Breaking of chiral symmetry in vortex domain wall propagation in ferromagnetic nanotubes

J.A. Otálora a,*, J.A. López-López a, P. Landeros a, P. Vargas a, A.S. Núñez b

a Departamento de Física, Universidad Técnica Federico Santa Marla, Avenida España 1680, Valparaíso, Chile
b Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Santiago, Chile

ARTICLE INFO

Article history:
Received 14 November 2012
Received in revised form 27 March 2013
Available online 13 April 2013

Keywords:
Dynamic
Vortex domain wall
Chirality
Magnetic nanotube

ABSTRACT

This paper is focused to the field-induced dynamics of vortex-like domain walls (VDWs) in magnetic nanotubes (MNTs). Based on a dissipative Lagrangian formalism that fully includes damping as well as exchange and dipole–dipole coupling, it is shown that VDW motion is very sensitive to the chirality, giving rise to a chiral asymmetry in the vortex wall propagation. As a consequence, the dynamics of the wall is fundamentally different to that of nanostripes and solid nanowires. Besides the well-known Walker breakdown that stands at the onset of the precessional wall motion, it is found an additional breakdown field (called here the chiral breakdown) that modifies the steady regime of VDWs. We also show outstanding VDWs dynamical properties at low applied fields, as low-field mobilities (∼10 km/(sT)) and very short relaxation times (∼1 ns), offering a reliable fast control of VDWs velocities (∼1000 m/s) at applied fields of 0.7 mT.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The development of newer, faster, and more robust devices based on magnetic nanostructures relies on the knowledge of the properties of its magnetic textures. As examples of potential applications, we find magnetic memories [1], logic devices [2], microwave nano-oscillators [3] and spintronic-based devices [4,5]. The potential to manipulate these devices grows with the advanced synthesis and characterization techniques being developed for nanosystems [6]. For example, over many years there have been extensive investigations about the static and dynamic properties of magnetic domain walls (DWs) in nanostripes and nanowires [7–15]. In fact, it has been argued recently that the control of magnetic DWs may open the way to a new and faster device, the magnetic racetrack memory [1].

The potential technological developments based on DW dynamics have fueled further research about its detailed motion, which can be driven either by electric currents or magnetic fields. Most of the investigations have been focused on nanostripes, where micromagnetic simulations and experimental results have shown that DWs move mainly in two possible regimes: (i) a viscous or steady motion in which the propagation is performed with constant velocity, and (ii) a turbulent or precessional motion wherein the walls propagate suffering oscillations as well as periodic topological transformations in its internal magnetic microstructure [7,9,11,12,14]. Both regimes are separated by the well-known Walker breakdown which defines the Walker magnetic field, if the external excitation is a magnetic field, or the Walker electric current, if the driving force is the spin-transfer from the current to the local magnetic moments. Besides the enormous efforts to describe the DW dynamics deterministically in nanostripes, its topological transformations during the precessional regime involve an important limitation from an analytical point of view, for example, in the evaluation of the strongly non-uniform dipole fields. Because of such complex transformations, the turbulent dynamics is mostly investigated through micromagnetic simulations. Although the simulations offer good insights into the related physics, the turbulent dynamics is still far from being completely understood. This is an important limitation and thus, a complete analytical description of the DW dynamics could allow us to unveil most of the physical details, and very probably new properties, which ultimately define future applications.

DW dynamics in ferromagnetic nanotubes have shown to be absent of those complex topological transformations, so analytical techniques are well situated to gain insight in the different DW regimes. In fact, the robustness of DW motion in MNTs combined with the intrinsic properties of the tubular geometry and the new advanced synthesis techniques [16–21], have fueled further investigations. Particularly, we find recent analytical and computational efforts focused to understand the properties of DWs in MNTs [22–31], among which we observe very suggestive properties from a technological point of view. This is the case of the chirality and...
propagation control of the vortex domain wall (VDW) by using constant and pulsed magnetic fields [29] and electric currents [30], which let us to envision possible applications related to the control of the VDW chirality as a new degree of freedom for storage devices. In order to avoid any further confusion with vortex domains walls in planar systems, we mention that the "vortex-like domain wall" studied here is quite similar to a transverse domain wall in a nanostripe [31]. On the other hand, we only consider external radius limited by R_c, when $L \sim r_0 \sim 1.0 \text{ mT}$ [32]. We organize this paper as follows: in Section 2 we develop the theoretical model, in Section 3 we present our theoretical results and finally in Section 4 we outline the final remarks and conclusions.

