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On Reducing Harmonic and Sampling Distortion in
Vocal Tract Length Normalization

Néstor Becerra Yoma, Claudio Garretón, Fernando Huenupán, Ignacio Catalán, and Jorge Wuth Sepúlveda

Abstract—This paper proposes a novel feature-space VTLN
(vocal tract length normalization) method that models frequency
warping as a linear interpolation of contiguous Mel filter-bank
energies. The presented technique aims to reduce the distortion
in the Mel filter-bank energy estimation due to the harmonic
composition of voiced speech intervals and DFT (discrete Fourier
transform) sampling when the central frequency of band-pass
filters is shifted. This paper also proposes an analytical maximum
likelihood (ML) method to estimate the optimal warping factor
in the cepstral space. The presented interpolated filter-bank en-
ergy-based VTLN leads to relative reductions inWER (word error
rate) as high as 11.2% and 7.6% when compared with the baseline
system and standard VTLN, respectively, in a medium-vocabulary
continuous speech recognition task. Also, the proposed VTLN
scheme can provide significant reductions inWERwhen compared
with state-of-the-art VTLNmethods based on linear transforms in
the cepstral feature-space. The warping factor estimated with the
proposed VTLN approach shows more dependence on the speaker
and more independence of the acoustic-phonetic content than the
warping factor resulting from standard and state-of-the-art VTLN
methods. Finally, the analytical ML-based optimization scheme
presented here achieves almost the same reductions in WER as
the ML grid search version of the technique with a computational
load 20 times lower.

Index Terms—Speech analysis, speech recognition, vocal tract
length normalization.

I. INTRODUCTION

V OCAL tract length normalization (VTLN) is one of the
most popular techniques applied in speech recognition

in recent years [1]–[4]. VTLN attempts to reduce the mismatch
between training and testing condition in ASR caused by
inter-speaker variability as a result of length differences in the
human vocal tract. The main idea of VTLN is to align formants
between the test speaker and a reference speaker-independent
or dependent model. VTLN is usually implemented in the
front-end by scaling the frequency axis [5]–[7] or by shifting
band-pass filter centre frequencies within filter-banks [1]. Both
alternatives can be performed using an optimal warping pa-
rameter or factor which is obtained by optimizing a Maximum
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Likelihood (ML) criterion over the adaptation data via a grid
search. As a result, each generated frequency axis or bank-filter
per warping factor has to be evaluated [1]–[4] according to the
likelihood of the observed feature vector sequence.
Modeling frequency warping as a linear transform (LT) in the

cepstral domain is a strategy that has been followed by some au-
thors [4]–[6], [8]–[15]. As mentioned in [8], applying VTLN as
a LT in the feature-space in cepstral-based ASR presents sub-
stantial benefits. For instance, due to the fact that the transform
can be applied in the original cepstral features, there is no need
to compute the log-filter-bank energies and the discrete cosine
transform (DCT) for each evaluated warping factor in the grid
search. As a result, the computational load of the VTLN estima-
tion can be dramatically reduced [9].
The LT that models the spectral warping function can be

represented in the cepstra [4], [10] or in the discrete cepstral
space [4]–[6], [8]–[15]. Those techniques can be interpreted as
a particular case of Maximum Likelihood Linear Regression
(MLLR) [16]. In both groups of techniques the optimal warping
factor can be estimated by employing the ML grid search or an
analytical gradient-based optimization procedure. For instance,
in [5], [6], [8], [15] the optimization is performed by making use
of the ML criterion with an Expectation-Maximization (EM)
auxiliary function [17].
The vocal tract frequency response is a continuous function

represented by a spectral envelope. However, this frequency
response or spectral envelope is evaluated by using two inde-
pendent discrete sampling processes: first, band-pass filters are
modeled with a DFT, which in turn provides a given number
of samples within the filter bandwidth; second, the harmonic
components in voiced signals sample the vocal tract frequency
response at multiples of . In Mel filter-banks, which are
widely employed in ASR, the filter bandwidths follow the Mel
scale. As a consequence, shifting the central frequencies of
band-pass filters can introduce perturbations in filter energy
estimation due to the discontinuities caused by the DFT and the
harmonic structure of voiced signals. This problem is especially
acute at low frequencies where the filter bandwidth is narrower
according to the Mel scale. For instance, Fig. 1 compares the
smoothed spectrum obtained with a moving one-bark band-
width triangular filter with the smoothed spectrum estimated
with the linear interpolation of adjacent Mel filters. As can
be seen in Fig. 1(a), the smoothed spectrum obtained with
the moving triangular filter is clearly distorted, especially at
low frequencies, when compared with the reference spectral
envelope. In contrast, the linear interpolation of adjacent Mel
filter energies results in a smoothed spectrum that is much more
similar to the spectral envelope (Fig. 1(b)). The pitch values
within a sentence are highly correlated, and we note that the
F0 contour does not exhibit large discontinuities [18]. Also,
perturbations within a frame result in a likelihood error, which
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Fig. 1. Spectral density representation of a voiced frame: (a) smoothed spec-
trum estimated with a moving one-bark bandwidth triangular filters —— ; and,
(b) smoothed spectrum estimated with the linear interpolation of adjacent Mel
filters —— . The original spectral density curve with the harmonic compo-
nents is represented with in (a) and (b) and was estimated by using
256 DFT samples. The reference spectral envelope is indicated with – – in (a)
and (b). The utterance corresponds to a male speaker.

