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Abstract Model management is essential for coping with
the complexity introduced by the increasing number and var-
ied nature of artifacts involved in model-driven engineering-
based projects. Global model management (GMM) addresses
this issue by enabling the representation of artifacts, par-
ticularly transformation composition and execution, within
a model called a megamodel. Type information about arti-
facts can be used for preventing type errors during execu-
tion. Built on our previous work, in this paper we present
the core elements of a type system for GMM that improves
its original typing approach and enables both typechecking
and type inference on artifacts within a megamodel. This
type system is able to deal with non-trivial situations such
as the use of higher order transformations. We also present a
prototypical implementation of such a type system.
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1 Introduction

In the field of software development, the increasing use of
model-driven engineering (MDE) in recent years has lead
to more and more complex situations. Indeed, MDE mainly
suggests basing the software development and maintenance
processes on chains of model transformations. A single trans-
formation is often quite easy to handle, but as soon as indus-
trial use cases are tackled, we are faced with large sets of
MDE artifacts (e.g., models, metamodels, transformations)
from which a solution has to be assembled. Thus, in order
to be able to use them, but keeping the complexity of MDE
under control, we need to count on more sophisticated ways
of creating, storing, viewing, accessing, modifying, and using
the information associated with all these modeling entities.
This is the purpose of global model management (GMM) [5].

As the managed modeling resources may be of differ-
ent nature, some support for efficiently organizing them is
required. In order to cope with this heterogeneity, a GMM
solution has to rely on an architecture which allows precisely
typing all the involved entities and corresponding relation-
ships. This should prevent type errors during execution, such
as the attempted execution of a non-transformation, or the use
of a transformation on arguments for which it is not defined.

Currently, the GMM approach assumes that all man-
aged artifacts are models conforming to precise metamodels.
Model typing is then simply based on the conformance rela-
tionship, and metamodels are used as types. Moreover, arti-
facts are also related by strong semantic links. For instance,
a transformation refers to its source and target metamod-
els (i.e., its parameter and return types). Information based
on this typing approach suffices for most common cases.
However, this scheme notably fails when transformations
explicitly depend on these semantic links like in the two
following cases: (a) when a metamodel is used as input to

123



106 A. Vignaga et al.

a transformation (i.e., a type used as a value), and (b) when
a transformation is used as input to another transformation
(i.e., a function used as a value). Under these circumstances,
it may not be possible to automatically infer a complete type
for some elements and errors may be inadvertently intro-
duced. For this reason, a more complex typing approach is
required.

In [27], we introduced cGMM, a predicative dependently
typed calculus addressing a static type system [7] dedicated to
the core constructs of GMM and its main extensions. We also
extended cGMM in [25] and [26] for addressing the rest of
the GMM extensions. In this paper we discuss an upgraded
version of the core cGMM with major improvements for
dealing with the identified limitations of the original GMM
typing approach. Expressing GMM elements as terms of our
calculus enables to statically typecheck these elements in
a mechanical fashion. The calculus was implemented as a
stand-alone prototype which is accessed through a command
line for testing and validation purposes. Such a prototype is
intended to be evolved and integrated to AM3 [1], a tool
realizing GMM.

This paper is organized as follows: Section 2 describes
the GMM approach to model management, characterizes the
limitations of its original typing approach, and introduces an
example illustrating them. Section 3 details our formal sys-
tem by providing the syntax of terms and types, type judg-
ments, as well as the set of type rules that form the type
system. A proof of type soundness is also provided. Sec-
tion 4 revisits the example in order to demonstrate the appli-
cation of the type system for solving it. Section 5 discusses its

prototypical implementation and its integration to the AM3
tool. Section 6 discusses related work. Section 7 concludes
and states future work.

2 Global model management

In this section we summarize the basic concepts of GMM
that enable an understanding of the general context. We also
discuss how typing is currently addressed and its limitations.
For illustrating these issues we discuss an example, which
will be revisited after our solution is presented.

2.1 Global model management conceptual framework

The global model management approach is based on several
basic concepts (see Fig. 1) which can be used for represent-
ing any concrete case within MDE-based projects. Most of
these concepts, corresponding to a generic conceptual MDE
framework, have already been presented in [11]. In addition,
the concept of a megamodel is introduced as a building block
for modeling in the large [5]. The principle is the following:
for each real-world complex system or process, there can be
a megamodel [3] representing the different artifacts involved
(e.g., models), along with their relationships by specifying
associated metadata. The type of an artifact, relationships
among artifacts, the identifier of a given artifact and its loca-
tion, etc., are examples of such registered metadata.

Figure 1 shows some selected basic constructs of GMM
and their relations. A megamodel is a collection of manage-

Fig. 1 GMM conceptual framework
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Typing artifacts in megamodeling 107

able elements, and Element is their root class. An element
may be either an Entity (i.e., an artifact) or a Relationship
among entities. MDE approaches generally introduce the fol-
lowing three different kinds of models, which occur in the
conceptual framework of GMM:

• Terminal models (M1) conform to metamodels and are
representations of real-world systems.

• Metamodels (M2) conform to metametamodels and define
domain-specific concepts.

• Metametamodels (M3) conform to themselves and pro-
vide generic concepts for metamodel specification.

Several kinds of terminal models may be considered, for
example, weaving models, and transformation models. A
megamodel is also a specific kind of terminal model. As it is
a terminal model, a megamodel conforms to a specific meta-
model: the metamodel of megamodels [16]. If represented
as models, available tools, services and service parameters
may also be managed by a megamodel. There are actually
many events that may change a megamodel, like the creation
or deletion of a model or metamodel, or the execution of a
given transformation.

In addition, the current GMM framework proposes dif-
ferent kinds of relationships between models (not shown
in Fig. 1). The model transformation relationship allows
specifying source and target reference models of a given
transformation model, and can thus be regarded as its sig-
nature. From an execution point of view, the transformation
record relationship offers a way of representing the metadata
needed for any potential execution of a given transformation.
This allows specifying its actual input and output models.