2. Model

We consider a ferromagnetic nanotube confined in an ideal cylindrical shape with a perfect conductivity, so that pinning effects are not taken into account. We focus our attention on MNTs with large aspect ratio $L > R$, where L is the MNT length, while R and r correspond to the external and internal radii, respectively. In recent experiments, the authors synthesize MNTs with values of the order of $R \sim 15–300 \text{ nm}$, $r/R \sim 0.6–0.95$, and $L \sim 1–20 \mu \text{m}$ [17,18]. Recent theoretical results show that the VDW is the most probable reversal mode, provided the external radius satisfies the relation $R > R_c (r/R)^{1/2}$, whereas for $R < R_c$ the reversal mode corresponds to a transverse DW [23]. Here, $L = \sqrt{2A/\mu_0 M_s^2}$ is the exchange length of the ferromagnetic material. Higher values of R_c are obtained for lower values of r/R, where $r/R = 0$ corresponds to a solid cylinder. So, according to the experimental values mentioned above, we only consider external radius limited by $R > 2L$, in order to ensure a VDW as the energetically probable reversal mode. VDWs in MNTs consist of two regions of opposite magnetization parallel to the axis and separated by an intermediate zone (the DW). In that zone, the magnetization is in a vortex configuration almost tangential to the cylindrical mantle, but with a not necessarily zero radial component [27]. We observe four types of VDWs: two head-to-head (h2h) and two tail-to-tail (t2t), each one with two possible chiral states, clockwise (CW) and counterclockwise (CCW), as depicted in Fig. 1.

We follow a dissipative Lagrangian formalism to describe the VDW dynamics, which is based on the method of collective coordinates [27,33]. In this scheme, a VDW can be parameterized by three collective coordinates: (i) the DW center (z_0), (ii) the width (w), and (iii) the out-of-plane angle (p) which is a measure of the radial component of the magnetization (see Fig. 1). This magnetization model describes a h2h–VDW which is enough for the purposes of this paper. However, the extension of the model and subsequent results to a t2t–VDW are straightforward. For the normalized magnetization, $\vec{m} = \vec{M}/M_s$, expressed in terms of polar angles θ and Ψ as $\vec{m} = (\cos \Psi \sin \theta, \sin \Psi \sin \theta, \cos \theta)$, the model reads as

$$\Theta(z) = \begin{cases} \pi, & z > z_0 + \frac{w}{2} \\ \pi - \frac{z - z_0}{w} \frac{1}{2}, & z_0 - \frac{w}{2} < z < z_0 + \frac{w}{2} \\ 0, & z < z_0 - \frac{w}{2} \end{cases}$$

(1)

(2)

$$\Psi'(z) = \pi/2 - p.$$
faster than the other collective coordinates. This means that \(w \) depends on the instantaneous values of \(z_0 \) and \(p \), and therefore the equations of motion for the remaining collective coordinates can be written as follows:

\[
\dot{p} - \frac{\alpha^2}{2} \dot{z}_0 = \frac{2}{\tau} h, \tag{5}
\]

\[
\ddot{z}_0 + \frac{\alpha w}{\hbar} b = \frac{1}{\tau} \delta \phi, \tag{6}
\]

where \(h = H/M_s \), \(e = E/(\mu_0 M_s^2 l_s) \), and \(\gamma \) is the gyromagnetic ratio and \(\dot{x} = dx/dt \) with \(x = z_0, p \). The set of Eqs. (5)–(6) expresses the dynamics of a VDW through its collective coordinates \((z_0, p, w) \).

We write Eqs. (5) and (6) in a more convenient way

\[
\dot{p} = -\frac{2}{\tau} \left[1 + \frac{\alpha^2}{8} \right]^{-1} \left(h + ah_z(p) \right), \tag{7}
\]

\[
\dot{z}_0 \frac{w(p)}{w(p)} = \frac{\alpha}{2\tau} \left[1 + \frac{\alpha^2}{8} \right]^{-1} \left(h - \frac{8}{\pi^2} h_z(p) \right). \tag{8}
\]

Here, based in the similarity between the term

\[
h_z(p) \equiv \frac{\pi^2}{4w(p)} \frac{\partial e}{\partial p} \tag{9}
\]

and the component in the \(\dot{z} \) direction of the effective field \(\langle H_p + \dot{z}/\dot{p} \rangle \), it is possible to associate \(h_z \) to an effective-like field, which depends of the magnetic energy density of the material. As we see later, this field is responsible for the radial component of the vortex magnetization and the breaking of chiral symmetry mentioned above. We remark that this field is a helpful quantity, which provides a better understanding of the DW dynamics. Now, we proceed to discuss the global dynamical features of the VDW.

