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a b s t r a c t

In previous works we found necessary conditions for a cellular automaton (CA) in order
to be intrinsically universal (a CA is said to be intrinsically universal if it can simulate any
other). The idea was to introduce different canonical communication problems, all of them
parameterized by a CA. The necessary condition was the following: if Ψ is an intrinsically
universal CA then the communication complexity of all the canonical problems, when
parameterized byΨ ,must bemaximal. In this paper, instead of introducing a newcanonical
problem,we study the settingwhere they can all be used simultaneously. Roughly speaking,
when Alice and Bob – the two parties of the communication complexity model – receive
their inputs they may choose online which canonical problem to solve. We give results
showing that such freedommakes this new problem, that we call Ovrl, a very strong filter
for ruling out CAs from being intrinsically universal. More precisely, there are some CAs
having high complexity in all the canonical problems but have much lower complexity in
Ovrl.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Universality and completeness are central issues in the theories of computation and computational complexity. In fact,
understanding universality and self-reproduction in cellular automata became a key problem since the pioneering work of
John vonNeumann [28]. A one-dimensional cellular automaton (CA) is said to be intrinsically universal if it is able to simulate
any other (see [25] for a survey). On the other hand, a CA is said to be Turing universal if it can simulate a universal Turing
machine. Of course, if a CA is intrinsically universal then it is also Turing universal. In contrast with the Turing universality
notion – for which there is no consensus on its formal definition [10] – the intrinsic universality notion can be completely
formalized [10,21,25]. Therefore, proving negative results appears to be a much more approachable problem.

In the quest for small intrinsically universal CAs [23], Ollinger and Richard built an intrinsically universal CA having four
states and radius one [26]. On the other hand, Cook proved that the elementary CA Rule 110 (two states, radius one) is Turing
universal [8] (the proof is based in the simulation of cyclic tag systems). Despite the fact that being intrinsically universal can
be a very common property among the CAs [3,27], the existence of an elementary intrinsically universal CA remains open.

By using results and tools of communication complexity theory, we have previously introduced an approach to
prove negative results (i.e., to rule out particular CAs from being intrinsically universal) [11–14]. The idea of applying
communication complexity has also been used for proving lower bounds in other models of computation: Turing machines
[1,2], VLSI circuits [20], boolean circuits [15,18], decision trees [16], and more.
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In previous works [13,4] we developed the following technique. We defined a computational problem PΦ parameterized
by a CA Φ . We split the input into two parts: one given to Alice and the other given to Bob. Then, we viewed such problem
as a communication problem. We proved that the existence of a CA Ψ for which the communication complexity of PΨ is
greater than the one of PΦ corresponds to a certificate of the fact that Φ is not intrinsically universal.

Five of such canonical problems (which must satisfy some technical properties) have been useful for ruling out different
CAs from being intrinsically universal: Pred, Cycl, SInv, TInv and CInv.

1.1. Our contribution

Roughly, it is clear that the main goal of our approach is to find a problem P having a small set of CAs Ψ ’s for which
the communication complexity of PΨ is maximal. In such a way, P will be a good filter for ruling out CAs from being
intrinsically universal. Instead of finding new problems like P, the idea developed in this paper is to use the canonical ones
simultaneously. More precisely, we give the following freedom to Alice and Bob: depending on the input they receive, they
choose the problem to solve. By definition, this new problem – which we denote Ovrl – will be much simpler (in terms of
communication complexity) than all the canonical ones. Therefore, for a non intrinsically universal CA Φ it will be much
more likely to obtain a result saying that OvrlΦ has a small communication complexity (and this result will serve as a
certificate). In fact, given an input, in order to solve OvrlΦ it suffices to find any canonical problem P for which PΦ is simple.

It is known that a necessary condition for a CA Φ to be intrinsically universal is the P-completeness of the prediction
problem PredΦ when viewed as a classical computational problem [24]. It was a very important result the one obtained by
Neary and Woods [22] in which they proved that Pred is P-complete for the elementary CA Rule 110. But it is not known
yet whether CA Rule 110 is intrinsically universal. Since it is not difficult to find non intrinsically universal CAs for which
Pred is P-complete [9], we think that our approach is a very promising alternative for proving negative results. In fact, there
exist CAs whose prediction problem is P-complete but for which the communication complexity is not maximal [13].

In addition, we also would like to point out that the idea of letting Alice and Bob choose the problem they solve is, to our
knowledge, new in the communication complexity area.

1.2. Basic definitions

1.2.1. Communication complexity (see [19])
For a function f : X × Y → Z , the main question in the communication complexity setting is how much information do

Alice and Bob need to exchange, in the worst case, in order to compute f (x, y), with Alice knowing only x ∈ X and Bob only
y ∈ Y . This communication problem f is solved by a protocol, which specifies, at each step of the communication between
Alice and Bob, who speaks (Alice or Bob), and what she/he says (a bit, 0 or 1), as a function of her/his respective input.

