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Some mixed variational formulations are presented for the problem of a deforming and magneto-active

body completely surrounded by free space. The possibility of large elastic deformations is considered, in

particular due to the application of magnetic loads. One-, two- and three-field functionals are studied,

for which either the magnetic vector potential or the magnetic field strength serve as leading variable.

The relations between the different formulations are explained in terms of Legendre transformations

and the Lagrange multiplier method.
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1. Introduction

In the last years there has been a growing interest in the
development of theories to study the behavior of magneto-
sensitive bodies. Applications of such theories lie among others
in the modeling of magneto-active materials investigated experi-
mentally, for example, in [1–6]. Several aspects of the theory of
magneto-elastic interactions considering large deformations had
been developed several decades ago. Among the most important
early contributions we mention the papers by Brown [7,8] and
Tiersten [9], the monographs by Brown [10], by Hutter and van de
Ven [11] and the review article by Pao [12] (for the general case of
electromagnetic interactions with continua). Furthermore, we
recall the books by Maugin [13] and by Maugin and Eringen [14].

The recent development of some new rubber-like materials,
which can react to magnetic fields [1–6], has prompted the
revision of the theories presented in the classical works men-
tioned previously, and triggered the development of new alter-
native formulations. Examples for a discussion considering large
deformations can be found in [15–25].

For the case of modeling the behavior of a magneto-active
elastic body surrounded by free space in the quasi-static case, it is
necessary to solve a system of three non-linear partial differential
equations (see, for example, [16,17]). Two of these equations have
to be solved inside the body (in order to determine the displace-
ment field and the magnetic field or magnetic induction), whereas
ll rights reserved.
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the simplified form of the Maxwell equations must be solved in
the space surrounding the body. All three equations are coupled
and their solutions must satisfy some continuity conditions across
the boundary of the body [14,17,26–28]. The possibility of
obtaining large deformations, the coupling of the displacement
with the solutions of the Maxwell equations inside and outside
the body, the need to satisfy a number of continuity conditions for
the different variables and finally, the necessity to solve two non-
linear partial differential equations inside the body imply that
solving this boundary value problem is in general a daunting task,
even for simple geometries and boundary conditions (see, for
example, [29]). Therefore, the application of numerical methods is
particularly important while modeling the behavior of such
magneto-active bodies. Among the different numerical methods,
the finite element method is one of the most widely used. The
finite element method can be developed using variational for-
mulations as a starting point.

In this work we study in detail mixed variational formulations
for three classes of problems. In the first case we explore the well
known problem of determining the magnetic field distribution for
a portion of free space. In the second case we extend the previous
results by adding the presence of a rigid magneto-active body
immersed in vacuum, considering the presence of the magnetic
field inside and outside the body. In the third and last case, we
modify the derived mixed variational formulations to be valid for
a deformable magneto-elastic body surrounded by free space.
There are different options to choose the set of independent
variables for each functional associated with the respective
variational formulation. In this work the main aim is to develop
master functionals, which depend on all three magnetic
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Fig. 1. Extended illustration of the formulations under investigation together with

the corresponding transformation procedures. Following the arrows explains how

to transform one functional into the other. ‘LAM’ denotes a Lagrange multiplier

procedure together with the respective constraint that has to be added or omitted

is displayed. ‘LET(�, �)’ denotes a Legendre transformation from the first argument

to the second argument. The application of the theorem of Gauss is marked by the

word ‘Gauss’.
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quantities, such as magnetic field strength, magnetic induction,
and magnetic vector potential. From these master functionals,
sets of three-, two- and one-field functionals are then derived
subsequently. For the equivalent electro-elastic problem see, for
example, [30].

An important topic addressed in this work is the use of the
magnetic vector potential as one of the independent variables of
the functionals. In some recent works on the numerical modeling
of magneto-sensitive elastomers, a magnetic scalar potential has
been defined, from which the magnetic field can be calculated as
its negative gradient (see, for example, [29]). Although the use of
such a magnetic scalar potential simplifies the implementation of
the numerical work, its lack of clear physical meaning implies
that it is necessary to consider other possibilities. Alternatively,
the magnetic vector potential can be used, from which the
magnetic induction is derived as the curl of such a potential,
and which has a reasonable physical significance [31].

The use of the magnetic vector potential leads for the three-
dimensional case to a lack of uniqueness: if we add the gradient of
a scalar field to such a vector potential, we obtain the same
magnetic induction field. Different techniques have been devel-
oped to address this issue theoretically as well as from a
numerical point of view, see, for example, [32–44]. A proper
study of the subject requires, in particular, a careful analysis of
the functional spaces to which the different variables in the
functionals belong. Such a detailed study is absent in most of
the works reviewed so far, and so another of the objectives of this
work is to do such a detailed study for the different mixed
formulations proposed.

Although a lot of work has already been done in the field of
variational principles for magneto-elasticity, most of the formula-
tions do not include these three major aspects:
1.
 Physical setting of a body carrying a volume current immersed
into vacuum.
2.
 Continuum mechanical setting for a geometrically non-linearly
deforming body.
3.
 Functional analytical setting for the independent variables.

Regarding variational principles, one of the early works that
can be mentioned is the article by Brown [8], which presents a
two-field functional in the magnetization and the magnetic field
strength together with the resulting Euler–Lagrange equations for
a deforming body in finite strain theory. The surrounding free
space and the corresponding jump conditions were not consid-
ered in this work. In [9], Tiersten presents an internal energy
which was a function of the magnetization, the gradient of the
magnetization and the deformation gradient. The variational
principle considered a non-linearly deforming body surrounded
by free space. In [45], Maugin defines a Lagrangian density
depending on the deformation gradient, the magnetic moment
and the magnetic moment’s gradient. A variation following the
Hamiltonian principles leads to the Euler–Lagrange equations
that coincide with the magnetostatic Maxwell’s equations in
terms of magnetic induction and the magnetic couple density.
In [46], Penman proposed a functional for a rigid body, which
coincides with our primal master functional, however, he con-
sidered only linearized constitutive equations and no surrounding
space. Rikabi [47] extended the results presented in [46], using
the concept of complementary variational principles. As func-
tional, Rikabi used the error in the constitutive relation between
the magnetic field and the magnetic induction, which may also be
coupled non-linearly.

For the case of a deforming ferromagnets, we would like to
mention the works by James [48,49], DeSimone [50,51], Rybka
[52] and Bielski [53]. Besides the formulation of functionals
including the surface and exchange energy for ferromagnetic
material, they also made some statements about the uniqueness
and existence of minimizers. However, as stated in [52], energy
minimizing solutions without surface energy and exchange
energy do not generally exist. To overcome this problem, micro-
structures defined by minimizing sequences are studied in [49].
For a two-dimensional problem without surface and exchange
energy and surface energy considering certain boundary condi-
tions, the existence of minimizers was proved in [50]. Bielski [53]
follows the model studied in [48,50–52] and extends it to weakly
incompressible and incompressible materials.

Consequently with some of the objectives described pre-
viously, this work is divided in the following sections. In Section 2
we review in detail the boundary value problem for the magneto-
static case in free (vacuum) space and a number of variational
principles are explored. In Section 3 we extent the analysis given in
Section 2, by considering a rigid magneto-active body surrounded
by free space. In Section 4 we finally consider the full-blown
problem of an elastic magneto-sensitive body, surrounded by free
space, which can undergo large deformations and displacements
due to the application of magnetic and mechanical loads. For the
mixed variational formulations, one of the objectives is to obtain
master functionals, from which a number of special cases could be
derived systematically, and to study the connections between those
functionals by obtaining a chart depicted in Fig. 1. Finally, in Section
5 we discuss the results presented and we outline some future lines
of research.
2. Free space

Before we consider the case of free space (or vacuum)
occupying the domain S as depicted in Fig. 2, we briefly recall
some basic aspects of magnetostatics. In general, the quasi-static



Fig. 2. Illustration of the bounded open and simply connected geometry of free

space S with a Lipschitz-continuous exterior boundary @S1 .

