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Abstract The behavior of DC load flow formulations when they are used in eco-
nomic dispatch and nodal pricing models is discussed. It is demonstrated that non-
negative prices in these models are sufficient to guarantee global optimality of any
local optimum, even if the feasible region is not convex, and so a negative nodal price
is an indicator of a possible loss in optimality. We also discuss the possible effect that
negative prices might have on algorithms that assume this convexity.
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1 Introduction

In power markets there is an increasing need for improving the representation of
high-voltage transmission networks in order to better support market design alter-
natives, price-formation mechanisms, and for general operation and planning deci-
sions. In most cases, this process involves the definition of more complex mathemat-
ical models. Different optimization approaches based on DC Load-flow formulations
are extensively used in this field (River et al. 1990; Wood and Wollenberg 1996;
Philpott 1999; Stott et al. 2009; Escobar and Jofre 2010).

In this paper we study the behavior of the economic dispatch formulation when it is
used in operational planning and planning decision process. Our focus is on instances
of these models in which negative prices are observed at some nodes. A negative
price at a node indicates a situation in which the system cost can be reduced by more
consumption of power at the node. When there is a free disposal of power at this
node, a simple economic argument shows that the nodal price must be non-negative.
So negative prices can only occur when flow balance constraints in the dispatch model
are modeled as equations.

When the economic dispatch model does not include line losses, it is a linear
program, which is easily solved using standard software (Ilog 2002; Murtagh and
Saunders 1983). Linear programs are convex optimization problems, and enjoy all
their desirable properties. Although negative prices may occur in these models, their
existence need not be a matter of any concern. On the other hand, when losses are
modeled as quadratic functions of the line flow, it is well known that (without free
disposal at the nodes) the feasible region of the dispatch model is no longer convex
(Philpott and Pritchard 2004). This means that the benefits of convex optimization
are no longer guaranteed.

In this paper we investigate the extent to which this loss of convexity is material
in solving realistic dispatch problems. We demonstrate that non-negative prices are
sufficient to guarantee global optimality, even if the feasible region is not convex,
and so a negative nodal price is an indicator of a possible problem for optimization
software. In particular, we show that linear programming software that approximates
losses by piecewise linear functions will not represent losses properly as it becomes
more accurate. Quadratic programming software that assumes positive definite Hes-
sian matrices may also encounter problems in solving such problems. Finally nonlin-
ear optimization software that yields at best a local optimum may not give a global
optimal solution when prices are negative.

An appropriate understanding of these phenomena is useful in a planning pro-
cess where thousands of economic dispatch instances must be evaluated in order to
define an operational policy or to determine generation and transmission network
investment. Besides, identifying and properly handling non-convex cases (indicated
by a negative price) could avoid making wrong decisions on operational policies or
investment.

The paper is laid out as follows. In the next section, we give some general math-
ematical results that can be applied to the dispatch problem. A general mathematical
formulation of the economic dispatch problem is then presented in Sect. 3, and we
present a three-busbar model to illustrate the formulation, and to serve as an example



Modelling network constrained economic dispatch problems 419

of some of the difficulties we describe. We first show in Sect. 4 how linear program-
ming software might fail when applied to this problem. In Sect. 5 we compute the
Hessian matrix of the Lagrangian with respect to the flow-balance constraints, and
show how this might fail to be positive semi-definite with negative prices. In Sect. 6
a nonconvex six-busbar example is described and used to illustrate how a negative
price might be an indicator of a local optimum solution. Finally, Sect. 7 presents the
conclusions of the work.

2 Preliminaries

Consider the general optimization problem

E(u) : min
∑

i

hi(qi)

s.t. gi(f ) + qi = ui, i = 1,2, . . . , n

Af + Bq = b,

f ∈ F, q ∈ Q.

(1)

where each hi is a convex function and each gi is a concave function; A and B are
p × m and p × n real matrices; b lies in Rp; and F and Q are convex sets in Rm and
Rn respectively. We define the following relaxation of E(u):

G(u) : min
∑

i

hi(qi)

s.t. gi(f ) + qi ≥ ui, i = 1,2, . . . , n

Af + Bq = b,

f ∈ F, q ∈ Q.

