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Andean structural control on interseismic
coupling in the North Chile subduction zone
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Segmentation can influence the extent of earthquake rupture
and event magnitude1: large megathrust earthquakes result
from total rupture of relatively continuous segments of the
subduction interface2–5. Segmentation is attributed to varia-
tions in the frictional properties of the seismogenic zone or
to topographic features on the down-going plate6–9. Structures
in the overriding plate may also influence segmentation10–13,
but their importance has been dismissed. Here, we investi-
gate the links between interface segmentation at the North
Chile seismic gap14 and a crustal-scale fault structure in the
overriding plate that forms a coastal scarp of about 1 km in
height10,15. We use satellite interferometric synthetic aperture
radar (InSAR) and Global Positioning System (GPS) data to
measure interseismic surface deformation between 2003 and
2009 and compare the deformation with rupture extent during
well-documented earthquakes5,16–18. From these data we infer
the degree of coupling and segmentation at depth. We find that
along a 500-km-long segment, the base of the strongly coupled
seismogenic zone correlates with the line of the surface coastal
scarp and follows the outline of the Mejillones Peninsula. This
correlation implies that large-scale structures in the overriding
plate can influence the frictional properties of the seismogenic
zone at depth. We therefore suggest that the occurrence of
megathrust earthquakes in northern Chile is controlled by the
surface structures that build Andean topography.

Understanding factors that limit the extent of seismic rupture
is important for both risk mitigation and for understanding
physical processes governing the behaviour of seismogenic faults.
Devastating megathrust earthquakes in Chile in 2010 and Japan in
2011 ruptured fault segments that were documented to be at least
partially coupled before the earthquake, while ruptures terminated
in regions that were inferred to be relatively uncoupled3,4,7,19. So
it seems crucial to evaluate interseismic coupling and its spatial
variation in seismic gaps to assess seismic potential. Growing ev-
idence indicates that the structure and geometry of the subduction
contact influences fault segmentation and coupling. The occurrence
of geometrical complexity at the subduction contact can generate
fractures organized in damage zones extending into the upper plate
and may modify the seismogenic behaviour of the plate interface
(for example, creating low-coupled aseismic barriers). Geometrical
barriers are generally attributed to subduction of structures carried
by the subducting plate (for example, oceanic ridges, seamounts;
refs 8,9,20), whereas the possible role of tectonic structures in
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the upper plate is ignored. It has been suggested that strong
coupling occurs at the oceanward forearc region of the subduction
interface, with main asperities correlating well with subsiding
forearc basins11,12,21. So it is important to determine tectonic
features controlling the boundary between the oceanward forearc
and the landward forearc regions. In North Chile, we examine the
extent to which the spatial distribution of interseismic coupling on
the subduction correlates with major Andean structures observed
in the upper plate, particularly those controlling the coastline.

The North Chile seismic gap (Fig. 1) extends∼500 km along the
Andean subduction and has not experienced any great megathrust
earthquake since the 1868 and 1877 events (≥Mw 8.5; ref. 14). In
2007, the Tocopilla Mw 7.7 earthquake occurred in the southern
portion of the gap. Associated coseismic slip (∼1–2m)was confined
to the deeper (30–50 km) part of the subduction interface, leaving
the shallow part unbroken18. Nazca/South America subduction,
converging at ∼66mmyr−1 in the gap (ref. 22) has elsewhere
generated severalmegathrust earthquakes and devastating tsunamis
(for example, the Mw 9.5, 1960 Valdivia or Mw 8.8, 2010Maule
earthquakes). Over the longer term, subduction process has also
driven tectonic shortening of the upper plate (that is, the Andean
orogeny). The Central Andes is located adjacent to the North
Chile seismic gap, and marked by the occurrence of the Altiplano
plateau (Fig. 1). The Andean subduction margin represents a
total vertical relief reaching ∼13 km, from the trench to the high
peaks of the Western Cordillera, and is characterized by two
major topographic steps. The first step corresponds to the Central
Depression, bounded to the west by a ∼1,000-m-high coastal
scarp, which extends∼500 km along the coastline, slightly obliquely
to the trench (Fig. 1). This feature implies recent coastal uplift
and requires an active fault structure of similar scale, probably
reaching the seafloor near the coast10. The second topographic step
is formed by the Altiplano plateau, separated from the Central
Depression by the 3-km-high west Andean front. That feature
seems to be associated with a large-scale east-dipping thrust zone
parallel to the subduction zone, responsible for crustal shortening,
thickness increase and uplift of the Western Cordillera23. Thus
the tectonics of the forearc in the North Chile seismic gap region
indicates that Andean structures of the overriding plate may be
interacting with the subduction processes at relatively shallow,
possibly seismogenic, depths10,24.