1 We favor the definition of the boundary conditions (6c) and (10) in terms of

the vector product, such that we are able to prescribe functional analytical

requirements on a and h with the least regularity. (see also Remark 1 in Section 2.1.1).
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field equations for the magnetic field h and the magnetic induc-
tion b read as [14,26–28,54]

r � h¼ jf , r � b¼ 0, ð1Þ

where jf denotes a possible volume free current density.
As discussed, for example, in [41], Maxwell’s equations are

naturally posed in unbounded domains together with the con-
tinuity or jump conditions for the magnetic field and the mag-
netic induction along and across surfaces of material
discontinuities [14,26–28,54]

n� 1hU¼ ĵ
f
, 1bU � n¼ 0 at a surface of material discontinuity,

ð2Þ

where ĵ
f

(A/m) denotes a surface free current density, and the
jump 1ð�ÞU is defined as the difference of a certain value with
regard to the normal vector pointing outwards: 1ð�ÞU¼ ð�Þoutside�

ð�Þinside.
In order to establish a framework which allows for a numerical

approximation of the partial differential equations, a bounded
domain with explicit boundary conditions for the unknown
magnetic fields has to be defined. To do this, we consider a
bounded open and simply connected geometry S with a Lipschitz-
continuous exterior boundary @S1 [41,55] as illustrated in Fig. 2.

The surface @S1 has to be regarded as an interface that
truncates the computational domain S from the complementary
infinite outer domain. Imposing certain behavior for the magnetic
field and the magnetic induction in the complementary region,
denoted by h1 and b1, results in prescribing boundary conditions
for the tangential component of the magnetic field and for the
normal component of the magnetic induction [14,26–28,54]

n1 � h¼�ĵ
f
þn1 � h1 on @S1,

b � n1 ¼ b1 � n1 on @S1: ð3Þ

For the special case of vacuum (free space), the basic magnetic
quantities are coupled linearly by the permeability of vacuum
m0 ¼ 4p� 10�7 V s=A m [26–28]

hm ¼
1

m0

b, b¼ m0h
m: ð4Þ

To emphasize this linear relation in vacuum notation-wise, we
will denote the magnetic field in free space by hm instead of h.
Furthermore, we can set the surface current densities equal to
zero [28,56] and assume no external sources in vacuum, i.e.

ĵ
f

1 ¼ jf
1 ¼ 0. The boundary @S1 is split into two connected non-

overlapping surfaces,

@S1 ¼ @Sj1 [ @Sa1, @Sj1 \ @Sa1 ¼ |, ð5Þ

where the tangential component of hm or the normal component

of b are prescribed, respectively (see [38,40,41,54]). As a summary
we have

r � hm ¼ 0 in S, ð6aÞ
r � b¼ 0 in S, ð6bÞ

n1 � hm ¼ n1 � hm1 on @Sj1, ð6cÞ

b � n1 ¼ b1 � n1 on @Sa1: ð6dÞ

As pointed out in [41], for the case @Sj1 ¼ |, the hypothesisR
@Sa1

b1 � n1 da¼ 0 is needed due to compatibility reasons.
Since the divergence of the magnetic induction is equal to zero,

we can introduce a vector potential a such that [26–28,54–56]

b¼r � a in S: ð7Þ

Of course, the vector potential is defined only up to a gradient
field, unless a gauge transformation is imposed, which leads to a
unique definition [26–28,54–56]. This is taken as divergence free
condition on the magnetic vector potential known as the Coulomb
gauge [26,27,54–56]

r � a¼ 0 in S: ð8Þ

The introduction of a magnetic vector potential leads together
with the normal continuity condition (2)2 on b to a tangential
continuity condition for a (see, for example, [28,34,35,54,55])

n� 1aU¼ 0 across a surface of material discontinuities: ð9Þ

In view of the boundary condition (6d) on b, an essential
(Dirichlet) boundary condition on the tangential component of
the magnetic potential a has to be imposed [34,35,54,55]1

n1 � a¼ n1 � a1 ¼: a
tan
1 on @Sa1: ð10Þ

The natural (Neumann) boundary conditions on the tangential
component of the magnetic vector potential are given by the
boundary condition (6c) on hm.

The free magnetic field energy density M expressed in terms of
the magnetic induction is defined as [26–28]

MðbÞ ¼
1

2m0

b � b, ð11Þ

while its Legendre transformation, as described for example in
[57] and applied to magneto-elasticity for example in [58], is
defined as

LETðhm,bÞ : Mn
ðhmÞ ¼ inf

b
fMðbÞþhm � bg ¼�

1

2
m0h

m
� hm: ð12Þ

With this at hand, we define the following constitutive laws
for the magnetic field quantities, which coincide with the cou-
pling relation (4):

hm ¼
@M

@b
, b¼�

@Mn

@hm
in S: ð13Þ

2.1. Variational principles in free space

The goal of this section is to define several functionals whose
stationary points are solutions of the system of partial differential
equations described in (6a)–(10). We start with the definition of a
Dirichlet type functional, for which we can also state existence
and uniqueness of a solution with the help of the Brezzi theorem
(see Appendix B). The Dirichlet type functional is then extended
to a more general master functional, which is achieved by
dropping certain constraints on the unknown variables and
incorporating these conditions directly into the functional. In
order to do this within a functional analytic framework, a proper



Table 1
Classification of results according to weak and strong satisfaction of field

equations and boundary conditions in free space.

In S phw phr pd dhw dhr dd Eq.

r � hm ¼ 0 Weak Weak Weak Weak Weak Strong (6a)

b¼r � a Weak Weak Strong Weak Weak Weak (7)

n1 � hm ¼ n1 � hm1 Weak Weak Weak Strong Strong Strong (6c)

n1 � a¼ atan
1

Strong Strong Strong Weak Weak Weak (10)

hm ¼
@M

@b

Weak – Strong Weak – – (13)1

b¼�
@Mn

@hm
– Strong – – Strong Strong (13)2

2 We assume that the stationary points of the two- and three field principles

are saddle points, because solving for the magnetic vector potential a necessitates

the formulation of a saddle point problem already within the primal Dirichlet

framework.
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definition of the involved functional spaces is necessary, which
can be found in Definition 1 of Appendix A.

2.1.1. Master functionals

We define the primal Dirichlet-type functional

IpdðaÞ ¼

Z
S

MðbÞ dv�

Z
@Sj1

hm1 � ½n1 � a� da ð14Þ

for aAVaðSÞ and with the constraint b¼r � a. Under the
assumption that a fulfills the Dirichlet boundary condition (10),
and assuming enough regularity for a and da and in consequence
for hm, we can easily derive that the Euler–Lagrange equations of
the functional (14) coincide with Eqs. (6a) and (6c). A theory for
existence and uniqueness of the primal Dirichlet-problem is given
by the Brezzi theorem. For further details see also Appendix B.

Remark 1 (Functional space for hm1). The trace theorem for
Hðcurl;SÞ (see [55, Theorem 2.11]) guarantees that the tangential
component along the boundary for every function in Hðcurl;SÞ is
in H�1=2

ð@S1Þ. This means that for each magnetic vector potential
a in Hðcurl;SÞ, its tangential component n1 � a is well-defined.
To ensure this also for the boundary integral in (14), we propose
for the prescribed boundary term hm1AH1=2

ð@Sj1Þ. With regard to
Footnote 1, it should be observed here that a boundary integral of
the form

R
@Sj1
½n1 � hm1� � a da would call for aAH1,2

ðSÞ, which is
not the desired choice.

Using the primal Dirichlet functional as a starting point, it is our
goal to derive further one-, two- and three-field functionals whose
stationary points represent a solution to the magnetostatic problem.
To pursue this intention, we develop in this section two types of
master functionals. From these master functionals, the desired one-,
two- and three-field functionals can be derived later on in a
systematic top-down procedure, depending on the number of strong
assumptions proposed directly onto the master functionals.

Adding the constraint b¼r � a (7) and the Dirichlet boundary
condition on a, n1 � a¼ n1 � a1 on @Sa1 (see Eq. (10)), with the
Lagrange multipliers k and l to the primal Dirichlet functional
(14), renders the preliminary functional:

I ða,b,k,lÞ ¼
Z
S

MðbÞ dv�

Z
@Sj1

hm1 � ½n1 � a� da

�

Z
S
k � ½b�r � a� dvþ

Z
@Sa1

l � ½n1 � a�n1 � a1� da:

ð15Þ

The variation of the preliminary functional Ipm leads to a set of
Euler–Lagrange equations which give a meaningful interpretation
to the Lagrange multipliers k and l. The imposition of these
Lagrange multipliers directly into the preliminary functional I
leads to the following primal master functional Ipm:

Ipmða,b,hmÞ ¼

Z
S

MðbÞ dv�

Z
@Sj1

hm1 � ½n1 � a� da

�

Z
S
hm � ½b�r � a� dv�

Z
@Sa1

hm � ½n1 � a�n1 � a1� da

ð16Þ

for aAHðcurl;SÞ, bAL2
ðSÞ, hmAL2

ðSÞ and hmAH1=2
ð@Sa1Þ.

