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a b s t r a c t

We study regular expressions that use variables, or parameters, which are interpreted
as alphabet letters. We consider two classes of languages denoted by such expressions:
under the possibility semantics, a word belongs to the language if it is denoted by
some regular expression obtained by replacing variables with letters; under the certainty
semantics, the word must be denoted by every such expression. Such languages are
regular, and we show that they naturally arise in several applications such as querying
graph databases and program analysis. As the main contribution of the paper, we provide
a complete characterization of the complexity of the main computational problems
related to such languages: nonemptiness, universality, containment, membership, as well
as the problem of constructing NFAs capturing such languages. We also look at the
extension when domains of variables could be arbitrary regular languages, and show that
under the certainty semantics, languages remain regular and the complexity of the main
computational problems does not change.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study parameterized regular expressions like (0x)∗1(xy)∗ that combine letters from a finite alphabet
Σ , such as 0 and 1, and variables, such as x and y. These variables are interpreted as letters from Σ . This gives two ways
of defining the language of words over Σ denoted by a parameterized regular expression e. Under the first – possibility
– semantics, a word w ∈ Σ∗ is in the language L♦(e) if w is in the language of some regular expression e′ obtained by
substituting alphabet letters for variables. Under the second – certainty – semantics, w ∈ L�(e) if w is in the language
of all regular expressions obtained by substituting alphabet letters for variables. For example, if e = (0x)∗1(xy)∗, then
01110 ∈ L♦(e), as witnessed by the substitution x → 1, y → 0. The word 1 is in L�(e), since the starred subexpressions
can be replaced by the empty word. As a more involved example of the certainty semantics, the reader can verify that for
e′

= (0|1)∗xy(0|1)∗, the word 10011 is in L�(e′), although no word of length less than 5 can be in L�(e′).
These semantics of parameterized regular expressions arise in a variety of applications, in particular in the fields of

querying graph-structured data, and static analysis of programs. We now explain these connections.

Applications in graph databases. Graph databases, that describe both data and its topology, have been actively studied over
the past few years in connection with such diverse topics as social networks, biological data, semantic Web and RDF, crime
detection and analyzing network traffic; see [1] for a survey. The abstract data model is essentially an edge-labeled graph,
with edge labels coming from a finite alphabet. This finite alphabet can contain, for example, types of relationships in a
social network or a list of RDF properties. In this setting one concentrates on various types of reachability queries, e.g.,
queries that ask for the existence of a path between nodes with certain properties so that the label of the path forms a word
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in a given regular language [2–5]. Note that in this setting of querying topology of a graph database, it is standard to use a
finite alphabet for labeling [1].

As in most data management applications, it is common that some information is missing, typically due to using data
that is the result of another query or transformation [6–8]. For example, in a social network wemay have edges a

x
−→ b and

a′
x

−→ b′, saying that the relationship between a and b is the same as that between a′ and b′. However, the precise nature
of such a relationship is unknown, and this is represented by a variable x. Such graphs Gwhose edges are labeled by letters
from Σ and variables from a set W can be viewed as automata over Σ ∪ W . In checking the existence of paths between
nodes, one normally looks for certain answers [9], i.e., answers independent of a particular interpretation of variables.

In the case of graph databases such certain answers can be found as follows. Let a, b be two nodes of G. One can view
(G, a, b) as an automaton, with a as the initial state, and b as the final state; its language, over Σ ∪ W is given by some
regular expression e(G, a, b). Then we can be certain about the existence of a word w from some language L that is the label
of a path from a to b iff w also belongs to L�(e(G, a, b)), i.e., iff L ∩ L�(e(G, a, b)) is nonempty. Hence, computing L�(e) is
essential for answering queries over graph databases with missing information.

Applications in program analysis. That regular expressions with variables appear naturally in program analysis tasks was
noticed, for instance, in [10–12]. One uses the alphabet that consists of symbols related to operations on variables, pointers,
or files, e.g., def for defining a variable, use for using it, open for opening a file, or malloc for allocating a pointer. A
variable then follows: def(x) means defining variable x. While variables and alphabet symbols do not mix freely any more,
it is easy to enforce correct syntax with an automaton. An example of a regular condition with parameters is searching for
uninitialized variables: (¬def(x))∗use(x).

Expressions like this are evaluated on a graph that serves as an abstraction of a program. One considers two evaluation
problems: whether under some evaluation of variables, either some path, or every path between two nodes satisfies it. This
amounts to computing L♦(e) and checking whether all paths, or some path between nodes is in that language. In the case
of uninitialized variables one would be using ‘some path’ semantics; the need for the ‘all paths’ semantics arises when one
analyzes locking disciplines or constant folding optimizations [10,12]. So in this case the language of interest for us is L♦(e),
as one wants to check whether there is an evaluation of variables for which some property of a program is true.

Parameterized regular expressions appeared in other applications aswell, e.g., in phase-sequence prediction for dynamic
memory allocation [13], or as a compact way to express a family of legal behaviors in hardware verification [14], or as a tool
to state regular constraints in constraint satisfaction problems [15].

At the same time, however, very little is known about the basic properties of the languages L�(e) and L♦(e). Thus, our
main goal is to determine the exact complexity of the key problems related to languages L�(e) and L♦(e). We consider the
standard language-theoretic decision problems, such as membership of a word in the language, language nonemptiness,
universality, and containment. Since the languages L�(e) and L♦(e) are regular, we also consider the complexity of
constructing NFAs, over the finite alphabet Σ , that define them.

For all the decision problems, we determine their complexity. In fact, all of them are complete for various complexity
classes, from NLogspace to Expspace. We establish upper bounds on the running time of algorithms for constructing NFAs,
and then prove matching lower bounds for the sizes of NFAs representing L�(e) and L♦(e). Finally, we look at extensions
where the range of variables need not be justΣ butΣ∗. Under the possibility semantics, such languages need not be regular,
but under the certainty semantics, we prove regularity and establish complexity bounds.

Relatedwork. There are several related papers on the possibility semantics, notably [16–18]. Unlike the investigation in this
paper, [17,18] concentrated on the L♦(e) semantics in the context of infinite alphabets. The motivation of [17] comes from
the study of infinite-state systemswith finite control (e.g., softwarewith integer parameters). In contrast, for the applications
outlined in the introduction, finite alphabets aremore appropriate [1,4,10,11]. Results in [17] show that under the possibility
semantics and infinite alphabets, the resulting languages can also be accepted by non-deterministic register automata [18],
and both closure and decidability become problematic. For example, universality and containment are undecidable over
infinite alphabets [17]. In contrast, in the classical language-theoretic framework of finite alphabets, closure and decidability
are guaranteed, and the key questions are related to the precise complexity of the main decision problems, with most of
them requiring new proof techniques.

An analog of theL� semanticswas studied in the context of graph databases in [7]. Themodel used there ismore complex
than the simple model of parameterized regular expressions. Essentially, it boils down to automata in which transitions can
be labeled with such parameterized expressions, and labels can be shared between different transitions. Motivations for
this model come from different ways of incorporating incompleteness into the graph database model. Due to the added
complexity, lower bounds for themodel of [7] do not extend automatically to parameterized regular expressions, and in the
cases when complexity bounds happen to be the same, new proofs are required.

Different forms of succinct representations of regular languages, for instance with squaring, complement, and
intersection, are known in the literature, and both decision problems [19] and algorithmic problems [20] have been
investigated for them. However, even though parameterized regular expressions can be exponentially more succinct than
regular expressions, it appears that parameterized regular expressions cannot be used to succinctly define an arbitrary
regular expression, nor any arbitrary union or intersection of them. Thus, the study of these expressions requires the
development of new tools for understanding the lower bounds of their decision problems.
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When we let variables range over words rather than letters, under the possibility semantics L♦ we may obtain, for
example, pattern languages [21] or languages given by expressions with backreferences [22]. These languages need not
be regular, and some of the problems (e.g., universality for backreferences) are undecidable [16]. In contrast, we show that
under the certainty semantics L� regularity is preserved, and complexity is similar to the case of variables ranging over
letters.
Organization. Parameterized regular expressions and their languages are formally defined in Section 2. In Section 3 we
define the main problems we study. Complexity of the main decision problems is analyzed in Section 4, and complexity of
automata construction in Section 5. In Section 6 we study extensions when domains of variables need not be single letters.

2. Preliminaries

Let Σ be a finite alphabet, and V a countably infinite set of variables, disjoint from Σ . Regular expressions over Σ ∪ V
will be called parameterized regular expressions. Regular expressions, as usual, are built from ∅, the empty word ε, symbols
in Σ and V , by operations of concatenation (·), union (|), and the Kleene star (∗). Of course each such expression only uses
finitely many symbols in V . The size of a regular expression is measured as the total number of symbols needed to write it
down (or as the size of its parse tree).

