. General O(log r)-competitive algorithm. The following algorithm re-
turns an independent set of the matroidM: With probability 1/2, run the classical
secretary algorithm (say, Algorithm 1) on the set of nonloops of the matroid. This
returns the heaviest nonloop of the stream with probability at least 1/e. Otherwise,
observe and reject the firstm elements of the stream, wherem is chosen from the bino-
mial distribution Bin(n, 1/2) (as usual, denote this set of elements as the sample) and
compute the optimum base A = {a1, . . . , ak} (with w(a1) > · · · > w(ak)) of the sam-
pled elements. Afterwards, select uniformly at random a number 	 ∈ {1, 3, 9, . . . , 3t}
with t = �log3 r�, run the greedy procedure on the set of nonsampled elements having
weight at least that of a� as they arrive, and return its answer (if 	 > k, run the
greedy procedure over the entire set of nonsampled elements).

It is possible to implement this algorithm without even knowing the matroid
beforehand: it is enough to know the number of elements n and have access to an
oracle to test independence on subsets of already seen elements. For that we need to
make two changes to the algorithm above.

First we require making a slight modification to the algorithm for the classical
secretary problem we use (Algorithm 1) so that it considers only the nonloops of the
stream without knowing a priori the number of nonloops. The modification samples
the first N elements of the stream, where N is distributed as Bin(n, 1/e), and then
returns the first nonloop having weight larger than any sampled nonloop (if any).
Observe that if n′ is the number of nonloops of the matroid, then the number of
nonloops sampled has distribution Bin(n′, 1/e). This observation implies this algo-
rithm does exactly what Algorithm 1 would do if it knew the number of nonloops
beforehand.

The second change deals with the number t = �log3 r� in the algorithm above. As
we do not know the rank of the matroid a priori, we cannot use this value. Instead, we
use the rank k of the sampled set (which we can compute) to estimate it: We select
t ∈ {�log3 k�, �log3 k� + 1} uniformly at random and use this value in the previous
algorithm. The full description of this algorithm is depicted as Algorithm 6.

To analyze this algorithm, note that for every number 	 the algorithm can choose
(provided that 	 ≤ k), the sample contains an independent set of size 	 containing
only elements of weight at least the one of a� (namely the set {a1, . . . , a�} itself).
Since the sampled set behaves similarly to the nonsampled one, we expect the same
to happen outside the sample. In particular, the greedy procedure should recover
a weight of roughly 	w(a�). By taking the expectation over the choices of 	 it is
not hard to check that the expected weight returned by the algorithm is at least
Ω(E[w(A)/ log3(r)]) = E[w(OPT)]Ω(1/ log3(r)). We give the formal result below.

Theorem 7.1. Algorithm 6 is O(log r)-competitive for any matroid of rank r.
Proof. Assume first that the rank r of the matroid is known. Let OPT =

{x1, . . . , xr}, with w(x1) > · · · > w(xr), be the maximum independent set of the
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Algorithm 6. For general matroids.

1: Flip a fair coin. On heads, run the modified version of Algorithm 1 that returns
the largest nonloop with probability at least 1/e.

2: Otherwise, set ALG← ∅.
3: Choose m from the binomial distribution Bin(n, 1/2).
4: Observe the first m elements and denote this set as the sample.
5: Compute the optimum base A for the sample. Let a1, . . . , ak be the elements of

A in decreasing order of weight.
6: If the total rank r of the matroid is known, set t = �log3 r�; otherwise, select

t ∈ {�log3 k�, �log3 k�+ 1} uniformly at random.
7: Select 	 uniformly at random from the set {1, 3, 9, . . . , 3t}.
8: for each element x arriving after the first m elements do
9: If ALG ∪ {x} is independent and w(x) ≥ w(a�) (where w(a�) = 0 if 	 > k),

add x to ALG.
10: end for
11: Return the set ALG.

matroid, let T be the set of sampled elements, and let T ′ = E \ T be the set of
nonsampled ones.

Let A = {a1, . . . , ak} be the optimum set in T , with w(a1) > · · · > w(ak) (inde-
pendent of whether the algorithm computes A or not). An element in T is included
into A if and only if it is not spanned by the elements in T that are heavier than it.
In particular, if an element xi of the optimum is in T , then as xi is outside the span
of all elements in E heavier than it, xi must appear in A.

Every element of the matroid is sampled independently with probability 1/2,
including the elements of the optimum. Therefore, by the previous paragraph,

(7.1) E[w(A)] ≥ w(OPT)

2
.