Remark 2 (Functional space for a1 and hm). We propose that
hmAH1=2

ð@Sa1Þ with the same argument as in Remark 1. In
consequence, this leads to the assumption that a1AHðcurl;SÞ.
The restriction on hm is obviously fulfilled if we assume more
regularity on hm, as for example, hmAH1,2

ðSÞ. Then, the trace
theorem for H1,2

ðSÞ guarantees that the boundary values of hm are
well-defined without further ado.

In order to exchange the weak Dirichlet boundary condition
appearing in the boundary integral, we apply the Gauss theorem
to the primal master functional Ipm, which leads to the following
dual master functional:

Idmða,b,hmÞ ¼

Z
S

MðbÞ dv�

Z
@Sj1

a � ½n1 � hm�n1 � hm1� da

�

Z
S
½hm � b�½r � hm� � a� dv�

Z
@Sa1

a1 � ½n1 � hm� da

ð17Þ

for aAL2
ðSÞ and aAH1=2

ð@Sj1Þ, bAL2
ðSÞ, hmAHðcurl;SÞ. The func-

tional spaces for a and hm now switched roles in contrast to the
primal case. The given boundary values now have to belong to the
spaces a1AH1=2

ð@Sa1Þ and hm1AHðcurl;SÞ.

2.1.2. Three-, two- and one field functionals

From the master functionals, Hu–Washizu-, Hellinger–Reissner-
and Dirichlet-type functionals can now be derived in a systematic
top-down procedure. The primal functionals result from the primal
master functional and the dual functionals from the dual master
functional, respectively. Table 1 summarizes the respective choices
of the effective assumptions to obtain the different variational
formulations. We present the different functionals in the following
paragraphs:

(a) Primal Hu–Washizu Principle (phw): Starting with the
primal master functional (16) and enforcing that aAVaðSÞ, we
obtain the primal Hu–Washizu functional:

Iphwða,b,hmÞ ¼

Z
S
½MðbÞ�hm � ½b�r � a�� dv

�

Z
@Sj1

hm1 � ½n1 � a� da, ð18Þ

for aAVaðSÞ, bAL2
ðSÞ, hmAL2

ðSÞ and daAV0ðSÞ, dbAL2
ðSÞ,

dhmAL2
ðSÞ.

Let ða,b,hmÞ be a saddle point2 of Iphw. Exploiting the boundary
condition of V0ðSÞ for da and supposing enough regularity of hm

and da, this triple is the result of the variation

dIphwða,b,hmÞ ¼

Z
S

@MðbÞ

@b
� db�dhm � ½b�r � a��hm � db

� �
dv

þ

Z
S
hm � ½r � da� dv�

Z
@Sj1

hm1 � ½n1 � da� da

¼

Z
S

@MðbÞ

@b
�hm

� �
� db�dhm � ½b�r � a�

� �
dv

þ

Z
S
½r � hm� � da dv�

Z
@Sj1

da � ½n1 � hm�n1 � hm1� da:

It is possible to see that Eqs. (6a), (6c), (7) and (13)1 are weakly
fulfilled by the solution of the saddle point problem.



Fig. 3. Geometry of rigid body immersed in free space. The body B is bounded by

the C1-boundary @B. The Lipschitz-continuous exterior boundary @S1 denotes the

truncation of the computational domain. Along the interface and the exterior

boundary external magnetic loads are applied.
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(b) Primal Hellinger–Reissner principle (phr): Performing a
Legendre transformation on the Hu–Washizu functional reduces
the number of independent variables by one, and yields the
Hellinger–Reissner functional:

Iphrða,hmÞ ¼

Z
S
½Mn
ðhmÞþhm � ½r � a�� dv

�

Z
@Sj1

hm1 � ½n1 � a� da, ð19Þ

for aAVaðSÞ, hmAL2
ðSÞ and daAV0ðSÞ, dhmAL2

ðSÞ.
For a given saddle point solution ða,hmÞwith enough regularity,

the variation of Iphr can be rearranged to

dIphrða,hmÞ ¼

Z
S

@Mn
ðhmÞ

@hm
� dhmþdhm � ½r � a�þhm � ½r � da�

� �
dv

�

Z
@Sj1

hm1 � ½n1 � da� da

¼

Z
S
½½�bþr � a� � dhmþ½r � hm� � da� dv

�

Z
@Sj1

da � ½n1 � hm�n1 � hm1� da

assuming the strong identity (13)2 and the boundary condition of
V0ðSÞ for da. The remaining equations (6a), (6c) and (7) hold for
this principle in a weak sense.

(c) Primal Dirichlet principle (pd): The primal Dirichlet func-
tional defined in Eq. (14) can be derived from the primal Hu–
Washizu functional omitting the Lagrange multiplier hm and
instead assuming Eq. (7) in a strong sense. Alternatively, we can
start with the primal Hellinger–Reissner functional proposing the
strong validity of Eq. (7) and performing subsequently a second
Legendre transformation. This leads back to the original free space
energy MðbÞ. For a discussion of its variation we refer to Appendix
B. Within the primal Dirichlet principle, Eqs. (6a) and (6c) are
weakly fulfilled, whereas Eqs. (7), (10) and (13)1 are valid in a
strong sense.

(d) Dual Hu–Washizu Principle (dhw): In analogy to the primal
case, we start now with the dual master functional and incorpo-
rate the boundary condition hmAWjðSÞ directly, which results in
the dual Hu–Washizu functional

Idhwða,b,hmÞ ¼

Z
S
½MðbÞ�hm � bþ½r � hm� � a� dv

�

Z
@Sa1

a1 � ½n1 � hm� ds ð20Þ

for aAL2
ðSÞ, bAL2

ðSÞ, hmAWjðSÞ and daAL2
ðSÞ, dbAL2

ðSÞ,
dhmAW0ðSÞ.

Let ða,b,hmÞ be a saddle point of Idhw. Assuming that the
boundary condition of V0ðSÞ holds strongly for da and supposing
enough regularity of hm and da, this triple is the result of the
variation

dIdhwða,b,hmÞ ¼

Z
S

@MðbÞ

@b
� db�dhm � b�hm � dbþ½r � hm� � da

� �
dv

þ

Z
S
½r � dhm� � a dv�

Z
@Sa1

a1 � ½n1 � dhm� ds

¼

Z
S

@MðbÞ

@b
�hm

� �
� dbþ½r � a�b� � dhm

� �
þ

Z
S
½r � hm� � da dv�

Z
@Sa1
½n1 � a�n1 � a1� � dh

m ds:

Therefore, (6a), (7), (10) and (13)1 are the Euler–Lagrange equa-
tions of this principle. Eq. (6c), in contrast, is the only equation
that holds in a strong sense.

(e) Dual Hellinger–Reissner principle (dhr): In order to decrease
the number of independent variables from three to two fields, the
dual Hu–Washizu principle is Legendre transformed. As a result,
the Hellinger–Reissner functional reads as

Idhrða,hmÞ ¼

Z
S
½Mn
ðhmÞþ½r � hm� � a� dv

�

Z
@Sa1

a1 � ½n1 � hm� ds

for aAL2
ðSÞ, hmAWjðSÞ and daAL2

ðSÞ, dhmAW0ðSÞ.
Assuming the strong identity (13)2 and the boundary condi-

tion of W0ðSÞ for dhm, the variation of Idhr can be manipulated to
the following expression:

dIdhrða,hmÞ ¼

Z
S

@Mn
ðhmÞ

@hm
� dhmþ½r � dhm� � aþ½r � hm� � da

� �
dv

�

Z
@Sa1

a1 � ½n1 � dhm� ds

¼

Z
S

@Mn
ðhmÞ

@hm
þb

� �
� dhmþ½r � hm� � da

� �
dv

�

Z
@Sa1

dhm � ½n1 � a�n1 � a1� ds:

The Euler–Lagrange equations of the dual Hellinger–Reissner
principle coincide with Eqs. (6a), (7) and (10).