We write L(e) for the language defined by a regular expression e. If e is a parameterized regular expression that uses
variables from a finite set W ⊂ V , then L(e) ⊆ (Σ ∪ W)∗. We are interested in languages L�(e) and L♦(e), which are
subsets of Σ∗. To define them, we need the notion of a valuation ν which is a mapping from W to Σ , where W is the set of
variables mentioned in e. By ν(e) wemean the regular expression over Σ obtained from e by simultaneously replacing each
variable x ∈ W by ν(x). For example, if e = (0x)∗1(xy)∗ and ν is given by x → 1, y → 0, then ν(e) = (01)∗1(10)∗.

We now formally define the certainty and possibility semantics for parameterized regular expressions.

Definition 1 (Acceptance). Let e be a parameterized regular expression. Then:

• L�(e) :=


{L(ν(e)) | ν is a valuation for e} (certainty semantics)
• L♦(e) :=


{L(ν(e)) | ν is a valuation for e} (possibility semantics).

Since each parameterized regular expression uses finitely many variables, the number of possible valuations is finite as
well, and thus both L�(e) and L♦(e) are regular languages over Σ∗.

The usual connection between regular expressions and automata extends to the parameterized case. Each parameterized
regular expression e over Σ ∪ W , where W is a finite set of variables in V , can of course be translated, in polynomial time,
into an NFA Ae over Σ ∪ W such that L(Ae) = L(e). Such equivalences extend to L� and L♦. Namely, for an NFA A over
Σ ∪ W , and a valuation ν : W → Σ , define ν(A) as the NFA over Σ that is obtained from A by replacing each transition
of the form (q, x, q′) in A (for q, q′ states of A and x ∈ W ) with the transition (q, ν(x), q′). The following is just an easy
observation.

Lemma 1. Let e be a parameterized regular expression, and Ae be an NFA over Σ ∪ V such that L(Ae) = L(e). Then, for every
valuation ν , we have L(ν(e)) = L(ν(Ae)).

Hence, if we define L�(A) as


ν L(ν(A)), and L♦(A) as


ν L(ν(A)), then the lemma implies that L�(e) = L�(Ae) and
L♦(e) = L♦(Ae). Since one can go from regular expressions to NFAs in polynomial time, this will allow us to use both
automata and regular expressions interchangeably to establish our results.

3. Basic problems

We now describe the main problems we study here. For each problem we shall have two versions, depending on which
semantics – L� or L♦ – is used. So each problem will have a subscript ∗ that can be interpreted as � or ♦.

We start with decision problems.

Nonemptiness∗ Given a parameterized regular expression e, is L∗(e) ≠ ∅?
Membership∗ Given a parameterized regular expression e and a word w ∈ Σ∗, is w ∈ L∗(e)?
Universality∗ Given a parameterized regular expression e, is L∗(e) = Σ∗?
Containment∗ Given parameterized regular expressions e1 and e2, is L∗(e1) ⊆ L∗(e2)?

A special version of nonemptiness is the problem of intersection with a regular language (used in the database querying
example in the introduction).

NonemptyIntReg∗ Given a parameterized regular expression e, and a regular expression e′ over Σ , is L(e′) ∩ L∗(e) ≠ ∅?

The last problem is computational rather than a decision problem.

ConstructNFA∗ Given a parameterized regular expression e, construct an NFA A over Σ such that L∗(e) = L(A).

The table in Fig. 1 summarizes the main results in Sections 4 and 5.
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❵❵❵❵❵❵❵❵❵❵❵Problem
Semantics Certainty � Possibility ♦

Nonemptiness Expspace-complete NLogspace-complete
(for automata)

Membership coNP-complete NP-complete
Containment Expspace-complete Expspace-complete
Universality Pspace-complete Expspace-complete
NonemptyIntReg Expspace-complete NP-complete
ConstructNFA double-exponential single-exponential

Fig. 1. Summary of complexity results

4. Decision problems

In this section we consider the five decision problems – nonemptiness, membership, universality, containment and
intersection with a regular language – and provide precise complexity bounds for them. We shall also consider two
restrictions on regular expressions; thesewill indicatewhen the problems are inherently very hard orwhen their complexity
can be lowered in some cases. One source of complexity is the repetition of variables in expressions like (0x)∗1(xy)∗. When
no variable appears more than once in a parameterized regular expression, we call it simple. Infinite languages are another
source of complexity, so we consider a restriction to expressions of star-height 0, in which no Kleene star is used: these
denote finite languages, and each finite language is denoted by such an expression.

4.1. Nonemptiness

The problem Nonemptiness♦ has a trivial algorithm, since L♦(e) ≠ ∅ for every parameterized regular expression e
(except when L(e) = ∅, which can be verified with a single pass over the expression). So we study this problem for the
certainty semantics only; for the possibility semantics, we look at the related problem Nonemptiness-Automata♦, which,
for a given NFA A over Σ ∪ V asks whether L♦(A) ≠ ∅.

Theorem 1. • The problem Nonemptiness� is Expspace-complete.
• The problem Nonemptiness-Automata♦ is NLogspace-complete.

The result for the possibility semantics is by a standard reachability argument. Note that the bound is the same here as in
the case of infinite alphabets studied in [17]. To see the upper bound for Nonemptiness�, note that there are exponentially
many valuations ν, and each automaton ν(Ae) is of polynomial size, so we can use the standard algorithm for checking
nonemptiness of the intersection of a family of regular languages which can be solved in polynomial space in terms of the
size of its input; since the input to this problem is of exponential size in terms of the original input, the Expspace bound
follows. The hardness is by a generic (Turingmachine) reduction; in the proof we use the following property of the certainty
semantics.

Lemma 2. Given a set e1, . . . , ek of parameterized expressions of size at most n ≥ k, it is possible to build, in time O(|Σ | · k2 · n)
an expression e′ such that L�(e′) is empty if and only if L�(e1) ∩ · · · ∩ L�(ek) is empty.

The reasonwhy the case of theL�(e) semantics is so different from the usual semantics of regular languages is as follows.
It is well known that checking whether the intersection of the languages defined by a finite set S of regular expressions is
nonempty is Pspace-complete [23], and hence underwidely held complexity-theoretical assumptions no regular expression
r can be constructed in polynomial time from S such thatL(r) is nonempty if and only if


s∈S L(s) is nonempty. Lemma2, on

the other hand, says that such a construction is possible for parameterized regular expressions under the certainty semantics.
Next we prove Lemma 2.

Proof. Assume first that Σ has at least two symbols. Let e1, . . . , ek be parameterized regular expressions as stated in the
Lemma, and let a, b be different symbols in Σ . We use (Σ − a) as a shorthand for the expression whose language is the
union of every symbol in Σ different from a, and define Ai

= [(Σ − a)∗ · a · (Σ − a)∗]i, for 1 ≤ i ≤ k − 1. Finally, let
x1, . . . , xk−1 be fresh variables. We define e′ as

(Σ − a)∗ · x1 · (Σ − a)∗ · x2 · (Σ − a)∗ · · · xk−1 · (Σ − a)∗·
bakb · e1 | b · A1

· bakb · e2 | b · A2
· bakb · e3 | · · · | b · Ak−1

· bakb · ek


We prove next that L�(e′) ≠ ∅ if and only if L�(e1) ∩ · · · ∩ L�(ek) ≠ ∅. For the if direction, consider a word w ∈ Σ∗

that belongs to L�(e1) ∩ · · · ∩ L�(ek). Then it can be observed from the construction of e′ that the word (c̄kab)k−1bakbw
belongs to L�(e′) where c̄ is the concatenation (say, in the lexicographical order) of all the symbols in Σ different from a.