In summary, a megamodel can be viewed as a metadata
repository where precise representations of models and links
between them are stored and made available to users for var-
ied purposes. In particular, the framework should be able to
represent type information for adequately typing each ele-
ment in a megamodel, and provide precise directions on how
to use that information.

2.2 Limitations of the current typing approach

As mentioned earlier, the current solution to typing in GMM
follows a simple approach: in principle, all entities are mod-
els. Each model conforms to a concrete reference model,
which is its type [16]. Such a has-type relation (denoted by
‘:c2’) is therefore defined as follows:

conformsTo(m, M) ⇔ m :c2 M,

(for any model m and reference model M)

However, GMM involves other elements different from enti-
ties: relationships. Some elements have dual representations;

for example, a transformation may be regarded as a model
(i.e., transformation model) but also as a relationship (i.e.,
model transformation) [4]. When regarded as a model, the
type of a transformation is the metamodel it conforms to.
For ATL (AtlanMod Transformation Language) transforma-
tions [10,12], this type is plainly ATL, which does not carry
information about source and target types. When a transfor-
mation is regarded as a relationship, such a relationship is
actually unidirectional and thus the transformation is under-
stood as a function on models. Metadata associated with a
transformation refers to the type of source and target mod-
els. However, such models are typed as models irrespective
of whether they are transformations or not. In conclusion,
typing in GMM is not actually based on the :c2 typing rela-
tion only. It is also (implicitly) based on metadata as well.
For first-order transformations, such a typing approach suf-
fices. In what follows, however, we show that in some specific
cases sensitive type information is lost.

Consider a higher order transformation (HOT) T which
produces another transformation t. In the current typing
approach, T is considered as a function, but t is considered
as a value. As a consequence of this situation they are typed
differently. Metadata of T refers to the types of its source and
target elements. In particular, the type of the target element
is the type of t, which is the metamodel t conforms to (e.g.,
ATL). The type of t as a function does not fit into this scheme
and thus t is only partially typed. We do know that it is a
transformation, but we do not know the types of its source
and target elements.

This typing approach presents an interesting benefit
though. Some form of genericity is introduced: a HOT tak-
ing an ATL transformation as source accepts any model con-
forming to ATL (i.e., any ATL transformation), regardless of
the number and type of its source and target elements. This
capability enables HOTs and is something we would like to
preserve.

Another situation where a :c2-based approach may lead to
a loss of type information is when transformations operate
on metamodels, or more precisely, on reference models. In
fact, the type of any reference model received or generated by
such a transformation is a metametamodel (e.g., KM3 [11]).
Then, from the type of the transformation, it is possible to
know that a reference model is involved, but not which one.
If such a reference model occurs in the target type, then it
is not possible to correctly type that transformation with the
current approach.

When the two situations described so far happen simulta-
neously, even harder problems arise. The KM32ATLCopier
transformation [2] is a simple transformation which intro-
duces a complex typing problem and suffices for illustrating
both issues. In what follows, we discuss its typing according
to the current approach and its limitations. Later on, we show
that properly typing this transformation will require advanced
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type theory concepts. KM32ATLCopier is a HOT which
receives a reference model M and produces an identity trans-
formation (called a copier), which is specifically applicable
to models conforming to M. The type of the resulting copier
transformation clearly depends on M. The type of KM32ATL-
Copier as an entity is just the metamodel that entity conforms
to

KM32ATLCopier : AT L (Te)

In turn, the type of KM32ATLCopier as a relationship, which
is even richer in type information, may be extracted from the
header of its ATL definition:

create OUT : ATL from IN : KM3

Using the usual notation for function types, this type can be
expressed as

KM32ATLCopier : K M3 → AT L (Tr )

This type expresses that KM32ATLCopier: (i) is a transfor-
mation, (ii) accepts a KM3 metamodel as an argument, and
(iii) it produces an ATL transformation. However, although
this information is correct, the type is insufficient. First, M
is not present as the argument of the transformation. Second,
all we know about the result from its type is that it is a trans-
formation. Third, it is not possible to specify that we know
that both of result’s source and target models are of type M.

By introducing other kinds of types, such as function types
and parametric types, we will be able to deal with these
issues. In Sect. 4 this example will be revisited and a type
for KM32ATLCopier carrying richer information will be dis-
cussed.

3 A type system for GMM

Our solution is based on a calculus called cGMM. By defin-
ing a mapping between GMM constructs and cGMM typed
terms, we are able to express elements within a megamodel
as terms, and to statically typecheck them in a mechanical
fashion.

A type system is intended for preventing type errors dur-
ing the execution of a program. In GMM, the application of
transformations may cause type errors. For us, type errors
can be (i) the attempted execution of a non-transformation
and (ii) the use of a transformation on arguments for which
it was not defined. Note that an application a, of the form
(t x), relies on other elements contained in a megamodel M

(i.e., transformation t and model x). In our approach, we use
a judgment � � A, where environment � represents a mega-
model M, and assertion A is a type assertion of the form p:T.
Term p represents application a and the assertion assigns type
T to term p. If the judgment is valid, that is, it can be proved
that p has type T in the context of �, then application a will

not produce a type error when executed in M. Otherwise, the
application will cause a type error and thus it should not be
executed.

The cGMM calculus is a predicative dependently typed
calculus, similar to the underlying language of Coq [23],
the Predicative Calculus of (Co)Inductive Constructions
(pCIC) [18,28]. Dependent products enable (dependent)
function types for typing transformations, as well as para-
metric types for coping with genericity. For example, the
type of the transformation produced by KM32ATLCopier is
dependent on the value of the input parameter to KM32ATL-
Copier (i.e., reference model M mentioned in the example of
the previous section). Higher-order functions naturally rep-
resent higher-order transformations. In addition, an infinite
hierarchy of universes supports the notion of Type being a
type (i.e., Type:Type), and enables a proper representation
of the three levels of models (M1, M2 and M3) mentioned
in Sect. 2.1.

In order to formalize the type system, we need to present
some elements of our calculus first. We start by presenting
its syntax and the mapping of cGMM terms to GMM con-
structs. We then address the typing of terms.