(f) Dual Dirichlet principle (dd): The dual Dirichlet functional
can be derived from the dual Hellinger–Reissner functional
omitting the Lagrange multiplier a and assuming instead Eq.
(6a) in a strong sense. Alternatively, we can start with the dual
Hu–Washizu functional proposing the strong validity of Eq. (6a)
and performing subsequently a Legendre transformation:

IddðhmÞ ¼

Z
S

Mn
ðhmÞ dv�

Z
@Sa1

a1 � ½n1 � hm� ds

for hmAfW jðSÞ and dhmAfW 0ðSÞ.
For a given solution hm of the dual Dirichlet principle with

enough regularity, we can derive the first variation as

dIddðhmÞ ¼

Z
S

@Mn
ðhmÞ

@hm
� dhm dv�

Z
@Sa1

a1 � ½n1 � dhm� ds

¼

Z
S
½r � a�b� � dhm dv�

Z
@Sa1

dhm � ½n1 � a�n1 � a1� ds:

For the dual Dirichlet principle, Eqs. (6a) and (6c) and the
constitutive relation (13)2 are strongly fulfilled, whereas (7) and
(10) are satisfied in a weak sense.
3. Rigid body embedded into free space

We now introduce a rigid body B to our geometry, as depicted
in Fig. 3. The most important difference with the formulation in



Table 2
Classification of results according to weak and strong satisfaction of field

equations and boundary conditions for a rigid body immersed in free space. The

classification of the equations valid in free space can be found in Table 1.

In B phw phr pd dhw dhr dd Eq.

r � h¼ jf Weak Weak Weak Weak Weak Strong (23)1

b¼r � a Weak Weak Strong Weak Weak Weak (24)

n� 1hU¼ n� jf ,p Weak Weak Weak Strong Strong Strong (25a)
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mere free space is the careful investigation of the physical
phenomena arising on the surface @B separating the body B from
the outer space S. The surface @B of the body B is divided into
two parts,

@B¼ @Bj [ @Ba, ð21Þ

such that @Bj \ @Ba ¼ |. The body B is bounded and we assume @B
is C1. As in the case of free space, @S1 denotes the truncation of
the computational domain where external magnetic loads are
applied. The boundary conditions (6c) and (10) still hold in
vacuum all relations shown in the previous section.

Inside the body a possible non-linear coupling between the
magnetic field and the magnetic induction is assumed. This can be
described by an additional variable, the magnetization m of the
material, where [26–28]

h¼
1

m0

b�m in B: ð22Þ

For the special case of vacuum, h coincides with ð1=m0Þb since
there is no magnetization in free space, i.e. m¼ 0.

Additionally to the free space equations (6a) and (6b), the
static field equation for the magnetic field and the magnetic
induction have to hold within the body, which read as
[14,26–28,54]

r � h¼ jf , r � b¼ 0 in B: ð23Þ

Although when working with a magneto-active polymer no free
currents exist, we keep the term jf to make our formulations more
general. Since we assume the quasistatic case of the Maxwell’s
equations, the free current density has to be invariant in time.
Eq. (23)2 is satisfied by setting [26–28,54–56]

b¼r � a in B: ð24Þ

Across the boundary of the body, the continuity conditions
already introduced in Section 2 as Eqs. (2)1 and (9) are relevant.
Assuming that only @Bj carries a free surface current and only
along @Ba a prescribed value for the magnetic vector potential is
given, the continuity conditions can be stated more precisely as
[14,26–28,34,35,54]3

n� 1hU¼ n� jf ,p
¼: ĵ

f
on @Bj, ð25aÞ

n� ao ¼ n� ai ¼ n� ap ¼: atan,p on @Ba, ð25bÞ

where the indices i and o refer to inside and outside the bulk,
respectively. The index p indicates a prescribed value. Since we
assume the quasistatic case of Maxwell’s equations, the free
surface current density has to be invariant in time.

The magnetic quantities are coupled by the constitutive law
obtained by the derivatives of the total internal potential energy
density W, where W consists of the free field magnetic energy
density M and the free energy density c associated with the
magnetization of the material, i.e.

WðbÞ ¼MðbÞþcðbÞ: ð26Þ

Following a procedure similar to the method developed by Cole-
man and Noll, we can write

h¼
@W

@b
in B, ð27Þ
3 We favour the definition of the jump conditions (25a) and (25b) in terms of

the vector product, such that we are able to prescribe functional analytical

requirements on a and h with the least regularity. See also Remark 3 in

Section 3.1.1.
where we implicitly defined the magnetization as

m¼�
@c
@b
: ð28Þ

After a Legendre transformation of WðbÞ into the complementary
energy density Wn

ðhÞ, we obtain the alternative constitutive
relation

b¼�
@Wn

@h
in B: ð29Þ

3.1. Variational principles for a rigid body in free space

Several concepts and expressions obtained in Section 2 are also
of relevance here. The structure of weak and strong satisfaction for
each variational principle remains unchanged for a rigid body, in
comparison to the case of mere free space as in Table 1. Therefore,
we present most results briefly with only some details, however, the
adaption of the function spaces to the new geometry is necessary. A
proper definition of the involved functional spaces can be found in
Definition 2 of Appendix A.The most important difference is the
incorporation of the jump conditions along the interface of the body
with the surrounding free space (Table 2).

The tangential continuity across material discontinuities, pro-
posed for the magnetic vector potential a in (9), is guaranteed
through the trace theorem for functions in VðB [ SÞ [55].

3.1.1. Master functionals

The primal master functional for the free space (16) is
amended by the contributions within the bulk B, as well as by
the Dirichlet boundary condition and the energy stored by the
surface free current density along the interface @B. The new two
master functionals (with the superscripts pm and dm having the
same meaning as in Section 2.1.1) read as

Ipmða,b,hÞ ¼

Z
S

MðbÞ dv�

Z
@Sj1

h1 � ½n1 � a� da

�

Z
S
h � ½b�r � a� dv�

Z
@Sa1

h � ½n1 � a�n1 � a1� da

þ

Z
B
½WðbÞ�jf

� a� dv�

Z
@Bj

jf ,p
� ½n� a� da

�

Z
B
h � ½b�r � a� dvþ

Z
@Ba

1hU � ½n� a�n� ap� da

ð30Þ

for aAVðB [ SÞ, bAL2
ðB [ SÞ, hAL2

ðB [ SÞ and hAH1=2
ð@Sa1Þ as

well as hAH1=2
ð@BaÞ.

Idmða,b,hÞ ¼

Z
S

MðbÞ dv�

Z
@Sj1

a � ½n1 � h�n1 � h1� da
n� ao¼n�ai¼ n�ap Strong Strong Strong Weak Weak Weak (25b)

h¼
@W

@b

Weak – Strong Weak – – (27)

b¼�
@Wn

@h

– Strong – – Strong Strong (29)
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�

Z
S
½h � b�½r � h� � a� dv�

Z
@Sa1

a1 � ½n1 � h� da

þ

Z
B
½WðbÞ�jf

� a� dvþ

Z
@Bj

a � ½n� 1hU�jf ,p
� n� da

�

Z
B
½h � b�½r � h� � a� dvþ

Z
@Ba

ap � ½n� 1hU� da ð31Þ

for aAL2
ðB [ SÞ and aAH1=2

ð@Sa1Þ as well as aAH1=2
ð@BaÞ,

bAL2
ðB [ SÞ, hAVðB [ SÞ.

Remark 3 (Functional spaces of jf ,p and ap). We propose for the
primal case that jf ,pAH1=2

ð@Sj1Þ and apAHðcurl; @BaÞ. For the dual
case we propose that jf ,pAHðcurl;BÞ and apAH1=2

ð@Sa1Þ. Observe
here that a boundary integral of the form

R
@Bj ĵ

f
� a da in (30)

would call for aAH1,2
ðB [ SÞ and analogously, the boundary

integral
R
@Ba1hU � atan,p da in (31) for hAH1,2

ðB [ SÞ.