(2)

Assume that every feasible point of E(u) and G(u) satisfies a constraint quali-
fication, (see e.g., Bazaraa et al. 2006). Let λi(E), i = 1,2, . . . , n, be the Lagrange
multipliers from the first set of constraints for E (and let λi(G) be defined similarly).

Proposition 1 λi(G) ≥ 0, i = 1,2, . . . , n.

Proof See Bazaraa et al. (2006). �

Proposition 2 If λi(E) ≥ 0, i = 1,2, . . . , n for a locally optimal solution to E(u),
then this is also optimal for G(u).

Proof Suppose that (q∗, f ∗) solves E(u), with λi(E) ≥ 0, i = 1,2, . . . , n. Then
(q∗, f ∗, λ(E)) satisfies the Karush-Kuhn-Tucker conditions of G(u). Since G(u) is
a convex programming problem these conditions are sufficient. �
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Corollary 1 A locally optimal solution to E(u) with λi(E) ≥ 0, i = 1,2, . . . , n is
also globally optimal.

Corollary 2 Let φE(u) be the optimal value of E(u). If λi(E(u)) ≥ 0, i = 1,2, . . . , n

for every u then φE(u) is convex.

Proof Follows from the convexity of the optimal value of the convex programming
problem G(u). See Bazaraa et al. (2006). �

3 The economic dispatch problem

3.1 The general case

The economic dispatch problem for an electricity generation and transmission system
is typically formulated by expressing link flows and losses in terms of voltage angles
at each busbar (Wood and Wollenberg 1996). Both power flow balances at each bus-
bar (with or without ohmic losses representation) and transmission limits using the
DC load flow approximation, represent all the transmission constraints.

Z = Min

{
NN∑

i=1

{ ∑

k∈ΩG
i

CGk(PGk) +
∑

k∈ΩC
i

CUk(PUk)

}}

s.t.
∑

k∈ΩG
i

P Gk
−

∑

j∈ΩN
i

(
θi − θj

xij

+ rij (θi − θj )
2

2x2
ij

)

+
∑

k∈ΩC
i

PUk
=

∑

k∈ΩC
i

P Ck
, i = 1,2, . . . ,NN

θi − θj ≤ xijF ij ∀(i, j) ∈ ΩL

θj − θi ≤ xijF ji

xE ≤ xE ≤ xE

(3)

where parameters are:

– NN = number of busbars
– ΩN

i = set of nodes adjacent to node i

– ΩG
i = set of generators at node i

– ΩC
i = set of demands at node i

– ΩL
i = set of transmission lines

– CGk = convex generation cost function,
– CUk = convex cost function of unserved energy.
– xij = line series reactance expressed in per unit.
– rij = represents the equivalent resistance expressed in per unit.
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– F ij = maximum active power flow on transmission line between nodes i and j

expressed in per unit.

and variables are:

– PGk = generation active power injection in per unit.
– PUk = unserved energy (active power) in per unit.
– θi = voltage phase angle from node i expressed in radians.
– PCj

= active power load expressed in per unit.
– xE = [PG PU θ ] = vector of all optimization variables.

Ohmic losses PLij for each transmission line can be obtained (River et al. 1990)
from the nonlinear function

PLij = 2
rrij

rr2
ij + x2

ij

(
1 − cos(θi − θj )

)
(4)

where rrij is line series resistance expressed in per unit and rij = rrij x2
ij

rr2
ij +x2

ij

.

The resulting economic dispatch problem has convex cost function, quadratic
equality constraints (node balances), linear inequality constraints and bounds for each
variable. It is easy to see by making the substitution fij = θi−θj

xij
, [PGPU ] = q , that

the economic dispatch problem is in an equivalent form to E(u). Here the function
gi(f ) takes the form of

∑
j∈ΩN

i
(−fij − rij

2 f 2
ij ). It is important to note that the eco-

nomic dispatch problem can also be modeled with nonconvex generator cost curves
(Chaturvedi et al. 2008), a case that falls outside the setting we discuss here.