3.1 Textual syntax

Every cGMM term has a type. Unlike most type theories, we
do not make a syntactic distinction between types and terms
because the type-theory itself forces terms and types to be
defined in a mutually recursive way. We therefore define both
types and terms in the same syntactical structure.

3.1.1 Sorts

Types are seen as terms and as such they should be typed. The
type of a type is called a sort. In principle, we use types for
typing models so we introduce the sort Type which intends
to be the type of such types. Since sorts can be manipu-
lated as terms they also should be given a type. Typing Type
with itself leads to undecidable type systems [6], as the type-
checking process may diverge. Therefore, we need to intro-
duce many infinite sorts by means of a hierarchy of sorts
Typei for any natural i. Thus, our set of sorts S is defined
by S ≡ {Typei | i ∈ N}. This provides predicativity to the
calculus, as quantifying on a type of one level yields a type
in a level above in the hierarchy (circularity in type forma-
tion is forbidden). Sorts in S satisfy the following property:
Typei :Typei+1. In this way, we understand Type0 as the type
of all metamodels (e.g., Class : Type0), which turns Type0

into a metametamodel.
As in Coq, when referring to sort Typei the user will

never mention the index i explicitly, which is managed by
the system. Therefore, from a user perspective Type:Type
is safely assumed. Consequently, without indices, Type is a
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metametamodel which conforms to itself, as required by the
first invariant in Fig. 1.

GMM is expected to support multiple metametamodels
at the same time, for example KM3, ECore, and so on. In
principle, providing support for one single metametamodel
is not an issue since promotion and demotion mechanisms
may by applied. If ECore were the only metametamodel, the
KM3 metametamodel may be represented as a metamodel
conforming to ECore (i.e. KM3 :c2 ECore). Then, a KM3
metamodel M is represented as a terminal model conform-
ing to the metamodel version of KM3 (i.e., M :c2 KM3).
Whenever needed, M (which is actually a terminal model)
may be transformed, by a proper transformation, to an actual
ECore-conforming metamodel M ′ (i.e., M ′ :c2 ECore, thus
making M ′ an actual metamodel). This mechanism is called
promotion. Demotion is the inverse operation and it is analo-
gously defined. In fact, this is how multiple metametamodels
are currently handled in AM3 [1], a concrete realization of
GMM. In what follows, we refer to Type as an arbitrary
metametamodel.

3.1.2 Terms

Terms are built from constants declared in the environ-
ment, dependent products, abstractions, applications, carte-
sian products, tuples, and projections. Assuming that T and
U are terms, cGMM terms are as follows:

Type A sort, the type of all types
c A constant declared in the environment
x A variable
λx:T.U An abstraction
�x:T.U A dependent product
(T U) An application
U1×U2 A cartesian product
〈T1,T2〉 A tuple
πi (T ) A tuple projection (i ∈ {1,2})

Type is a metametamodel, and as such it belongs to M3. Con-
stants in the environment map to models, either at M1, M2,
or M3. If a constant, other than Type, is typed by Type (more
precisely, by Type0), it represents a metamodel, which is an
element of M2. If it is typed by a term typed by Type, then
it denotes a terminal model, which is an element of M1. For
example, declaration Class:Type means that constant Class
is assumed as a metamodel, and declaration c:Class means
that constant c is assumed as a terminal model of type Class.

Transformation models are typed by functional products.
A functional product �x:T.U denotes a function mapping
a value x of type T to a value of type U(x). The type
of the result depends on argument x, with U specifying
the dependence [14]. The degenerate case where U is a
constant function (i.e., U does not actually depend on x)
corresponds to classic function types. For emphasizing their

functional nature, in the dependent case a functional product
is denoted by x :T →U, while in the non-dependent case a
functional product is denoted by T →U . For example, decla-
ration Class2Relational:Class→Relational means that
constant Class2Relational is assumed as a transformation
of type Class→Relational. Dependent products are used
for representing parametric types as well. For emphasizing
their non-functional nature, parametric types are denoted as
∀x :T .U (i.e., type U is parameterized by x of type T).

GMM manages two kinds of transformations. On the one
hand, transformation models can be externally defined in a
suitable transformation language, such as ATL. We call this
kind of transformations atomic transformations, and they are
seen as black-box operations on models where their inter-
nal definition is not accessible by the GMM environment.
Currently, the only external transformation language sup-
ported by GMM is ATL through the GMM4ATL extension.
In this work we assume that all atomic transformations are
defined in ATL. On the other hand, transformations can be
defined within a megamodel, using the language provided
by the GMM4CT extension, as compositions of other exist-
ing transformations, regardless of their kind. We call them
composite transformations and they are model transforma-
tions (i.e., relationships) and not transformation models (i.e.,
entities).

Atomic transformations are assumed in the environment.
For example, declaration c : T represents a transformation
called c of type T, where T is a functional (either dependent
or non-dependent) product. We say that c is assumed because
its definition is not explicitly provided. In turn, composite
transformations are defined in the environment. For exam-
ple, declaration c := t : T represents a transformation called
c of type T and defined by term t. Term t is a λ-abstraction
and its body can only be formed by compositions of appli-
cations, tuple constructions, and projections. Another use of
definitions within an environment are applications. In this
case term t is an application, and term T is the type of the
resulting element.