Formally, a protocol P over a domain X × Y with range Z is a binary tree where each internal node v is labeled either
by a map av : X → {0, 1} or by a map bv : Y → {0, 1}, and each leaf ℓ is labeled either by a map Aℓ : X → Z or by a map
Bℓ : Y → Z .

The value of protocolP on input (x, y) ∈ X×Y is given by Aℓ(x) (or Bℓ(y)) where Aℓ (or Bℓ) is the label of the leaf reached
by walking on the tree from the root, turning left if av(x) = 0 (or bv(y) = 0), and right otherwise. We say that a protocol
computes a function f : X × Y → Z if, for every (x, y) ∈ X × Y , its value on input (x, y) is f (x, y).

Intuitively, each internal node specifies a bit to be communicated either by Alice or by Bob, whereas at the leaves either
Alice or Bob determines the value of f when she/he has received enough information from the other party.

We denote by cc(f ) the (deterministic) communication complexity of a function f : X × Y → Z . It is the minimal depth
of a protocol tree computing f .
Definition 1. Given a function f : X × Y → Z , a subset R = A× B ⊆ X × Y is called f -monochromatic rectangle (in short,
monochromatic rectangle) if f is constant on R.

One approach for proving lower bounds on the communication complexity of an arbitrary function f is based on the
so-called fooling sets.
Definition 2. Given a function f : X × Y → Z , a set F ⊆ X × Y is a fooling set for f if there exists z ∈ Z such that:
1. For every (x, y) ∈ F , f (x, y) = z,
2. For every distinct pairs (x1, y1) and (x2, y2) in F , either f (x1, y2) ≠ z or f (x2, y1) ≠ z.

The usefulness of fooling sets is given by the following lemma.
Lemma 3. If F is a fooling set of size t for f then cc(f ) ≥ log2(t).

Previous notions can be generalized to relations.
Definition 4. A relationR is a subsetR ⊆ X×Y×Z . The associated communication problem is the following:Alice receives
x ∈ X , Bob receives y ∈ Y and they have to find a z ∈ Z such that (x, y, z) ∈ R.

A protocol P computes a relation R if for every legal input (x, y) ∈ X × Y the protocol reaches a leaf marked by a value
z such that (x, y, z) ∈ R. Note that an input (x, y) is called legal if there exists at least one z ∈ Z such that (x, y, z) ∈ R
(otherwise, (x, y) is called illegal).
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We denote by cc(R) the (deterministic) communication complexity of a relation R ⊆ X × Y × Z . It is the minimal depth
of a protocol tree computing R.

Definition 5. Given a relation R ⊆ X × Y × Z , a subset R = A × B ⊆ X × Y is called monochromatic rectangle if there
exists a value z such that for every (x, y) ∈ A× B either (x, y, z) ∈ R or (x, y) is illegal.

Now we introduce two classical communication problems used in next section: EQ,DISJ : {0, 1}n × {0, 1}n → {0, 1}.
EQ(x, y) = 1 iff x = y andDISJ(x, y) = 1 iff xi·yi = 0 for all 1 ≤ i ≤ n. It iswell-known that the best possible protocol for both
problems is the one consisting in sending the whole input from one party to the other. In other words, their communication
complexity is Θ(n).

1.2.2. Intrinsic universality in CAs (see [23])
A (one-dimensional) CA is defined by its local rule φ : A2r+1

→ A (where A corresponds to the set of states and r denotes
the radius of the local rule). We denote by Φ : AZ

→ AZ the global rule induced by φ following the classical definition
Φ(x)i = φ(xi−r , . . . , xi+r). The t-step iteration of the global function is denoted by Φ t

: AZ
→ AZ. Note that a global

functionΦ can be represented by different local functions. All properties considered in this paper depend only onΦ and are
not sensitive to the choice of a particular local function. However, to avoid useless formalism, we use the following notion
of canonical local representation: (φ, r) is the canonical local representation of Φ if φ has radius r and it is the local function
of smallest radius having Φ as its associated global function. We say that a CA Φ1 is a sub-automaton of a CA Φ2, and we
denote Φ1 ⊑ Φ2 if, after renaming the states, we can identify the transitions of Φ1 in Φ2. Formally, Φ1 ⊑ Φ2 if there is an
injective map ι from A1 to A2 such that ι ◦ Φ1 = Φ2 ◦ ι, where ι : AZ

1 → AZ
2 denotes the uniform extension of ι and Ai is the

set of states of the CA Φi. Note that ι is the uniform extension of ι if ι(· · · x−1x0x1 · · · ) = · · · ι(x−1)ι(x0)ι(x1) · · · , for every
(xi)i∈Z ∈ AZ

1 .
We say that a CAΦ2 simulates a CAΦ1 if some rescaling ofΦ2 is a sub-automaton of some rescaling ofΦ1. The ingredients

of the rescalings are simple: packing cells into blocks, iterating the rule and composing with a translation.
Formally, given any state set A and anym ≥ 1, we define the bijective packing map γm : AZ

→

Am

Z by:

∀i ∈ Z :

γm(x)


(i) =


x(mi), . . . , x(mi+m− 1)


,

for all x ∈ AZ. We define the shift map as σ : AZ
→ AZ, where σ(x)i = xi+1, for each configuration x ∈ AZ.