3.2 Example 3-busbar system

To motivate our discussion we shall study the realistic 220 kV three-busbar system
shown in Fig. 1. This case study is based on realistic data and can be interpreted
as a sub-network of more extended power system. Here, for each line we consider
reactances xij = 0.4 �/km and equivalent resistances rij = 0.04 �/km → rrij =
0.040408 �/km. Using a reference power Sb = 100 MVA, the resulting reactances
and resistances in per unit are shown in Fig. 1.

– Line lengths: Line 1–2 = Line 1–3 = 121 km, Line 2–3 = 181.5 km.
– The transmission capacity of Line 2–3 expressed in active power is set to F 23 =

50 MW.
– Generation costs: Reservoir = Gen 1 → C1 = 1 $/MWh (strategic value of stored

water), Gen 3 → C3 = 50 $/MWh.
– Load 2 = 10 MW and Load 3 = 200 MW.
– Unserved energy costs of 500 $/MWh for each load.

The optimal economic dispatch for this example can be computed using nonlinear
programming software such as MINOS (Murtagh and Saunders 1983) and summa-
rized as follows:

– P ∗
G1 = 196.84 MW, P ∗

G3 = 15.73 MW.
– Total Losses = 2.57 MW → 1.22 %.
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Fig. 1 Three busbar system

– System costs = 983.5 h.
– f12 = 60.37 MW, f13 = 135.37 MW, f23 = 50 MW.
– λ1 = 1 $/MWh, λ2 = −47.591 $/MWh, λ3 = 50 $/MWh.

The Lagrange multipliers λi relate to the busbar-balance constraints and give the
nodal prices at optimality, one of which λ2 is negative. The software can be shown to
terminate at a locally optimal solution, but since λ2 < 0, we have no guarantee that
this is a globally optimal solution, although this can be verified in this example by
exhaustively checking the Karush-Kuhn-Tucker conditions. Recall that optimization
problems of the form E(u) are not convex programming problems. In the next section
it is shown that further analysis is needed to define global optimality.

4 Piecewise linear approximation of losses

As shown in Proposition 2, if a locally optimal solution to the economic dispatch
problem has non-negative Lagrange multipliers at optimality, then this solution is also
a (global) solution to the (convex) inequality constrained problem, and so it is a global
solution to the dispatch problem. The fact that the solution is also a solution to G(u)

means that we may approximate G(u) by a linear program (say L(u)) and expect that
the solution to L(u) is close to the global optimum of G(u) and hence E(u). Many
economic dispatch systems (see e.g., Alvey et al. 1998) use linear programming in
this way.

The linear programming approximation of losses can fail when the optimal solu-
tion to E(u) has a negative Lagrange multiplier as in our example (this fact is well
known in the optimal power flow modeling community, see e.g. De la Torre and
Galiana (2005)). To illustrate this we solved the three-busbar example using follow-
ing step piece-wise linear loss functions:

PLij =
C∑

k=A

mk
ij

(
�θk

ij

); θi − θj =
C∑

k=A

�θk
ij . (5)



Modelling network constrained economic dispatch problems 423

Fig. 2 Ohmic losses representation

Considering three step piece-wise linear, that is, k = A,B,C, the loss model in the
three-busbar system can be written as

PL12 = 100(θ1 − θ2)
2 ≈ P A

L12 + P B
L12 + P C

L12

PL13 = 100(θ1 − θ3)
2 ≈ P A

L13 + P B
L13 + P C

L13

PL23 = 66.6(θ2 − θ3)
2 ≈ P A

L23 + P B
L23 + P C

L23

Figure 2 shows the ohmic losses representation by three linear functions.
Solving the resulting optimization problem for three loss function levels in each

transmission line we obtained the following loss values in MW:

P A
L12 = 0.0000 P B

L12 = 0.2709 P C
L12 = 0.9863

P A
L13 = 0.1306 P B

L13 = 0.745 P C
L13 = 0.9679

P A
L23 = 0.0862 P B

L23 = 0.3065 P C
L23 = 0.0000

Figure 3 shows the optimal result achieved for the ohmic losses in Line 1–2 (between
nodes 1 and 2).

