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Summary

The implicit function theorem is used to obtain some necessary and sufficient conditions, for
which an implicit constitutive relation can be solved in terms of the stresses and strains, in the
sense of expressing, for example, the strains in terms of the stresses or vice versa. For an isotropic
body some exact solutions for the strains in term of the stresses are presented, using the theory of
tensor equations of the form AX + XA = H. For the exact solutions considered, conditions for the
existence and the uniqueness are given.

1. Introduction

In some recent works, Rajagopal and coworkers (1, 2, 3) have proposed constitutive relations for
elastic bodies which cannot be classified as either Cauchy or Green elastic bodies (4). If S is the
second Piola–Kirchhoff stress tensor and C is the right Cauchy–Green strain tensor, one such relation
is of the form

f (S, C) = 0, (1.1)

where f is an implicit tensor relation. Special classes of (1.1) correspond to Cauchy elastic bodies,
where

S = h(C), (1.2)

and the relatively new class of elastic bodies defined by the constitutive equation (5)

C = g(S). (1.3)

An interesting question is the following: under which conditions on f could we solve (1.1) in order
to obtain S as an explicit function of C or vice versa? A similar question has attracted the attention
of researchers in the classical theory of elasticity. Let us consider, for example, the case of the linear
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theory of elasticity, where for isotropic homogeneous bodies the constitutive equation is of the form

T = λ tr(ε)I + 2με, (1.4)

where λ and μ are the Lamé constants, and T and ε are the Cauchy stress tensor and the linearised
strain tensor, respectively. It is easy to obtain the inversion of (1.4), considering that it is a linear
relation, in which case we obtain

ε = 1

2μ
T − λ

2μ(3λ + 2μ)
(trT)I, (1.5)

or equivalently

ε = (1 + ν)

E
T − ν

E
(trT)I, (1.6)

where E > 0 and ν are the Young modulus and the Poisson ratio, respectively, and we have the
connections

μ = E

2(1 + ν)
, λ = νE

(1 + ν)(1 − 2ν)
.

It is interesting to point out that in order to invert (1.4), some restrictions are necessary for the
Lamé constants, namely that μ > 0 and 3λ + 2μ > 0, that is, the inversion cannot be performed for
arbitrary μ and λ. See (6, sections 22 and 24) for a detailed discussion on these topics, and also (7,
footnote 3).

Another interesting fact to mention is that the relation (1.6) is used in experiments in order to
characterise a material, where the constants E and ν have a clearer physical meaning than μ and
λ. In order to gain some insight into the physical significance of the elastic constants, the usual
procedure is to assume some uniform state of stress, such as simple tension or pure shear, which
would satisfy the equilibrium equations, and then using (1.6) to obtain the corresponding values of
ε (which should not be complicated to measure experimentally, especially on the surface of a body).

In the classical theory of non-linear elasticity similar issues have attracted the attention of
researchers. If P is the nominal stress tensor and F is the deformation gradient, for a Green elastic
body we have a constitutive equation of the form

P = ∂W

∂F
, (1.7)

where W = W (F) is the energy function. The problem of inverting (1.7) has been studied extensively
in the past, see, for example (8, 9). It is well known that in general (1.7) cannot be inverted for every F
and W to obtain, for example, F as a function of P (8). The same conclusion can be reached for (1.2).
Despite this, the problem of proposing a given stress state and then studying the corresponding strain
field is also important as in the linearised theory. For example, Batra (10) considered the problem
of assuming a uniform stress field, and found that in such a case a uniform strain field is obtained
if W satisfied certain inequalities (compare this with the previous discussion about the restrictions
on μ and λ). A similar problem has been treated by Destrade et al. (11), where it was found that a
distribution of uniform shear stress produces a triaxial shear stretch superposed on a simple shear
deformation for a hyperelastic body.

In the present work, we are interested in determining conditions on f , such that we can express
either S as an explicit function of C or vice versa; to do so, the implicit function theorem (see, for
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example (12, 13)) is used in order to give some conditions for the local solvability of the implicit
constitutive relation (1.1). Solvability means that the strains can be written as functions of the stresses
as in (1.2), or vice versa as in (1.3). Locality is meant in the sense of a neighbourhood of a point
in the 12-dimensional space of stresses and strains. That is, the aforementioned equations are valid
only on a small neighbourhood of the 12-dimensional stress–strain space.