Finally, transformations accept only one argument and
produce only one result. A cartesian product, which is a non-
dependent form of �-types [13], enables a functional product
type with multiple sources and multiple targets. Tuples are
pairs, and projections extract a component out of a tuple. For
example, π1(〈T1, T2〉) yields T1, and π2(〈T1, T2〉) yields T2.
Generalized cartesian products and tuples may be achieved
by iterating our binary cartesian products and tuples. As a
remark, a HOT is a transformation that operates and/or pro-
duces other transformations. Thus, a HOT is expressed as a
function which either has a parameter typed by a function
type, or returns an element typed by a function type. Free
variables and substitution are defined as usual. Substituting
a term T to free occurrences of a variable x in a term U is
denoted as U{x/T}.
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Example For illustrating some of the ideas introduced above,
we define a composite transformation which is composed of
two atomic transformations. We first assume both atomic
transformations:

Class2Relational : Class → Relational

Relational2SQL : Relational → SQL

For such assumptions to be well formed, constants Class,
Relational, and SQL should have been previously assumed
in the environment. Then, as constants Class2Relational and
Relational2SQL are in the environment, it is possible to
define the composite transformation:

Class2SQL := λx :Class.(Relational2SQL

(Class2Relational x)) : Class→SQL

The term playing the role of t in the definition of constant
Class2SQL is a λ-abstraction a. The body of a is the proper
composition of Class2Relational and Relational2SQL. If
an element within a megamodel should correspond to
Class2SQL, then its definition in the megamodel should cor-
respond to a. In addition, assuming c : Class in the envi-
ronment (i.e., in the megamodel there is a terminal model c
conforming to metamodel Class), it is possible to define the
following application:

s := (Class2SQL c) : SQL

Here, the term playing the role of t in the definition of con-
stant s is an application p. In the megamodel, there is a trans-
formation record corresponding to p (i.e., the application of
Class2SQL to c), and the terminal model which is the tar-
get element in that transformation record corresponds to s.
Finally, the type of Class2SQL is the type of a (i.e., Class →
SQL), and the type of s is the type of p (i.e., SQL). Both types
may be explicitly provided by the user. However, they can be
inferred from terms a and p, respectively. This is what type
inference is about. In assumptions, types must be provided
explicitly. In definitions, type T is inferred from term t. Our
prototype exhibits this same behavior.

3.2 Typing

A type system is a collection of type rules; however, they
are always formulated with respect to a static typing envi-
ronment for the program fragment being checked. A static
typing environment records the type of free variables during
the processing of program fragments. For example, the has-
type relation a:A is expressed in the context of a static typing
environment � that contains information about free variables
of a and A.

3.2.1 Judgments

The description of a type system starts with the description
of a collection of judgments of the form � � A where �

is a static typing environment, A is an assertion, and the
free variables of A are declared in �. The static typing envi-
ronment can be understood as a list of declarations (either
assumptions or definitions) of distinct constants. A static
typing environment then maps to the notion of megamod-
el. The empty environment is denoted by ∅. The form of A
determines the different judgments to be used within a type
system. For our system, we need the following judgments:

� � � � is a well-formed environment
� � T : U T is a well-formed term of type U in �

A judgment can be regarded as valid or invalid. Validity
formalizes the notion of well-typed programs and is based
on type rules. Type rules are used to carry out step-by-step
deductions, i.e., type derivations, which formally prove that
judgments are valid.

3.2.2 Type rules

Figure 2 shows some selected rules of cGMM. They are
similar to the type rules for pCIC in [23]. Note that we do
not support logical propositions and their proofs (i.e., there
is no such type Prop). This means that cGMM is not a logic
system where propositions are proved by rule derivations.
Rather, cGMM is only a type system where rules enable the
derivation of typing judgments. Indices i, j and k are arbitrary
natural numbers, and constructor � forms either parametric
types (∀) or function types (→) as discussed earlier.

Rule (Env ∅) is an axiom stating that an empty environ-
ment is a valid environment. This means that an empty mega-
model is a valid megamodel.

Rules (Env Assum) and (Env Def) extend an environment
with a declaration of a constant, provided that the constant
is not already declared and its type is a valid type. This cor-
responds to adding a new element to a megamodel. In turn,
rules (Assum) and (Def) enable the extraction from the envi-
ronment of type information about declared constants. Rule
(Ax) formalizes the property stated in 3.1.1 which holds for
universes within S.

Rule (Prod) constructs dependent products which corre-
spond to transformation types and parameterized types. In
turn rule (Abs) constructs abstractions which correspond to
composite transformation definitions and type abstractions.
Finally, rule (App) types applications. When the type of t
is a type parameterization, the application is a type instan-
tiation. Otherwise, it is a functional application. Note that
type substitution in T occurs only when the type of t is
dependent.
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Fig. 2 Sample type rules of cGMM

In the next section, we revisit the example of Sect. 2 in
detail and present a type derivation which involves the appli-
cation of many of the rules discussed earlier.

3.2.3 Meta-theoretic properties of the calculus

The purpose of a type system is to prevent programs from
causing type errors during their execution. A type system is
sound when only well-typed programs execute without type
errors [7]. This property of a type system is demonstrated by
means of a soundness theorem. A proof of soundness rests
upon the semantics of the underlying language, and other
properties such as subject reduction, confluence, and strong
normalization. In what follows, we discuss both components
of type soundness.

Semantics. The semantics of cGMM describes how compu-
tation takes place, where the meaning of terms is specified
by a transition system. Such a transition system is based on a
transition relation (�) that describes how individual steps of
computation are performed. In turn, the transition relation is
defined by reduction rules. In cGMM three different reduc-
tions are supported: β, δ, and σ . The first reduction refers
to the functional application of composite transformations in
the classic way: substitutes the actual parameter to all occur-
rences of the formal parameter in the body of the function.
The reduction rule is as follows [23]:

((λx :T .U ) u) �β U {x/u}
In turn, the second reduction expands a defined constant into
its definition. The reduction rule is as follows [23]:

x �δ t (if x := t : T is in the environment)

Finally, the third reduction refers to tuple projection. The
reduction rule is as follows [13]:

πi (〈T1, T2〉) �σ Ti (i ∈ {1, 2})
Note that β-reduction is not intended for applications where
the applied function is an atomic transformation because its
definition is not provided. For such applications we assume a

 function [30] that abstracts away the precise set of atomic
transformations. This introduces an additional reduction rule:

(t u) �
 
(t, u) (if t : �x :T .U is in the environment)