in turn is cumulative on a frame-by-frame basis by definition.
Hence, the perturbation due to the harmonic nature of speech
will not asymptote to zero as the number of frames increases.
Surprisingly, the spectral envelope estimation distortion in
VTLN due to the discontinuities caused by the DFT sampling
and the harmonic structure of the speech has not been exhaus-
tively addressed in the literature.
In this paper, the warped filter-bank energies are estimated

by making use of linear interpolation between contiguous filter
energies in the original filter-bank. As a result, the effect of the
DFT and harmonic structure of voiced speech intervals is re-
duced, and hence the perturbation in the spectral envelope es-
timation is minimized. Moreover, an analytical ML-based opti-
mization scheme to obtain the warping factor is derived to re-
place the grid search.
The solution presented here could also be seen as a spec-

tral smoothing method. In this sense, the problem of spectral
smoothing has also been addressed by other authors in speech
processing. In [19] a method to reconstruct a smoothed time-fre-
quency representation of speech was proposed to reduce the
interference caused by the periodicity. In [20] the effect of
conventional triangular Mel and uniform-bandwidth filters
was investigated in the context of recognition performance for
children’s speech. Accordingly, it is shown that “differences in
spectral smoothing lead to loss in recognition performance with
conventional VTLN”. However, despite the fact that smoothed
spectral estimation is a well known problem in the field of
speech science and technology, the VTLN method proposed
here has not been found in the literature. Observe that the dis-
tortion caused by the harmonic nature of voiced speech in the
estimation of warped filter energy is much more evident in the
speech of children. Nevertheless, there is no reason to assume
that this distortion does not exist in the speech of adults as well.
In fact, Fig. 1 clearly shows how the harmonic composition
of the voice introduces perturbations in the estimation of the
spectral envelope.

The contribution of the paper concerns: a) a VTLN model
in the filter-bank energy domain based on the interpolation of
filter-bank energies (IFE-VTLN); b) an analytical ML estima-
tion of the optimal warping factor according to the IFE-VTLN
model; and, c) a comparative analysis of the proposed VTLN
method regarding the speaker dependency of the estimated
warping factor. It is worth mentioning that the proposed method
is also applicable to the interpolation of adjacent filter-bank log
energies using a similar mathematical analysis.
As shown later, the interpolated filter-bank energy-based

VTLN proposed here leads to a linear transform in the cepstral
feature-space by approximating the logarithmic function with
a first order Taylor series. Experiments with the LATINO-40
database suggest that the presented method can lead to relative
reductions in WER as high as 11.2% and 7.6% when compared
with the baseline system and standard VTLN, respectively.
When compared with state-of-the-art VTLN methods, the
proposed ML grid search scheme leads to significant relative
reductions in WER equal to 7.0% on average. Moreover, the
proposed analytical ML-based optimization scheme achieves
almost the same reductions in WER as the ML grid search
version of the technique with a computational load 20 times
lower. Finally, the warping factor computed with the VTLN
approach described here shows more dependence on the
speaker and more independence of the acoustic-phonetic con-
tent than the warping factor resulting from standard VTLN and
state-of-the-art VTLN methods. This result is observed as a
lower gender classification error rate, when the warping factor
is employed as a single classifier feature, and as a lower aver-
aged standard deviation per speaker of the warping parameter.

II. FREQUENCY WARPING AND FILTER
ENERGY INTERPOLATION

Consider that is the central frequency of filter in a filter-
bank composed of filters. Then, is the warped central
frequency of filter . By using the linear piece-wise warping
function described in [1], [4], can be written as:

(1)

where corresponds to the highest filter-bank frequency,
is the warping factor or parameter, and is defined as follows:

(2)

The energy of filter at frame is denoted by . The
VTLN method proposed in this paper estimates the energy of
warped filter , as a linear combination of contiguous
filter energies in the original filter-bank: if warped filter is
shifted to the left (i.e., ), the warped filter energy is es-
timated with a linear interpolation between and ;
and, if warped filter is shifted to the right (i.e., ), the
warped filter energy is approximated with a linear interpolation
between and . Accordingly, is expressed as:

(3)
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where,

(4)

and, and are defined as follows:

(5)

(6)

Conventional VTLN is usually implemented by generating a
filter-bank for each and every warping factor to be evaluated.
Then, the optimum is the one that maximizes the likelihood.
According to the model presented here, the filter-bank energies
for each to be evaluated can be computed with (3) without
the need to run a filter-bank analysis for each . Observe that
(3) could be replaced by a nonlinear interpolation with the use
of , etc. However, the motivation here is to use
a linear interpolation that can be preserved through the cepstral
transform.