On the other hand, assume that a wordw belongs toL�(e′). It is clear thatw must contain the substring bakb. Thus, there
are words u, v ∈ Σ∗ such that w = u · bakb · v, and u does not contain the word bakb as a substring. Our goal is to prove
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that v belongs to L�(e1) ∩ · · · ∩ L�(ek). But first we need to show that u contains exactly k − 1 appearances of the symbol
a. We prove this statement by contradiction. Assume first that u contains less than k− 1 appearances of the symbol a. Then
consider a valuation ν that maps each variable in e′ to the symbol a. Since ν(e′) is of the form

((Σ − a)∗a)k−1(Σ − a)∗ ·

bakb · ν(e1) | b · A1

· bakb · ν(e2) | b · A2
· bakb · ν(e3) | · · · | b · Ak−1

· bakb · ν(ek)

,

we conclude that the language of ν(e′) cannot contain any word that starts with u · bakb, since we have assumed that u
contains less than k − 1 appearances of the symbol a. Next, assume that u contains more than k − 1 appearances of the
symbol a, and consider a valuation ν ′ that maps each variable in e′ to the symbol b. Then ν ′(e′) is of the form

((Σ − a)∗b)k−1(Σ − a)∗(bakb · ν ′(e1) | b · A1
· bakb · ν ′(e2) | b · A2

· bakb · ν ′(e3) | · · · | b · Ak−1
· bakb · ν ′(ek))

Recall that we define Ai as Ai
= [(Σ − a)∗ · a · (Σ − a)∗]i. Then notice that any word in L(ν ′(e′)) is such that the symbol a

cannot appear more than k − 1 times before the substring bakb. We conclude that L(ν ′(e′)) cannot contain a word starting
with u · bakb.

We have just proved that w can be decomposed into u · bakb · v, where u does not contain the substring bakb and has
exactly k − 1 appearances of the symbol a. With this observation, it is not difficult to show that, if a valuation ν assigns the
symbol a to exactly j variables in {x1, . . . , xk−1} (0 ≤ j ≤ k − 1), then v must belong to L�(ek−j). This proves that v belongs
to L�(e1) ∩ · · · ∩ L�(ek), which was to be shown.

For the case when Σ contains a single symbol a, notice that for each 1 ≤ i ≤ k it is the case that L�(ei) = L(e′

i),
where e′

i is the expression resulting from replacing all parameters in ei with the symbol a. We perform this replacement, and
afterwards augmentΣ with a fresh new symbol. The construction previously explained can be then used on input e′

1, . . . , e
′

k.
The correctness of this algorithm follows directly from the proof of the previous case, and the fact that the expressions
e′

1, . . . , e
′

k contain no variables.
Regarding the size of the expression e′, we have that the size of the first part of e′, corresponding to (Σ − a)∗ · x1 · (Σ −

a)∗ · x2 · (Σ − a)∗ · · · xk−1 · (Σ − a)∗, is O(|Σ | · k). Furthermore, the second part comprises of a union of k expressions, each
of them of size O(|Σ | · k · n). Thus, the size of e′ is O(|Σ | · k2 · n). �

Lower bound for certainty semantics: To complete the proof of Theorem 1, we prove an Expspace lower bound for
Nonemptiness�, using a reduction from the acceptance problem for deterministic Turingmachines that work in exponential
space. Along the proof we use the shorthand [i] to denote the binary representation of the number i < 2n as a string of n
symbols from {0, 1}. For example, [0] corresponds to the word 0n, and [2] corresponds to the word 0n−210.

Let L ⊆ Σ∗ be a language that belongs to Expspace, and let M be a Turing machine that decides L in Expspace. Given an
input ā ∈ Σ∗, we construct in polynomial time with respect to M and ā a parameterized regular expression eM,ā such that
L�(eM,ā) ≠ ∅ if and only if M accepts ā.

Assume thatM = (Q , Γ , q0, {qm}, δ), where Q = {q0, . . . , qm} is the set of states,Γ = {0, 1, B} is the tape alphabet (B is
the blank symbol), the initial state is q0, qm is the unique final state, and δ : (Q \{qm})×Γ → Q ×Γ ×{L, R} is the transition
function. Notice that we assume without loss of generality that no transition is defined on the final state qm. Furthermore,
we also assumewithout loss of generality that every accepting run ofM ends after an odd number of computations. SinceM
decides L in Expspace, there is a polynomial S() such that, for every input ā over Σ , M decides ā using space of order 2S(|ā|).

Let ā = a0a1 · · · ak−1 ∈ Σ∗ be an input for M (that is, each ai, 0 ≤ i ≤ k − 1, is a symbol in Σ). For notational
convenience we will assume from now on that S(|ā|) = n. Due to Lemma 2, it suffices to construct a set E of parameterized
regular expressions, such that


e∈E L�(e) is empty if and only if M accepts on input ā.

Consider the alphabet Σ = {0, 1}. The idea of the reduction is to code the run of M on input ā into a word in Σ∗, in such
a way that


e∈E L�(e) contains precisely the words that code an accepting run τ for M on input ā. In intuitive terms, such

a word w represents the sequence of ‘‘instant descriptions’’ of M with respect to run τ . We do it as follows.
Assume that M performs m computations according to the run τ . With each 1 ≤ i ≤ 2n and i ≤ j ≤ m, we associate a

symbol bi,j ∈ Γ ∪ (Γ × Q ), in such a way that bi,j corresponds to the symbol in the i-th cell of the tape in the j-th step of
the run τ , if the head of M in the j-th step of the computation is not pointing into such cell, and otherwise as the pair (c, q),
where c is the symbol in the i-th cell of the tape in the j-th step of the run τ , and q is the state of M in the j-th step of τ . We
need each bi,j to be coded as a string over {0, 1}. In order to do this, let p = |Γ ∪ (Γ × Q )|. We shall code each symbol in
Γ ∪ (Γ × Q ) in unary, i.e. as a p-bit string. We denote by [bi,j] the unary representation of the symbol bi,j.

We also need to include information about the action thatwas performed in each cell ofM at each step of the computation
(i.e. read the cell, point the cell after moving the pointer, or nothing). More precisely, let [nothing] = 100, [read] = 101 and
[head] = 111, and define, for each 1 ≤ i ≤ 2n and 1 ≤ j ≤ m, the string [aci,j] as [read] if M is to read the content of the i-th
cell at the j-th step of the computation; [head], if after the j-th computation M moves the head to point into the i-th cell of
the tape, and [nothing] otherwise.

Roughly speaking, the idea is to define w = w1 · w2 · · · wm, where each wj is of the form:

[ac(0,j)] · [b(0,j)] · [0] · [b(0,j+1)] ·

[ac(1,j)] · [b(1,j)] · [1] · [b(1,j+1)] ·

...

[ac(2n−1,j)] · [b(2n−1,j)] · [2n
− 1] · [b(2n−1,j+1)] (1)
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For example, assume that in the first step of the computation, M reads the first cell of the tape, writes a blank symbol,
changes from state q0 to q1, and advances to the right. That is, the first and second configurations of M are as depicted in
the following figure:

a0 a1 a2 · · · ak B · · · =⇒ B a1 a2 · · · ak B · · ·

↑ ↑

q0 q1

Then w1 corresponds to the string

[read] · [(a0, q0)] · [0] · [B] ·

[head] · [a1] · [1] · [(a1, q1)] ·

[nothing] · [a2] · [2] · [a2] ·

...
[nothing] · [ak] · [k] · [ak] ·

[nothing] · [B] · [k + 1] · [B] ·

...
[nothing] · [B] · [2n

− 1] · [B] ·

Essentially, we use 4 substrings to describe the action on each cell of the tape. The first substring, of length 3, refers to
the action performed in that computation. In this case, an action [read] accompanies the first cell, since it was the cell read
in the first step of the computation, and an action [head] accompanies the second cell, since as a result of the computation
the head of M is now pointing into that cell. As expected, all other actions in w1 are set to [nothing], since nothing was done
to those cells in the first step of the computation. The second substring (of length p) refers to the content of the cell before
the computation, the third is of length n, and contains the number identifying a particular cell as the i-th cell, from left to
right, where i is binary, and the fourth string, of length p, is the content of that cell right after the computation.

Finally, we also need to explicitly distinguish even and odd computations of M. Formally, let [even] = 000 and
[odd] = 001. We construct E in such a way that if there is a word w in


e∈E L�(e) then it is of the form:

[even] · w1 · [even] · [odd] · w2 · [odd] · [even] · w3 · [even] · · · [odd] · wm · [odd],

where each wj is of the form (1), as explained above.
The rest of the proof is devoted to construct such set E. We divide the set E into sets E1, E2, E3, E4 and E5.
First, E1 contains only the expression

[even]

[action](0 | 1)p(0 | 1)n(0 | 1)p

∗
[even][odd]


[action](0 | 1)p(0 | 1)n(0 | 1)p

∗
[odd]

∗

,

where [action] is just a shorthand for the expression ([read] | [head] | [nothing]). In intuitive terms, it ensures that all words
accepted by


e∈E L�(e) are repetitions of sequences of subwords of length 3 + 2p + n, contained between [even] or [odd]

strings.
So far, we only have that all words in


e∈E L�(e) must be of the above form. The next step is to ensure that the number

of substrings of the form

[action](0 | 1)p(0 | 1)n(0 | 1)p


between any two strings [even] or [odd] has to be precisely 2n (one

for each cell used in the tape) and, furthermore, the numbers in binary representation used to code the position of the cell
in each of these substrings (i.e., the part corresponding to (0 | 1)n ) have to be arranged in numerical order. To ensure this
we use a set of regular expressions E2. It is defined in such a way that the language


e∈E2 L(e) corresponds to the language

accepted by the expression:
([even] | [odd]) · [action] · (0 | 1)p · [0] · (0 | 1)p ·

[action] · (0 | 1)p · [1] · (0 | 1)p ·

...