3. Results and discussion

In this section we discuss the VDW static properties, as well as its dynamical properties under the influence of an applied magnetic field. We emphasize the origins of breaking of chiral symmetry of DW propagation, and the motion at low applied fields, wherein its response to pulsed fields will be analyzed considering a particle-like description.

3.1. Vortex domain walls at zero applied field

The breaking of chiral symmetry of DW propagation and the small radial component at zero applied magnetic field are linked to each other. This can be understood in terms of the magnetic charges originating in the DW region. Those magnetic charges are the source of the magnetostatic energy and its corresponding volumetric density for a VDW reads

\[
\sigma_v = -\nabla \cdot \vec{M} = -\left(\frac{M_s}{\rho} + \frac{\partial M_s}{\partial z} \right). \tag{10}
\]

For a h2h wall it is easy to note that \(\partial M_s/\partial z < 0 \), which induces a preferential orientation of the radial magnetization. At zero applied field, the VDW tries to configure itself in order to reduce the volumetric magnetic charges, and hence, minimize the dipolar energy. So, in order to avoid magnetic poles, the magnetic moments acquire a radial component that points outward \((M_z < 0)\) from the external surface. On the other hand, surface charges on the MNT mantle appear with a non-zero radial component in the equilibrium angle of the magnetic energy density of the material. As a consequence, by the balance between the volumetric and surface dipolar energies, the equilibrium angle \(\alpha \) increasingly approaches \(\pm \pi/2 \) for CCW (CW) chirality, and the energy barriers located at \(\pm \pi/2 \) get equally closer each other. These tendencies are shown in Fig. 2a, wherein the thinner tube corresponds to \(r/R = 0.9 \). In the limit of a very thin tube (\(r=R \)), the volumetric charges can be neglected and the dipolar contribution can be safely approximated with a surface anisotropy term, allowing the total energy to behave proportional to \(\sin^2 \alpha \) [27]. So, in a very thin tube where the equilibrium angles are \(0 \) and \(\alpha \), the size of both energy barriers become equal each other, and the breaking of chiral symmetry disappears.

Another remarkable feature of the zero-field energy landscape is the limit of thinner tubes (when \(r \rightarrow R \)). Thinner tubes mean less volumetric charges, which, in turn reduces the radial component of the magnetization and then the associated surface charges. In consequence, by the balance between the volumetric and surface dipolar energies, the equilibrium angle \(\alpha \) increasingly approaches \(0 \) (\(\pi \)) for CCW (CW) chirality, and the energy barriers located at \(\pm \pi/2 \) get equally closer each other. These tendencies are shown in Fig. 2a, wherein the thinner tube corresponds to \(r/R = 0.9 \). In the limit of a very thin tube (\(r=R \)), the volumetric charges can be neglected and the dipolar contribution can be safely approximated with a surface anisotropy term, allowing the total energy to behave proportional to \(\sin^2 \alpha \) [27]. So, in a very thin tube where the equilibrium angles are \(0 \) and \(\alpha \), the size of both energy barriers become equal each other, and the breaking of chiral symmetry disappears.

![Fig. 2. (a) Total energy at zero applied field for a head-to-head vortex domain wall as a function of the out-of-plane angle \(p \), for different outer and inner radii; and (b) illustration of the evolution paths \(P_a \) and \(P_b \) of the VDW radial component and its associated energy barriers.](image)