The rescaling ⟨m, t, z⟩ of Φ by parameters m (packing), t ≥ 1 (iterating) and z ∈ Z (shifting) is the CA with set of states
Am and global rule:

γm ◦ σ z
◦ Φ t
◦ γ−1m .

The fact that the above function is the global rule of a CA follows from Curtis–Lyndon–Hedlund theorem [17] because it
is continuous and commutes with the shift. With these definitions, we have the following.

Definition 6. We say that Φ2 simulates Φ1, denoted Φ1 4 Φ2, if there exist rescaling parameters m1,m2, t1, t2 ∈ N and
z1, z2 ∈ Z such that

Φ
⟨m1,t1,z1⟩
1 ⊑ Φ

⟨m2,t2,z2⟩
2 .

We can now naturally define the notion of universality associated to this simulation relation.

Definition 7. Ψ is intrinsically universal if for all Φ it holds that Φ 4 Ψ .

2. Overlapping in the communication complexity model

We start this section by formalizing the idea of letting several parties (in particular,Alice and Bob) choosewhich problem
to solve.

Definition 8. Let {fi : X × Y → Zi}ki=1 be a family of functions. We define the overlapping f1 ⊎ · · · ⊎ fk of such family as the
relation that follows:

(x, y, (z, i)) ∈ f1 ⊎ · · · ⊎ fk ⇐⇒ fi(x, y) = z.

In other words, f1 ⊎ · · · ⊎ fk asks about some index i pointing towards a problem fi together with the answer z ∈ Zi to
such problem. The communication complexity of f1 ⊎ · · · ⊎ fk corresponds to the amount of information Alice and Bob need
to exchange in order to find a correct answer. Obviously, cc(f1 ⊎ · · · ⊎ fk) ≤ mini=1,...,k cc(fi).

We introduce now a generalization of the classical fooling set notion.

Definition 9. Let {fi : X × Y → Zi}ki=1 be a family of functions. F ⊆ X × Y is called a fooling set if, for all 1 ≤ i ≤ k, there
exists a value zi ∈ Zi such that:

• For every (x, y) ∈ F , fi(x, y) = zi.
• For every two distinct pairs (x1, y1) and (x2, y2) in F , either fi(x1, y2) ≠ zi or fi(x2, y1) ≠ zi.
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Fig. 1. Construction of protocol P̃ .

Proposition 10. If {fi : X × Y → Zi}ki=1 has a fooling set F of size t, then:

cc(f1 ⊎ · · · ⊎ fk) ≥ log2 t.

Proof. Analogous to the case k = 1 [19]. �

Example 11. Consider functions EQ and DISJ which were defined in the Introduction. Recall that cc(EQ), cc(DISJ) ∈ Θ(n).
In order to clarify our definition we are going to show that cc(EQ ⊎ DISJ) ∈ Θ(log n).

For the upper bound consider the following protocol. If x = 0 . . . 0 then Alice sends a 0 to Bob; otherwise she sends a
1. If Bob received a 0 or if y = 0 . . . 0 then he answers DISJ(x, y) = 1; otherwise he sends the position i corresponding to
the leftmost 1 in y. Finally, Alice compares xi with yi. If xi = yi then she answers DISJ(x, y) = 0; otherwise she answers
EQ(x, y) = 0. Obviously, the complexity of the protocol is O(log n) because of the number of bits needed to encode index i.

For the lower bound, we are going to prove that the set F = {(x, x) ∈ {0, 1}n × {0, 1}n :
n

i=1 xi = 1} is a fooling set.
Let (x, x), (x′, x′) ∈ F such that x ≠ x′. Then, DISJ(x, x) = DISJ(x′, x′) = 0 and EQ(x, x) = EQ(x′, x′) = 1, but DISJ(x, x′) = 1
and EQ(x, x′) = 0. Note that |F | = n and therefore cc (EQ ⊎ DISJ) ∈ Θ(log n).

A natural question arises fromprevious example: Is it true that for every function f with cc(f ) ∈ Θ(n) there exists another
function g with cc(g) ∈ Θ(n) such that cc(f ⊎ g)≪ cc(f )? For answering this question we introduce the parameter δ(f ).

Definition 12. Given a function f : X × Y → Z , we define the parameter δ(f ) = log2 max{|A| : A × B ⊆ X × Y is a
monochromatic square}, where A× B is a monochromatic square if it is a monochromatic rectangle and |A| = |B|.