Special attention is given to the case where f describes the behaviour of an isotropic body. In such
a case, there are some situations, where the implicit constitutive relation can be written in the form
of the tensor equation AX + XA = H. For those cases, some solutions using standard approaches on
the topic are presented (see, for example, (14, 15, 16)). The solutions are accompanied by necessary
and sufficient conditions for their existence and uniqueness. When these conditions fail, one may not
express the strains as functions of the stresses and vice versa, and we are in the realm of a real implicit
constitutive framework. The main novelty of the present article lies in the fact that such conditions
have never been reported in the literature, owing to the very recent study of implicit constitutive
relations by Rajagopal and coworkers.

2. Local solvability for the generic case

The key point is the application of the implicit function theorem. The idea is to find conditions under
which an implicit constitutive relation of the form

f (S, C) = 0 (2.1)

can be solved, that is, there exist functions g or h such that

C = g(S), S = h(C). (2.2)

Let us give a short summary of the implicit function theorem. For more details see, for example,
(12, p. 230) or (13, p. 13).

Theorem. Let U ⊂ X , V ⊂ Y be open subsets and f : U × V → Z ∈ Cr , r ≥ 1. Given x0 ∈ U ,
y0 ∈ Y assume that D2f (x0, y0) is an isomorphism. Then, there are neighbourhoods U0 of x0, Y0 of y0
and W0 of f (x0, y0) and a unique Cr mapping g : U0 × W0 → Y0 such that for all (x, w) ∈ U0 × W0

f (x, g(x, w)) = w. (2.3)

Setting w = 0, the above theorem means that f (x, y) = 0 can be solved locally for y as a function
of x, if D2f (x0, y0) is an isomorphism.

For our problem the starting point is the implicit constitutive relation (1.1). We assume that
f ∈ Cr , r ≥ 1 and we denote the set of all non-singular tensors of second order by S, and the set of
all symmetric non-singular tensors by Ssym. The second Fréchet derivative of f with respect to the
strains as a mapping has the form

DCCf : Ssym → S × S × S. (2.4)

When evaluated at a specific point S0, C0 it has the form

DCCf [S0, C0] : Ssym → S. (2.5)

So, following the implicit function theorem, when DCCf [S0, C0] is an isomorphism then the implicit
relation f (S, C) = 0 can be solved in a neighbourhood of the point (S0, C0) uniquely. The solution
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renders, for example, the strains as functions of the stresses in the form C = g(S). Therefore, the
strains can be written as functions of the stresses locally, when f ∈ Cr , r ≥ 1 and DCC[S0, C0] is
an isomorphism. The solution can be extended to the whole space by partitions of unity on open
coverings of the 12-dimensional space of strain and stress.

In order to proceed further we assume that the function f is isotropic. In this case the second
Fréchet derivative of f as a mapping has the form

DCCf [S0, C0] : Ssym → Ssym. (2.6)

In this case, the range and the domain space are identical finite vector spaces, so isomorphic as well.
Thus, the mapping being linear as a derivative it will be an isomorphism if and only if its kernel is
trivial (see, for example (17, p. 6))

DCCf [S0, 0] = 0. (2.7)

For writing stresses as functions of strains we interchange their role in the above analysis. So,
provided DSSf[S0, C0] is an isomorphism we have the local existence of a function h ∈ Cr , r ≥ 1
such that S = h(C) in a neighbourhood of the point (S0, C0). The analogous condition to (2.7) will
now be DSSf [0, C0] = 0, but the assumptions of isotropy for f and symmetry for S are not needed.

3. Some classes of solvable constitutive laws and their solutions

For the case where the relation f (S, C) is an isotropic function of its arguments the implicit
constitutive law is written as (2)

α0I + α1S + α2C + α3S2 + α4C2 + α5(SC + CS) + α6(S2C + CS2)

+ α7(C2S + SC2) + α8(S2C2 + C2S2) = 0, (3.1)

where the scalar functions αi, i = 0, 1, . . . , 8 are of the form

αi = αi

(
�, trS, trC, tr(S2), tr(C3), tr(S3), tr(SC), tr(S2C), tr(SC2), tr(S2C2)

)
. (3.2)

We study some specific cases of the above relation where the strain C can be written as a function
of the stress S. In all the development, one may interchange the role played by strain and stress by
making an analogous assumption.