[action] · (0 | 1)p · [2n
− 1] · (0 | 1)p · ([even] | [odd])

∗

Thedefinition of the set E2 is standard, but very technical, and it is therefore omitted. It is based on the idea of representing
the string [0] · [1] · · · [2n

− 1] as an intersection of a polynomial number of regular expressions stating all together that, for
each even i ≤ 2n

− 1, the string [i] has to be followed by the string [i+ 1], and likewise for each odd number (see e.g. [23]).
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Next, we ensure that the state and contents of the cells are carried along the descriptions. More precisely, E3 must ensure
that, if for some 1 ≤ i < 2n and 1 ≤ j ≤ m, the word wj features a substring of the form:

[even] · · · [action] · (0 | 1)p · [i] · [b(i,j)] · · · [even],

with b(i,j) ∈ Γ ∪ (Γ × Q ), then it must be directly followed by a string of form

[odd] · · · [action] · [b(i,j)] · [i] · · · [odd],

so that the slots representing the content of the i-th cell after the j-th computation coincide with the slots representing the
content of the i-th cell before the j + 1-th computation.

It is straightforward to state such a condition by enumerating all cases, for each 0 ≤ i ≤ 2n
− 1, but this would yield

exponentially many equations. Instead, we exploit the use of parameters in our expression. We include in E3 parameterized
expressions E3

1 and E3
2 , where E3

1 (and, correspondingly, E3
2 ) force that the content of the cell x1 · x2 · · · xn after an even

(correspondingly, odd) computation corresponds exactly to the state before the next computation. To define E3
1 , consider

the following expressions, for each b ∈ Γ ∪ (Γ × Q ):

E3
(1,b,even) = [even] · ([action] · (0 | 1)p · (0 | 1)n · (0 | 1)p)∗ ·

[action] · (0 | 1)p · x1 · · · xn · [b] ·

([action] · (0 | 1)p · (0 | 1)n · (0 | 1)p)∗ · [even]
E3

(1,b,odd) = [odd] · ([action] · (0 | 1)p · (0 | 1)n · (0 | 1)p)∗ ·

[action] · [b] · x1 · · · xn · (0 | 1)p ·

([action] · (0 | 1)p · (0 | 1)n · (0 | 1)p)∗ · [odd]

Then we define E3
1 as follows:

E3
1 =

 
b∈Γ ∪(Γ ×Q )


E3

(1,b,even) · E3
(1,b,odd)

∗

Expression E3
2 is defined accordingly, simply by interchanging the order of [even] and [odd] strings, carefully checking that

the first step of the computation is even, and allowing for the possibility that a word representing a computation ends in
an odd configuration (that is, an odd configuration may be followed by an even configuration with the aforementioned
properties, or may be the last configuration of the computation).

All that is left to do is to construct regular expressions that ensure that each of the substrings wj (1 ≤ j ≤ m) of the word
w in


e∈E L�(e) represent valid computations of M. This is done by set E4 of expressions, accepting all words such that:

• between each two consecutive [even] or [odd] strings there is exactly one [read] and one [head] in the slots devoted to
[action] in form (1);

• no other cell can change its context, except for those marked with [read] or [head], and
• the content that changes in the cells marked by [read] and [head] respects the transition function δ of M.

Moreover, we also add a set of expressions E5, accepting words such that:

• the initial configuration of M is encoded as the first step of the computation represented by w;
• the last computation ends in a final state of M.

It is a tedious, but straightforward task to define the sets E4 and E5 of expressions. Furthermore, the fact that


e∈E L�(e)
is empty if and only ifM accepts on input ā follows immediately from the remarks given along the construction. This finishes
the proof. �

The generic reduction used in the proof of Expspace-hardness of Nonemptiness� also provides lower bounds on the
minimal sizes of words in languages L�(e) (note that the language L♦(e) always contains a word of linear size in |e|).

Corollary 1. There exists a polynomial p : N → N and a sequence of parameterized regular expressions {en}n∈N such that each
en is of size at most p(n), and every word in the language L�(en) has size at least 22n .

Before explaining the proof, we note that the single-exponential bound is easy to see (it was hinted at in the first
paragraph of the introduction, and which was in fact used in connection with querying incomplete graph data in [7]). For
each n, consider an expression en = (0|1)∗x1 . . . xn(0|1)∗. If a wordw is inL�(en), thenw must contain everyword in {0, 1}n
as a subword, which implies that its length must be at least 2n

+ (n − 1).

Proof of Corollary 1. Clearly, for each n ∈ N, it is possible to construct a deterministic Turing machine Mn over alphabet
Σ = {0, 1} that on input 1n works for exactly 22n steps, using 2n cells. Furthermore, it is possible to specify this machine
using polynomial size with respect to n.

Next, using the construction in the reduction of Theorem 1, construct a set of parameterized regular expressions E(Mn,1n)
such that the single word wn ∈


e∈E(Mn,1n)

L�(e) represents a run (or, more precisely, a sequence of configurations) of Mn
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on input 1n. Note that each set E(Mn,1n) is of size polynomial with respect to n. Moreover, according to the reduction in the
proof of Theorem 1,


e∈E(Mn,1n)

L�(e) contains a single word, of length greater than 22n , representing the single run of Mn

on input 1n.
For each n, we define en as the expression such thatL�(en) is empty if and only if


e∈E(Mn,1n)

L�(e) is empty, constructed
as in the proof of Lemma 2, so that en is of size polynomial with respect to E(Mn,1n). It follows from the proof of such lemma
that every word accepted by L�(en) has size at least 22n . �

It is also possible to show that the problem Nonemptiness� remains Expspace-hard over the class of simple regular
expressions. Indeed, the reduction on the proof of Theorem 1 can be modified so that all the expressions in E are simple. As
expected, the proof then becomesmuchmore technical, and we have omitted it for the sake of space. We can also show that
the use of Kleene star has a huge impact on complexity.

Proposition 2. The problem Nonemptiness� is Σ
p
2 -complete over the class of expressions of star-height 0.

Proof. It is easy to see that, if e does not use Kleene star, then all the wordsw ∈ L�(e) are of size polynomial with respect to
the size of e. This immediately gives a ΣP

2 algorithm for the emptiness problem: given a parameterized regular expression e
not usingKleene star, guess awordw, and check thatw ∈ L�(e). The proof then follows from the easy fact thatMembership�

can be solved in coNP, by guessing a valuation ν such that w ∉ L(ν(e)) (we shall show in Section 4.2 that this bound turns
out to be tight).

The ΣP
2 hardness is established via a reduction from the complement of the ∀∃ 3-SAT satisfiability problem, which is

known to beΠP
2 -complete. This problem is defined as follows: a formulaϕ is given as the conjunction of clauses {C1, . . . , Cp},

each of which has 3 variables taken from the union of disjoint sets {x1, . . . , xm} and {y1, . . . , yt}. The problem asks whether
there exists an assignment σx̄ for {x1, . . . , xm} such that for every assignment σȳ for {y1, . . . , yt} it is the case that ϕ is not
satisfiable.

Let ϕ := ∀x1 · · · ∀xm∃y1 . . . ∃yt C1 ∧ · · · ∧ Cp be an instance of ∀∃ 3-SAT. From ϕ we construct in polynomial time a
parameterized regular expression e over alphabet Σ = {0, 1} such that there exists an assignment σx̄ for {x1, . . . , xm} such
that for every assignment σȳ for {y1, . . . , yt} it is the case that ϕ is not satisfiable if and only if L�(e) is not empty.

Let each Cj (1 ≤ j ≤ p) be of the form (ℓ1
j ∨ ℓ2

j ∨ ℓ3
j ), where each literal ℓi

j, for 1 ≤ j ≤ p and 1 ≤ i ≤ 3, is either
a variable in {x1, . . . , xm} or {y1, . . . , yt}, or its negation. We associate with each propositional variable xk, 1 ≤ k ≤ m,
a fresh variable Xk (representing the positive literal) and a fresh variable X̂k (representing the negation of such literal).
In the same way, with each propositional variable yk , 1 ≤ k ≤ t , we associate fresh variables Yk and Ŷk. Then let
W = {X1, . . . , Xm, X̂1, . . . , X̂m} ∪ {Y1, . . . , Yt , , Ŷ1, . . . , Ŷt} ∪ {Z}, where Z is a fresh variable as well.