In the above rule, t is an atomic transformation and the value

(t, u), of type U{x / u}, is what an actual execution envi-
ronment would produce. Additionally, for such a value to be
defined (i.e., not being ⊥), argument u must be of type T [30].
The introduction of this last rule implies that the results of
computations are always expressed in terms of applications
of the 
 function. For example, using the declarations of the
example of Sect. 3.1.2 we have the following reductions of
constant s, where the last term cannot be further reduced:

s

�δ

(Class2SQL c)

�δ

(λx :Class.(Relational2SQL (Class2Relational x)) c)

�β

(Relational2SQL (Class2Relational c))

�


(Relational2SQL 
(Class2Relational, c))

�



(Relational2SQL ,
(Class2Relational, c))
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Properties. We now review the properties that enable a proof
of type soundness. Subject reduction states that reductions
preserve types (i.e., if T of type U reduces, then it does so to
a value also of type U ). Confluence (i.e., the Church–Rosser
theorem) states that different reductions starting from a given
term will eventually meet in the same term. In some systems,
type conversion is additionally required. Type convertibility
T = U is achieved when terms T and U reduce to the same
normal form. This enables a rule which says that two convert-
ible well-formed types have the same inhabitants. In this way,
terms of a type before a reduction are also typed by the type
resulting from the reduction. Note that all these properties
are not sufficient for type soundness because they do not rule
out the case in which T has a type but it does not reduce (i.e.,
term T diverges). Systems where reductions for all typable
terms do terminate are called strongly normalizing.

Our calculus is a subset of pCIC, which enjoys all the
properties discussed above [23]. Furthermore, it exhibits a
number of restrictions derived from how GMM is defined:

(a) In a definition c := t : T, term t may only contain appli-
cations of functions which were declared in the environ-
ment before c. This excludes constant c itself and, as a
result, cGMM does not support any form of recursion
(fixpoint operators are not supported).

(b) In an application (T U), term T can only be a constant
which was declared in the environment before such an
application is ever processed. This means that T does not
need to be reduced for inferring the type of the applica-
tion.

(c) Type equivalence is not structural but rather by-name.
In an assumption c : T, term T cannot be or include an
application. For example, provided that transformation
T ′ returns a metamodel, assumption c : (T ′ U ) is not
acceptable. Alternatively, t := (T ′ U ) should be defined
first, and only then c : t can be assumed. This means that,
in the original assumption, term T does not need to be
reduced and type equivalence is directly determined by
name equality.

Following the approach introduced in [30], a proof of type
soundness can be structured as follows: On the one hand,
we shall prove that well-typed terms yield a unique term in
normal form and of the right type. On the other hand, we
shall prove that ill-typed terms either yield stuck terms (i.e.,
non-normalized terms which cannot be further reduced) or
diverge. To that end we proceed as follows, where �∗ denotes
the reflexive and transitive closure of �:

1. If term M reduces to a value V, then such a value is unique.
This property is implied by the Church–Rosser theorem
for �∗, and proves that normal forms are unique.

2. Well-typed terms do not diverge. This is equivalent
to proving strong normalization, and together with the
above property, it proves that well-typed terms that do
not stuck have a unique normal form.

3. Stuck terms are untypable. This proves that well-typed
terms do not stuck. Together with the aforementioned
properties it proves that a well-typed term yields a unique
term in normal form, and that an ill-typed term either
stucks or diverges. This is weak type soundness [30] and
means that well-typed terms will not go wrong.

4. Transition relation �∗ preserves types. This is subject
reduction, and with all the above, this proves strong
type soundness (i.e, additionally to weak soundness, the
reached term is of the right type).

In what follows we sketch a proof for each of the properties
discussed earlier.

Theorem 3.1 (Church–Rosser theorem) If M1 = M2, then
there exists M such that M1 �∗ M and M2 �∗ M.

Proof Sketch A proof of the Church–Rosser theorem is anal-
ogous to the proof in [13] for the extended calculus of con-
structions (ECC), which is an ancestor of pCIC. The details
omitted from such a proof can be found in [19]. ��
As a corollary of the Church–Rosser theorem, we have that
the normal form of a term is unique, if it exists. Next we show
that well-typed terms do have a normal form.

Theorem 3.2 (strong normalization) If � � M : A then M
is strongly normalizable.

Proof Sketch A proof of strong normalization is simplified
by the restrictions discussed earlier. We show that it is not
possible to find an infinite sequence of reductions starting
from a well-typed term. Since the set of transition rules is
finite, an infinite transition sequence necessarily involves an
infinite application of at least one of the rules. As discussed
before, an environment is a finite sequence of declarations.
Infinite applications of δ require an infinite environment, or
the reintroduction of an already unfolded constant. Based on
(a), this latter scenario is not possible. In turn, β may only be
applied when the definition of a composite transformation
was already unfolded. Then the amount of applications of β

in every transition sequence is less or equal to the amount of
applications of δ. Based on (b), applied functions are con-
stants. In addition, further applications of 
 involve applica-
tions to be nested within the argument. As a result, infinite
applications of 
 either require an infinite environment or
infinite terms. Since every term is finite, this is not possi-
ble. Finally, an application of σ yields a component of the
original term. Then infinite applications of σ require infinite
environments, infinite terms, or infinite applications of the
other rules for enlarging the resulting term. By the above
arguments, this latter scenario is not possible. ��
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By strong normalization, no well-typed term diverges, and
by Church–Rosser, if a term converges it does to a unique
normal form. Intersecting these two conditions we have so
far that well-typed terms either converge to a unique normal
form or they get stuck. The next step is then proving that
well-typed terms do not stuck. As in [30], we approximate
the notion of a stuck term with the notion of faulty terms.
A faulty term is a term that contains a subterm of the form (t
u), where t is an atomic transformation and 
(t, u) is unde-
fined. Note that all terms that yield a stuck term are faulty,
although the opposite is not necessarily true.

Theorem 3.3 (faulty terms are untypable) If M is faulty, then
there are no environment � and type A such that � � M : A.