Here, we document along-dip and along-strike segmentation
of subduction in North Chile using InSAR and continuous
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Figure 1 | Interseismic strain measured by InSAR and cGPS. a, Coloured map showing InSAR velocities in LOS (grey arrow), GPS velocities (black arrows,
horizontal; coloured dots, vertical), and rupture areas, dates and magnitudes of historic (blue) and instrumental (red) earthquakes. b, Cross-sections
normal to the trench, sorted and colour-coded by latitude. Top: bathymetric and topographic profiles. Bottom: InSAR (dots) and cGPS (diamonds)
velocities projected in LOS. Light grey dashed line, projection of 25 km of iso-depth on a slab dipping 15◦. Inverted triangles and light grey line, coastline
location. Dark grey line, location of maximum in LOS displacement. (Supplementary Figs S9–S11).

GPS (cGPS) measurements of surface deformation during the
interseismic period. We use time series from 29 continuous GPS
stations (CAnTO and LIA-MdB networks) to estimate interseismic
velocities for the period 2003–2009 (Methods and Supplementary
Fig. S1). The horizontal velocity field referenced to South America
is characterized by vectors subparallel to Nazca–South America
convergence, with magnitudes decreasing with distance from the
trench (Fig. 1), indicating that the upper plate is compressed by
interseismic loading. The vertical velocity field shows uplift almost
everywhere, implying that coupling across the subduction interface
does not extend far under the continent25. The GPS network
precisely measures the broad scale deformation field and the in-
terseismic coupling, but fails to resolve their fine spatial variations.
GPS is complemented by a data stack of 18 SAR interferograms
which provide continuous spatial coverage of the velocity field for
the period 2003–2009 (Fig. 1). The main challenge associated with
InSAR processing in this area is to retrieve the long-wavelength
tiny interseismic signal that is masked in raw interferograms by
atmospheric fringes. Methods and Supplementary Information ex-
plain how InSAR data were flattened and corrected for atmospheric
tropostatic delays using an empirical approach based on the local
correlation between the phase delay and the topography.

The InSAR and cGPS interseismic deformation fields are
consistent with each other (Figs 1–3). The maximum displacement

in the satellite’s line of sight (LOS, ∼20◦ from the vertical)
indicates approximately the map projection of the lower limit
of the coupled area across the subduction interface, providing
us with an image of the ‘locked’ seismogenic zone (Fig. 1).
A series of E–W sections across the InSAR strain rate field
shows between 24◦–19◦ S latitude the locked zone widening
northwards, parallel to the coast (Fig. 1). The lower limit of
coupling also seems to mimic the coastline around the Mejillones
Peninsula. The evidence thus indicates a possible mechanical
relationship between structures beneath the coast (controlling
its shape) and the interseismic coupling across the subduction
interface (Figs 1 and 3). The velocity field can be compared with
simple forward models (back-slip) of interseismic deformation25,
where the base of the coupled area is either parallel to the
trench, as in previously proposed models5,16,26,27, or parallel to
the coast (Fig. 2). Models with coupling parallel to the coastline
explain most of the deformation field variance (∼80%), whereas
models with a constant locking depth (coupling parallel to the
trench) fail to reproduce the observed deformation field south
of 21◦ S (see Supplementary Information). Formal inversions
of our interseismic velocity field yield a compatible coupling
pattern for the subduction interface, with a rather coupled shallow
zone extending from the trench to ∼30 km depth beneath the
coastline, and a transition zone with lower coupling between
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Figure 2 | Synthetic LOS velocities predicted by a coupling model. a, Forward interseismic model where the base of the locked zone follows the coastline.
Red-yellow contours, surface projection of the subduction interface iso-depths coloured by coupling value. Rainbow map, predicted LOS velocities. Grey
rectangle, spatial limits of our InSAR data. Black contour, altitude 2,500 m. b–e, Measured and predicted LOS velocities along the equivalent colour-coded
profiles identified in a. Coloured dots, measured LOS velocities; solid black lines, LOS velocities predicted by the model in a; dashed black lines, LOS
velocities predicted by a model fully coupled until 30 km depth (Supplementary Figs S13–S15).

30 and 50 km depth (Figs 3 and 4, Supplementary Figs S18 and
S19). As the bottom of the coupled zone follows the coast, it
deepens northwards, while the coupling coefficient diminishes
north of 20.5◦ S. Whereas coupling near the trench is poorly
resolved, the lateral variation of the bottom part of the coupled
zone is remarkably well constrained by our data (Supplementary
Figs S20 and S21).