Proposition 13. Let f : X × Y → Zf and g : X × Y → Zg . It follows that cc(g) ≤ cc (f ⊎ g)+ δ(f ).

Proof. Let P be a protocol for f ⊎ g . We can see such protocol as a tree of height h where the set of leaves L = Lf ∪ Lg is
such that Lf are the answers to f and Lg the answers to g . Obviously, the set of inputs Rℓ ⊆ X × Y that ends in the leaf ℓ ∈ L
corresponds to a monochromatic rectangle of the function it answers.

Now, from P , we can construct another protocol P̃ that solves g (see Fig. 1). Suppose that with P we arrive to a leaf ℓ
that answers g (i.e., ℓ ∈ Lg ). If this is the case, no modification is done. In the other case, we know that ℓ ∈ Lf and Rℓ is an
f -monochromatic rectangle (this is a well-known property of protocol trees [19]). Note that with respect to g the rectangle
Rl is not necessarily monochromatic. Such rectangle has length or width less or equal to 2δ(f ). Then, the complexity of the
subproblem g|Rℓ

is less or equal to the logarithm of the smaller side of Rℓ with the trivial protocol that communicates the
whole input. Replacing every leaf that answers g with that subprotocol, we construct a new protocol P̃ where all the leaves
belong to Lg . Such protocol solves g and the height of its tree is less or equal to h + δ(f ). Taking the minimum over all the
protocols that solve f ⊎ g we get that cc(g) ≤ cc(f ⊎ g)+ δ(f ). �

Nowwe are in position to give an answer to the questionwhether for every function f such that cc(f ) ∈ Θ(n) there exists
another function g such that cc(g) ∈ Θ(n) and cc(f ⊎ g)≪ cc(f ). The answer, as it is stated in Proposition 15, is negative.
More precisely, we are going to prove the existence of a function f ∗ such that δ(f ∗) ≤ log n + 1. For proving this we are
going to use (by relaxing and manipulating upper and lower bounds) a well-known, non trivial result from Ramsey theory.
More precisely, we are going to identify a monochromatic square with a bipartite monochromatic complete subgraph.

Proposition 14 ([7]). For all k sufficiently large:

log k− 1 ≤ log log b(k) ≤ log k+ 1,

where b(k) denotes the minimum number such that for every edge bicoloring of the graph Kb(k),b(k) there exists a monochromatic
subgraph Kk,k.



R. Briceño, I. Rapaport / Theoretical Computer Science 468 (2013) 1–11 5

Fig. 2. SInvuΦ (x, y).

Proposition 15. There exists a function f ∗ : {0, 1}n×{0, 1}n → {0, 1} such that, for every other function g : {0, 1}n×{0, 1}n →
{0, 1} with cc(g) ∈ Θ(n), we have cc(f ∗ ⊎ g) ∈ Θ(n).

Proof. We use the lower bound for b(k) of Proposition 14. Then, identifying functions f : {0, 1}n × {0, 1}n → {0, 1} with
bicolorings of the graph K2n,2n , b(k) with 2n and log kwith δ(f ), we have that there exists f ∗ such that δ(f ∗) ≤ log n+ 1 (for
all n sufficiently large). Then, by Proposition 13, cc(f ∗ ⊎ g) ∈ Ω(n− log n) and the result follows. �

Remark 1. By using the upper bound for b(k) from Proposition 14, and the same identification of the proof above, we have
that every f : {0, 1}n × {0, 1}n → {0, 1} satisfies that δ(f ) ≥ log n− 1 (for all n sufficiently large).

3. Communication problems in CAs

We first consider classical computational input–output problems of the form P : A+ → Z whose inputs are words over
some alphabet A and outputs are elements of a finite set Z . Given such type of problems P, we define, for any n, its restriction
to words of length n, i.e., we consider the restricted problem P|n : An

→ Z . The key idea of the communication approach
is to split the input into two parts. More precisely, for any 1 ≤ i < n, we define P|in : A

i
× An−i

→ Z . Therefore, for every
x ∈ Ai and y ∈ An−i, we have P|in(x, y) = P|n(xy). Then, we can consider the communication complexity cc


P|in


of the ith

split function P|in. Note that, when the lengths of x and y are known, we simply write P(x, y) instead of P|in(x, y). Now we
can define the communication complexity of P as follows.

Definition 16. Let P : A+ → Z be a computational problem. The communication complexity of P, denoted CC(P), is the
function n → max1≤i<n cc


P|in


.

Having this, we proceed to define five problems induced by CAs. These problems are related to prediction, existence of
cycles, spatial-invasion, temporal-invasion and controlled-invasion.

Definition 17 (Predl
Φ [13]). (The CA Φ and l ∈ N are fixed parameters). The input of Predl

Φ is a word x ∈ A+. The output

is the word z ∈ A+ that results after iterating

|x|−l
2r


steps (where r is the radius) the CA Φ starting from x. Intuitively, we

apply Φ to the finite word x until ending up with a word shorter than 2rl+ 1.