We define an expression e over Σ = {0, 1} and W as follows:

e := (Z · 0 · e1) | (1 · Z · e2),

where e1 is the regular expression 1100 · (0 | 1)m · 000, and

e2 : = e2,1,1 | · · · | e2,1,m | e2,2,1 | · · · | e2,2,m | e2,3,1 | · · · | e2,3,t | e2,4,

where

• for each 1 ≤ k ≤ m, we have that e2,1,k = 1100 · (0 | 1)k−1
· Xk · (0 | 1)m−k

· 000;
• for each 1 ≤ k ≤ m, e2,2,k =


Xk · X̂k · 00 · (0 | 1)m · 000


|

11 · Xk · X̂k · (0 | 1)m · 000


;

• for each 1 ≤ k ≤ t , e2,3,k =

Yk · Ŷk · 00 · (0 | 1)m · 000


|

11 · Yk · Ŷk · (0 | 1)m · 000


;

• let h be a function that maps each literal ℓi
j to the variable Xk, if ℓi

j corresponds to xk or to X̂k, if ℓi
j corresponds to ¬xk

(1 ≤ j ≤ p, 1 ≤ i ≤ 3 and 1 ≤ k ≤ m); or to Yk, if ℓi
j corresponds to yk or to Ŷk, if ℓi

j corresponds to ¬yk. Then define
e2,4 = 1100 · (0 | 1)m ·


h(ℓ1

1) · h(ℓ2
1) · h(ℓ3

1) | · · · | h(ℓ1
p) · h(ℓ2

p) · h(ℓ3
p)


.

We prove that L�(e) ≠ ∅ if and only if there exists an assignment σx̄ for {x1, . . . , xm} such that for every assignment σȳ
for {y1, . . . , yt} it is the case that ϕ is not satisfiable.

(⇐): Assume first that there exists such an assignment. Define a1, . . . , am ∈ {0, 1} as follows: for each 1 ≤ k ≤ m,
ak = 0 if and only if σx̄ assigns the value 1 to the variable xk. We claim the word w = 101100 · a1 · · · am · 000 belongs to
L�(e). To prove this claim, let ν : W → Σ be an arbitrary valuation for the variables in e. We show that w ∈ L(ν(e)). The
proof is done via a case analysis.

• Assume first that ν(Z) = 1. Then, since 1100 · a1 · · · am · 000 clearly belongs to the language defined by e1, we have that
w ∈ L(ν(e)).

• Next, assume that ν(Z) = 0, and for some 1 ≤ k ≤ m it is the case that ν(Xk) = ν(X̂k). Then, it is easy to see that
1100 · a1 · · · am · 000 belongs to the language defined by the expression

ν(e2,2,k) =

ν(Xk) · ν(X̂k) · 00 · (0 | 1)m · 000


|

11 · ν(Xk) · ν(X̂k) · (0 | 1)m · 000


Thus we have that w ∈ L(ν(e)).
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• Assume now that ν(Z) = 0, and for some 1 ≤ k ≤ t it is the case that ν(Yk) = ν(Ŷk). Then, it is easy to see that
1100 · a1 · · · am · 000 belongs to the language defined by the expression

ν(e2,3,k) =

ν(Yk) · ν(Ŷk) · 00 · (0 | 1)m · 000


|

11 · ν(Yk) · ν(Ŷk) · (0 | 1)m · 000


Thus we have that w ∈ L(ν(e)).

The remaining valuations are such that ν(Z) = 0, ν(Xk) ≠ ν(X̂k) for each 1 ≤ k ≤ m, and for each 1 ≤ k ≤ t we have that
ν(Yk) ≠ ν(Ŷk). We continue with those cases.

• Assume first that for some 1 ≤ k ≤ m it is the case that ν(Xk) = 1 but σx̄(xk) = 0. Then ak = 1, and thus we have
that the word 1100 · a1 · · · am · 000 belongs to the language defined by ν(e2,1,k), that corresponds to the expression
1100 · (0 | 1)k−1

· ν(Xk) · (0 | 1)m−k
· 000. This implies that w belongs to the language defined by ν(e).

• The case where for some 1 ≤ k ≤ m it is the case that ν(Xk) = 0 but σx̄(xk) = 1 is analogous to the previous one.
• The only remaining possibilities are such that ν(Z) = 0, ν(Xk) ≠ ν(X̂k) for each 1 ≤ k ≤ m, for each 1 ≤ k ≤ t we have

that ν(Yk) ≠ ν(Ŷk), and for each 1 ≤ k ≤ m it is the case that ν(Xk) = σx̄(xk). Define the following valuation σȳ for the
variables in {y1, . . . , yt}: σȳ(yk) = ν(Yk), for each 1 ≤ k ≤ t . From our initial assumption, there exists at least a clause Cj,
1 ≤ j ≤ p, that is falsified under the assignment σx̄, σȳ. Then using the fact that ν(Xk) ≠ ν(X̂k) for each 1 ≤ k ≤ m, for
each 1 ≤ k ≤ t we have that ν(Yk) ≠ ν(Ŷk), and for each 1 ≤ k ≤ m it is the case that ν(Xk) = σx̄(xk), we conclude that
ν(h(ℓ1

j )) ·ν(h(ℓ2
j )) ·ν(h(ℓ3

j )) corresponds to the string 000, which proves that 1100 ·a1 · · · am ·000 belongs toL(ν(e2,4)),
and thus w is denoted by ν(e).

(⇒): Assume now that there exists a word w ∈ Σ∗ that belongs to L�(e). We first state some facts about the general
form of w. It is straightforward to show that w must begin with the prefix 10: if w begins with 00 then it cannot be denoted
by ν1(e), where ν1 is the valuation that assigns a letter 1 to all variables in e; ifw begins with 11 then it is not in the language
of ν0(e), where ν0 is the valuation that assigns the letter 0 to all variables in e and if w begins with 01 then it cannot be
denoted by any of the ν(e)’s, for any valuation ν. We can then assume that w = 10 · v, with v ∈ Σ∗. Furthermore, let ν be
an arbitrary valuation such that ν(Z) = 1. Since w belongs to L(ν(e)), from the form of w it follows that v belongs to ν(e1)
(which is in fact e1, since this expression does not contain any variables). So we have that v is of form 1100 · (0 | 1)m · 000.

Define from v the following valuation σx̄ for the propositional variables {x1, . . . , xm}: σx̄(xk) = 1 if v is of form 1100 ·

(0 | 1)k−1
·0·(0 | 1)m−k

·000 (that is, if the k+4-th bit of v is 0), and σx̄(xk) = 0 if v is of form 1100·(0 | 1)k−1
·1·(0 | 1)m−k

·000
(the k + 4-th bit of v is 1).

Next we show that for each valuation σȳ for {y1, . . . , yt} it is the case that ϕ is not satisfied with valuation σx̄, σȳ. Assume
for the sake of contradiction that there is a valuation σȳ for {y1, . . . , yt} such that σx̄, σȳ satisfies ϕ. Define the following
valuation ν : W → Σ:

• ν(Z) = 0
• ν(Xk) = σx̄(xk), for each 1 ≤ k ≤ m,
• ν(Yk) = σȳ(yk), for each 1 ≤ k ≤ t ,
• ν(X̂k) = 1 if and only if ν(Xk) = 0,
• ν(Ŷk) = 1 if and only if ν(Yk) = 0

Let us now show that 10 · v /∈ L(ν(e)), contradicting our initial assumption that w ∈ L�(e).
Since ν(Z) = 0, one concludes that v must belong to L�(e2). Since ν(Xk) ≠ ν(X̂k), for each 1 ≤ k ≤ m, and for each

1 ≤ k ≤ t we have that ν(Yk) ≠ ν(Ŷk), it is easy to see that the word v cannot be in L(ν(e2,2,k)), for 1 ≤ k ≤ m, or
in L(ν(e2,3,k)), for 1 ≤ k ≤ t . Moreover, since σx̄(xk) = 1 = ν(Xk) if v is of form 1100(0 | 1)k−10(0 | 1)m−k000, and
σx̄(xk) = 0 = ν(Xk) if v is of form 1100(0 | 1)k−11(0 | 1)m−k000, we have that v cannot be in L(ν(e2,1,k)) for 1 ≤ k ≤ m.
The only remaining possibility is that the word v belongs to L(ν(e2,4)). This implies that for some 1 ≤ j ≤ p, it is the case
that ν(h(ℓ1

1)) · ν(h(ℓ2
1)) · ν(h(ℓ3

1)) corresponds to the string 000. From the definition of ν, this implies that the j-th clause of
ϕ is not satisfied under σx̄, σȳ, which is a contradiction. We conclude that for each valuation σȳ for {y1, . . . , yt} it is the case
that ϕ is not satisfied with valuation σx̄, σȳ, which was to be shown. �

4.2. Membership

It is easy to see thatMembership� can be solved in coNP, andMembership♦ inNP: one just guesses a valuationwitnessing
w ∈ L(v(e)) or w ∉ L(v(e)). These bounds turn out to be tight.