3.1.2. Three-, two- and one field functionals

Once we derive the functionals Ipm and Idm in their most general
form, we can follow all steps from Section 2 without any changes in
order to derive the one-, two- and three-field functionals. Therefore,
for the sake of brevity, only the final expressions are presented:

(a) Primal Hu–Washizu-type functional

Iphwða,b,hÞ ¼

Z
S
½MðbÞ�h � ½b�r � a�� dv�

Z
@Sj1

h1 � ½n1 � a� da

þ

Z
B
½WðbÞ�jf

� a�h � ½b�r � a�� dv�

Z
@Bj

jf ,p
� ½n� a� da

ð32Þ

for aAVaðB [ SÞ, bAL2
ðB [ SÞ, hAL2

ðB [ SÞ, and daAV0ðB [ SÞ,
dbAL2

ðB [ SÞ, dhAL2
ðB [ SÞ. By the solution of the saddle point

problem, Eqs. (23)1, (24), (25a) and (27) are weakly fulfilled,
whereas Eq. (25b) is strongly fulfilled.

(b) Primal Hellinger–Reissner-type functional

Iphrða,hÞ ¼

Z
S
½M�ðhÞ dvþh � ½r � a���

Z
@Sj1

h1 � ½n1 � a� da

þ

Z
B
½W�
ðbÞ dv�jf

� aþh � ½r � a�� dv�

Z
@Bj

jf ,p
� ½n� a� da

ð33Þ

for aAVðB [ SÞ, hAL2
ðB [ SÞ, and daAV0ðB [ SÞ, dhAL2

ðB [ SÞ.
Assuming the strong identities (29) and the boundary condition
(25b), the remaining equations (23)1, (24) and (25a) hold for this
principle in a weak sense.

(c) Primal Dirichlet-Type functional:

IpdðaÞ ¼

Z
S

MðbÞ dv�

Z
@Sj1

h1 � ½n1 � a� da

þ

Z
B
½WðbÞ�jf

� a� dv�

Z
@Bj

jf ,p
� ½n� a� da ð34Þ

for aAVaðB [ SÞ and daAV0ðB [ SÞ. Within the primal Dirichlet
principle, Eqs. (23)1 and (25a) are weakly fulfilled, whereas
Eqs. (24), (25b) and (27) are valid in a strong sense.

(d) Dual Hu–Washizu-type functional:

Idhwða,b,hÞ ¼

Z
S
½MðbÞ�h � bþ½r � h� � a� dv�

Z
@Sa1

a1 � ½n1 � h� da

þ

Z
B
½WðbÞ�jf

� a�h � bþ½r � h� � a� dvþ

Z
@Ba

ap � ½n� 1hU� da

ð35Þ

for aAL2
ðB [ SÞ, bAL2

ðB [ SÞ, hAWjðB [ SÞ, and daAL2
ðB [ SÞ,

dbAL2
ðB [ SÞ, dhAW0ðB [ SÞ. Eqs. (23)1, (24), (25b), (27) are the

Euler–Lagrange equations of this principle. Eq. (25a), in contrast,
is the only equation that holds in a strong sense.
(e) Dual Hellinger–Reissner-type functional

Idhrða,hÞ ¼

Z
S
½M�ðhÞþ½r � h� � a� dv�

Z
@Sa1

a1 � ½n1 � h� da

þ

Z
B
½W�
ðhÞ�jf

� aþ½r � h� � a� dvþ

Z
@Ba

ap � ½n� 1hU� da ð36Þ

for aAL2
ðB [ SÞ, hAWjðB [ SÞ, and daAL2

ðB [ SÞ, dhAW0ðB [ SÞ.
Assuming the strong identity (25a) and the constitutive law (29),
the Euler–Lagrange equations of the dual Hellinger–Reissner
principle coincide with Eqs. (23)1, (24) and (25b).

(f) Dual Dirichlet-type functional:

Iddða,Þ ¼

Z
S

M�ðhÞ dv�

Z
@Sa1

a1 � ½n1 � h� da

þ

Z
B

W�
ðhÞ dv�

Z
B
jf
� a dvþ

Z
@Ba

ap � ½n� 1hU� da ð37Þ

for hAfW jðB [ SÞ and dhAfW0ðB [ SÞ. For the dual Dirichlet
principle, Eqs. (23)1, (25a) and the constitutive relation (29) are
strongly fulfilled, whereas (24) and (25b) are satisfied in a
weak sense.
4. Geometrically non-linear deforming body embedded into
free space

The final step is to investigate a non-linearly deforming body
as depicted in Fig. 4, which is subjected to a magnetic field. At a
first glance, the reader will notice that the functionals that we are
going to present in the next Section 4.1, do not differ much from
those presented in Section 3.1. Basically, they are only expanded
by the external contributions of the body forces inside the bulk
and mechanical tractions on the surface. This simple adaptation of
the functionals, of course, should not mask the fact that the major
challenge, when observing magnetic and mechanical effects
simultaneously, lies in a suitable formulation of the balance of
linear momentum and the stress tensor used therein.

Due to the magnetic couple acting on the bulk, the Cauchy
stress tensor is not symmetric anymore. This was already stated
in the pioneering works of Tiersten [59] and Brown [8]. From
those early times on, it was known that for the case of static
equilibrium, the antisymmetric part of the Cauchy stress tensor
(named as elastic or local stress in the equivalent work on non-
linear dielectrics by Toupin [60]) is balanced by the antisym-
metric part of a ponderomotive stress tensor. This additional
contribution to the elastic stress measure is usually referred to as
the Maxwell stress (see, for example, [10,15,18,17,21,59,60]) or
(electro)magnetic stress [45] and results in a Cauchy-like sym-
metric total stress tensor [16,18,19,28,61].

We will adopt the term ponderomotive stress here and use the
terms magnetization stress and Maxwell stress for the non-
symmetric and symmetric parts of the ponderomotive stress,
respectively. This notation may at first seem to be a further
complication of the predominant use in the literature. However,
we take it as a handy tool to distinguish immediately between the
non-symmetric part of the ponderomotive stress tensors, which
exists only inside the body, and the symmetric part of the
ponderomotive stress tensor, which exists also outside the body.
The same split can be found in [19,23] and is in analogy to our
previous works [25,30].

The surrounding free space may not be neglected when it
comes to the investigation of a body immersed by vacuum,
because the magnetic fields inside and outside the body influence
each other and the need to satisfy the continuity conditions for
the magnetic variables, generates non-homogeneous fields inside
a finite body. Due to the existence of a magnetic field outside
the body, parts of the total stress tensor do not vanish in vacuum.



Fig. 4. Geometry of geometrically non-linearly deforming body immersed in free

space with reference configuration on the left and deformed configuration on the

right. Besides the magnetic loading along the interface and the exterior boundary,

mechanical loads are applied along the interface.

5 The definition of the ponderomotive body force is not unique, see, for
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The ponderomotive contribution of stress has to be taken into
account in cases, where the magnetic field surrounding the body
does not decrease abruptly, when reaching the interface but
continues gradually. This occurs in the case of magneto-active
material with a small relative permeability. This class of magneto-
rheological elastomers was investigated in experiments docu-
mented, for example, in [1–3,62], where relative permeabilities of
order Oð1Þ for particle concentrations up to 50% were reported.
Fluid counterparts with the same order of relative permeability
can be found in experimental works like [5,6,63].

Before presenting the variational formulations for the non-
linearly deforming body, we will repeat briefly the basic concepts
of non-linear continuum mechanics, and the necessary alterations
of the magnetostatics equations from the previous sections.