Coupling across the subduction interface can be compared in
some detail with co- and post-seismic slip by focusing on the
southern end of the seismic gap, where our InSAR strain rate
map is best resolved and where significant earthquakes occurred
in 1995 and 2007 (Fig. 3). The upper limit of the 2007 Mw 7.7
Tocopilla earthquake rupture, which has broken north of the
Mejillones Peninsula, is at ∼30 km depth18, and its trace at the
Earth’s surface is nearly coincident with the coastline. In our
interseismic coupling models, this feature corresponds to the
boundary between the shallow, rather-coupled (locked) zone and
the deeper, less-coupled (partially locked) transition zone. South
of the Mejillones Peninsula, the same depth separates regions
with different behaviour: a locked upper zone that broke during
the 1995 Mw 8.1 Antofagasta earthquake from a partially locked
lower zone that underwent a 5-year aseismic afterslip pulse after
the 1995 event, as well as intermediate magnitude (Mw 7–7.5)
earthquakes16,17. The Mejillones Peninsula represents an anomaly
in the trench–coastline distance. The structure of Mejillones is
controlled by large N–S striking normal faults (∼≥50 km along
strike) that have uplifted Pleistocene marine terraces above sea level
and that may extend down to the subduction plane with complex

mechanical interactions10. The peninsula marks the boundary
between two segments of the subduction: no past earthquake is
known to have crossed this barrier14, which instead localizes pulses
of aseismic afterslip (after the 1995 and 2007 events; refs 16–18).
Our results indicate that the subduction interface beneath the
peninsula is only partially locked during the interseismic period,
whereas it is highly coupled in both adjacent segments. Thus
the seismogenic zone in North Chile seems segmented along-
dip. The deeper transition zone (∼30–50 km depth) under the
landward forearc is partially locked during the interseismic period.
It consists of a mosaic of regions that creep aseismically, intermixed
with small seismic asperities. There, Mw 7–7.7 earthquakes (such
as the 2007 Tocopilla event) can break ∼30× 30 km asperities,
and trigger aseismic creep pulses surrounding these asperities
during post-seismic or interseismic periods16–18. The shallow region
(<30 km depth) under the oceanward forearc is locked during the
interseismic period. It consists of large-scale asperities, which may
break entirely during mega-thrust earthquakes, enabling rupture
propagation downwards, well into the transition zone, and upwards
to the trench5,19,28.

It has been proposed that a change in dip in the seismogenic
interface could explain the origin of both the N–S striking normal
faults parallel to the coastal scarp and the observed along-dip
segmentation10. That hypothesis seems to be supported by seismic
refraction data that reveal an abrupt change in the dip of the
subduction a few kilometres west of the coastline15. A model
incorporating such a kink in the slab is consistent with our geode-
tic data (Fig. 3). That geometry could generate a damage zone
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Figure 3 | Interseismic to coseismic behaviour around the Mejillones intersegment. a, Best coupling distribution inverted from cGPS and InSAR. Black
dashed curves, iso-coupling 0.3 and 0.7. Pink and blue contours, coseismic slip distributions for 1995 Mw 8.1 Antofagasta (1, 2, 5 m) and 2007 Mw 7.7
Tocopilla (0.5, 1, 1.5 m) earthquakes, respectively. Stars, 1995 (yellow) and 2007 (red) epicentres. b, InSAR velocities. c–e, Profiles identified by colour in a
and b. Coloured dots, measured LOS velocities. Coloured dashed lines, maximum velocity. Black curves, predicted LOS velocities (coastline parallel
coupling) with planar (dashed) or kinked (solid) geometry. f, Black lines, planar and kinked geometries. Coloured lines, topographic profiles. Inverted
triangles, coastline locations.

affecting the frictional behaviour of the subduction interface9,
acting as a geometric barrier to along-dip propagation of subduc-
tion earthquakes29. Over the long term, a ramp-flat geometry can
promote localized underthrusting of crustal rocks and contribute
to a thickening process causing the uplift of the Coastal Cordillera,
thus also contributing to the growth of the Andes10,24. Regardless
of geometric details, our coupling model with very fine correla-
tion with coastline (Fig. 4) highlights the importance of similar
structural features across forearcs elsewhere in the world11,12,21
that seem to be steering the seismic properties of a variety of
subduction plate interfaces.