Proof Sketch For showing that faulty terms are untypable it
suffices to show that subterms of term M that cause M to be
faulty are untypable. Let us assume that (t u) is faulty, where
t is an atomic transformation such that t : �x :T .U, and that (t
u) : U{x/u} (i.e., (t u) is typable). By rule (App) we know that
u : T. Then, by the definition of 
 above, 
(t, u) is defined,
which contradicts the assumption that (t u) is faulty. ��

By Theorem 3.3, no well-typed term is faulty. Therefore,
now we may safely argue that well-typed terms do not go
wrong (i.e., weak soundness). Our last step before strong
soundness is proving type preservation.

Theorem 3.4 (subject reduction) If both � � M1 : A and
M1 �∗ M2 then � � M2 : A.

Proof Sketch A proof for subject reduction can be adapted
from [30]. ��

With this result, we have shown that in cGMM well-typed
terms reduce to a unique normalized term of the expected
type. In turn, a term that causes a type error fails to type-
check.

4 Example revisited

In this section we demonstrate the application of cGMM
by revisiting the KM32ATLCopier example introduced in
Sect. 2. A megamodel is represented by an environment �,

and elements within a megamodel correspond to constants
declared (i.e., assumed or defined) in such an environment.
Assumed constants have the form c : T, while defined con-
stants have the form c := t : T. When a constant is assumed, the
well-formedness of type T is checked. This is typechecking.
In turn, when a constant is defined, type T is inferred from
t. This is type inference. For the KM32ATLCopier transfor-
mation example we use KM3 as a concrete metametamodel
instead of Type as before.

Transformation KM32ATLCopier is an ATL transforma-
tion, and as such it is atomic. This means that such a trans-
formation is to be assumed in the environment. The concrete
assumption is then

KM32ATLCopier : M :K M3 → M → M

The type assigned to KM32ATLCopier is a function type
which depends on value M. Its co-domain is another func-
tion type, where both the domain and the co-domain are M
(here the dependency is apparent). The �-based expression
of that type would be �M :K M3.�x :M.M, which is much
less intuitive. Compare this assumption with types (Te) and
(Tr ) from Sect. 2.2.

Now we apply the KM32ATLCopier transformation to the
SQL metamodel. This should produce a copier transforma-
tion, which we call SQLCopier. Such a definition is then

SQLCopier := (KM32ATLCopier SQL)

Note that the type of SQLCopier was intentionally omitted
from the definition, as we want it to be inferred. A type infer-
ence algorithm should return type SQL → SQL , meaning
that such a type is the type of SQLCopier, but also mean-
ing that the functional application defining it is well-typed.
A correct type inference algorithm finds the right type for a
term. In our case, it would not be necessary to typecheck the
functional application against the inferred type. However, for
illustrating the operation of the type system, we show a deri-
vation of the corresponding typing judgment. In fact, the type
inference algorithm builds the derivation tree from the root
to the leaves. For this reason such a derivation is interesting.
We first define an environment � as follows:

� ≡ K M3 : K M3,

SQL : K M3,

KM32ATLCopier : M :K M3 → M → M

Then, the following typing judgment can be derived, which
proves that the inferred type is a type for SQLCopier:

� � (KM32ATLCopier SQL) : SQL → SQL

The derivation is shown in Fig. 3. For simplicity, we assumed
that environment � is valid, since its proof is trivial. Now
we can safely apply SQLCopier. To this end, we augment

Fig. 3 Derivation of (KM32ATLCopier SQL): SQL→SQL in �
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Fig. 4 Derivation of (SQLCopier s1): SQL in �′

environment � as follows:

�′ ≡ K M3 : K M3,

SQL : K M3,

KM32ATLCopier : M :K M3 → M → M,

SQLCopier := (KM32ATLCopier SQL),

s1 : SQL

We now consider definition s2 := (SQLCopier s1). The
expected type of such an application, and hence, of constant
s2 is SQL. Again, this type is returned by the type infer-
ence algorithm, and no typechecking is required. Nonethe-
less, we show in Fig. 4 the derivation of the following typing
judgment:

�′ � (SQLCopier s1) : SQL

As before, we do not prove the validity of environment
�′. Note the application of rule (Def) for typing the SQL-
Copier constant. For typing KM32ATLCopier, in the pre-
vious derivation, we applied rule (Assum) instead. This is
because KM32ATLCopier was assumed, while SQLCopier
was defined.

The type of assumed constants is necessarily provided by
the user. One may argue that, in cases such as KM32ATLCopi-
er, the term that types an assumed constant may be too com-
plex to define. GMM enables the use of dependently typed
higher-order transformations, and that complexity is inevi-
tably projected to types. Note that user-specified types for
functions is a common practice in programming languages.
We believe that suitable discovery mechanisms such as
MoDisco [17] would, at least, assist users in the type
specification process.

In cGMM, higher-order transformations involving depen-
dent types, such as KM32ATLCopier, can be properly typed.
Our calculus successfully deals with the identified limitations
of the current typing approach, since the type of the result of
an application of those transformations can now be inferred.

5 Implementation

In this section we discuss our prototypical implementation
of cGMM and its integration to a realization of GMM: the
AM3 tool.

5.1 Implementation of cGMM

We developed the cGMM calculus as a Java stand-alone
application called MK1. It provides an environment which
can be updated with assumptions and definitions. Such terms
are representations of actual GMM elements within a mega-
model, and the type system reasons about their types as
required. MK1 provides an ITypeSystem API which is used
for feeding the environment with declarations, and for que-
rying the type of terms within the environment. For express-
ing terms, we developed a simple textual language which is
similar to Gallina, the specification language of Coq [23].
Calls to the API are translated to a textual command lan-
guage similar to The Vernacular, the command language of
Gallina. An ANTLR-based parser then builds cGMM terms
from those commands. Type errors are handled by means of
custom TypeException exceptions.