Our body may undergo large deformations. Therefore, we have
to distinguish between an undeformed configuration B0 and a
deformed configuration Bt . For the material as well as for the
spatial setting, the surface of the body is divided into different
subsets:

@B¼ @Bj [ @Ba, @B¼ @Bd
[ @Bt, ð38Þ

such that

@Bj \ @Ba ¼ |, @Bd
\ @Bt

¼ |: ð39Þ

Obviously, B is bounded and we assume @B is C1. Let u denote
the deformation map, F the deformation gradient, i.e. F ¼rXu
and J the determinant of F. Here, rX denotes the nabla operator
with respect to X. The position vector and the magnetic field
quantities are designated by capital letters in the material setting
and by small letters in the spatial setting, respectively. The push-
forward operations for the magnetic field quantities read as
[13,16]

b¼B � cof F-1, h¼H � F-1, m¼M � F-1: ð40Þ

From the magnetostatic point of view, the equations to be
solved are Maxwell’s equations as we have seen them before in
Section 3. Due to the deformation of the body, we now have to
specify them for a formulation in the material configuration:

r �H¼ Jf , r �B¼ 0 in B0, ð41Þ

where Jf denotes the free current density within the bulk per
undeformed unit volume. Eq. (41)2 is satisfied by

B¼rX �A in B0, ð42Þ

where for the magnetic vector potential the following push-
forward operation holds

a¼A � F-1: ð43Þ

In free space we have4

r �H¼ 0, r �B¼ 0 in S0: ð44Þ

Eq. (44)2 is satisfied by

B¼rX �A in S0: ð45Þ

Observe here that in (22) we have a relation for the three
magnetic field variables, which is, however, valid only for the
deformed configuration. In the material setting this translates
to [17]

H¼
1

Jm0

C �B�M in B0, ð46Þ

which reduces to H¼ ½m0J��1C �B ¼: Hm in free space S0, where
M¼ 0.
4 We have extended the displacement field u outside the body in vacuum, and

as a result we can define H and B, the magnetic field and magnetic induction for

free space.
In addition to the magnetic field equations that have been
discussed previously, one has to solve the balance of linear
momentum [17]

rX � Pþbpon
0 þb0 ¼rX � P

tot
þb0 ¼ 0 in B0, ð47Þ

where bpon
0 denotes the ponderomotive body force, and b0

denotes the mechanical body force. Ptot symbolizes a total stress
tensor which contains the contributions of the ponderomotive
body force. A Piola transformation of Ptot leads to the Cauchy-like
symmetric total stress tensor rtot, which was mentioned in the
introductory part of this Section 4 in the deformed configuration

rtot ¼ Ptot
� cof F-1: ð48Þ

This transformations together with (40) allows a formulation of
the set of partial differential equations in the deformed config-
uration. For the balance of linear momentum we obtain

rx � rþbpon
t þbt ¼rx � r

totþbt ¼ 0 in Bt : ð49Þ

As mentioned before, Ptot and rtot not only consist of the Piola
stress P or the Cauchy stress r, respectively, but also of a part
arising from the magnetic field effects. To be more precise, Ptot

and rtot are split additively into

Ptot
¼ PþPpon

¼ PþPmag
þPmax in B0, ð50aÞ

rtot ¼ rþrpon ¼ rþrmagþrmax in Bt : ð50bÞ

This construction of the different stress contributions is exempli-
fied for the spatial configuration as follows, and can easily be
understood with the choice for the ponderomotive body force5 as

bpon
t ¼m � rbþjf

� b, ð51Þ

which coincides with the force term introduced by Pao [12] when
neglecting all electric fields and the polarization. The motivation
for the ponderomotive stress is given by the intention to express
the ponderomotive body force in terms of a divergence:

bpon
t ¼rx � r

pon with rpon ¼
1

2m0

½b � b�i�½h � b�iþh� b: ð52Þ

With relation to Eq. (46), the ponderomotive stress rpon is
separated into its non-symmetric part, the magnetization stress

rmag ¼ ½m � b�i�m� b, ð53Þ

and its symmetric part, the Maxwell stress

rmax ¼�Mtiþ
1

m0

b� b: ð54Þ
example, [7,45,59]. Each choice for the force leads to alternative decompositions of

the ponderomotive stress tensor, see, for example Table 1 of [18] for an overview

of the possible forms. We have chosen a force in terms of the magnetic induction

b, because it plays well along with the magnetic free field energy defined in (11),

and with the variational functionals in terms of the magnetic vector potential a.
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The magnetization stress rmag compensates the antisymmetric
part of the elastic Cauchy stress r. Adding all stress contributions
together leads to the symmetric Cauchy-like total stress tensor rtot.
The corresponding expressions for Ppon, Pmag and Pmax are obtained
via the Piola transformation (48), however, their summation does
not lead to a symmetric stress tensor. The total Piola stress tensor
Ptot is non-symmetric in the material configuration, as it holds for
the Piola stress tensor in pure elasticity as well.

It should be observed that the Maxwell stress also exists in
vacuum, whereas all other stress contributions vanish in outer
space. Furthermore, it can also be derived directly as a derivative
of the free field magnetic energy with respect to the deformation
gradient

Pmax
¼
@M0

@F
: ð55Þ

The spatial magnetic free field energy Mt is given as in (11), its
material counterpart is calculated from the relation M0 ¼ JMt and
results in

M0ðF ,BÞ ¼
1

2m0

J�1C : ½B�B�: ð56Þ

Without loss of generality, we assume that there is no
deformation at the far-away boundary @S1, therefore

uðXÞ�X ¼ 0 on @S1, ð57Þ

and we do not have to consider the Maxwell stress or any
mechanical tractions at that boundary:

Pmax
� n1 ¼ 0 on @S1: ð58Þ

The existence of such an extension of uAH1,2
ðB0Þ to

uAH1,2
ðB0 [ S0Þ, which preserves the weak derivatives across

@B0 and has support only in a subdomain of B0 [ S0, is guaranteed
by the extension theorem, see, for example, [57]. Since
uAH1,2

ðB0 [ S0Þ, the continuity of u across the boundary @B0 is
obtained due to the uniqueness of the trace operator [55]. Of
course, one can prescribe Dirichlet values for the deformation
map u along the boundary @B0

uo ¼ui ¼up on @Bd
0: ð59Þ

The jump condition regarding the stress along the boundary of
the body is written as

1PtotU � N ¼�t0 on @Bt
0, ð60Þ

where t0 is a prescribed mechanical traction and N is the
outwards pointing normal vector to the surface of @B0. For the
magnetic continuity and boundary conditions we refer to Eqs. (6c),
(10), (25a), and (25b).

As a final step to complete the boundary value problem, we
introduce constitutive relations for the total stress tensor and the
magnetic field strength following closely [17]. In analogy with
what was done for the free energy used in Sections 2 and 3, we
keep the magnetic induction B as the independent variable which
is complemented by the deformation gradient F. We define an
energy density U0 related to matter per referential unit volume,
which consists of an internal contribution W0 and an external
contribution V0. The internal contribution W0 is equivalent to the
amended energy density presented in [17] and is split into two
parts: the free field magnetic energy density M0 and an energy
density c0, which is associated with the magnetization as well as
the strain energy density of the material.

U0ðA,B,H; F ,uÞ ¼W0ðB; FÞþV0ðA,H;uÞ

¼M0ðB; FÞþc0ðB; FÞþV0ðA,H;uÞ: ð61Þ
Based on the above energy densities the total Piola stress Ptot

and the referential magnetic field strength H are defined as [17]

Ptot
¼
@U0

@F
¼
@W0

@F
, H¼

@U0

@B
¼
@W0

@B
, ð62Þ

and the magnetization as

M¼�
@c0

@B
: ð63Þ

After a Legendre transformation of W0ðBÞ into the complemen-
tary energy density Wn

0ðHÞ, we obtain the alternative constitutive
relation

B¼�
@Wn

0

@H
in B0: ð64Þ

4.1. Variational principles for a geometrically non-linear deforming

body in free space

In order to investigate variational formulations of a deforming
body in free space, the definition of two additional functional
spaces for the deformation map u is necessary, see Definition 3 in
Appendix A.

At this point we refer to [64] for a mathematically detailed
discussion on non-linear elasticity theory including the definition
of the necessary Sobolev space, i.e. W1,p for pZ2, and the
sufficient growth conditions on the strain energy function to
ensure the existence of a minimizer for the variational functional.
In the following sections, we choose for simplicity p¼2.

4.1.1. Three-, two- and one field functionals

For the sake of simplicity, we study here the transformations
in the independent variables only for the magnetic quantities. For
different variational settings in the mechanical quantities, we
refer to standard procedures that can be found, for example, in
[65]. Thus, u remains as independent variable with
uAUjðB0 [ S0Þ, duAU0ðB0 [ S0Þ and the identity F ¼rXu still
holds. All principles satisfy the balance of linear momentum (47)
and the boundary conditions on the Piola total stress tensor, (58)
and (60), in a weak sense, whereas the Dirichlet boundary
conditions on the deformation, (57) and (59), as well as the
constitutive relations for the Piola total stress inside and the
Maxwell stress outside the body, (55) and (62)1, are fulfilled
strongly. Table 3 gives an overview of the strong an weak validity
of all equations that hold within the bulk and the surrounding
free space.

Since we have studied master functionals dealing with a rigid
body in Section 3.1, we have basically only to amend them with
the external contributions from the body forces and the mechan-
ical tractions. The additional terms are easily identified as the two
ultimate integrals in the following list of functionals.