III. MAXIMUM LIKELIHOOD ESTIMATION
OF WARPING PARAMETER

Instead of evaluating several warping factors to choose the
one that maximizes the likelihood, it is always desirable to es-
timate the optimal analytically. In this section an analytical
optimization of based on ML estimation is proposed. By ap-
plying the natural logarithm function to (3), filter log-energy
can be written as:

(7)

In order to simplify the formulae, let and
. By applying the first order Taylor

series approximation for the log function according to
, if , then can be

expressed as,

(8)

where . By defining
and , (8) can be

written as:

(9)

Observe that the first order Taylor approximation requires
. By con-

sidering , the condition that
satisfies the first order Taylor series can be evaluated by:

(10)

where is a threshold to discard frames if condition in (10) is
not satisfied by components , where .
By incorporating in (9) the definition of according to (1),

can be re-written as:

(11)

where and
. Consider

that the observed unwarped MFCC feature vector sequence is
denoted with , where: corre-
sponds to the frame at instant , and is the number of frames;
and denotes the th cepstral coefficient at frame , and is
the number of static cepstral parameters. Then, by applying the
DCT, . Con-
sequently, by making use of (11), the th warped cepstral coef-
ficient at frame , can be written as:

(12)

Accordingly, the MFCC warped feature vector sequence is de-
noted with , where . Observe
that the linear piece-wise equation that defines in (11)
leads to a DCT representation with two summations: the first
one from to , where ; and, the second
one from to . If the sums that depend
on are isolated in (12), can be rewritten as:

(13)

Then, by defining
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and

can be expressed as:

(14)

Observe that (9) allows the interpolated filter-bank en-
ergy-based VTLN according to (3) to be applied as a linear
transform in the cepstral feature-space, if condition (10) is
satisfied. Finally, it is worth highlighting that (14) makes direct
use of filter-bank energies instead of modeling them with the
inverse discrete cosine transform as in [8], [9].

A. Proposed VTLN Algorithm

The frequency-warping algorithm proposed in this paper
makes use of the first decoding pass best hypothesis alignment
provided by the Viterbi algorithm. Consider that denotes a
sequence of context-dependent phoneme HMMs composed of
states, where denotes a state within the composed HMM,

with . Also , where denotes
the sequence of states within , represents the first decoding
pass best hypothesis alignment given by the Viterbi algorithm
computed with . associates each frame in with a state
within denoted by . The presented approach involves
three main steps:
Step 1. Given a feature vector sequence , first decoding

pass best hypothesis is provided by the Viterbi
algorithm.

Step 2. By employing the filter-bank interpolation-based fre-
quency warping model proposed here (IFE-VTLN),
the optimal warping parameter is obtained with
ML estimation by employing the first decoding pass
best hypothesis from Step 1.

Step 3. Finally, the warped MFCC frame sequence is ob-
tained according to (14).

In Step 2, the frequency warping parameter is estimated by
using the ML criterion:

(15)

where is the optimal frequency warping parameter and
is the Jacobian. According to [21], “the

warped features are generated by transforming the frequency
axis by a suitable warping function before obtaining the cep-
stra. The models used in the computation of the likelihood of
warped features are trained on unwarped features. Therefore
the likelihood computation of the warped features with respect
to models trained on unwarped features would not be correct
unless the Jacobian of the transformation is also taken into
account.” Due to the fact that the proposed interpolated filter
energy model depends on in (1) and (2), is estimated by
assuming two conditions separately: if ; and,

Fig. 2. Flow chart of the proposed analytical ML-based warping factor estima-
tion method (IFE-VTLN-A).

if . The ML estimation of is shown in Fig. 2. According
to Fig. 2, firstly, is computed by considering and

as in (2). Then, when , two iterations
are proposed to estimate : first, with ;
second, with , where is the
optimum warping factor obtained at the previous iteration. Fi-
nally, is chosen between and according to which
one leads to the maximum likelihood of the first decoding pass
alignment.

B. Maximum-Likelihood Estimation of

As a result of the first decoding pass best hypothesis
alignment, the most likely Gaussian per state is chosen. Conse-
quently, state is modeled by a Gaussian function with mean
vector and diagonal covariance matrix ,
and . The diagonal components of are de-
noted by . Then, likelihood
is defined as:

(16)

where denotes the set of Gaussian param-
eters associated to state allocated to frame . Because the
Jacobian in (15) is difficult to calculate [4] and is not likely to
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lead to significant improvements in accuracy [8], [22], the op-
timal frequency warping parameter can be estimated by maxi-
mizing the log-likelihood of the following target function:

(17)

Notice that the sum on frame index should consider only
those frames whose filter energies comply with condition in
(10). Then, by replacing (16) in (17), the optimization can be
rewritten as shown in (18) at the bottom of the page, where

does not depend on and is discarded. Then, the optimization
in (18) can be solved by computing its partial derivative of (18)
with respect to and setting it to zero:

(19)
As a result, from (19), is estimated as:

(20)