Definition 18 (CyclkΦ [13]). (The CA Φ and k ∈ N are fixed parameters). The input of CyclkΦ is a word x ∈ A+. Let
px = . . . xxx . . . ∈ AZ be the x-periodic configuration. Clearly, the evolution ofΦ starting from px becomes periodic (in time)
after a finite number of steps. The output of CyclkΦ consists in determining whether the length of this ultimate (temporal)
period is less or equal to k (the answer 1 means yes and the answer 0 means no).

Definition 19 (SInvuΦ [13]). (The CA Φ and u ∈ A+ are fixed parameters). The input of SInvuΦ is a word x ∈ A+. Let
pu = . . . uuu . . . ∈ AZ and let pu(x) ∈ AZ be the configuration obtained by putting the word x at the origin over pu. The
output of SInvuΦ consists in determining whether the differences between pu and pu(x) will expand to an infinite width as
times tends to infinity when applying Φ (the answer 1 means yes and the answer 0 means no). See Fig. 2.

Definition 20 (TInvuΦ [4]). (The CA Φ and u ∈ A+ are fixed parameters). The input of TInvuΦ is a word x ∈ A+. Let pu and
pu(x) be defined as in Definition 19. The output of TInvuΦ consists in determining whether the differences between pu and
pu(x) persist forever when applying Φ (the answer 1 means yes and the answer 0 means no).

Definition 21 (CInvuΦ [4]). (The CA Φ and u ∈ A+ are fixed parameters). The input of CInvuΦ is a word x ∈ A+. Let pu and
pu(x) be defined as in Definition 19. The output of CInvuΦ consists in determining whether the differences between pu and
pu(x) persist forever but remain bounded to a finite width 1 ≤ w <∞when applying Φ (the answer 1 means yes and the
answer 0 means no).

Remark 2. For all CA Φ and for all word u:

CInvuΦ(x) =

TInvuΦ(x) ∧ ¬SInvuΦ(x)


.
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Table 1
Elementary CA Rule 184.

xt+1i 1 0 1 1 1 0 0 0

xti−1x
t
i x

t
i+1 111 110 101 100 011 010 001 000

Fig. 3. Case #00(u) > #11(u) (time goes up).

4. Elementary CA Rule 184

The goal of this section is to illustrate with a concrete example the power of the overlapping operation. For such purpose
we are going to consider the elementary CA Rule 184, denoted by Φ184, which has been used as a model for traffic flow and
ballistic annihilation [6], among others.

We are going to prove that, despite the fact that:

∃u ∈ A+, CC

SInvuΦ184


, CC


TInvuΦ184


∈ Θ(log n),

when we overlap the two problems the communication complexity decreases dramatically. More precisely,

∀u ∈ A+, CC

SInvuΦ184

⊎ TInvuΦ184


∈ O(1).

The CAΦ184 has a set of states A = {0, 1} and its local rule is defined in Table 1. We can understand space–time diagrams
of Φ184 as particles and antiparticles moving with speed 1 in a background p01 = ∞01∞ = . . . 010101 . . . [5]. Formally,
a particle is the interstice (the gap) between two consecutive 1s (white cells) and an antiparticle is the interstice (the gap)
between two consecutive 0s (black cells). Therefore, as shown in Figs. 3–5, a particle can be seen as a pattern 11 which
moves to the left while an antiparticle can be seen as pattern 00 moving to the right. Note that a block of ℓ consecutive
1s (0s) corresponds to a block of ℓ − 1 consecutive particles (antiparticles) moving to the left (right). The key property of
this CA is that when a particle collides with an antiparticle both signals annihilate. Therefore, a key property of the initial
configuration is the number and position of particles and antiparticles.

Let u be a word in A+. We denote by #11(u) the number of particles in u and by #00(u) the number of antiparticles in u,
where we consider u with cyclic boundary (for instance, if u = 0110, then #00(0110) = #11(0110) = 1). Next, consider
the set of balanced patterns B = {u ∈ A+ : #00(u) = #11(u)}. It can be verified by induction that, for t large enough (more
precisely, for t > |u|), any periodic configuration pu satisfies:

- #00(u) = #11(u)⇒ Φ t
184(pu) = p01.

- #00(u) > #11(u)⇒ Φ t
184(pu) = pv , for some v ∈ A+ s.t. #00(v) > #11(v) = 0.

- #00(u) < #11(u)⇒ Φ t
184(pu) = pv , for some v ∈ A+ s.t. #11(v) > #00(v) = 0.

Considering this, we have the following proposition.

Proposition 22. ∀u ∈ A+, CC

SInvuΦ184


, CC


TInvuΦ184


∈ O(log n).