Theorem 3. • The problemMembership� is coNP-complete.
• The problemMembership♦ is NP-complete.

Note that for the case of the possibility semantics, the bound is the same as for languages over the infinite alphabets [17]
(for all problems other than nonemptiness and membership, the bounds will be different). The hardness proof in [17] relies
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on the infinite size of the alphabet, but one can find an alternative proof that uses only finitely many symbols. Both proofs
are by variations of 3-SAT or its complement.

Instead of directly proving the above Theorem, we show that intractability follows already from much simpler cases.
Indeed, the restrictions to expressionswithout repetitions, or to finite languages, by themselves do not lower the complexity,
but together they make it polynomial.

Proposition 4. The complexity of the membership problem remains as in Theorem 3 over the classes of simple expressions, and
expressions of star-height 0. Over the class of simple expressions of star-height 0,Membership♦ can be solved in polynomial time
(actually, in time O(nm log2 n), where n is the size of the expression and m is the size of the word).

Proof. For the sake of readability, in this proof we use ∪ – instead of | – for representing the operation of union between
regular expressions.
(1) ♦-semantics: We first consider the ♦-semantics. We start by showing NP-hardness of Membership♦, for regular
expressions of star-height 0. We use a reduction from Positive 1-3 3-SAT, which is the followingNP-hard decision problem:
given a conjunction ϕ of clauses, with exactly three literals each, and in which no negated variable occurs, is there a truth
assignment to the variables so that each clause has exactly one true variable?

The reduction is as follows. Let ϕ = C1 ∧· · ·∧Cm be a formula in CNF, where each Ci (1 ≤ i ≤ m) is a clause consisting of
exactly tree positive literals. Let {p1, . . . , pn} be the variables that appear inϕ.With each propositional variable pi (1 ≤ i ≤ n)
we associate a different variable xi ∈ V . We shownext how to construct, in polynomial time fromϕ, a parameterized regular
expression e over alphabet Σ = {a, 0, 1} and a word w over the same alphabet, such that there is an assignment to the
variables of ϕ for which each clause has exactly one true variable if and only if w ∈ L♦(e).

The parameterized regular expression e is defined as ae1ae2a · · · aema, where the regular expression ei, for 1 ≤

i ≤ m, is defined as follows. Assume that Ci = (pj ∨ pk ∨ pℓ), where 1 ≤ j, k, ℓ ≤ n. Then ei is defined as
(xjxkxℓ | xjxℓxk | xkxjxℓ | xkxℓxj | xℓxjxk | xℓxkxj). That is, ei is just the union of all the possible forms in which the variables in V
that correspond to the propositional variables that appear in Ci can be ordered. Further, the word w is defined as (a100)ma.
Clearly, e and w can be constructed in polynomial time from ϕ. Next we show that there is an assignment for variables
{p1, . . . , pn} for which each clause has exactly one true variable if and only if w ∈ L♦(e).

Assume first that w ∈ L♦(e). Then there exists a valuation ν : {x1, . . . , xn} → Σ such that w ∈ L(ν(e)). Thus, it must
be the case that the word a100 belongs to ν(aei), for each 1 ≤ i ≤ m. But this implies that if Ci = (xj ∨ xk ∨ xℓ), then ν
assigns value 1 to exactly one of the variables in the set {xj, xk, xℓ} and it assigns value 0 to the other two variables. Let us
define now a propositional assignment σ : {p1, . . . , pn} → {0, 1} such that σ(pi) = ν(xi), for each 1 ≤ i ≤ n. It is not hard
to see then that for each clause Cj, 1 ≤ j ≤ m, σ assigns value 1 to exactly one of its propositional variables.

Assume, on the other hand, that there is a propositional assignment σ : {p1, . . . , pn} → {0, 1} that assigns value 1 to
exactly one variable in each clause Ci, 1 ≤ i ≤ m. Let us define ν as a valuation from {x1, . . . , xn} into {0, 1} such that
ν(xi) = 1 if and only if σ(pi) = 1. Clearly then 100 ∈ L(ν(ei)), for each 1 ≤ i ≤ m. Thus, (a100)ma ∈ L(ν(e)). We conclude
that w ∈ L♦(e).

NextweproveNP-hardness ofMembership♦ for simple expressions.Weuse a reduction from3-SAT. Letϕ =


1≤i≤n(ℓ
1
i ∨

ℓ2
i ∨ ℓ3

i ) be a propositional formula in 3-CNF over variables {p1, . . . , pm}. That is, each literal ℓj
i, for 1 ≤ i ≤ n and 1 ≤ j ≤ 3,

is either pk or ¬pk, for 1 ≤ k ≤ m. Next we show how to construct in polynomial time from ϕ, a simple regular expression e
over alphabet Σ = {a, b, c, d, 0, 1} and a word w over the same alphabet such that ϕ is satisfiable if and only if w ∈ L♦(e).

The regular expression e is defined as f ∗, where f := a(f1 ∪ g1 ∪ · · · ∪ fm ∪ gm)b, and the regular expressions fi and gi are
defined as follows. Intuitively, fi (resp. gi) codifies pi (resp. ¬pi) and the clauses in which pi (resp. ¬pi) appears. Formally, we
define fi (1 ≤ i ≤ m) asc i ∪


{1≤j≤n|pi = ℓ1

j or pi = ℓ2
j or pi = ℓ3

j }

dj

 · xi

 ,

where xi is a fresh variable in V . In the same way we define gi asc i ∪


{1≤j≤n|¬pi = ℓ1
j or ¬pi = ℓ2

j or ¬pi = ℓ3
j }

dj

 · x̄i

 ,

where x̄i is a fresh variable in V . The variable xi (resp. x̄i) is said to be associatedwith pi (resp. ¬pi) in e. Clearly, e is a simple
regular expression and can be constructed in polynomial time from ϕ.

The word w is defined as:

ac1b ac0b acc1b acc0b · · · acm1b acm0b ad1b add1b · · · adn1b

Clearly, w can be constructed in polynomial time from ϕ. Next we show that ϕ is satisfiable if and only if w ∈ L♦(e).
Assume first that w ∈ L♦(e). That is, there is a valuation ν for the variables in the set {x1, x̄1, . . . , xm, x̄m} over Σ such

thatw ∈ L(ν(e)). But then, given the form ofw, it is clear that ac i1b and ac i0b belong toL(ν(f )), for each 1 ≤ i ≤ m. Notice
that the only way for this to happen is that both ν(xi) and ν(x̄i) take its value in the set {0, 1}, and, further, ν(xi) ≠ ν(x̄i). For
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the same reasons, adj1b ∈ L(ν(f )), for each 1 ≤ j ≤ n. But the only way for this to happen is that for each 1 ≤ j ≤ n it is
the case that either the variable associated with ℓ1

j or with ℓ2
j or with ℓ3

j in e is assigned value 1 by ν. Thus, the propositional
assignment σ : {p1, . . . , pm} → {0, 1}, defined as σ(pi) = 1 if and only if ν(xi) = 1, is well-defined and satisfies ϕ.

Assume, on the other hand, that there is a satisfying propositional assignment σ : {p1, . . . , pm} → {0, 1} for ϕ. Consider
the following valuation ν for e: for each 1 ≤ i ≤ m it is the case that ν(xi) = σ(pi) and ν(x̄i) = 1 − σ(xi). Using essentially
the same techniques as in the previous paragraph it is possible to show that w ∈ L(ν(e)), and, therefore, that w ∈ L♦(e).

Next we show that Membership♦ can be solved in time O(mn · log2 n) for simple expressions of star-height 0. Given a
regular expression e ∈ REG(Σ, V) that is simple and of star-height 0, one can construct in time O(n · log2 n) [24] an ε-free
NFA A over Σ ∪ V that accepts precisely L(e), and satisfies the following two properties: (1) its underlying directed graph
is acyclic (this is because e does not mention the Kleene star), and (2) for each x ∈ V that is mentioned in e there is at
most one pair (q, q′) of states of A such that A contains a transition from q to q′ labeled x (this is because e is simple). From
Lemma 1, checking whether w ∈ L♦(e), for a given word w ∈ Σ∗, is equivalent to checking whether w ∈ L(ν(A)), for
some valuation ν for A. We show how the latter can be done in polynomial time.