In what follows we assume that all the non-vanishing αi are functions of the following form

αi = αi

(
�, trS, tr(S2), tr(S3)

)
. (3.3)

If we see (3.3) in (2), the class of problems considered in the present work is rather limited, but
nevertheless it is still a rather wide class of elastic bodies. For example, plane problems related with
materials that fall under this class are considered by Bustamante and Rajagopal (18) while the same
authors treat the inhomogeneous shearing as well as some boundary value problems (19, 20). It is
interesting to notice that in the equations shown in Section 2 of (11), we have expressions for the left
Cauchy Green deformation tensor B in terms of the Cauchy stress tensor, but the scalar functions β0,
β1 still depend on the invariants in B. In our case, under the assumption (3.3), we can find completely
explicit expressions for either S in terms of C or vice versa.
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Let us consider the following cases:

(a) α0α1α2α3 �= 0. In this case the implicit constitutive law (3.1) can be solved at once as

C = − 1

α2

(
α0I + α1S + α3S2

)
. (3.4)

(b) α0α1α3α4 �= 0. In this case the implicit constitutive law (3.1) gives

C2 = − 1

α4

(
α0I + α1S + α3S2

)
. (3.5)

So, when the right-hand side of this equation is positive definite, one can solve for C by taking
the square root. One sufficient condition for the positive definiteness of the right-hand side
term is the stress tensor to be positive definite and the fractions of the form −α0/α4, −α1/α4
and −α3/α4 to be positive when evaluated at admissible stress states.

(c) α0α1α3α5 �= 0. In this case the implicit constitutive law (3.1) renders

SC + CS = − 1

α5

(
α0I + α1S + α3S2

)
. (3.6)

By setting the right-hand side equal to H this equation can be written as a tensor equation of
the form (see (14, 15, 16))

AX + XA = H, (3.7)

where the unknown is the tensor X. Systems of the form (3.7) have received some attention
in the literature (14, 15, 16).
The stress tensor S is symmetric, therefore necessary and sufficient conditions for existence
and uniqueness of solution of (3.6) in terms of C are (see, for example, (15, p. 3462))

IIIS �= 0, ISIIS − IIIS �= 0, (3.8)

where IS, IIS and IIIS are the principal invariants of the tensor S.
The unique solution in this case is (see (15, p. 3473))

2[ISIIS − IIIS]IIISC = 2(I2
S − IIS)IIISH − 2IIIS(S2H + HS2)

+ (ISII2
S + IISIIIS − I2

SIIIS)tr(H)I − I2
SIIS[tr(H)S + tr(HS)I]

+ [ISIIS + IIIS][tr(H)S2 + tr(HS2)I] + I3
SIIIStr(HS)S

+ −I2
S[tr(HS)S2 + tr(HS2)S] + IStr(HS2)S2. (3.9)

(d) α0α1α3α5α6 �= 0. In this case the implicit constitutive law (3.1) can be written as

[α5S + α6S2]C + C[α5S + α6S2] = −[α0I + α1S + α3S2]. (3.10)

Setting [α5S + α6S2] = A and −[α0I + α1S + α3S2] = H, (3.10) is of the form AX + XA =
H. Therefore, we can write similar necessary and sufficient conditions for existence and
uniqueness of solutions of C in terms of S as in the previous case and also evaluate the unique
solution.
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(e) α0α1α3α8 �= 0. In this case the implicit constitutive law (3.1) can be written as

S2C2 + C2S2 = − 1

α8
[α0I + α1S + α3S2]. (3.11)

If we set C2 = X and for the right-hand side H = −α−1
8 [α0I + α1S + α3S2], then we obtain

an equation of the form S2X + XS2 = H, which is solvable for X as a function of the stress.
Then one has the square of the strain as a function of the stress. Thus, by taking the square root
of the result one can find the strain as a function of the stress by making suitable assumptions
in order for X to be positive definite.

By analogous reasoning one may search for solutions of the stress as a function of the strain using
similar techniques.

4. Conclusions

Some results have been reported on the solvability of some special classes of implicit constitutive
relations. Using the implicit function theorem, we presented some generic conditions for the
solvability of stresses in terms of strains (or vice versa). For the assumption of an isotropic function
and for some specific cases, we gave necessary and sufficient conditions for the solvability, and we
presented the solutions as well. Violation of the conditions reported here means that solvability fails,
so one has to use the full implicit constitutive relation (1.1) (or (3.1) in the case of isotropic bodies).