It can be observed that the optimization arrives at an infeasible solution from
the physical point of view. The software tries to maximize losses in Line 1–2 us-
ing the second and third level of the loss function P B

L12,P
C
L12. The correct physical

losses are 0.3698 MW, while the ohmic losses based on the linear approximation are
1.2572 MW, i.e. 3.4 time bigger. In this way, more power can be allocated by the
cheaper generation at busbar one. So the piecewise linear approximation has failed to
represent the problem in the way we intended.

We might have expected some problems here since we are approximating a non-
convex optimization problem with a convex one. Indeed the example has a negative
price so we do not have a guarantee that E(u) has the same solution as G(u) its
convexification. We proceed to show under fairly mild conditions on the optimal so-
lution that a negative price at any node indicates that a linear programming model of
the form above will give an incorrect flow representation if there are enough pieces
in the piecewise linear representation of the loss curves.
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Fig. 3 Ohmic losses in Line 1–2 with piecewise linear loss functions. The shaded areas show where

PB
L12 > 0 and PC

L12 > 0

Our result is stated in the framework of the problem E(u), for a transmission
network of directed lines ij , i < j , where

gi(f ) =
∑

j<i

(
fji − rji

2
f 2

ji

)
+

∑

j>i

(
−fij − rij

2
f 2

ij

)
,

and for each transmission Line ij , −Fij < fij < Fij . We assume that rij > 0 for all
lines ij implying that

rij
2 f 2

ij is a strictly convex function. In the linear program, we

model lij = rij
2 f 2

ij as piecewise linear convex functions, where

f ν
ij = −Fij + y1

ij + y2
ij + · · · + yν

ij , i < j,

0 ≤ yk
ij ≤ bk

ij , k = 1,2, . . . , ν, i < j,

lνij = rij

2
F 2

ij + m1
ij y

1
ij + m2

ij y
2
ij + · · · + mν

ij y
ν
ij , i < j,

where the strict convexity assumption gives increasing slopes, i.e.

mk
ij < mk+1

ij ,

and each slope is in the interval (−1,1), since the marginal loss can never exceed the
marginal flow.

Our result requires the following definition.

Definition 1 A dispatch is degenerate if there exists a node i, at which every gener-
ator is either not dispatched or fully dispatched, and all lines ij have flow at an upper
bound or a lower bound. (The dispatch computed in the previous 3-node example is
not degenerate.)
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Proposition 3 Suppose the optimal dispatch is not degenerate. Any node i with a
negative price in the optimal dispatch has qk = 0, k ∈ ΩG

i and at least one incident
line with flow between its bounds.

Proof Consider node i with a negative price λi < 0 for some optimal dispatch. Since
the dispatch is optimal, and generator costs are non-negative, the Karush-Kuhn-
Tucker conditions imply that every generator at node i is dispatched zero. Since the
dispatch is not degenerate, then there is some Line ij with −Fij < fij < Fij , or some
Line ji with −Fji < fji < Fji , i.e. i has at least one incident line with flow between
its bounds. �

In our example, the Line 1–2 connecting buses 1 and 2 has power flowing into
node 2 at a rate less than the line’s capacity, as predicted by the proposition. Proposi-
tion 3 implies that any node i with a negative price and positive demand in a nonde-
generate optimal solution has some positive flow entering i from some other node j .
On the other hand, a must-run generation plant with fixed output (such as a nuclear
plant) could amount to a fixed negative demand at i, with positive flow leaving i.

The following proposition considers a sequence LPν of linear programming prob-
lems each of which approximates E(u) using piecewise linear approximations of the
quadratic loss functions for each line as described above. Thus in LPν each line flow
is modelled by a sum of ν nonnegative flow variables yk

ij ≤ bk
ij with strictly increas-

ing constant marginal losses. We denote an optimal solution of LPν by (qν, f ν) and
let λν be the corresponding nodal prices. We say that the flow f ν correctly represents
the losses if for each line flow f ν

ij = −Fij + y1
ij + y2

ij + · · · + yν
ij and each k > 1 we

have yk
ij > 0 implies yk−1

ij = bk−1
ij .