A small radial magnetization component at the VDW region and other related properties are perceived fromFig. 2, wherein the total energy is plotted as a function of the radial angle \(p \) for \(R/l = 3 \) and 10, and \(r/R = 0.6, 0.7, 0.8 \) and 0.9. Here, we denote with \(p^* \) the out-of-plane equilibrium angle which minimizes the total energy. So, in consequence of the two possible DW chiralities, the total energy has two minima located at \(p^* = 0 \) for the CCW and at \(p^* = \pi \) for the CW (see Fig. 2a). That the energy minimum is \(p^* = 0 \) is linked with the localization of the global (local) energy maximum at \(p = -\pi/2 \) (\(p = \pi/2 \)). In Fig. 2a those maxima are denoted by \(P_a \) and \(P_b \), which label the energy barriers that the VDW has to overcome if the radial component evolves by twists around path \(P_a \) or path \(P_b \), as illustrated in Fig. 2b. It is clear that twisting the radial magnetization through path \(P_a \) is more energetically expensive than twisting it around \(P_b \). Indeed, the energy difference between these twisting paths is the origin of the chiral symmetry breaking, which as we will see in the next section, can be observed once a non-zero magnetic field is applied.

Another remarkable feature of the zero-field energy landscape is the limit of thinner tubes (when \(r \rightarrow R \)). Thinner tubes mean less volumetric charges, which, in turn reduces the radial component of the magnetization and then the associated surface charges. In consequence, by the balance between the volumetric and surface dipolar energies, the equilibrium angle \(\alpha \) increasingly approaches \(0 \) (\(\pi \)) for CCW (CW) chirality, and the energy barriers located at \(\pm \pi/2 \) get equally closer each other. These tendencies are shown in Fig. 2a, wherein the thinner tube corresponds to \(r/R = 0.9 \). In the limit of a very thin tube (\(r=R \)), the volumetric charges can be neglected and the dipolar contribution can be safely approximated with a surface anisotropy term, allowing the total energy to behave proportional to \(\sin^2 \alpha \) [27]. So, in a very thin tube where the equilibrium angles are \(0 \) and \(\alpha \), the size of both energy barriers become equal each other, and the breaking of chiral symmetry disappears.

Formally, we describe the VDW properties at zero applied field through a set of dynamic equations (see (7) and (8)). In this case, we have to set \(H = 0 \), \(\dot{p} = 0 \) and \(z_0 = 0 \) in order to determine the static properties, mainly featured by the equilibrium angles \(\alpha \). From Eqs. (7) and (8), these settings are equivalent to solve \(h_z = 0 \). Then, the effective-like field \(h_z \) offers us information about: (i) \(p^* \) provided \(h_z(p^*) = 0 \) and \(\partial h_z(p^*) > 0 \), and (ii) the critical fields, given by the extremes of \(h_z \) (the inflection points in the energy).
The general structure of the effective-like field shown in Fig. 3 is composed of the following characteristics: (i) four roots, two of them corresponding to the out-of-plane equilibrium angles, and the other two located at the magnetic energy maxima (at \(p = \pm \frac{\pi}{2} \)), and (ii) four extreme values, a local (global) minimum at the angle \(p_c \) (\(\pm \pi/4 \)) closer to \(p = \pi/2 \), and a local (global) maximum at the angle \(p_r \) (\(\mp \pi/4 \)) closer to \(p = \pi/2 \) (see Fig. 3). We identify \(p_c \) and \(p_r \) as critical angles whose meanings are as follows: the critical angle \(p_r \) occurs at the onset of the DW chirality transformation, and the critical angle \(p_c \) occurs at the onset of the precessional motion at the Walker breakdown, as we see later. We denote the local (global) extreme magnitude by \(h_r \) (\(h_c \)), which is a very useful quantity to study the dynamical regimes of the VDW, and as we will see in the next section, \(p_c \) and \(h_c \) are two quantities that define the features of the breaking of chiral symmetry of DW propagations.

We note that the set of dynamic equations of the VDW in MNTs becomes quite similar to the equations of motion for a transverse DW in nanostripes, but just in the case that the dipolar energy is not so important and can be approximated by an expression of the form 2p [12,27].

3.2. Dynamics of vortex domain walls driven by an homogeneous applied field

We now consider an external homogeneous magnetic field applied parallel to the tube axis. In this case, h2h–VDWs propagate in the same direction of the applied field, whereas t2t–VDWs move in the opposite direction. Usually, the applied field strength defines the following DW dynamical regimes: a steady motion (S) and a precessional motion (P). The details of each regime and the critical fields involved are analyzed solving the dynamic equations (7) and (8). Regarding the initial conditions, we assume that the VDW starts to move from rest where the initial state is determined by the out-of-plane equilibrium angle \(p_0 \). As we have seen above, a VDW begins with one of the two possible chiral configurations at the onset of the motion; CCW when \(p_0 \) is close to 0, or CW when \(p_0 \) is close to \(\pi \). So, starting from these states, we solve the dynamic equations for a range of applied fields in order to allow the VDW to evolve through the different dynamical regimes, as shown in Fig. 4. Here, (a–d) shows the time evolution of the DW displacement (over the MNT axis) in the steady (S) and precessional (P) regimes, when the DW is under the action of applied fields of different magnitudes as illustrated by the different lines. Fig. 4(e, f) shows the applied field dependence of the average velocity and the corresponding equilibrium angle \(p^* \) for both initial chiralities (CCW and CW).