To simplify our analysis, in the following we assume that for i > k, ai is a dummy
element with w(ai) = 0. Given the number 	 chosen by the algorithm (if the algorithm
reaches that state), the weight of the returned set will be at least w(a�) times the
number of elements the greedy procedure selects; therefore, E[w(ALG)] is at least

w(x1)

2e
+

1

2(1 + �log3 r�)

log3 r�∑
j=0

E
[
w(a�) · |ALG|

∣∣ 	 = 3j was selected
]
.(7.2)

LetH(a�) be the collection of nonsampled elements that are at least as heavy as a�.
If the algorithm chooses the number 	, it will then execute the greedy procedure on
H(a�) and return a set of cardinality equal to the rank ofH(a�). Note that for every 	,
w(x�) ≥ w(a�); therefore, the rank of H(a�) is at least the number of nonsampled
elements in {x1, . . . , x�}.

By a Chernoff bound (see, e.g., [22]), Pr
(
|{x1, . . . , x�} ∩ T ′| ≤ 	/4

)
≤ exp(−	/8).

In particular, if 	 ≥ 9,

E[w(a�) · |ALG|
∣∣ 	 ] ≥ E[w(a�)] (1 − exp(−	/8))	/4 ≥ E[w(a�)]	/6.
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Replacing this in (7.2) and dropping the values of j for which 	 < 9, we get

E[w(ALG)] ≥ w(x1)

2e
+

1

12(1 + �log3 r�)

log3 r�∑
j=2

E[w(a3j )]3
j

≥ E

⎡
⎣w({a1, . . . , a8})

16e
+

1

24(1 + �log3 r�)

log3 r�∑
j=2

w({a3j , . . . , a3j+1−1})
⎤
⎦

≥ E[w(A)]

16e(1 + �log3 r�)
.

Using inequality (7.1), we obtain

E[w(ALG)] ≥ w(OPT)

32e(1 + �log3 r�)
,

which implies the algorithm is O(log r)-competitive.
Suppose now that the rank r is unknown. If r is small, say r ≤ 12, then with

probability 1/(2e) the algorithm will run the standard secretary algorithm and return
element x1. This element has weight at least 1/12 fraction of the optimum; therefore
the algorithm is 24e-competitive for this case.

For the case where r > 12 we use a different analysis. The random variable k
denoting the rank of the sampled set could be strictly smaller than r. However, the
probability that k ≤ r/3 is small. Indeed, for that event to happen we require that at
most 1/3 of the elements of OPT are in the sample. By Chernoff bound, this happens
with probability

Pr
(
|{x1, . . . , xr} ∩ T | ≤ r/3

)
≤ exp(−r/18) ≤ exp(−13/18) ≤ 1/2.

Noting that r/3 ≤ k ≤ r implies that �log3 r� ∈ {�log3 k�, �log3 k�+1}, we deduce
that with probability at least 1/4 our algorithm guesses t = �log3 r� right; therefore,
the competitive ratio of this algorithm is at most 4 times worse than the one that
knows the rank beforehand.

7.2. Column-sparse linear matroids. Let A be an m×nmatrix over a field F

whose columns are indexed by a set V . The linear matroid represented by A is the
matroid M = (V, I) whose independent sets are those for which the corresponding
columns are linearly independent as vectors. Formally, if {Av : v ∈ V } is the multiset5

of columns of A, then a set I ⊆ V is independent in M if and only if the family
{Av : v ∈ I} of vectors is linearly independent in Fm (in particular, this family cannot
contain repeated vectors). A matroid is linear if there exists a matrixA that represents
it. Examples of such matroids include partition, laminar, and graphic matroids.

Consider the following algorithm, depicted as Algorithm 7, for a linear matroid
M = (V, I) represented by A: Randomly permute the rows of A to obtain a new
matrix A′. Define for every i ∈ [m] the sets Ci = {v ∈ V : vi �= 0} and Bi =
Ci \

⋃
j<i Cj , where vi = A′

i,v denotes the ith coordinate of the column indexed by v
in the permuted matrix A′. Next, run any e-competitive secretary algorithm for the
partition matroid that accepts at most one element from each Bi, and return its
answer.

5Note that A may contain several repeated columns.
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Algorithm 7. For a matroidM = (V, I) represented by a matrix A.

1: Permute the rows of A at random to obtain a matrix A′. Index the rows of A′ as
1, 2, . . . ,m.

2: Let Ci = {v ∈ V : vi �= 0} and Bi = Ci \
⋃

j<i Cj , where vi is the ith coordinate
of the column associated to v in matrix A′.