Acknowledgements

D. Sfyris acknowledges the kind hospitality of the Universidad de Chile, Santiago, during his stay
as a Visiting Professor. R. Bustamante would like to express his gratitude for the financial support
provided by FONDECYT (Chile) under grant no. 1120011. The authors thank the reviewer for the
valuable comments given about this work.

References

1. K. R. Rajagopal, On implicit constitutive theories, Appl. Math. 48 (2003) 279–319.
2. K. R. Rajagopal, The elasticity of elasticity. Z. Angew. Math. Phys. 58 (2007) 309–317.
3. K. R. Rajagopal andA. R. Srinivasa, On a class of non-dissipative solids that are not hyperelastic.

Proc. R. Soc. A 465 (2009) 493–500.
4. C. A. Truesdell and W. Noll, The Non-linear Field Theories of Mechanics 3rd edn (ed. S. S.

Antman Springer, Heidelberg 2004).
5. K. R. Rajagopal and U. Saravanan, Spherical inflation of a class of compressible elastic bodies.

Int. J. Nonlinear Mech. 46 (2011) 1167–1176.
6. M. E. Gurtin, The linear theory of elasticity, Handbuch der Physik, vol. VIa/2 (ed. C. Trusedell;

Springer, Berlin 1984) pp. 1–295.
7. C.A.Truesdell and R.A.Toupin, Static grounds for inequalities in finite strain of elastic materials.

Arch. Rat. Mech. Anal. 12 (1963) 1–33.
8. R. W. Ogden, Inequalities associated with the inversion of elastic stress-deformation relations

and their implications. Math. Proc. Camb. Phil. Soc. 81 (1977) 313–324.

 at U
niversidad de C

hile on January 17, 2014
http://qjm

am
.oxfordjournals.org/

D
ow

nloaded from
 

http://qjmam.oxfordjournals.org/
http://qjmam.oxfordjournals.org/


[12:18 12/4/2013 hbs023.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 163 157–165

IMPLICIT CONSTITUTIVE RELATIONS 163

9. C. Truesdell and H. Moon, Inequalities sufficient to ensure semi-invertibility of isotropic
functions. J. Elast. 5 (1975) 183–189.

10. R. C. Batra, Deformation produced by a simple tensile load in an isotropic elastic body. J. Elast.
6 (1976) 109–111.

11. M. Destrade, J. G. Murphy and G. Saccomandi, Simple shear is not so simple. Int. J. Nonlinear
Mech. 47 (2012) 210–214.

12. J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity (Prentice Hall, New
Jersey 1983).

13. P. Ciarlet, Mathematical Elasticity, Vol. I: Three Dimensional Elasticity (North Holland,
Amsterdam 2004).

14. M. Scheidler, The tensor equation AX + XA = �(A, H). J. Elast. 36 (1994) 117–153.
15. L. Rosati, A novel approach to the solution of the tensor equation AX + XA = H. Int. J. Sol.

Struct. 37 (2000) 3457–3477.
16. A. Hoger and D. E. Carlson, On the derivative of the square root of a tensor and Guo’s rate

theorems. J. Elast. 14 (1984) 329–336.
17. C.-C. Wang and C. Truesdell, Introduction to Rational Elasticity (Noordhoff, Amsterdam 1973).
18. R. Bustamante and K. R. Rajagopal, A note on plane strain and plane stress problems for a new

class of elastic bodies. Math. Mech. Sol. 15 (2010) 229–238.
19. R. Bustamante, and K. R. Rajagopal, Solutions of some simple boundary value problems within

the context of a new class of elastic materials. Int. J. Nonlinear Mech. 46 (2011) 376–386.
20. R. Bustamante and K. R. Rajagopal, On the inhomogeneous shearing of a new class of elastic

bodies. Math. Mech. Sol. 17 (2012) 762–778.

 at U
niversidad de C

hile on January 17, 2014
http://qjm

am
.oxfordjournals.org/

D
ow

nloaded from
 

http://qjmam.oxfordjournals.org/
http://qjmam.oxfordjournals.org/

	Use of some theorems related with the tensor equation AX+XA=H for some classes of implicit constitutive relations
	1 Introduction
	2 Local solvability for the generic case
	3 Some classes of solvable constitutive laws and their solutions
	4 Conclusions