(a) Primal Hu–Washizu-type functional

IphwðA,B,H;uÞ

¼

Z
S0

½M0ðB; FÞ�H � ½B�rX �A�� dV�

Z
@Sj1

H1 � ½N1 �A� dA

þ

Z
B0

½W0ðB; FÞ�J
f
�A�H � ½B�rX �A�� dV

�

Z
@Bj

0

Jf ,p
� ½N�A� dA�

Z
B0

u � b0 dV�

Z
@Bt

0

u � tp
0 dA ð65Þ

for AAVaðB0 [ S0Þ, BAL2
ðB0 [ S0Þ, HAL2

ðB0 [ S0Þ, uAUj
ðB0 [ S0Þ, and dAAV0ðB0 [ S0Þ, dBAL2

ðB0 [ S0Þ, dHAL2
ðB0 [ S0Þ,

duAU0ðB0 [ S0Þ. By the solution of the saddle point problem, Eqs.
(44)1, (41)1, (45) and (42), the boundary conditions on H (6c) and
(25a), and the constitutive laws for H (13)1 and (62)2 are weakly



Table 3
Classification of results according to weak and strong satisfaction of field equations and boundary conditions for a deforming body immersed in free space.

In S In B phw phr pd dhw dhr dd

r�Hm
¼ 0 r �H¼ Jf Weak Weak Weak Weak Weak Strong

B¼rX �A B¼rX �A Weak Weak Strong Weak Weak Weak

n1 �Hm
¼ n1 �Hm

1 N � 1HU¼ n� Jf ,p Weak Weak Weak Strong Strong Strong

n1 �A¼Atan
1

N �Ao ¼N �Ai ¼N �Ap Strong Strong Strong Weak Weak Weak

Hm
¼
@M0

@B
H¼

@W0

@B

Weak – Strong Weak – –

B¼�
@Mn

0

@Hm B¼�
@Wn

0

@H

– Strong – – Strong Strong

rX � P
max
¼ 0 rX � P

tot
þb0 ¼ 0 Weak Weak Weak Weak Weak Weak

uðXÞ�X ¼ 0 u¼up Strong Strong Strong Strong Strong Strong

Pmax
� n1 ¼ 0 1PtotU � N ¼�t0 Weak Weak Weak Weak Weak Weak

Pmax
¼
@M0

@F
Ptot
¼
@W0

@F

Strong Strong Strong Strong Strong Strong
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fulfilled, whereas the boundary conditions on A (10) and (25b)
are strongly fulfilled.

(b) Primal Hellinger–Reissner-type functional

IphrðA,H;uÞ

¼

Z
S0

½Mn

0ðH; FÞ dVþH � ðrX �AÞ��

Z
@Sj1

H1 � ½N1 �A� dA

þ

Z
B0

½Wn

0ðB; FÞ dV�Jf
�AþH � ½rX �A�� dV

�

Z
@Bj

0

Jf ,p
� ½N�A� dA�

Z
B0

u � b0 dV�

Z
@Bt

0

u � tp
0 dA ð66Þ

for AAVðB0 [ S0Þ, HAL2
ðB0 [ S0Þ, uAUjðB0 [ S0Þ, and

dAAV0ðB0 [ S0Þ, dHAL2
ðB0 [ S0Þ, duAU0ðB0 [ S0Þ. Assuming

the strong validity of the constitutive law for B, (13)2 and (64),
as well as the boundary conditions on A, (10) and (25b), then
hold the remaining equations (44)1, (41)1, (45) and (42), as well as
boundary conditions on H, (6c) and (25a), for this principle in a
weak sense.

(c) Primal Dirichlet-type functional

IpdðA;uÞ ¼
Z
S0

M0ðB; FÞ dV�

Z
@Sj1

H1 � ½N1 �A� dA

þ

Z
B0

½W0ðB; FÞ�J
f
�A� dV�

Z
@Bj

0

Jf ,p
� ½N�A� dA

�

Z
B0

u � b0 dV�

Z
@Bt

0

u � tp
0 dA ð67Þ

for AAVaðB0 [ S0Þ, uAUjðB0 [ S0Þ, and dAAV0ðB0 [ S0Þ,
duAU0ðB0 [ S0Þ. Within the primal Dirichlet principle, Eqs.
(44)1, (41)1, and the boundary conditions on H, (6c) and (25a),
are weakly fulfilled, whereas Eqs. (45) and (42), the constitutive
law for H (13)1 and (62)2, and the boundary conditions on A (10)
and (25b) are valid in a strong sense.

(d) Dual Hu–Washizu-type functional:

IdhwðA,B,H;uÞ

¼

Z
S0

½M0ðB; FÞ�H �Bþ½rX �H� �A� dV�

Z
@Sa1

A1 � ½N1 �H� dA

þ

Z
B0

½W0ðB; FÞ�J
f
�A�H �Bþ½rX �H� �A� dV

þ

Z
@Ba0

Ap
� ½N� 1HU� dA�

Z
B0

u � b0 dV�

Z
@Bt

0

u � tp
0 dA ð68Þ

for AAL2
ðB0 [ S0Þ, BAL2

ðB0 [ S0Þ, HAWjðB0 [ S0Þ, uAUjðB0

[S0Þ, and dAAL2
ðB0 [ S0Þ, dBAL2

ðB0 [ S0Þ, dHAW0ðB0 [ S0Þ,
duAU0ðB0 [ S0Þ. Eqs. (44)1, (41)1, (45) and (42), the boundary
conditions on A, (10) and (25b), and the constitutive law for H,
(13)1 and (62)2, are the Euler–Lagrange equations of this princi-
ple. The boundary conditions on H, (6c) and (25a), in contrast, are
the only equations that hold in a strong sense.

(e) Dual Hellinger–Reissner-type functional:

Idhrða,h;uÞ

¼

Z
S0

½Mn

0ðH; FÞþ½rX �H� �A� dA�

Z
@Sa1

A1 � ½N1 �H� dA

þ

Z
B0

½Wn
ðH; FÞ�Jf

�Aþ½rX �H� �A� dVþ

Z
@Ba0

Ap
� ½N� 1HU� dA

�

Z
B0

u � b0 dV�

Z
@Bt

0

u � tp
0 dA ð69Þ

for AAL2
ðB0 [ S0Þ, HAWjðB0 [ S0Þ, uAUjðB0 [ S0Þ, and

dAAL2
ðB0 [ S0Þ, dHAW0ðB0 [ S0Þ, duAU0ðB0 [ S0Þ. Assuming

the strong identity of the boundary conditions on H, (6c) and
(25a), and the constitutive law for B, (13)2 and (64), the Euler–
Lagrange equations of the dual Hellinger–Reissner principle
coincide with Eqs. (44)1, (41)1, (45) and (42), and the boundary
conditions for A, (10) and (25b).

(f) Dual Dirichlet-type functional:

IddðA;uÞ ¼
Z
S

Mn

0ðH; FÞ dV�

Z
@Sa1

A1 � ½N1 �H� dA

þ

Z
B

Wn

0ðh; FÞ dV�

Z
B0

Jf
�A dVþ

Z
@Ba0

Ap
� ½N� 1HU� dA

�

Z
B0

u � b0 dV�

Z
@Bt

0

u � tp
0 dA ð70Þ

for HAfW jðB0 [ S0Þ, uAUjðB0 [ S0Þ, and dHAfW0ðB0 [ S0Þ,
duAU0ðB0 [ S0Þ. For the dual Dirichlet principle, Eqs. (44)1 and
(41)1, the constitutive relations for B, (13)2 and (64), as well as
the boundary conditions on H, (6c) and (25a), are strongly
fulfilled, whereas (45) and (42), and the boundary conditions
on A, (10) and (25b), are satisfied in a weak sense.
5. Conclusions

In this communication we have presented different variational
formulations for the problem of a magneto-active body exhibiting
large elastic deformations under the stimulation of external
mechanical loads and magnetic fields. The body is assumed to
be surrounded completely by free space, which calls for a careful
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consideration of the continuity conditions of the magnetic field
quantities. The magnetic vector potential is used as one of the
independent magnetic variables. The main interest has been to
propose systematically mixed formulations (for the magnetic part
of the problem), and to study in detail the functional spaces to
which the different variables in these formulations belong.
A summary of the important results corresponds to Fig. 1, where
the relations between the presented mixed formulations are
illustrated.