3: Let P be the partition matroid on V whose independent sets contain at most one
element from each Bi.

4: Run any e-competitive secretary algorithm for P on the stream of elements and
return its answer.

Theorem 7.2. Algorithm 7 returns an independent set of M. Furthermore, if
every column of the matrix A representing M contains at most k nonzero entries,
then this algorithm is ke-competitive (assuming a random-order model).

Proof. We first show that the returned set is independent. If this were not the
case, there would be a circuit S ⊆ V in the output. Let i be the smallest index such
that Bi ∩ S �= ∅, and let v be the unique element in Bi ∩ S. Since S is a circuit,
the vector A′

v is a linear combination of vectors in {A′
w : w ∈ S \ {v}}. This is a

contradiction since, by definition of i and Bi, we have S ∩ Ci = {v}, meaning that v
is the only element of S for which vi = A′

i,v �= 0.
To show that the algorithm is ke-competitive, construct the bipartite graph G

with parts the rows and columns of A, where there is an edge (i, v) from row i ∈ [m]
to column v ∈ V if the entry Ai,v is nonzero. Assign to every edge of G incident to
column v a weight equal to the weight of the matroid element v.

Consider the following simulation algorithm: Select a random permutation τ of
[m], and let Gτ be the subgraph of G that contains only those edges going from a
column vertex v to its lowest neighbor according to τ . In other words, (i, v) ∈ E(Gτ )
if and only if, for all j ∈ [m], (j, v) ∈ E(G) ⇒ τ(i) < τ(j). Finally, run any e-
competitive secretary algorithm for the partition matroid on the edge set of Gτ that
accepts for each row vertex at most one edge incident to it. It is easy to see that
this simulation returns a matching in G with the same weight as the set of elements
Algorithm 7 returns. Thence, we can analyze the output of the simulation.

If X ⊆ V is independent inM, then the row-rank of the submatrix of A induced
byX equals its cardinality. In particular, the number of row vertices thatX dominates
in G is at least |X |. Using Hall’s theorem we conclude that for every independent set of
columns, there is a matching covering the associated vertices. From here we conclude
that the weight of the maximum weight matching M∗ of G is at least that of the
optimum independent set ofM. On the other hand, the weight of M∗ is at most that
of the edge set {(i, v∗(i)) : i ∈ [m]}, where v∗(i) = argmax{w(v) : v ∈ V, (i, v) ∈ G}
is the maximum weight neighbor of i in G. Since each edge (i, v∗(i)) is in E(Gτ )
with probability 1/k and that, given this event, the simulation selects (i, v∗(i)) with
probability 1/e, we conclude that for the set ALG returned by the algorithm,

w(ALG) ≥ 1

ke

n∑
i=1

w(v∗(i)) ≥ 1

ke
w(M∗) ≥ 1

ke
w(OPT).

By applying Algorithm 7 to graphic matroids, which are representable by matrices
having only two 1’s per column, we recover the 2e-competitive algorithm of Korula
and Pál [18].

D
ow

nl
oa

de
d 

01
/2

2/
14

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MATROID SECRETARY PROBLEMS UNDER RANDOM ASSIGNMENT 207

7.3. Low-density matroids. The matroid polytope PM ⊆ RE of a matroid
M = (E, I) is the convex hull of the indicator vectors of its independent sets. This
polytope can be characterized (see, e.g., [28, Chapter 40]) as

PM = {y ∈ RE : y ≥ 0 and y(U) ≤ rk(U) for all U ⊆ E}.

Let M = (E, I) be a loopless matroid of density γ(M) = max∅�=U⊆E
|U|

rk(U) , and let

τM ∈ RE be the vector having all its coordinates equal to 1/γ(M). We have the
following property.

Lemma 7.3. For every loopless matroid M, the vector τM is in the matroid
polytope PM.

Proof. For every U ⊆ E, τM(U) =
∑

u∈U τM(u) = |U|
γ(M) ≤ rk(U).

The previous lemma implies that τM admits a decomposition as a convex com-
bination of independent sets ofM:

τM =
∑
I∈I

λIχI , with
∑
I∈I

λI = 1.

This decomposition can be found in polynomial time given access to an independence
oracle of M (see [28, Chapter 40]). Consider the following algorithm (depicted as
Algorithm 8) for a loopless matroidM = (E, I).

Algorithm 8. For loopless matroidM = (E, I).
1: Compute the decomposition τM =

∑
I∈I λIχI .

2: Select and return a set I ∈ I according to the probability distribution (λI)I∈I .