IV. EXPERIMENTS

Speaker-independent continuous speech recognition results
presented in this paper were obtained by using a medium vo-
cabulary task recorded in a clean environment, the LATINO-40
database [23]. This database is composed of continuous speech
from 40 Latin American native speakers, with each speaker
reading 125 sentences from newspapers in Spanish. The vocab-
ulary is composed of almost 6000 words. In this paper, exper-
iments were conducted using all 40 speakers as test speakers

by employing a non-overlapped “leave-four-out” scheme. As
a result, ten sub-experiments were carried out with four test
speakers each. One HMM was trained per sub-experiment
by employing the utterances from the 36 remaining speakers.
Consequently, the training data for each sub-experiment corre-
sponds to 4500 utterances. Also, each sub-experiment contains
500 testing utterances, and hence the whole testing database is
composed of 10 sub-experiment 500 utterances per sub-ex-
periment utterances. Each utterance is 4.6 seconds long
on average and the testing material corresponds to 6.4 hours of
recorded speech.
Speech signals were divided into 25-ms frames with fifty per-

cent overlap. The band from 300 to 3400 Hz was covered by
14 Mel DFT filters, and at the output of each channel the log-
arithm of the energy was computed. The FFT was estimated
using 256 samples and thirty-three MFCC parameters (static,
delta, and delta-delta coefficients) per frame were computed.
Cepstral Mean Normalization (CMN) was also employed. The
recognized sentence corresponded to the first hypothesis (the
most likely one) within the N-best list obtained from Viterbi de-
coding. Each triphone was modeled with a three-state left-to-
right topology without skip-state transition, with a mixture of
eight multivariate Gaussian densities per state with diagonal co-
variance matrices. The HMMs were trained by using HTK [24]
and a trigram languagemodel was employed during recognition.
The experiments were conducted by using the recognition en-
gine implemented at the Speech Processing and Transmission
Lab., Universidad de Chile. The triphone-based Viterbi algo-
rithm was written by employing ordinary search and pruning
techniques in combination with the token passing scheme [25].
The VTLN techniques were applied by estimating the warping
factor on an utterance-by-utterance basis with the alignment
provided by the best hypothesis in the first Viterbi decoding
pass. The baseline system gave aWER equal to 6.42%. The pro-
posed interpolated filter energymodel is applied bymeans of the
ML grid search, IFE-VTLN-G, and the proposed ML analytical
estimation, IFE-VTLN-A. The proposed method is compared
with the linear interpolation of adjacent log filter-bank energies.
Also, the VTLN technique presented here is compared with
the schemes described in [8], [9], [12], which are denoted by
VTLN-LT1, VTLN-LT2 and VTLN-LT3, respectively. Those
methods have been recently proposed in the last few years and
successfully model VTLN as a LT in the MFCC domain. In the
case of [12], an exhaustive grid search was applied to estimate
the parameters of the linear combination of adjacent log ener-
gies. Observe that there are coefficients to optimize
for each condition and , where is the number of

(18)
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TABLE I
WER (%) OBTAINED WITH THE BASELINE SYSTEM, STANDARD VTLN, THE PROPOSED IFE-VTLN-G METHOD, VTLN-LT1, VTLN-LT2 AND VTLN-LT3.

THE STATISTICAL SIGNIFICANCES OF THE DIFFERENCES WITH RESPECT TO IFE-VTLN-G ARE PRESENTED IN PARENTHESES

Fig. 3. Log filter-bank energy feature vector that represents the spectral enve-
lope of a voiced speech: original unwarped frame, —— ; warped frame with
standard VTLN, – – ; and, IFE-VTLN-G, . The utterance corre-
sponds to a male speaker and warping factor was equal to 1.07.

filters. Despite the fact that this strategy requires a high compu-
tational load, it allows for comparison with the proposedmethod
without taking into consideration the approximations employed
in the MLLR scheme to estimate the linear combination coeffi-
cients. Also, the grid search excludes from the analysis the de-
pendence of MLLR on the amount of adaptation data available.

V. DISCUSSION

Fig. 3 shows the log-filter-bank energies of the original and
warped filter-banks by employing standard VTLN [1] and IFE-
VTLN-G as in (3). According to Fig. 3, the spectral peaks in the
filter-bank energy domain provided by IFE-VTLN-G are similar
to those with standard VTLN. However, the differences between
the spectral peaks and valleys resulting from IFE-VTLN-G are
significantly lower than those provided by standard VTLN. This
smoothing effect results from the filter-bank energy interpola-
tion. Also, as proposed here, the filter-bank energy interpolation
attenuates the discontinuities caused by the DFT sampling and
the harmonic structure of the speech spectrum.
Table I shows the WER achieved with the baseline system,

standard ML grid search VTLN, IFE-VTLN-G, VTLN-LT1,
VTLN-LT2 and VTLN-LT3. The statistical significance of the
differences with respect to IFE-VTLN-G is presented in paren-
theses. When compared with the baseline system, standard
VTLN provides a reduction in WER equal to 3.89%. Also,
error rates provided by VTLN-LT1 and VTLN-LT2 are very
similar to the one obtained with standard VTLN. This result
is consistent with those published in [8], [9]. The proposed

IFE-VTLN-G scheme leads to relative reductions in WER as
high as 11.22%, 7.62%, 6.71% and 7.32% when compared
with the baseline system, standard VTLN, VTLN-LT1 and
VTLN-LT2, respectively. This result strongly supports the pro-
posed method. The difference in WER between IFE-VTLN-G
and VTLN-LT3 is much smaller and is not statistically sig-
nificant. This result must be due to the fact that the linear
interpolation in (9) is a special case of the linear combination
of adjacent filter log-energies employed in [12]. Observe that
in IFE-VTLN-G only one warping factor needs to be opti-
mized. In contrast, as explained above, VTLN-LT3 requires
the optimization of at least coefficients per each
condition and , which in turn is not feasible
for practical purposes. The estimation of these coefficients
with MLLR requires the use of approximations and introduces
a dependency on the number of adaptation utterances [12].
Consequently, the WER achieved with VTLN-LT3 shown in
Table I can be considered a lower bound for the method.
Removing the Jacobian from (15) makes possible the ana-