Figure 5 shows the commands involved in the KM32ATL-
Copier example discussed in the previous section. A console
application that directly accesses the parser captures com-
mands entered by a user and prints the results back. The
Assume and Declare commands are used for assump-
tions, the Define command for definitions, and Check for
retrieving type information. Assumed elements need to be
explicitly typed; however, the system checks that the pro-
vided types are well formed. In turn, defined elements are
checked for well-formedness, and their types are completely
inferred by the type system. Such is the case of composite
transformation SQLCopier and terminal model s2. Addi-
tionally, in the script of Fig. 5 we intentionally introduced two
common error situations. First, we applied SQLCopier to
an argument of the wrong type. The error message indicates
the received type and the expected type. Second, we tried to
apply s1, which is not a transformation, to s2. The error
message indicates that the applied term is not executable.

Our implementation of the type system does not strictly
follow the definition discussed in Sect. 3. The difference lies
in how the Type:Type is realized. While our theoretic defini-
tion of cGMM includes an infinite hierarchy of sorts which
emulates the Type:Type rule for achieving type soundness,
our implementation drops the infinite hierarchy and includes
that rule directly. This issue enables the possibility of diver-
gence, for some cases, within our prototype. However, Card-
elli stated that, in general purpose calculi with the Type:Type
rule, examples leading to divergence in the typechecking pro-
cess are extremely hard to reproduce [6]. In addition, a type
system with the Type:Type rule is conceptually simpler than
another with an infinite hierarchy of sorts. Furthermore, its
implementation becomes simpler as complex mechanisms
such as algebraic universes [23] for supporting the infinite
hierarchy are not required. Our experiments with MK1 on
transformations from the ATL Transformation Zoo [2] and
other practical transformations [25,26] were satisfactory. The
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Fig. 5 The KM32ATLCopier
example in the implementation
of cGMM

right types were found for well-typed terms, and also ill-
typed terms correctly threw exceptions during their construc-
tion. The question of whether a domain specific type system
like the one we implemented, where the Type:Type rule is
directly included, is safe from divergence is still open.

Our type system was prototyped as a separate appli-
cation which can be easily tested and evolved. However,
our ultimate goal is to integrate such an implementation
with the prototypical realization of GMM, provided by
the Eclipse-GMT AM3 project [1]. Next, we present some
general information about its overall architecture and main
features. Then, more details on the integration of the type
system with the AM3 GMM prototype are given, still tak-
ing the same KM32ATLCopier transformation as a test
example.

5.2 The eclipse-GMT AM3 global model
management solution

The current version of the Eclipse.org AM3 solution imple-
ments the conceptual framework described in Sect. 2, and
thus it can be used as the GMM tool in the context of the
integration. It is a project which is part of the GMT sub-
project, which is itself part of the top-level Eclipse Mod-
eling project. As an Eclipse project, the AM3 prototype is
fully open-source and thus all its source code is freely avail-
able from its Eclipse website and download server [1]. The
generic and extensible AM3 global model management solu-

tion, built on top of the Eclipse environment, provides not
only the capabilities to explicitly specify the metadata associ-
ated with a given modeled system or MDE process, but also a
standard Megamodel Navigator as well as generic and exten-
sible editors for instantiating and editing the megamodel in
a user-friendly way. In addition, it offers several extension
points allowing the definition of domain-specific extensions
of the tool (i.e., extending both the metamodel of megamod-
els and the related UI components). Thus, AM3 is composed
of two distinct sets of Eclipse plug-ins:

• The core plug-ins provide the basic metamodel of mega-
models, the core runtime environment, the main APIs and
associated generic navigator, and editors.

• The extension plug-ins provide extensions of the meta-
model of megamodels, related specific APIs and corre-
sponding extensions of the UI (for instance specific editor
pages, contextual actions, etc).

With AM3, users can build their customized megamod-
eling solutions by extending either the core plug-ins or
other already existing extension plug-ins. Indeed, a set of
generic MDE extensions have already been developed:
GMM4GlobalModelManagement which implements the
GMM conceptual framework, GMM4ATL for dealing with
model transformations in ATL, GMM4CompositeTransfor-
mations for supporting composite transformations, etc.
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Fig. 6 Megamodel Samples for the KM32ATLCopier transformation (respectively before/after type derivation)

5.3 Integrating the type system with the AM3 solution

In order to fully exploit the benefits of the presented type
system in a concrete environment, it would be better to have
it fully integrated with the current implementation of the
AM3 tool. To that end, we introduce a new extension plug-in
for GMM named TypeSystem4GMM. Such a plug-in wraps
the implementation of the type system. When a type-related
event occurs within the AM3 tool, it notifies the TypeSys-
tem4GMM extension by an appropriate message of its pro-
vided interface ITypeSystem mentioned in Sect. 5.1. After the
plug-in extension has processed the message, it returns the
result in a suitable data structure, or throws a TypeException
exception.

For the described mechanism to work, some modifications
are required at specific locations of some of the plug-ins of
the AM3 tool:

1. Extend the current GMM4GlobalModelManagement
extension so that all the information needed by the type
system for a successful evaluation can be represented
within the underlying megamodel;

2. Modify the transformation executors in the GMM4ATL
and GMM4CompositeTransformations extensions, so
that the required information is provided to the Type-
System4GMM extension. The result of its evaluation is
then retrieved by the AM3 tool, in order to automatically
fill the megamodel with the complete type information;

3. Update the corresponding editors. In the current imple-
mentation, terms such as Class2Relational from

Sect. 3.1, which is a first-order atomic transformation,
can be created. For the KM32ATLCopier case which is
a HOT, specifying KM3 as the source metamodel must
introduce a variable M. Then, specifying ATL as the tar-
get metamodel should allow the user to express that M
will be both the source and the target of the resulting
transformation.

As an illustration, let us consider a megamodel registering
the KM32ATLCopier model transformation (along with the
KM32ATLCopier-Module transformation model1) and the
SQL metamodel. After KM32ATLCopier is applied to SQL,
according to the current AM3 implementation the SQLCopi-
erGeneration transformation record is created. Its target
model is therefore the SQLCopier-Module transformation
model. The state of the megamodel is shown in Fig. 6a. Note
that the source and target models of SQLCopier-Module
were not created because the current typing approach does
not provide enough information for doing so. Additionally,
the corresponding model transformation (i.e., SQLCopier)
was not created for the same reason. The megamodel result-
ing from deriving the type of the result of such an execution is
shown in Fig. 6b. According to the type derivations discussed
before, it is possible to know that the result of the execu-

1 We adhere to the following naming convention. A transformation has
a dual representation (i.e., it is represented as two separate elements):
a transformation model (entity) and a model transformation (relation-
ship). Since elements must have unique names, a transformation named
X induces a relationship named X and an entity named X-Module.
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tion has type SQL → SQL , and thus the information for
properly completing SQLCopier-Module and creating the
SQLCopier relationship is available.