Lemma 7.4. For every loopless matroid M, Algorithm 8 is γ(M)-competitive in
any model of the matroid secretary problem (even adversarial-assignment adversarial-
order).

Proof. Every element u ∈ E is in the output with probability∑
I∈I : u∈I

λI = τM(u) = 1/γ(M).

Therefore, the expected weight returned is at least 1/γ(M) times the collective total
weight of all the elements in the matroid.

If a loopless matroid M contains parallel elements,6 we can potentially get a
better competitive ratio by using its simple version M′. This matroidM′ = (E′, I ′)
is obtained by deleting all but one element in each parallel class of M = (E, I). In
particular, for every element u inM there is a unique element inM′ representing u’s
parallel class.

For every independent set I ′ ∈ M′, let Q(I ′) be the partition matroid in E
induced by I ′. In other words, the independent sets of Q(I ′) are those subsets of E
containing at most one element from each parallel class represented in I ′. In particular,
every independent set in Q(I ′) is independent in the original matroid M. Consider
Algorithm 9 depicted below.

6Two elements u and v are parallel in M if {u, v} is a minimal dependent set. Being parallel is
an equivalence relation (considering that every element is parallel to itself). The parallel classes of
M are the equivalence classes of this relation. A matroid is called simple if it has no loops and no
pair of parallel elements.
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Algorithm 9. For loopless matroidM = (E, I).
1: Construct the simple matroid M′ = (E′, I ′) and the decomposition τM

′
=∑

I′∈I′ λI′χI′ .
2: Select a set I ′ ∈ I ′ according to the probability distribution (λ′

I)I′∈I′ .
3: Run any e-competitive algorithm for partition matroids on the matroid Q(I ′) and

return its answer.

Lemma 7.5. For every loopless matroid M, Algorithm 9 is eγ(M′)-competitive
in the adversarial-assignment random-order model of the matroid secretary problem.

Proof. The returned set is independent in the original matroid M; hence the
algorithm is correct. Note that every element u of the optimum base of M is the
heaviest of its own parallel class. Provided that the parallel class of u is represented
in the set I ′ selected in line 2, Algorithm 9 returns u with probability at least 1/e.
We conclude the proof by noting that every parallel class (i.e., every element of E′)
is selected with probability γ(M′).

We can modify the previous algorithms to work on matroids having loops: Simply
run them on the matroid obtained by removing the loops. The competitive ratios
of the described algorithms are linear in the density of the matroid M (or in the
density of its simple versionM′). In particular for matroids of constant density, these
algorithms are constant-competitive.

In the next subsections we describe two interesting classes of matroids having this
property: cographic matroids and small cocircuit matroids.

7.4. Cographic matroids. The cographic matroidM∗(G) of a graph G is the
dual of its graphic matroid M(G). The independent sets in M∗(G) are those edge
sets whose removal does not increase the number of connected components of G. The
bases inM∗(G) are the complements of the maximum forests of G. The circuits (min-
imal dependent sets) of M∗(G) are exactly the minimal edge-cuts of the connected
components of G. This means that the loops ofM∗(G) are the bridges of G.

A well-known result of graph theory states that when G is 3-edge-connected we
can find three spanning trees T1, T2, and T3, such that the union of their complements
covers E(G) (this follows from, e.g., Edmonds’ matroid partitioning theorem [12]). In
particular, we have the following.

Lemma 7.6. If every connected component of G = (V,E) is 3-edge-connected,
then γ(M∗(G)) ≤ 3.

Proof. The above result implies that there are 3 forests F1, F2, and F3 whose
complements cover all the edges of G. Let Bi = E \Fi. For every set of edges X ⊆ E,

|X | ≤
3∑

i=1

|X ∩Bi| =
3∑

i=1

rkM∗(G)(X ∩Bi) ≤ 3 rkM∗(G)(X),

where the middle equality follows since X ∩Bi ⊆ Bi is independent inM∗(G).
This result implies that Algorithm 8 is 3-competitive for cographic matroids of

graphs having only 3-edge-connected components. An alternative algorithm in the
same spirit is depicted as Algorithm 10.

Lemma 7.7. Algorithm 10 is 3-competitive in any model of the matroid secretary
problem for cographic matroids of graphs whose components are 3-edge-connected.

Proof. This holds as every edge is selected with probability at least 1/3.
We cannot extend the previous results to arbitrary graphs: the cographic matroid

of a bridgeless graph G can have arbitrarily high density. To see this, consider the
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Algorithm 10. For the cographic matroid of a graph G = (V,E) having only
3-edge-connected components.