Proof. We prove the case SInvuΦ184
(the proof for TInvuΦ184

is almost the same). The protocol is the following (recall that u is
known to both parties):

Case u /∈ B. SInvuΦ184
(x, y) = 0. W.l.g. suppose that #00(u) > #11(u). Since there are infinite antiparticles in pu any

perturbation will be stopped by the antiparticles (and restricted to a width proportional to the size of the input, see Fig. 3).
Case u ∈ B. Note that if we iterate pu alone then we end up, after |u| steps, with the alternating background

· · · 01010 · · · . Therefore, after |u| steps, the initial configuration pu(xy) will be transformed into a new one which can
be seen as · · · 010101x′by′010101 · · · with b being the central bit and where Alice knows · · · 010101x′b and Bob knows
by′010101 · · · (by sharing the central bit they are sure to count a possible central particle or antiparticle which could be
formed by the rightmost cell of Alicewith the leftmost cell of Bob in the initial configuration). For having this, Alice and Bob
only needs to exchange a number of bits proportional to |u| that do not depend on the size of x and y (see Fig. 4).
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Fig. 4. Case u ∈ B and both (1) and (2) occur.

Fig. 5. Case u ∈ B and neither (1) nor (2) occurs.

Consider the following two possible situations: (1) from the ‘‘side’’ of Alice (of the form · · · 010101x′b) there exists a
particle that propagates infinitely far to the left; (2) from the ‘‘side’’ of Bob (of the form by′010101 · · · ) there exists an
antiparticle that propagates infinitely far to the right.

If (1) and (2) occur, then SInvuΦ184
(x, y) = 1, since the gap between the rightmost difference and the leftmost difference

grows to infinity (see Fig. 4, time t = |u| is marked with an horizontal line).
If neither (1) nor (2) occurs, then SInvuΦ184

(x, y) = 0 (see Fig. 5).
Let suppose, w.l.g, that only (1) occurs. In that case, it is sufficient for Alice to send the number of antiparticles that will

cross the border between x′b and by′ (more precisely, the number of antiparticles that cross the origin assuming that y′ does
not differ with the background). With that information, Bob is able to decide whether the distance between the differences
will grow to infinity. This last step has a logarithmic cost of information. Therefore, CC(SInvuΦ184

) ∈ O(log n). �

Proposition 23. ∃u ∈ A+, s.t. CC

SInvuΦ184


, CC


TInvuΦ184


∈ Θ(log n).

Proof. We prove the case TInvuΦ184
(the proof for SInvuΦ184

is similar). Consider u = 10 and the set Fn =


(00)n−i(10)i,
(10)i(11)n−i


: 0 ≤ i < n


. Every (x, y) ∈ Fn satisfy that TInvuΦ184

(x, y) = 0. Let (x1, y1), (x2, y2) ∈ Fn be such that
(x1, y1) ≠ (x2, y2). It is clear that in this case TInvuΦ184

(x1, y2) = 1 and, hence, Fn is a fooling set. Note that |Fn| = n.
Therefore, CC(TInvuΦ184

) ∈ Ω(log n). �

Proposition 24. ∀u ∈ A+, CC

SInvuΦ184

⊎ TInvuΦ184


∈ O(1).

Proof. Case u /∈ B. SInvuΦ184
(x, y) = 0. This case corresponds exactly to the first one of Proposition 22. Obviously, no

information must be exchanged.
Case u ∈ B. Consider now situations (1) and (2) of the second case of Proposition 22. If (1) and (2) occur, then
SInvuΦ184

(x, y) = 1. If neither (1) nor (2) occurs, then SInvuΦ184
(x, y) = 0. If only one of themoccurs, then, instead of answering

SInvuΦ184
,Alice andBob answer the other problem, TInvuΦ184

. In fact, they already know that TInvuΦ184
(x, y) = 1 since theparticle

(or antiparticle) which starts propagating from one side persists in time. Therefore, the amount of communication needed
in order to know the case in which they are is constant. �

Remark 3. All these protocols also work for CA Rule 56. The only difference between Rule 56 and Rule 184 is the evaluation
of the pattern 111, but this pattern does not have any antecedent, so it disappears after one step. Then, after iterating just
one step the initial configuration (this is possible with only two bits of communication), the previous protocols work for CA
Rule 56 (however, the fooling set should be modified to obtain a lower bound).
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5. Intrinsic universality in CAs: a new tool for proving negative results

We denote Φ1 4 Φ2 when the CA Φ2 simulates the CA Φ1. We say that a CA Ψ is intrinsically universal if Φ 4 Ψ for every
CA Φ . Formal definitions appear in [23]. Finding strong necessary conditions for universality is one of the most challenging
problems in theoretical computer science. For tackling that issue we proved in previous works the following result:

Proposition 25 ([13,4]). Let Ψ be an intrinsically universal CA. Then, there exist l, k, u1, u2 and u3 such that:

n ≺ CC(Predl
Ψ ), CC(CyclkΨ ), CC(SInvu1Ψ ), CC(CInvu2Ψ ), CC(TInvu3Ψ ),

where f1 ≺ f2 if there exist non-constant affine functions α, β, γ , δ : N→ N such that α ◦ f1 ◦ β ≤ γ ◦ f2 ◦ δ.1

Definition 26. Let Φ be a CA. Given parameters k ∈ N and u ∈ A+, we define the problem:

Ovrll,k,uΦ := Predl
Φ ⊎ CyclkΦ ⊎ SInvuΦ ⊎ TInvuΦ ⊎ CInvuΦ .