lytical treatment of the optimal warping factor estimation ac-
cording to (17). To validate this approximation standard ML
grid search VTLN and the proposed IFE-VTLN-G were applied
with the corresponding Jacobian as in (15). Standard ML grid
search VTLN and IFE-VTLN-G with Jacobian give WER equal
to 6.10% and 5.7%, respectively. Consequently, including the
Jacobian as in (15) leads to no significant reductions in WER
with standard VTLN and IFE-VTLN-G, which in turn is con-
sistent with results published elsewhere [8], [22], and validates
the optimization according to (17).
The proposed VTLNmethod attempts to reduce distortion re-

sulting from the harmonic nature of voiced speech in the esti-
mation of warped filter energies (see Fig. 1(a)). As mentioned
above, the filter-bank energy interpolation leads to a smoothing
effect (see Fig. 1(b)). A similar effect should also be obtained
with the interpolation of adjacent log filter-bank energies. If
filter energies are replaced with filter log-energies in (3), the
ML grid search leads to a WER equal to 5.82%, which in turn is
slightly greater than theWER obtained with IFE-VTLN-G. This
result suggests that the interpolation of filter energies could be a
more appropriate way to approximate the energy of warped fil-
ters than the interpolation of log filter-bank energies. Actually,
a simple analysis reveals that, for a given warping factor, there
is a numerical difference between the warped filter energy esti-
mated with the linear interpolation of filter energies and the one
obtained with the interpolation of filter log energies. Neverthe-
less it is worth emphasizing that the proposed method is equally
applicable to both cases with a similar mathematical analysis.
Table II presents the WER provided by the baseline system,

standard VTLN, IFE-VTLN-G, VTLN-LT1, VTLN-LT2 and
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TABLE II
WER (%) BY GENDER OBTAINED WITH THE BASELINE SYSTEM, STANDARD VTLN, THE PROPOSED

IFE-VTLN-G SCHEME, VTLN-LT1, VTLN-LT2 AND VTLN-LT3

VTLN-LT3 separated by gender.When compared with the base-
line system, IFE-VTLN-G provides a much higher reduction
in WER with female speakers than male speakers (14.98% and
7.36%, respectively). A similar result is observed with VTLN-
LT3, which in turn models the warped filter log energies as a
linear combination of adjacent unwarped log filter-bank ener-
gies. Observe that both the linear interpolation of filter energies
(or log energies) and the linear combination of log filter ener-
gies can be considered spectral smoothing methods. This re-
sult strongly supports the hypothesis formulated here and must
be due to the fact that female speakers show more separated
harmonics in the frequency axis than male speakers. As a con-
sequence, the reduction of the discontinuities due to the har-
monic structure of the speech is more relevant for female than
male speakers. In contrast, the reductions in WER provided by
standard VTLN and VTLN-LT1 with male and female speakers
(4.04% vs 3.16% and 3.9% vs 5.8%, respectively) are similar.
In the case of VTLN-LT2 significant reductions of WER were
observed mainly with male speakers.
As discussed above, the proposed VTLN method shows

a higher reduction in WER with female than male speakers.
This behavior is not observed with the VTLN schemes im-
plemented here for comparison reasons with the exception of
VTLN-LT3, which also results in a spectral smoothing effect.
Another procedure to validate the hypothesis related to the
distortion caused by the harmonic nature of voiced speech in
the estimation of warped filter energies is to apply a spectral
smoothing before the Mel filter-bank. Therefore, an experiment
was carried out by estimating the spectral envelope with a 20th
order LPC filter. Then, the filter-bank energies were estimated
and standard ML grid search VTLN was applied to determine
the optimal warping factor. Once the optimal warping factor
was estimated, the recognition procedure was performed with
the original un-smoothed spectrum. This procedure led to a low
relative reduction of 1% in WER when compared with standard
VTLN. However, not surprisingly, the reduction in WER with
female speakers was equal to 3% when male speakers showed
an increase of 1% in WER. This result suggests that smoothing
techniques have a direct effect in the estimation of warped
filter energies. The separation between adjacent harmonics is
higher in average in female than in male speakers, which in turn
increases the distortion due to the harmonic nature of speech in
the estimation of warped filter energies. It is worth mentioning
that the warping factor was optimized with the HMMs trained
with the original MFCC features without smoothing.
The linear regression according to (14) may suggest a com-

parison with MLLR [26] that assumes that the adapted HMM
parameters can be modeled as a linear transform of the orig-