To summarize, TypeSystem4GMM is integrated with
AM3 in such a way that it enables the inference of the pre-
viously lacking type information. As a result, the underlying
megamodel can now be automatically updated with such a
computed information.

6 Related work

The version of cGMM discussed in this paper is a major
improvement of the version we introduced in [27]. We
redefined the notion of static typing environment with
assumptions and definitions, which is a more natural means
to declaring atomic and composite elements. As a conse-
quence, we simplified both the syntax of terms and the type
rules. Based on these improvements, we also reimplement-
ed our original prototype of the type system, for producing
MK1. A concrete architecture and a precise scheme for its
integration with AM3 was also produced. In this work we
also sketched a proof of type soundness. Finally, [25] is an
extension to cGMM for typing textual entities, and model-to-
text and text-to-model transformations. In turn, [26] extends
cGMM for typing weaving models.

GMM is about managing models and other MDE-related
resources which are defined elsewhere. So far the only excep-
tion to this is that composite transformations can in fact be
defined within GMM. Typing becomes a critical issue when
execution is considered and can be studied both at intra-
resource and inter-resource levels. In the former case, typing
deals with elements within a resource, and the focus is on their
internal properties. For example, a type system for a transfor-
mation language could ensure that produced models will sat-
isfy some properties [8], such as good behavior. In the latter
case, elements to be typed are the resources themselves. Typ-
ing in GMM mainly takes this second form. However, well
typing of composite transformations (intra-resource level) is
important to us as well.

Similarly to GMM, [9] presents a metamodel for describ-
ing MDE concepts and their relationships. Unlike GMM,
only core concepts are considered and no tool support is
reported. In particular, the typing of those concepts is not
addressed or discussed, as we did for GMM.

Model typing is addressed in [22] for investigating trans-
formation reuse. A form of subtyping for model types (i.e.,
metamodels) enables a sort of subsumption on models. Under
some circumstances the same transformation may be applied
to models of different types. A basic transformation lan-
guage was introduced for discussing those circumstances,
and a type system was defined for it. In that language,
transformations are in-place procedures rather than func-
tions; thus they may not be composed. In addition, HOTs

are not addressed. Our type system does not deal with intra-
resource issues and focuses on inter-resource ones.

Constructive Type Theory was used in [20] for encoding
the MOF layered metamodeling architecture. In particular, an
infinite hierarchy of sorts was used for that purpose. How-
ever similar, the MOF hierarchy presents an extra level (i.e.,
the M0 level) compared with GMM’s. Additionally, the dual
representation of elements at one level as types of that level
and instances of types of the level above was represented,
requiring reflection maps for establishing such a correspon-
dence. In cGMM, for example, an element in M2 is at the
same time an instance of an element in M3 and the type of
an element in M1. Since MOF was the only metametamod-
el, no additional hierarchies of sorts are required as in our
case. Such a formalism focuses on MOF, and therefore only
applies to MOF-based artifacts. This includes metamodels,
models, and so on, but excludes other MDE-based artifacts.
In particular, model transformations and their execution were
not considered in that framework.

Typechecking of compositions of transformations has
been addressed in [29] and in more detail in [24]. Both
approaches use different notions of model typing, and like
ours, they require the same type for connecting two adjacent
subtransformations. However, none of them provides explicit
rules to that end. Additionally, HOTs as well as other cases
discussed in this work are not handled.

7 Conclusions and further work

GMM includes the notion of transformation execution and
typing in that context is required for preventing type errors
during that execution. We improved the current typing
approach by proposing a type system that formally indicates
how to reason about types in GMM. We showed how non-
trivial situations, such as the use of HOTs, combined with
dependent types, can now be handled.

The current version of cGMM enables one single
metametamodel. GMM is designed for supporting many
metametamodels concurrently. Nevertheless, the AM3 tool
currently supports one single metametamodel, and emulates
a multi-metametamodel environment by means of the pro-
motion and demotion mechanisms. Such mechanisms rely
on first-order atomic transformations and can be easily repre-
sented in cGMM. However, it would be interesting to extend
cGMM for natively supporting a multi-metametamodel
approach.

We prototyped cGMM with good results. Our prototype
is intended to be fully integrated with the AM3 tool. Such a
prototype does not implement a hierarchy of sorts; instead, it
is based on the Type:Type rule. We have not yet encountered
divergence in our domain specific calculus. The lack of recur-
sion and the fact that definitions are ultimately composi-
tions of assumed functions within a finite environment are
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a probable cause of it. The Type:Type rule would simplify
both the calculus and its implementation, and particularly,
a native support for various metametamodels would benefit
from this. Type soundness of the implemented version of our
calculus is one of our main directions of further research.

Our type system ensures good behavior but relying on the
good behavior of atomic transformations. A stronger level of
type safety would be achieved by integrating our type system
with the type system of a transformation language. Both type
systems need to be aligned and the result of the integration
should still be sound, and this issue is delicate [30]. ATL
would be an appropriate case for investigating this issue. In
turn, our type system would benefit from including subtyp-
ing, not only for model types as in [22], but also for function
types as well. This would enable substitutability for both
models and transformations. Finally, composite transforma-
tions are currently defined by the user. Type information
is key for supporting this manual process. But additionally,
when building a composite transformation from a given set
of source types to another set of target types, it may be pos-
sible to infer (parts of) well-typed chains of compositions.
We plan another integration of MK1 with Wires* [21]. That
tool provides a graphical executable language for the orches-
tration of complex ATL transformations chains, but does not
typecheck the defined compositions.
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