1: Find three forests F1, F2, and F3 whose complements cover E.
2: Select i ∈ {1, 2, 3} uniformly at random and return the set Bi = E \ Fi.

cycle Cn on n vertices. For this graph |E(Cn)|/rkM∗(Cn) = n; nevertheless we can
still show the following result.

Lemma 7.8. For any bridgeless graph G, the simple version of its cographic
matroid has density at most 3.

Proof. Consider the collection {C1, . . . , Ck} of 2-edge-connected components7 of
the bridgeless graph G, and the graph H obtained by taking the disjoint union of
the graphs Ci (using copies of the vertices that are in two or more of the Ci’s). The
graph H has the same graphic and cographic matroids as G, so we use H instead.

Let P1, . . . , P� be the cographic parallel classes ofM∗(H). Recall that to obtain
the simple version M′ of M we need to delete (in the matroid sense) all but one
element of each Pj . Since deleting an element of M corresponds to contracting the
same element in its dual, which is a graphic matroid, we conclude that M′ is the
cographic matroid of the graph H ′ obtained by contracting in H (in the graph sense)
all but one edge of each Pj .

SinceM′ has no pair of parallel elements, the components of H ′ have no edge-cut
of size 2. Therefore, all the components of H ′ are 3-edge-connected. Using Lemma
7.6, we conclude thatM′ has density at most 3.

LetM be the cographic matroid of an arbitrary graphG. The result above implies
that the procedure that removes the bridges of G and then applies Algorithm 9 to the
resulting graph is 3e-competitive forM. Alternatively, we can also use the procedure
depicted as Algorithm 11.

Algorithm 11. For the cographic matroid of a graph G = (V,E).

1: Remove the bridges of G.
2: Construct the associated graph H ′ described in the proof of Lemma 7.8.
3: Find three forests F1, F2, and F3 whose complements cover H ′.
4: Define the partition matroids Qi = Q(E(H ′)\Fi) having E(G) as ground set (see

subsection 7.3).
5: Select i ∈ {1, 2, 3} uniformly and run any e-competitive algorithm for partition

matroids on Qi, returning its answer.

Lemma 7.9. Algorithm 11 is 3e-competitive for general cographic matroids in the
adversarial-assignment random-order model.

Proof. The proof is analogous to that of Lemma 7.5.

7.5. Matroids with small cocircuits. For each element u of a loopless matroid
M = (E, I), let c∗(u) be the size of the smallest cocircuit (i.e., circuits of the dual
matroid) containing u, and let

(7.3) c∗(M) = max
u∈E

c∗(u).

7A 2-edge-connected component is a maximal 2-edge-connected subgraph. The 2-edge-connected
components of a bridgeless graph provide a partition of the edges of the graph.
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Consider the algorithm that greedily constructs an independent set ofM selecting
elements as they appear without even looking at their weights.

Theorem 7.10. The algorithm described above is c∗(M)-competitive (in random-
order models).

Proof. Fix u ∈ E and let C∗ be a cocircuit of minimum size containing it. If u
appears before all the other elements of C∗ in the random order, then it has to be
selected by the algorithm. Otherwise, there would be a circuit C that intersects C∗

only in element u, which is a contradiction (see, e.g., [27, Proposition 2.1.11]). We
conclude that u is selected with probability at least 1/c∗(u) ≥ 1/c∗(M).

Lemma 7.11. For every loopless matroid M = (E, I), γ(M) ≤ c∗(M).
Proof. Let n be the size of E. An element u is selected by the algorithm above if

and only if u is in the lexicographic first base OPT(π) of the ordering π : [n]→ E in
which the elements are presented. Consider the vector ρ ∈ RE having each coordinate
equal to 1/c∗(M). Using the proof of Theorem 7.10, we conclude that

ρ(u) ≤ Pr
π
(u is selected by the algorithm) =

1

n!

∑
π

χOPT(π)(u).

In particular, for every set U ⊆ E we have

|U |
c∗(M)

= ρ(U) ≤ 1

n!

∑
π

|U ∩OPT(π)| ≤ 1

n!

∑
π

rk(U) = rk(U),

where we used the fact that U ∩OPT(π) is an independent subset of U .
The last lemma shows that the algorithm presented in this section is no better

than Algorithm 8 for low-density matroids in terms of its competitive ratio. Never-
theless, the algorithm above is simpler and does not require knowledge of the matroid
beforehand.

Acknowledgment. The author would like to thank the anonymous reviewers
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article.
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