inal HMM means and variances. However, significant differ-
ences between (14) and MLLR need to be highlighted. First
of all, observe that (14) incorporates information of filter-bank
log energies. In contrast, MLLR employs a linear regression
in the feature vector space (i.e., MFCC). Second, (14) defines
warping factor as the variable to optimize by making use of
a well known piecewise linear warping model. On the other
hand, MLLR optimizes the whole linear transform. For com-
parison reasons, fMMLR [27], [28] was implemented on an ut-
terance-by-utterance basis (i.e., the transform is estimated on
each utterance) to compensate the unwarped observed feature
vector sequence for speaker mismatch. As a result, fMLLR led
to a WER equal to 6.09%, which in turn is 5.1% lower than
the one provided by the baseline system and is similar to the
WER given by standard VTLN, VTLN-LT1 and VTLN-LT2
(see Table I). However, IFE-VTLN-G shows a relative reduc-
tion in WER equal to 6.4% when compared with
fMLLR. This result suggests that the linear transform optimized
by fMLLR can replicate the result achieved with VTLN, but
it fails to model the linear regression according to (14). An-
other comparison is to combine the proposed technique with
MLLR. Due to the fact that the linear regression in (14) uses
information of both filter log energies and cepstral features, ap-
plying MLLR before IFE-VTLN-G makes no sense. When ap-
plied after IFE-VTLN-G, MLLR degrades the word recognition
accuracy when compared with IFE-VTLN-G alone.
The correlations between the warping factors obtained

with standard VTLN and those obtained with IFE-VTLN-G,
VTLN-LT1 and VTLN-LT2 are shown in Table III. As can
be seen in Table III, the warping factors estimated with
IFE-VTLN-G, VTLN-LT1 and VTLN-LT2 are highly corre-
lated with that computed with the standard VTLN. Also, all
three correlations are very similar correlation .
This result suggests that the proposed technique is as good ap-
proximation of standard VTLN as VTLN-LT1 and VTLN-LT2.
Fig. 4 shows the histograms of the estimated warping factors
obtained with IFE-VTLN-G and all the grid search-based

techniques employed in this paper for comparison purposes:
standard VTLN, VTLN-LT1 and VTLN-LT2. The histograms
were generated by using all the testing sub-sets and by con-
sidering the same range of warping factors (from 0.75 to
1.20). As can be seen in Fig. 4, standard VTLN, VTLN-LT1
and VTLN-LT2 provide rather similar distributions for the
warping factor. In contrast, two populations or clusters are
clearly identified in the histogram given by IFE-VTLN-G. This
result suggests that each cluster of warping factors represent a
well defined population of speakers, e.g., speaker gender. This
hypothesis is corroborated in Fig. 5, where the gender-depen-



YOMA et al.: ON REDUCING HARMONIC AND SAMPLING DISTORTION IN VOCAL TRACT LENGTH NORMALIZATION 117

Fig. 4. Histograms of warping factors obtained with: (a) standard VTLN as in [1]; (b) the proposed IFE-VTLN-G scheme; (c) VTLN-LT1 as in [8]; and,
(d) VTLN-LT2 as in [9].

TABLE III
CORRELATION BETWEEN THE WARPING FACTOR OBTAINED WITH STANDARD
VTLN AND THE WARPING FACTORS OBTAINED WITH THE PROPOSED

IFE-VTLN-G TECHNIQUE, VTLN-LT1 AND VTLN-LT2

dent histograms of obtained with IFE-VTLN-G, standard
VTLN, VTLN-LT1 and VTLN-LT2 are presented. According
to Fig. 5(b), the warping factor estimated with IFE-VTLN-G
clearly discriminates between male and female speakers. A
similar behavior tends to be observed in Fig. 5(a), (c) and
(d). However, the overlap of both populations observed with
standard VTLN, VTLN-LT1 and VTLN-LT2 is much higher
than the one provided by the proposed IFE-VTLN-G scheme.
In fact, the gender classification error rates with IFE-VTLN-G,
standard VTLN, VTLN-LT1 and VTLN-LT2 are 4.38%,
9.85%, 10.30% and 20.30%, respectively. This result seems to
be very interesting when compared with state-of-the-art gender
classification technology that can provide accuracies as high as

95% [29]. Vocal tracts in female speakers are usually shorter
than in male speakers, which in turns result in higher formant
frequencies. Consequently, the lowest gender classification
error rate obtained with IFE-VTLN-G suggests that, given
a speaker independent HMM, the warping factor estimated
with IFE-VTLN-G should depend more on the speaker and
be more independent of the acoustic-phonetic content than the
warping factor obtained with standard VTLN, VTLN-LT1 and
VTLN-LT2. The gender classification error rate was obtained
on a sentence-by-sentence basis.
The distribution of both populations in Fig. 5(b) deserves

further discussion. Due to the reduction of the perturbation re-
sulting from the harmonic nature of voiced speech and the linear
interpolation of filter-bank energies to estimate warped filter
energies, the results presented here suggest that the proposed
method generates a warping factor that is more dependent on
the speaker than other VTLN schemes. In this sense, a value of
of approximately 1.0 would mean that the testing speaker is

perfectly well represented by the speaker-independent HMM.
This is not consistent with the uniqueness hypothesis related to
the vocal tract. Actually, speaker verification is based on this
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Fig. 5. Histograms of warping factors separated by gender: (a) standard VTLN as in [1]; (b) the proposed IFE-VTLN-G method; (c) VTLN-LT1 as in [8]; and,
(d) VTLN-LT2 as in [9].