The appropriated range of applied magnetic fields can be defined with the aid of the parameters \(h_r \) and \(h_c \), which (as discussed above) correspond to the extremes of the effective like-field \(h \). We can associate the meaning of critical magnetic fields to these parameters as follows: (i) the well-known Walker breakdown field \(H_w \equiv M_h h_w \), and (ii) a new dynamical instability called as the chiral breakdown field \(H_c \equiv M_h h_c \). We note that \(H_c < H_w \) because by definition \(h_c < h_w \).

The steady motion of DWs in nanostripes is a well-known dynamical process in which, after a short transient time, the wall propagates with a constant velocity and a final configuration very close to the initial one [12]. However if we deal with VDWs in MNTs, we have to consider a new bound. Here, the steady motion splits into two ranges: (i) when \(0 < H < H_c \) and (ii) when \(H_c < H < H_w \). In the first range, a VDW evolves during a transient stage from the initial configuration characterized by \(p^* \) (close to 0 for CCW and close to \(\pi \) for CW), until reaching the steady regime where the final state is defined by an equilibrium angle \(p^*(H) \) which satisfies the condition \(p = 0 \) or \(h_r(p^*) = -H/(\alpha M_h) \), and depends on the applied field (see Fig. 4f). At this range of applied fields, VDWs do not have enough energy to overcome any of the two energy barriers (see Fig. 2a), and therefore the walls preserve the initial chirality and continue the motion with (i) a constant velocity, as shown by the slopes in Fig. 4(a, c) for applied fields of 1 and 3 mT, and (ii) a well defined equilibrium angle which depends on \(H \) (see Fig. 4f). Otherwise, when the applied field is in the second range \(H_c < H < H_w \), the transient stage is characterized by a chiral transformation from the initial CW chirality to the CCW one, wherein the walls suffer a recoil in the tube-axis propagation (see Fig. 4a for applied fields of 5.5 and 6 mT). However, the initial configuration is preserved if the DW starts the motion with an initial CCW chirality (see Fig. 4b for applied fields of 5.5 and 6 mT). This chiral dependence of the DW motion during the transient stage essentially defines the breakdown of chiral symmetry in vortex domain wall propagation in nanotubes. Once the transient process finish, the VDW continues its motion in a steady regime with CCW chirality.

The chirality transformation can be understood by looking at the torque exerted by the external field over the in-plane magnetization. According to the Landau–Lifshitz–Gilbert equation, the torque related to the magnetic field forces the DW to evolve with \(p < 0 \) [27], which means that the initial CW chirality follows the less energetically expensive path \(P_h \) instead of traveling on path \(P_c \) that is the path followed by an initial CCW wall, also with \(p < 0 \) (see Fig. 2). So, when \(H_c < H < H_w \), the transient state breaks down. Since the CW domain wall has enough energy to overcome only the local energy barrier, after the transient stage its equilibrium angle becomes equal to the one reached by the CCW wall (see Fig. 4f at \(H = H_c \)). In t2t–VDWs, the chiral transformations occur from CCW to CW.

In every steady regime, the final velocity of the VDW can be written as

\[
\langle \dot{z}_d \rangle = \frac{4w(p^*)}{\tau_{\alpha} M_h} H
\]

(11)

which is an expression very close to that obtained for TDWs in nanostripes and nanowires [12]. We observe that the average velocity is sensitive to the initial chirality only in the range \(H < H_c \) wherein the chirality is preserved during the evolution (see Fig. 4 (e, f)). Here, CCW–VDWs moves faster than CW–VDWs, which is evident if we consider that each chirality evolves by a different energetic path. According to the discussion above, the CW follows the less energetically expensive path \(P_h \) instead of traveling on path \(P_c \) which is the path followed by the CCW wall (see Fig. 2).
Because of this, it can be demonstrated that the displacement of the CCW equilibrium angle is lower than the distance traced by the angle of the opposite chirality (the CW chiral state). As consequence the size of the CCW (CW) wall width is wider (narrower), and therefore, realizing that the average velocity is proportional to the VDW width, is straightforward to conclude that CCW chiral states will move faster than a vortex with CW chiral states (for the field configuration considered here). This velocity shift is another consequence of the chiral asymmetry in vortex domain wall propagation.