Our results indicate that the North Chile seismic gap is cur-
rently accumulating significant elastic shortening that is likely to

rebound in a future tsunamigenic megathrust earthquake breaking
the whole seismogenic zone, from the trench to 55 km depth,
releasing a moment deficit since the 1877 earthquake equiva-
lent to magnitude Mw ∼ 8.6 (see Supplementary Information).
Regions of low coupling under Mejillones and possibly the Ar-
ica bend region can be regarded as potential barriers that may
limit lateral propagation of rupture. Our results show an un-
ambiguous relationship between the base of the interseismically
coupled zone and the 1-km-high, 500-km-long coastal scarp
that parallels the seismic gap. This observation is in stark con-
trast to models assuming a simple depth/temperature control
on seismogenesis. A tectonic mechanism, persistent over several
seismic cycles, must link processes occurring on the seismogenic
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of the lines is function of latitude (same as in Fig. 1).

zone and tectonic processes involved in generation of topography
in the Andean forearc.

Methods
Daily positions of GPS stations were estimated using the GAMIT software. We
modelled cGPS time series as the sum of a linear trend, a Heaviside step function
and a seasonal periodic signal to obtain horizontal and vertical velocities in each
station. We compute the velocities with respect to the South American plate by
applying a rigid rotation (see Supplementary Information).

InSAR velocities were estimated by building a stack of 18 interferograms
processed with the ROI_PAC software suite (see Supplementary Fig. S5). The
main limitation to extract the tectonic signal contained in InSAR measurements in
this region comes from the presence of long-wavelength atmospheric and orbital
signals in the interferograms that mimic the expected interseismic deformation.
Orbital errors were corrected by removing a best-fit linear polynomial ramp
from interferograms, using GPS velocities (projected in the LOS direction) as a
reference. Phase propagation delays through the troposphere that change both
with elevation and with distance to the coast30 were corrected empirically, by
estimating locally the delay to elevation relationship observed in interferograms.
To avoid eliminating any long-wavelength deformation signal, the phase/elevation
slope values are estimated at short wavelength, within small (10×10 km) sliding
windows that span each interferogram (Supplementary Fig. S7). To reduce the
local variability in the phase/topography slope values, we fit a 3◦ polynomial
function of elevation. To evaluate the effectiveness of the corrections applied to
interferograms, phase/elevation relationships were computed in the final stack
and in modelled synthetic interferograms that contain only tectonic deformation.
Although the tectonic model is correlated with the long-wavelength topography
(that is, the phase/topography plot is not centred to zero but instead exhibits a
small negative value), our correction method efficiently reduces the tropospheric
delays by capturing the small wavelength correlations without removing the
long-wavelength tectonic signal. Indeed, values of the phase/elevation slope in
the stack are significantly reduced, centred around zero, and comparable to
values present in a forward model (which only contains tectonic deformation),
indicating that the atmosphere contribution has been successfully removed from
our interferograms (Supplementary Table S2 and Fig. S8).

Forward and inverse elastic models of the measured velocity field are based
on the back-slip asumption25. We have tested both a 2-plate model and a 3-plate
model (that is, considering shortening in the Subandean regions by including
an Andean sliver block between the Nazca and the South American plates). The
coupling distribution pattern does not change between these two configurations,

but we prefer the 3-plate model for the inversion as it reduces the GPS horizontal
residuals in the eastern part of our region. We tested two different geometries of
the megathrust, a uniformly dipping fault plane (15◦) and a model incorporating a
kink in the slab15. Both geometries explain the measured velocity field and provide
similar results in terms of the location of the base of the coupled zone (Fig. 3). To
invert for the coupling distribution, the megathrust interface is divided into 589
patches. The locking coefficient is obtained using a least-squares minimization
with the non-negativity constraint. Slip direction is constant (parallel to the
convergence), and the solution is regularized by minimizing the second-order
derivative of the fault slip. In the joint inversion, relative weights between InSAR
and cGPS data are tuned by searching for a compromise between the rms and the
spatial density of each type of data. Inversion results for each data set are shown in
Supplementary Fig. S18. The rate of moment deficit of our best model over the 1877
segment is 8.15×1019 Nmyr−1 (assuming an averaged shear modulus of 33GPa).
If we assume this moment deficit rate is approximately steady since the 1877
rupture, it leads to a moment of 1.1×1022 Nm, equivalent to aMw∼ 8.6 event. See
Supplementary Information for alternative models.

ENVISAT ASAR images used in this work can be requested from the
European Space Agency (https://earth.esa.int/web/guest/pi-community/
apply-for-data/full-proposal). CAnTO network cGPS data are available at
http://tectonics.caltech.edu/resources/kmlandes.html and LIA-MdB network cGPS
data at https://gpscope.dt.insu.cnrs.fr/chantiers/chili/.
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