hypothesis. Although it is not shown in this paper, when the
HMM is trained with utterances from the same testing speaker,
the warping factor tends to be approximately 1.0.
Table IV shows averaged standard deviation per speaker of

the warping factor, , and standard deviation of the warping
factor for all the speakers, , estimated with standard VTLN,
the proposed IFE-VTLN-G method, VTLN-LT1 and VTLN-
LT2. As presented in Table IV, the average standard devia-
tion per speaker achieved with IFE-VTLN-G is approximately
41% lower than, in average, those provided by regular VTLN,
VTLN-LT1 and VTLN-LT2. A similar result is obtained when

is divided by . The ratio is a measure of
how concentrated the warping factor is for a given speaker when
compared with the overall dispersion of . This result corrob-
orates the hypothesis discussed above according to which the
warping factor estimated with IFE-VTLN-G is more depen-
dent on the speaker and more independent of the acoustic-pho-
netic content than the warping factor computed with regular
VTLN, VTLN-LT1 and VTLN-LT2. It is reasonable to suppose
that, given a speaker independent HMM, is a function of the

TABLE IV
AVERAGED STANDARD DEVIATION PER SPEAKER OF THE WARPING

FACTOR, , AND STANDARD DEVIATION OF THE

WARPING FACTOR FOR ALL THE SPEAKERS,

speaker and should not depend on the acoustic-phonetic con-
tent. Consequently, the results shown in Fig. 5 and Table IV also
validate the hypothesis that the proposed VTLN scheme can re-
duce the discontinuities caused by the harmonic structure of the
speech, which in turns may cause a less coherent estimation of
.



YOMA et al.: ON REDUCING HARMONIC AND SAMPLING DISTORTION IN VOCAL TRACT LENGTH NORMALIZATION 119

TABLE V
WER (%) WITH THE PROPOSED IFE-VTLN-A METHOD VERSUS AS DEFINED

IN (10). ALSO, THIS TABLE SHOWS THE PERCENTAGE OF FRAMES THAT
SATISFIES THE CONDITION IN (10) AND THAT IS EMPLOYED IN THE PROPOSED

ML-BASED OPTIMIZATION METHOD ACCORDING TO (20)

Table V presents the results provided by the proposed analyt-
ical ML estimation of the optimum warping factor according to
Fig. 2 and (20), IFE-VTLN-A, versus the threshold to discard
frames if condition in (10) is not satisfied . As can be seen
in Table V, IFE-VTLN-A provides reductions in WER as high
as 10.90% and 7.29% when compared with the baseline system
and with the standard VTLN, respectively. Also, observe that
the improvement due to IFE-VTLN-A slightly depends on ,
which in turn suggests that the linear approximation for the log-
arithmic function employed in (7) is accurate enough to be used
in the analytical ML optimization shown in Fig. 2. Moreover, by
comparing the WER achieved by IFE-VTLN-A in Table V with
the one obtained with IFE-VTLN-G in Table I, it is possible to
conclude that the warping factor can be reliably estimated by
using the analytical ML scheme with just a fraction of frames in
the testing utterance.
Regarding the computational load, the proposed IFE-

VTLN-G scheme achieves a reduction in WER equal to 7.6%
when compared with the standard VTLN with a similar pro-
cessing time. This processing time does not consider the Viterbi
decoding step required to find the optimal alignment and the
second Viterbi decoding to obtain the final ASR output after
VTLN. When the proposed analytical ML estimation of the
warping factor (IFE-VTLN-A) is compared with IFE-VTLN-G,
a similar WER is achieved with a computational load 20 times
lower.
The correlations between the warping factors obtained

with IFE-VTLN-A and those estimated with IFE-VTLN-G
and standard VTLN are shown in Table VI. According to
Table VI, the warping factors obtained with IFE-VTLN-A
are highly correlated with those computed with IFE-VTLN-G

correlation . This result indicates than the pro-
posed analytic ML estimation of the warping factor accurately
follows the proposed grid search version. Also, the correlation
between IFE-VTLN-A and standard VTLN is just slightly
lower than the one achieved between IFE-VTLN-G and stan-
dard VTLN, as shown in Table III. These results corroborate
and validate the analytic optimization scheme according to (20)
and Fig. 2. Table VII presents the average standard deviation
per speaker of the warping factor versus as defined in (10).
Comparing with Table IV, IFE-VTLN-A provides an average
standard deviation per speaker as low as that achieved with the
ML grid search version of the proposed VTLN method.
Fig. 6 depicts the histograms of the estimated warping

factors obtained with the proposed IFE-VTLN-A and
IFE-VTLN-G schemes. As shown in Fig. 6, IFE-VTLN-A and
IFE-VTLN-G provide very similar distributions of the warping
factor where two populations or clusters are clearly identified.
However it is worth mentioning that the separation between the
means of both populations in IFE-VTLN-A is 13% lower than
in IFE-VTLN-G. This result is reflected in lower gender dis-
crimination ability when compared with IFE-VTLN-G, which

TABLE VI
CORRELATION BETWEEN THE WARPING FACTOR OBTAINED WITH THE
PROPOSED IFE-VTLN-A ALGORITHM AND THE WARPING FACTORS
ESTIMATED WITH THE PROPOSED IFE-VTLN-G SCHEME AND

STANDARD VTLN

TABLE VII
AVERAGED STANDARD DEVIATION PER SPEAKER OF THE WARPING FACTOR

VERSUS AS DEFINED IN (10) PROVIDED BY THE

PROPOSED IFE-VTLN-A ALGORITHM

Fig. 6. Histograms of the warping factors obtained with the proposed ML an-
alytical optimization method, IFE-VTLN-A, and the proposed ML grid search,
IFE-VTLN-G.