As remarked in the Introduction, the modeling of the behavior
of bodies undergoing large elastic deformation under the coupled
effect of magnetic fields and mechanical loads is a particularly
complex challenge considering the non-linearity of the equations
involved and the different couplings to be considered. There is a
need for numerical methods of solutions, and the finite element
method can be one of the best options for the simulation. It is
important to have different mixed variational formulations with a
number of different variables for the functionals, since a standard
formulation, where we would only consider the displacement
field and the magnetic vector potential as the main variables, may
not be the best option from the numerical point of view. In
particular, in order to deal with the different problems and the
continuity conditions between the body and the surrounding free
space, a larger variety in the choice of approximation functions for
the unknown vector fields might be advantageous.
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Appendix A. Definitions from functional analysis
Definition 1 (Function spaces in free space). Let v be an arbitrary
vector field defined on the domain OAR3, dAf1,2,3g, with
boundary G. We define the following function spaces:

L2
ðOÞ ¼ v : O -Rd9JvJL2

ðOÞ ¼

Z
O
9v92

dv

� �1=2

o1

( )
,

H1,2
ðOÞ ¼ fvAL2

ðOÞ9rvAL2
ðOÞg,

H1,2
0 ðOÞ ¼ fvAH1,2

ðOÞ9v¼ 0 on Gg,

Hðcurl;OÞ ¼ fvAL2
ðOÞ9r � vAL2

ðOÞg,

H0ðcurl;OÞ ¼ fvAHðcurl;OÞ9n1 � v¼ 0 on Gg,

eHðcurl;OÞ ¼ fvAHðcurl;OÞ9r � v¼ 0g,

VaðSÞ ¼ fvAHðcurl;SÞ9n1 � v¼ atan
1 on @Sa1g,

V0ðSÞ ¼ fvAHðcurl;SÞ9n1 � v¼ 0 on @Sa1g,
WjðSÞ ¼ fvAHðcurl;SÞ9n1 � v¼ n1 � hm1 on @Sj1g,

W0ðSÞ ¼ fvAHðcurl;SÞ9n1 � v¼ 0 on @Sj1g,

fW jðSÞ ¼ fvA eHðcurl,SÞ9n1 � v¼ n1 � hm1 on @Sj1g,

fW0ðSÞ ¼ fvA eHðcurl,SÞ9n1 � v¼ 0 on @Sj1g,

and the proper norms for H1,2
ðOÞ and Hðcurl;OÞ:

JvJH1,2
ðOÞ ¼ ðJvJ

2
L2
ðOÞ þJrvJ

2
L2
ðOÞÞ

1=2,

JvJHðcurl;OÞ ¼ ðJvJ
2
L2
ðOÞ þJr � vJ2

L2
ðOÞÞ

1=2:

For a detailed definition of the space of traces H1=2
ðGÞ of H1,2,

we refer to [55,66,67]. Its dual space is denoted by
H�1=2

ðGÞ ¼ ½H1=2
ðGÞ�0.

L2
ðOÞ, H1,2

ðOÞ and Hðcurl;OÞ are Hilbert spaces equipped with
the inner products

ðu,vÞL2
ðOÞ ¼

Z
O
u � v dv,

ðu,vÞH1,2
ðOÞ ¼ ðu,vÞL2

ðOÞ þðru,rvÞL2
ðOÞ,

ðu,vÞHðcurl;OÞ ¼ ðu,vÞL2
ðOÞ þðr � u,r � vÞL2

ðOÞ:

The same holds for H1,2
0 ðOÞ (as well as V0ðSÞ) and H0ðcurl;OÞ

together with the inner product of H1,2
ðOÞ and Hðcurl;OÞ,

respectively.

Definition 2 (Function spaces for the body and free space). Let v be
an arbitrary vector field. We define the following function
spaces:

VðB [ SÞ ¼ fvAL2
ðB [ SÞ9v9SAHðcurl;SÞ, v9BAHðcurl;BÞg,

VaðB [ SÞ ¼ fvAL2
ðB [ SÞ9v9SAVaðSÞ,v9BAHðcurl;BÞ,

n� v¼ atan,p on @Bag,

V0ðB [ SÞ ¼ fvAL2
ðB [ SÞ9v9SAV0ðSÞ,v9BAHðcurl;BÞ,

n� v¼ 0 on @Bag,

WjðB [ SÞ ¼ fvAL2
ðB [ SÞ9v9SAWjðSÞ,v9BAHðcurl;BÞ,

n� 1vU¼ ĵ
f

on @Bjg,

W0ðB [ SÞ ¼ fvAL2
ðB [ SÞ9v9SAWjðSÞ,v9BAHðcurl;BÞ,

n� 1vU¼ 0 on @Bjg,

fW jðB [ SÞ ¼ fvAL2
ðB [ SÞ9v9SAfW jðSÞ,v9BA eHðcurl;BÞ,

n� 1vU¼ ĵ
f

on @Bjg,

fW0ðB [ SÞ ¼ fvAL2
ðB [ SÞ9v9SAfW jðSÞ,v9BA eHðcurl;BÞ,

n� 1vU¼ 0 on @Bjg:

Definition 3 (Functional spaces for the deformation). Let v be an
arbitrary vector field. We define

UjðB0 [ S0Þ ¼ fvAW1,p
ðB0 [ S0Þ9v9@S1 ¼ 0,v9@Bd

0
¼upg,

U0ðB0 [ S0Þ ¼ fvAW1,p
ðB0 [ S0Þ9v9@S1 ¼ 0,v9@Bd

0
¼ 0g,

for pZ2 and where v9@S1 denotes the trace of v along the
boundary @S1.



F. Vogel et al. / International Journal of Non-Linear Mechanics 51 (2013) 157–169168
Appendix B. Existence and uniqueness of a stationary point
for the primal Dirichlet-type functional

Existence and uniqueness of a stationary point for the primal
Dirichlet-type functional (14) can be proved with the help of
Brezzi’s theorem [55,68,69]. The Brezzi theorem guarantees
existence and uniqueness of a solution of saddle point problems
with divergence-free conditions as, for the example, in the
classical Stokes problem. We adopt this structure for the magne-
tostatic problem and define the following bilinear forms:

aðu,vÞ :¼

Z
S

1

m0

½r � u� � ½r � v� dv

and

bðv,qÞ :¼

Z
S
v � rq dv,

and the linear form

f ðvÞ :¼

Z
@Sj1

hm1 � ½n1 � v� da:

Note here that the bilinear form a is not coercive in general
and thus, an application of the Lax–Milgram lemma is not
possible. Furthermore, the divergence free condition on a is
needed in order to guarantee uniqueness of the magnetic vector
potential, which is incorporated by the bilinear form b. For the
test functions qAH1,2

0 ðSÞ, the elements v of the kernel of bðv,qÞ are
divergence free, since

bðv,qÞ ¼

Z
S
v � rq dv¼�

Z
S
½r � v�j dv¼ 0 8qAH1,2

0 ðSÞ

3r � v¼ 0 in S:

As prerequisites for the Brezzi theorem, one has to show the
continuity of a and b which is achieved straightforwardly with the
Cauchy–Schwartz inequality. Furthermore, it is assumed that a is
coercive on the kernel of b which can be shown with the help of
the Friedrichs’-type inequality. As last assumption, b has to satisfy
the Ladyzhenskaya–Babuška–Brezzi-condition, which holds trivi-
ally for v¼rq. A final application of the Poincaré inequality leads
to the desired condition.

The mixed variational problem of the saddle point problem
reads as follows: given eaAVaðSÞ, find ða,jÞAVaðSÞ �H1,2

0 ðSÞ such
that ða�ea,jÞAV0ðSÞ �H1,2

0 ðSÞ and

aða�ea,daÞþbðda,jÞ ¼ f ðdaÞ, 8daAV0ðSÞ,

bða�ea,djÞ ¼ 0, 8djAH1,2
0 ðSÞ:

With ef ðvÞ :¼ f ðvÞþaðea,vÞ and egðqÞ :¼ bðea,qÞ, this can be rewrit-
ten as

aða,daÞþbðda,jÞ ¼ ef ðdaÞ, 8daAH0ðcurl;SÞ,
bða,djÞ ¼ egðdjÞ, 8djAH1,2

0 ðSÞ: ð71Þ

For problem (71), existence and uniqueness is given by the Brezzi
theorem.
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