Proposition 4 Suppose demand at each node is nonnegative, the optimal dispatch
(q, f ) for E(u) is nondegenerate with prices λ, and some node has a negative price.
Suppose there is some N such that for all ν > N , the optimal flow f ν that solves LPν

correctly represents the losses. Then (qν, f ν, λν) does not converge to (q, f,λ).

Proof Let i be the node with a negative price in the optimal solution. By Proposition 3
there is no generation at i, and at least one line ji with −Fji < fji < Fji . (If nec-
essary, we can rename the node indices to make j < i.) Suppose (qν, f ν, λν) →
(q, f,λ). Then for sufficiently large ν we have λν

i < 0 and

−Fji < f ν
ji < Fji .

The flow

f ν
ji = −Fji + y1

ji + y2
ji + · · · + yν

ji

is the sum of variables yk
ji from ν loss sections, and by assumption yk

ji = bk
ji for

all sections up to the one corresponding to f ν
ji , and yk

ji = 0 for the sections beyond.

(We can make ν large enough so the section k corresponding to f ν
ji is between 2 and

ν − 1.)
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Let ρk be the reduced cost of each of these variables at optimality of the problem
LPν . Then it is easy to show that

ρk = (
λν

i + λν
j

)
mk

ji + (
λν

j − λν
i

)

where mk is the slope for loss section k. We have
(
λν

j − λν
i

)
>

(
λν

j + λν
i

)

so if (λν
j + λν

i ) ≥ 0, then

ρk >
(
λν

i + λν
j

)(
1 + mk

ji

) ≥ 0

for all k, and so f ν
ji = −Fji , yielding a contradiction. Thus we have

λν
j + λν

i < 0.

Now mk
ji < mk+1

ji implies that

ρk = (
λν

i + λν
j

)
mk

ji + (
λν

j − λν
i

)

>
(
λν

i + λν
j

)
mk+1

ji + (
λν

j − λν
i

)

= ρk+1

Since −Fji < f ν
ji < Fji , the assumption that (qν, f ν) solves LPν gives ρ1 ≤ 0 and

ρν ≥ 0, contradicting ρk > ρk+1. �

5 Quadratic optimization of line losses

The failure of linear programming in these circumstances points to the use of op-
timization software that will compute optimal solutions with quadratic functions.
The quadratic terms from the losses can be placed in a Lagrangian, where the La-
grange multipliers λi are chosen to be those that pertain at the global optimal solution
(We shall assume regularity conditions that ensure these exist). The Lagrangian for
the economic dispatch problem can then be expressed as

L(PG,PU , θ) =
NG∑

i=1

CGi(PGi) +
ND∑

i=1

CUi(PUi)

+
NN∑

i=1

λi

[ ∑

j∈ΩC
i

P Cj
−

∑

j∈ΩG
i

PGj
+ · · ·

+
∑

j∈ΩN
i

(
θi − θj

xij

+ rij (θi − θj )
2

2x2
ij

)
−

∑

j∈ΩC
i

PUi

]
(6)
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It can be observed that for positive multipliers λ, the Lagrangian is convex in PG,
PU , and θ . For linear/quadratic functions CGi(·) and CUi(·), L(PG,PU , θ) is easily
seen then to be a positive semi-definite quadratic form.

If some Lagrange multiplier λi is negative, then L(PG,PU , θ) may not be positive
semi-definite. To investigate this we will compute its explicit form. Let A be the
adjacency matrix of the network

aij =
{

1 busbar i and j are adjacent
0 otherwise

L(PG,PU , θ) =
NN∑

i=1

λi

NN∑

j=1

aij

(
θi − θj

xij

+ rij (θi − θj )
2

2x2
ij

)
· · ·

=
NN∑

i=1

NN∑

j=1

λiaij

(
θi − θj

xij

+ rij (θi − θj )
2

2x2
ij

)
· · ·

=
NN∑

i=1

NN∑

j=1

λiaij

θi − θj

xij

+
NN∑

i=1

NN∑

j=1

λiaij

rij (θi − θj )
2

2x2
ij

+ · · ·

(7)