Otherwise, the VDW precessional regime occurs when the external field is greater than the Walker field ($H > H_w$). Here, the DW has enough energy to overcome both energy maxima, and hence, the out-of-plane angle (p) decreases continuously, running over all its possible values as time passes, because there is no equilibrium angle that satisfy the condition $h = -\alpha_0(p^*)$. Consequently, the DW propagates undergoing precessions over the MNT axis, as demonstrated in Fig. 4(b, d). If a $h2h$–VDW starts precession with an initial CW chirality, the periodical motion will be composed by a short precession followed by a large precession; this order will be permuted for the case of the CCW. This behavior is consistent with the local and global energetic barriers of the energy landscape (see Fig. 2). Because of $p < 0$ for a $h2h$–VDW, the CCW overcomes first the global and later the local barrier, showing a large and a short precession, respectively. On the contrary, the CW wall has to first climb with the local barrier and later the global one, letting the DW move with a short precession followed by the large one. As is well known, because of this precessional DW dynamics, the average velocity drops down (see Fig. 4a at $\mu_0H > 6$ mT). This fact could be considered as a limitation from a technological standpoint if high velocities were required. To avoid the reduction in the average velocity, it might be possible to apply optimized time-dependent fields, following the method introduced by Tretiakov and Abanov [34]. These authors propose that the usage of time-dependent electric currents to drive a transverse DW in a nanostripe might reduce the Ohmic losses. They, additionally, found an optimized oscillation period for the time-dependent electric current, minimizing Ohmic losses. Furthermore they find that such oscillation period also avoids the reduction of the average velocity in the precessional regime. In our case the DW is driven by a magnetic field, so there is no Joule heating of the sample as in the case of current driven DW motion. However, the average velocity in the precessional regime can be increased applying time-dependent fields, with a period that depends on the geometry and magnetic field strength. Roughly speaking, from Fig. 4(b, d) we can observe that the full period of DW precession (p from 0 to 2π) is about 6 ns for a field strength of 7.5 mT, and the maximum instantaneous speed occurs at about 1 ns. Then, if we apply a positive time-dependent field with a given profile, the full-width at half-maximum characterizing this profile should be of the order of 1 ns, in order to frustrate the precessional motion and, at the same time, increase the average velocity.

Finally, we note the linear behavior and high values of the average velocity at weak applied field strength around the milli-tesla orders. This is the case shown in Fig. 4(e) for a permalloy MNT where VDWs reach velocities close to 300 m/s when $\mu_0H = 1$ mT. It is worth to mention that these velocities increase considerably with the tube radius, as we will see in the next section (see Fig. 5d), where the dynamics in the low field regime is discussed.

3.3. Pulsed applied fields and low field regime

At weak applied fields ($H \ll H_w$), the VDW energy is close to a minimum, where $p^*(H)\approx p^*(H=0)\approx p_0$. So, a linearization of the dynamic equations (7) and (8) around the initial chirality state,
allows us to understand the DW motion as a particle of mass $M_{DW} = (2\pi a^2 / \hbar)^2 \pi^2 / \partial^2 \partial^2 \psi_{fi}$ moving in a viscous medium, wherein the particle relaxes to reach the steady regime. The nature of this motion allows us to define a relaxation time $\tau_{rel} = (2\pi a / \alpha^2)^2 / (\partial^2 / \partial^2 t) h_{rel}$, as a typical duration during which the wall tries to reach the steady regime with a terminal velocity $v = (2\pi a / \alpha^2) \mu \gamma / \alpha^2$, the low-field mobility. For Permalloy with Gilbert damping $\alpha = 0.01$ and most of the MNTs sizes that are experimentally achievable, our analytical model ranges the chiral and Walker fields between 3 mT and 7 mT (see Fig. 3 in Ref. [29]), $\tau_{rel} < 500\mu s$ and $M_{DW} > 10^{-18} - 10^{-16}$ kg which is in agreement with the high mobility order $10^4 T^{-1}$ m/s.