The main goal of this section is to obtain the same result of Proposition 25 but for Ovrl. This is a much stronger result
because the complexity of Ovrl is always smaller that the canonical problems that we are overlapping. Moreover, as it can
be seen in next proposition, the decrease in the complexity could be dramatic.

Proposition 27. There exist a CA Φ and l, k ∈ N, u1, u2, u3 ∈ A+ such that:

CC(Predl
Φ), CC(CyclkΦ), CC(SInvu1Φ ), CC(CInvu2Φ ), CC(TInvu3Φ ) ∈ Θ(n),

and, for all l, k ∈ N, u ∈ A+:

CC(Ovrll,k,uΦ ) ∈ O(1).

Proof. Given two CAs Φ1 (with set of states A1 and local rule φ1) and Φ2 (with set of states A2 and local rule φ2), we define
the sum between them as a new CAΦ1

⊕Φ2 such that its set of states is the disjoint union of A1 and A2 plus an extra symbol
#, and its local rule φ1

⊕ φ2 is defined by:

φ1
⊕ φ2(u−r · · · ur) =

 φ1 (u−r · · · ur) if u−r · · · ur ∈ A2r+1
1 ,

φ2 (u−r · · · ur) if u−r · · · ur ∈ A2r+1
2 ,

# otherwise,

where the radius r is the maximum between the radii of Φ1 and Φ2. Roughly speaking, this CA behaves like Φ1 or Φ2 if all
the states belong to one of the two sets or it erases everything if they are mixed. A basic but important observation is that
Φ i is a sub-automaton of Φ1

⊕ Φ2, for i = 1, 2.
On the other hand, we know from [13,4] that there exist CAs Φ1, Φ2, Φ3, Φ4 and Φ5 such that:

• ∃l ∈ N, CC(Predl
Φ1

) ∈ Θ(n) and ∀u ∈ A+1 , CC(TInvuΦ1
) ∈ O(1).

• ∃u5 ∈ A+5 , CC(TInvu5Φ5
) ∈ Θ(n) and ∀u ∈ A+5 , CC(CInvuΦ5

) ∈ O(1).
• ∃u4 ∈ A+4 , CC(CInvu4Φ4

) ∈ Θ(n) and ∀u ∈ A+4 , CC(SInvuΦ4
) ∈ O(1).

• ∃u3 ∈ A+3 , CC(SInvu3Φ3
) ∈ Θ(n) and ∀k ∈ N, CC(CyclkΦ3

) ∈ O(1).
• ∃k ∈ N, CC(CyclkΦ2

) ∈ Θ(n) and ∀l ∈ N, CC(Predl
Φ2

) ∈ O(1).

We assert that Φ := Φ1 ⊕ Φ2 ⊕ Φ3 ⊕ Φ4 ⊕ Φ5 satisfies the conditions of the proposition. In fact, we have that Φi ⊑

Φ1⊕Φ2⊕Φ3⊕Φ4⊕Φ5 for all i. SinceΦi is hard for the ith problem, it follows by transitivity of communication complexity
under ⊑, that Φ is hard for all the problems. Now, we only have to verify that ∀l, k ∈ N,∀u ∈ A+, CC(Ovrll,k,uΦ ) ∈ O(1). If
the input and the background only have states from a single CA, then we only have to consider the CA with such states and
use the protocol of the problem for which it is easy. If not (if there are states frommore than one CA), the dynamic becomes
trivial because everything is invaded and, in particular, the complexity of SInvuΦ is constant. �

The usefulness of Ovrl as a filter for ruling out CAs from being intrinsically universal (Corollary 30) is the result of:
1. The compatibility of Ovrlwith our simulation notion (by compatibility we mean the following: if Φ2 simulates Φ1 then

the communication complexity of OvrlΦ2 is greater than or equal to the one of OvrlΦ1 , see Proposition 28).
2. The existence of a specific CA Φ such that OvrlΦ has high communication complexity (see Proposition 29).

These results are a little bit technical due to the incompatibility of Cycl with the shift (a CA could have different
communication complexity for Cycl with respect to a shifted version of itself). In other words, it cannot be proved that
the communication complexity is preserved by simulations that use the shift if we want to include the Cycl problem in the
overlapping (all the other problems satisfy that). However, as for the Cycl problem itself, we can prove a strongest statement
that leads to the same conclusion (Proposition 29).