The Hessian H of the Lagrangian is defined by

Hii =
NN∑

j=1

λiaij

rij

x2
ij

+
NN∑

j=1

λjaji

rji

x2
ji

Hij = −λiaij

rij

x2
ij

− λjaji

rji

x2
ji

(8)

Let σij = σji = aij
rij

x2
ij

. Then

Hii =
NN∑

j=1

(λi + λj )σij

Hij = −(λi + λj )σij

(9)

Observe that
∑

j

Hij =
∑

i

Hij = 0

and so H is singular. Also observe that

∑

i 	=k

∑

j 	=k

Hij =
∑

i 	=k

NN∑

l=1

(λi + λl)σil +
∑

i 	=k

∑

j 	=k

−(λi + λj )σij

=
∑

i 	=k

(λi + λk)σik = Hkk (10)
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In the three-busbar example

(σij ) =
⎡

⎣
0 1 1
1 0 2

3
1 2

3 0

⎤

⎦

so

H = 100

⎡

⎢⎣

2λ1 + λ2 + λ3 −λ1 − λ2 −λ1 − λ3

−λ1 − λ2 λ1 + 5
3λ2 + 2

3λ3 − 2
3 (λ2 + λ3)

−λ1 − λ3 − 2
3 (λ2 + λ3) λ1 + 2

3λ2 + 5
3λ3

⎤

⎥⎦

Recall that λ1 = 1, λ2 = −47.591, λ3 = 50, so λ1 + 5
3λ2 + 2

3λ3 < 0, which means
that H is indefinite for these choices of λ. This will cause problems for quadratic
programming solvers (e.g. some interior point methods) that require at least positive
semi-definite Hessian matrices. It is interesting to observe, however, for this example
that H restricted to the tangent plane of the active line capacity constraint

100

(
θ2 − θ3

0.15

)
= 50

gives a reduced Hessian

Hr = 100

[
2λ1 + λ2 + λ3 −(2λ1 + λ2 + λ3)

−(2λ1 + λ2 + λ3) 2λ1 + λ2 + λ3

]
(11)

that is positive semi-definite as long as 2λ1 +λ2 +λ3 ≥ 0. Thus a reduced gradient al-
gorithm that identified this active constraint would not have to deal with an indefinite
Lagrangian. The solution computed in Sect. 3 was found using the reduced gradient
nonlinear optimization package MINOS (Murtagh and Saunders 1983).

6 Nonconvex six-busbar example

In Sect. 4 it was demonstrated that a negative price leads to the failure of linear
programming approximations of the dispatch model, that to some extent is overcome
by nonlinear programming algorithms. Of course the problem E(u) is not convex,
and so we have no guarantee that the nonlinear programming system will locate the
global optimum. To illustrate this, consider two identical power exchanges linked by
a transmission line with ohmic losses in nodes with negative marginal prices. For
this analysis we used twice the previous three busbar example interconnecting both
systems at their respective busbar 2 (see Fig. 4).

The optimal economic dispatch after they are connected is not symmetric. In or-
der to allocate more power from the cheap generation at generator G1, energy is
transferred from the upper to the lower system (15.85 MW). This is an increase of
load at busbar 2 that reduces the dispatch of the expensive generator G3 to zero.
In the lower system we observe the opposite behavior. Nevertheless, the final re-
sult is cheaper than twice the costs of the operation of two disconnected networks
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Fig. 4 Two symmetrical systems/markets

(2 × 983.5 = 1967.0 > 1965.99 $/h). When given a starting point equal to the op-
timal dispatch in each separate system, and no flow in the connecting line, MINOS
terminates at this local optimal solution.

7 Conclusions

In this paper we have discussed the behavior of economic dispatch models with ohmic
losses when they are used in transmission constrained economic dispatch and nodal
pricing models. We have shown that negative nodal prices at the optimal dispatch
solution could indicate convergence problems for a convex optimization algorithm.
Indeed, a negative nodal price at a non degenerate solution of the transmission con-
strained economic dispatch problem could imply losing convexity and then any linear
or piecewise linear approximation will fail to converge as the loss representation be-
comes more accurate. Moreover in complicated transmission networks, a negative
price could indicate that only a local optimal solution has been found.
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