First, construct in timeO(m) a deterministic finite automaton (DFA)B overΣ such thatL(B) = {w}.We assumewithout
loss of generality that the set Q of states of A is disjoint from the set P of states of B. Next we construct, the following NFA
A′ over the alphabet Σ ∪ (V × Σ) as follows. The set of states of A′ is Q × P . The initial state of A′ is the pair (q0, p0),
where q0 is the initial state of A and p0 is the initial state of B. The final states of A′ are precisely the pairs (q, p) ∈ Q × P
such that q is a final state of A and p is a final state of B. Finally, there is a transition in A′ from state (q, p) to state (q′, p′)
labeled a ∈ Σ if and only if there is a transition in A from q to q′ labeled a and there is a transition in B from p to p′ labeled
a. There is a transition in A′ from state (q, p) to state (q′, p′) labeled (x, a) ∈ V × Σ if and only there is a transition in A
from q to q′ labeled x and there is a transition in B from p to p′ labeled a. Clearly, such construction can be performed by
checking all combinations of transitions of both A and B, and thus it can be performed in time O(mn · log2 n). Checking
whether L(A′) ≠ ∅ can easily be done in linear time with respect to the size of A′, thus obtaining the O(mn · log2 n) bound.
We prove next that checking this is equivalent to checking whetherw ∈ L(ν(A)), for some valuation ν forA, which finishes
the proof of the proposition in terms of the ♦-semantics.

Assume first that L(A′) ≠ ∅. Let (q0, p0)
u1
−→ (q1, p1)

u2
−→ · · ·

un−1
−−→ (qn−1, pn−1)

un
−→ (qn, pn) be an accepting run of A′.

That is, u1u2 · · · un ∈ (Σ ∪ (V × Σ))∗ and (qn, pn) is a final state of A′. Since the underlying directed graph of A is acyclic,
and each variable x mentioned in e appears in at most one transition of A, it must be the case that for each 1 ≤ i < j ≤ n,
if ui = (xi, ai) ∈ V × Σ and uj = (xj, aj) ∈ V × Σ then xi ≠ xj. This implies that we can define a mapping ν : W → Σ ,
where W is the set of variables used in transitions of A, such that ν(x) = a, if ui = (x, a) for some 1 ≤ i ≤ n, and ν(x) is an
arbitrary element a′

∈ Σ , otherwise. It is not hard to see that q0
a1
−→ q1

a2
−→ · · ·

an−1
−−→ qn−1

an
−→ qn is also an accepting run of

L(ν(A)) and that a1a2 · · · an = w. The latter can be proved as follows. Let f : {u1, . . . , un} → Σ be the mapping such that

f (ui) = ui, if ui = a ∈ Σ , and f (ui) = a, if ui = (x, a) ∈ V × Σ . Then clearly p0
f (u1)
−−→ p1

f (u2)
−−→ · · ·

f (un−1)
−−−−→ pn−1

f (un)
−−→ pn

is an accepting run of B, and, therefore, w = f (u1) · · · f (un). Further, let g : {u1, . . . , un} → Σ be the mapping such that
g(ui) = ui, if ui = a ∈ Σ , and g(ui) = ν(x) = a, if ui = (x, a) ∈ V × Σ . Then clearly f (ui) = g(ui), for each 1 ≤ i ≤ n, and,

further, q0
g(u1)
−−→ q1

g(u2)
−−→ · · ·

g(un−1)
−−−−→ qn−1

g(un)
−−→ qn is an accepting run of L(ν(A)). We conclude that w ∈ L(ν(A)).

Assume, on the other hand, that w ∈ L(ν(A)), for some valuation ν for A. Suppose that w = a1a2 · · · an, where each
ai ∈ Σ (1 ≤ i ≤ n), and let q0

a1
−→ q1

a2
−→ · · ·

an−1
−−→ qn−1

an
−→ qn be an accepting run of L(ν(A)); i.e. qn is a final state of A.

Assume that i1 < i2 < · · · < im are the only indexes in the set {0, 1, . . . , n − 1} such that, for each 1 ≤ j ≤ m, there is no
transition labeled aij+1 from qij to qij+1 in A. Then there must be a transition in A from qij to qij+1 labeled xij ∈ V . Consider

an arbitrary accepting run p0
a1
−→ p1

a2
−→ · · ·

an−1
−−→ pn−1

an
−→ pn of B; i.e. pn is a final state of B. Then it is clear that

(q0, p0)
a1
−→ (q1, p1) · · · (qi1 , pi1)

(xi1 ,ai1+1)
−−−−−→ (qi1+1, pi1+1) · · ·

(qim , pim)
(xim ,aim+1)
−−−−−−→ (qim+1, pim+1) · · · (qn−1, pn−1)

an
−→ (qn, pn)

is an accepting run of A′. Thus, L(A′) ≠ ∅.

2) �-semantics: Now we deal with the �-semantics. ThatMembership� is coNP-hard, even over the class of expressions of
star-height 0, follows from Theorem 5. In fact, such theorem proves something stronger:Membership� is coNP-hard for the
class of expressions of star-height 0, even for a fixed word w. Next we prove thatMembership� is coNP-hard, even over the
class of simple regular expressions.

We use a reduction from 3-SAT to the complement of Membership� over the class of simple expressions. Let ϕ =
1≤i≤n(ℓ

1
i ∨ ℓ2

i ∨ ℓ3
i ) be a propositional formula in 3-CNF over variables {p1, . . . , pm}. That is, each literal ℓj

i, for 1 ≤ i ≤ n
and 1 ≤ j ≤ 3, is either pk or ¬pk, for 1 ≤ k ≤ m. Next, we show how to construct in polynomial time from ϕ, a simple
regular expression e over alphabet Σ = {a, b, 0, 1} and a word w over the same alphabet such that ϕ is satisfiable if and
only if w ∉ L�(e).
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We start by defining w as the following word, where we have distinguished several prefixes that will be used in the rest
of the proof.

1111a 11111a b 1110a 11110a b 111111a 1111111a b 111110a 1111110a b · · ·  
w′,w′′,w+

i ,w−

i ,wu
j

w−

i  
· · · 12i+11a 12i+21a  

w+

i

b 12i+10a 12i+20a b · · · 12m+11a 12m+21a b 12m+10a 12m+20a b

  
w′,w′′,wu

j

13(m+1)+10a 13(m+1)+20a 13(m+1)+30a b 16(m+1)+10a 16(m+1)+20a 16(m+1)+30a b · · ·  
w′,w′′,wu

j

wu
j  

· · · 13j(m+1)+10a 13j(m+1)+20a 13j(m+1)+30a b · · ·  
w′,w′′

w′  
· · · 13n(m+1)+10a 13n(m+1)+20a 13n(m+1)+30a b  

w′′

b aa (2)

As it is shown above, we denote by w′ the prefix of w such that w = w′aa and by w′′ the prefix of w such that w = w′′baa.
Clearly, w can be constructed in polynomial time from ϕ.

The regular expression e is defined as (Σ∗b ∪ ε)f (bΣ∗
∪ ε), where f is defined as:

(f1 ∪ g1 ∪ · · · fm ∪ gm)(a ∪ ε)
∗

Intuitively fi (resp. gi) codifies pi (resp.¬pi) and the clauses inwhich pi (resp.¬pi) appears. Formally, we define fi (1 ≤ i ≤ m)
as 

{w′
} ∪ {w′′

} ∪ 12i+1
∪


{1≤j≤n|pi = ℓ1

j }

13j(m+1)+1
∪


{1≤j≤n|pi = ℓ2

j }

13j(m+1)+2
∪


{1≤j≤n|pi = ℓ3

j }

13j(m+1)+3


· xia


,

where xi is a fresh variable in V . In the same way we define gi as
{w′

} ∪ {w′′
} ∪ 12i+2

∪


{1≤j≤n|¬pi = ℓ1

j }

13j(m+1)+1
∪


{1≤j≤n|¬pi = ℓ2

j }

13j(m+1)+2
∪


{1≤j≤n|¬pi = ℓ3

j }

13j(m+1)+3


· x̄ia


,

where x̄i is a fresh variable in V . The variable xi (resp. x̄i) is said to be associatedwith pi (resp. ¬pi) in e. Clearly, e is a simple
regular expression and can be constructed in polynomial time from ϕ.