Most of the DW properties at weak fields applied over several representative MNT sizes are summarized in Fig. 5. To know the reliability of the low-field approximation, the DW motion is calculated by the full analytical equations (6) and (7), and by the linearized version when the applied field consists of pulses with low amplitude. Fig. 5(a-c) shows that pulses with 0.7 mT of amplitude let the VDW reach high velocities of propagation, around 200 m/s (900 m/s) for the smaller (bigger) permalloy nanotube. This is in agreement with the high values of the low-field DW mobility μ which is plotted in Fig. 5d. Here, the DW mobility increases with the outer radius and decreases with the thickness diminution. This property is better understood by recognizing two characteristics: (i) the mobility is proportional to the VDW width w_{pfi} and (ii) the wall thickness grows with nanotubes of larger outer radius and greater thickness. We also observe that the DW velocity tries to mimic the pulsed field shape with a good fidelity. In fact, the fidelity can be enhanced if the pulse duration Δt is conditioned to be much larger than the relaxation time $\Delta t \gg \tau_{rel}$, which ranges around a few nanoseconds for most of the experimental MNT sizes [16–21].

Finally, we remark that a short relaxation time and a high DW velocity linked by a linear relation to a weak strength of the applied field, might be a set of required properties in order to obtain a reliable control of the DW motion with a fast response to external magnetic fields. According to our previous results, that is, (high-speed of propagations around 200 m/s (900 m/s), for the smaller (bigger) Py tube and 0.7 mT of pulse amplitude, and relaxation times around nanoseconds) we think that VDWs in MNT accomplish those features, which make these kinds of walls attractive from a technological standpoint.

4. Conclusions and final remarks

Dynamics of vortex domain walls (VDW) in long ($L \gg R$) magnetic nanotubes under the action of an external magnetic field have been investigated analytically. It has been shown that VDW dynamics depend strongly on the initial chirality, a direct consequence of the so-called breaking of chiral symmetry in vortex domain wall propagation. We have traced this breaking until the VDW energetic asymmetry, as shown by Fig. 2, wherein the two energy barriers of different sizes involve a more (less) expensive evolution path P_{0} (P_{3}) of the VDW out-of-plane angle p, which at the same time privileges the DW propagation of just one kind of chirality, and two critical fields, the well-known Walker breakdown field $H_{W} \equiv a M_{2} / h_{w}$ and the so-called chiral field $H_{c} \equiv a M_{c} / h_{c}$, wherein h_{w} (h_{c}) is the inflection point associated to the global (local) energy barrier. Accordingly, we have found that the VDW dynamics is divided in the two usual regimes: (i) the steady motion (see Fig. 4(a, c) for $H < H_{w}$), and (ii) the precessional motion (see Fig. 4(b, d) for $H > H_{w}$). However, as consequence of the chiral asymmetry of VDW propagations, the steady regime is affected by the chiral field H_{c}. When the external field is lower than the chiral field $H < H_{c}$, both initial VDW chiralities are retained during the motion, and just one of them undergoes faster propagation speeds (see Fig. 4e), and when $H_{c} < H < H_{w}$ just one of the initial chiralities is retained.

Finally, we investigated the VDW behavior at weak applied fields. We have found that the VDW relaxes during a typical time τ_{rel} until reaching the steady regime with a terminal velocity $v = \mu H / \tau_{rel}$, which is the low-field mobility. The high mobility values around $10^4 T^{-1}$ m/s (see Fig. 5d) and the short relaxation times around nanoseconds, allow VDWs to propagate at surprisingly high values of terminal velocities (around 200 m/s (900 m/s) for the smaller (bigger) Py nanotube) for a amplitude of 0.7 mT, and at the same time with a reliable control of the DW velocity if the external field amplitude is modulated (see Fig. 5(a-c)).

Acknowledgments

The authors acknowledge support from CONICYT, FONDECYT under Grants 3130457, 1110271, 1100508 and 1120618, PIIC-UTFSM 2012, “Proyecto Anillo de Ciencia y Tecnología” ACT 1117 and by the “Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia” CEDENNA FB0807.

References

For comparison, the usual maximum velocity reached by a DW in nanostripes ranges between 100–500 m/s at applied magnetic fields ranging between 5–20 mT [9,12,14].