in turns must be due to the low distortion introduced by the
linear approximation of the logarithmic function employed in
(8). The percentage of the separation was estimated regarding
the difference between the average values of both populations.
An analysis on stability or robustness in the estimation of

as defined in (10) provided by the proposed IFE-VTLN-A al-
gorithm is shown in Fig. 7. The entire set of experiments was
divided into two subsets, A and B, composed of five sub-experi-
ments each. As can be seen in Fig. 7, theWER is not very depen-
dent on in subsets A and B. This result must be due to the fact
that is defined by a criterion that discards frames to improve
the approximation of the first-order Taylor series as described
in (8). Consequently, this scheme takes place at a very low level
and should be neither task dependent nor speaker dependent.
It is worth noting that, given an original F0 contour, there is

already an error in the representation of the “true” spectral en-
velope by a filter bank as shown in Fig. 1. However, from the
point of view of optimization theory, “an optimal policy has the
property that whatever the initial state and the initial decision
are, the remaining decisions must constitute an optimal policy
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Fig. 7. WER versus. as defined in (10) provided by the proposed
IFE-VTLN-A algorithm. The whole set of experiments was divided in subsets
A and B that correspond to five sub-experiments each.

with regard to the state resulting from the first decision” [30].
Consequently, given an utterance with the F0 contour included,
the best one can do is to estimate the VTLN warping factor by
reducing the effect of the harmonic representation in the spec-
tral envelope. Observe that the warping factor is estimated by
maximizing the likelihood with respect to a speaker-indepen-
dent HMM. As a result, the warping factor that is determined
using the proposed method improves the representation of the
observation vector with respect to the current HMM regardless
of any possible initial error, which in turn is unavoidable.
It is important to note that the experiments discussed here

strongly suggest that the improvements in recognition accuracy
resulting from the proposed VTLN method are due to the re-
duction of the perturbation caused by the harmonic composi-
tion of voiced speech by means of the linear interpolation of
adjacent filter-bank energies to estimate the energy of warped
filters. The estimation of warped filter energies with the linear
interpolation of contiguous filter energies results in a spectral
smoothing effect, which in turn reduces the distortion due to
the harmonic nature of speech and increases the effectiveness
of VTLN. Whether the log filter-bank energies are interpolated,
or whether the filter-bank energies are interpolated and then a
linear approximation is used for the logarithm assuming certain
conditions, the resulting transform is a linear regression of the
log filter-bank energies and hence the cepstra. In the case of a
piecewise-linear frequency warping, the linear regression be-
comes with respect to just the warping parameter. This reduces
the requirements regarding the amount of adaptation data and
makes possible the use of ML grid search to estimate . Also,
it should be noted that, according to the results presented here,
the interpolation of filter energies leads to slightly better results
than the interpolation of filter log-energies.
As a final remark, the proposed approach should be robust

with respect to noisy conditions if the spectral distribution of
additive noise does not vary much between adjacent filters. Ac-
cording to the linear interpolation in (3), noise should have a
low effect in the estimation of . Also,

should be reliably compensated with, for example, spec-
tral subtraction. Consequently, could be made robust

to noisy conditions by estimating the optimum warping factor
with an HMM trained with clean signals. If this is done, the
dependence of the optimum warping factor on SNR should be
small.

VI. CONCLUSION

In this paper a feature-space VTLN method that models
frequency warping as a linear interpolation of contiguous Mel
filter-bank energies (IFE-VTLN) is proposed. The motivation
of the presented approach is to reduce the perturbation intro-
duced in the Mel filter-bank energy estimation by the harmonic
composition of voiced speech intervals and DFT sampling
when the central frequency of band-pass filters is shifted.
Also, an analytical Maximum Likelihood optimization method
to estimate the warping factor in the cepstral feature-space
is proposed. Experiments with a medium-vocabulary con-
tinuous speech recognition task show that IFE-VTLN with
ML grid search can lead to reductions in WER as high as
11.2% and 7.6% when compared with the baseline system and
standard VTLN, respectively. Moreover, IFE-VTLN can lead
to significant reductions in WER, equal to 7.0% in average,
when compared with state-of-the-art cepstral-based VTLN
techniques. It is worth emphasizing that the warping factor
estimated with IFE-VTLN is more dependent on the speaker
and more independent of the acoustic-phonetic content than
the warping factor computed with ordinary and state-of-the-art
cepstral-based VTLN methods. In fact, the scheme presented
here provides an average standard deviation of the warping
factor per speaker approximately 41% lower than regular and
state-of-the-art VTLN techniques. Also, IFE-VTLN leads to a
gender classification error rate that is at least 50% lower than
those obtained with standard and current cepstral-based VTLN
methods. Also, the reduction in WER resulting from the pro-
posed analytical ML based optimization scheme is practically
the same as the one achieved with the proposed ML grid search,
with a computational load 20 times lower. Suggested topics
for future research include the combination of the interpolated
filter energy VTLN approach with additive noise and channel
compensation techniques, and exploring the applicability of
the proposed method to gender classification and to speaker
adaptive training.
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