1 Note that CC(P) ∈ Ω(n) implies n ≺ CC(P).



R. Briceño, I. Rapaport / Theoretical Computer Science 468 (2013) 1–11 9

Fig. 6. Some essential values from the local rule of Φ .

Fig. 7. Hard instances for Φ .

Proposition 28. If Φ1 and Φ2 have set of states of A1 and A2, respectively, and

Φ
⟨m1,t1,0⟩
1 ⊑ Φ

⟨m2,t2,0⟩
2 ,

for some m1,m2, t1, t2 ∈ N, then, for all l ∈ N, k0 ∈ N and u ∈ A+1 , there exist l
′
∈ N, k, k′ ≥ k0 and v ∈ A+2 such that:

CC(Ovrll,k,uΦ1
) ≺ CC(Ovrll

′,k′,v
Φ2

).

Proof. The proof of this proposition comes from the fact that each problem preserves communication complexity under
the sub-automaton, packing and iteration transformations modulo change of parameters l, k, and u. However, since the
≺ relation means ≤ under subsequences, we have to take a common subsubsequence to the subsequence given by each
problem, which in this case is possible (see [13,4]). �

Proposition 29. There exists a specific CA Φ and parameters l, k0 and u such that:

CC

Ovrll,k0,uσ z◦Φ


∈ Θ(n),

for every z ∈ Z.

Proof. We focus our proof on the case z = 0. The difficulty comes from the fact that the three invasion problems (SInv, TInv,
and CInv) are related in a logical way such that, generally, when a CA is hard for two of them, the third one becomes easy.
To solve this, we consider a CA Φ with set of states A =


−→
0 ,
−→
1 ,
←−
0 ,
←−
1 ,⊤, ∗, ◃▹, s


. The idea is that, given x, y ∈ {0, 1}n,

the CA Φ represent in its dynamic a test for EQ(x, y) but also tests for GT(x, y) and GT(y, x). The greater than function [19]
GT(x, y), is defined to be 1 if x > y and 0 in another case, when x and y are considered as n-bit integers 0 ≤ x, y < 2n. To do
this, we consider signals carrying 0s and 1s in both directions and a special state⊤ that do the tests.

In Fig. 6, we define local rules in order to represent the results of the test in the dynamics of Φ , where ◃▹ is a wall and s
is a spreading state. This rule guarantees that the CA behaves differently according to the value that x and y represent when
interpreted in binary notation.

Then, in an instance with a test like in Fig. 7, there are three cases and their respective consequences: x = y, x < y and
x > y. If l = 1, k = 1, and u = ∗.

Considering an input like −→xn · · ·
−→x1 ⊤

←−y1 · · ·
←−yn , we have the following results:

x = y x > y x < y
Pred1

Φ ∗ ◃▹ s
SInv∗Φ 0 0 1
TInv∗Φ 0 1 1
CInv∗Φ 0 1 0
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Finally, to include a hard instance for the cycle length problem, we only have to add new symbols← and→which play
the role of a signal that is sent in the x > y case and rebounds when it encounters the ◃▹ symbol. Then, the cases are the
following:

x = y x > y x < y
Cycl1Φ 1 0 1

This represents that in the case x > y the signal rebounds having a cycle of length proportional to Θ(n). On the other
hand, in the cases x = y and x < y, the cycle have length equal to 1 (in the first case, all is annihilated and only the⊤ symbol
prevails; in the second case, all is erased by the spreading state).

Considering the set F =
−→xn · · · −→x1⊤,

←−x1 · · ·
←−xn


: x1 · · · xn ∈ {0, 1}n


, we have that any monochromatic rectangle

cannot have two elements of it. In other words, given two elements x ≠ y in {0, 1}n, the rectangle given by (
−→x ⊤,

←−x ),
(
−→x ⊤,

←−y ), (−→y ⊤,
←−x ) and (

−→y ⊤,
←−y ) is not monochromatic for every problem. Then, F is a fooling set for Ovrl1,1,∗Φ , and

|F | = 2n. Therefore, by Proposition 10, the complexity is in Θ(n).
Finally, note that for every z ∈ Z, σ z

◦ Φ has high communication complexity for Ovrl. This comes from the fact that:
(1) the result of each invasion problem is shift-invariant; (2) the complexity of PredΦ and Predσ z◦Φ ismodified by a constant
that depend on |z|, due to the definition of CC that consider the maximum along every possible partition; (3) the length of
cycles is 1 in the case where the spreading state is triggered or Ω(n) in other case (due to cycle of the signal, or the wall in
the shifted case). �

Corollary 30. Let Ψ be an intrinsically universal CA. Then, there exist l, k and u such that:

n ≺ CC(Ovrll,k,uΨ ).

Proof. We conclude by using the last two propositions and the fact that every intrinsically universal CA can simulate any
other CA without using the shift, but shifting the simulated one (see [9]). �

Open question 1. Is there any list of problems, each of which is hard for some CA, but such that the overlapping of them becomes
easy for any CA?
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