Next we show that ϕ is satisfiable if and only if w ∉ L�(e).
We prove first that if w ∉ L�(e) then ϕ is satisfiable. Assume that w ∉ L�(e). Then there exists a valuation

ν : {x1, x̄1, . . . , xm, x̄m} → Σ such that w ∉ L(ν(e)). First of all, we prove that for each 1 ≤ i ≤ m both ν(xi) and
ν(x̄i) belong to the set {0, 1}. Assume, for the sake of contradiction, that this is not the case. Suppose first that ν(xi) = a,
for some 1 ≤ i ≤ m. Then it is clear that L(w′aa) ⊆ L(ν(e)) (because L(w′ν(xi)a) ⊆ L(ν(e))). But w = w′aa, and,
therefore, w ∈ L(ν(e)), which is a contradiction. Suppose now that ν(xi) = b, for some 1 ≤ i ≤ m. Then, again, it is
clear that L(w′′baa) ⊆ L(ν(e)) (because L(w′′ν(xi)aa) ⊆ L(ν(e))). As in the previous case, w = w′′baa, and, therefore,
w ∈ L(ν(e)), which is a contradiction. The other case, when ν(x̄i) ∈ {a, b}, for some 1 ≤ i ≤ m, is completely analogous.

Next we prove that for each 1 ≤ i ≤ m it is the case that ν(xi) = 1 − ν(x̄i). Assume otherwise. Then for some 1 ≤ i ≤ m
it is the case that ν(xi) = ν(x̄i). Suppose first that ν(xi) = ν(x̄i) = 1. Consider the unique prefix w1 of w that is of the form
u12i+11a12i+21a, for u ∈ Σ∗. Then w is of the form w1w2, where w2 ∈ bΣ∗. Since w ∉ L(ν(e)), it must be the case that
w ∉ L((Σ∗b ∪ ε)ν(f )(bΣ∗

∪ ε)). It follows that w1 ∉ L((Σ∗b ∪ ε)ν(f )). But since w1 is of the form u12i+11a12i+21a, it
follows that u = ε or u = u′b, for some u′

∈ Σ∗. In any case it must hold that 12i+11a12i+21a ∉ L(ν(f )). Notice, however,
thatL(12i+1ν(xi)a12i+2ν(x̄i)a) ⊆ L(ν(f )). Hence, 12i+11a12i+21a ∈ L(ν(f )), which is a contradiction. Suppose, on the other
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hand, that ν(xi) = ν(x̄i) = 0. Consider the unique prefix w1 of w that is of the form u12i+10a12i+20a, for u ∈ Σ∗. Then w is
of the formw1w2, wherew2 ∈ bΣ∗. Sincew ∉ L(ν(e)), it must be the case thatw ∉ L((Σ∗b∪ ε)ν(f )(bΣ∗

∪ ε)). It follows
thatw1 ∉ L((Σ∗b∪ ε)ν(f )). But sincew1 is of the form u12i+10a12i+20a, it follows that u = ε or u = u′b, for some u′

∈ Σ∗.
In any case it must hold that 12i+10a12i+20a ∉ L(ν(f )). Notice, however, that L(12i+1ν(xi)a12i+2ν(x̄i)a) ⊆ L(ν(f )). Hence,
12i+10a12i+20a ∈ L(ν(f )), which is a contradiction.

We can then define a propositional assignment σ : {p1, . . . , pm} → {0, 1} such that σ(pi) = ν(xi), for each 1 ≤ i ≤ m.
Notice, from our previous remarks, that σ(¬pi) = 1 − ν(xi) = ν(x̄i), for each 1 ≤ i ≤ m. We prove next that σ satisfies ϕ.
Assume this is not the case. Then for some 1 ≤ j ≤ n it is the case thatσ(ℓ1

j ) = σ(ℓ2
j ) = σ(ℓ3

j ) = 0. Consider now the unique
prefix w1 of w such that w1 is of the form ub13j(m+1)+10a13j(m+1)+20a13j(m+1)+30a, for u ∈ Σ∗. Then w is of the form w1w2,
where w2 ∈ bΣ∗. Since w ∉ L(ν(e)), it must be the case that w ∉ L(Σ∗bν(f )bΣ∗). It follows that w1 ∉ L(Σ∗bν(f )). But
since w1 is of the form ub13j(m+1)+10a13j(m+1)+20a13j(m+1)+30a, it is the case that

13j(m+1)+10a13j(m+1)+20a13j(m+1)+30a ∉ L(ν(f )).

Let q1, q2 and q3 be the variables in e associated with ℓ1
j , ℓ

2
j and ℓ3

j , respectively. Then it cannot be the case that ν(q1) =

ν(q2) = ν(q3) = 0. Assume otherwise. It is clear thatL(13j(m+1)+1ν(q1)a13j(m+1)+2ν(q2)a13j(m+1)+3ν(q3)a) ⊆ L(ν(f )), and,
therefore,

13j(m+1)+10a13j(m+1)+20a13j(m+1)+30a ∈ L(ν(f )),

which is a contradiction. Thus, either ν(q1) = σ(ℓ1
j ) = 1 or ν(q2) = σ(ℓ2

j ) = 1 or ν(q3) = σ(ℓ3
j ) = 1. This is our desired

contradiction.
We prove second that if ϕ is satisfiable then w ∉ L�(e). Assume that ϕ is satisfiable. Then there exists a propositional

assignment σ : {p1, . . . , pm} → {0, 1} that satisfies ϕ. We define a valuation ν : {x1, x̄1, . . . , xm, x̄m} → {0, 1} for e as
follows. For each 1 ≤ i ≤ m it is the case that ν(xi) = σ(pi) and ν(x̄i) = 1 − σ(pi). We prove next that w ∉ L(ν(e)).

Clearly, w ∉ L(ν(e)) if and only if for each words w1, w2, w3 ∈ Σ∗ such that w = w1w2w3 it is the case that
w1 ∉ L(Σ∗b ∪ ε) or w2 ∉ L(ν(f )) or w3 ∉ L(bΣ∗

∪ ε). Thus, in order to prove that w ∉ L(ν(e)) it is enough to
prove that for each words w1, w2, w3 ∈ Σ∗ such that w = w1w2w3,

(∗) if w1 ∈ L(Σ∗b ∪ ε) and w3 ∈ L(bΣ∗
∪ ε) then w2 ∉ L(ν(f )).

Take arbitrary words w1, w2, w3 ∈ Σ∗ such that w = w1w2w3. We consider several cases.

1. Either w1 ∉ L(Σ∗b ∪ ε) or w3 ∉ L(bΣ∗
∪ ε). Then (*) is trivially true.

2. It is the case that w1 ∈ L(Σ∗b ∪ ε), w3 ∈ L(bΣ∗
∪ ε), and w2 is of the form 12i+11a12i+21au, for some 1 ≤ i ≤ m and

u ∈ Σ∗. Assume, for the sake of contradiction, that w2 ∈ L(ν(f )). Since clearly there is no word accepted by L(ν(f ))
with prefix baa, it must be the case that w3 is not the empty word, and, therefore, that w3 ∈ L(bΣ∗). Thus, the only
possibility for w2 to belong to L(ν(f )) is that 12i+11a ∈ L(ν(fi)) and 12i+21a ∈ L(ν(gi)). But this can only happen if
ν(xi) = 1 and ν(x̄i) = 1, which is our desired contradiction (since ν(xi) = 1 − ν(x̄i)).

3. It holds thatw1 ∈ L(Σ∗b∪ε),w3 ∈ L(bΣ∗
∪ε), andw2 is of the form 12i+10a12i+20au, for some 1 ≤ i ≤ m and u ∈ Σ∗.

This case is completely analogous to the previous one.
4. It is the case that w1 ∈ L(Σ∗b ∪ ε), w3 ∈ L(bΣ∗

∪ ε), and w2 is of the form

13j(m+1)+10a13j(m+1)+20a13j(m+1)+30au,

for some 1 ≤ j ≤ n and u ∈ Σ∗. Assume, for the sake of contradiction, that w2 ∈ L(ν(f )). It is easy to see that the only
way in which this can happen is that ν(q1) = ν(q2) = ν(q3) = 0, where q1, q2 and q3 are the variables in e that are
associated with ℓ1

j , ℓ
2
j and ℓ3

j , respectively. Thus, σ(ℓ1
j ) = σ(ℓ2

j ) = σ(ℓ3
j ) = 0, which is or desired contradiction.

This finishes the proof of the proposition. �

Membership for fixed words. We next consider a variation of the membership problem: Membership∗(w) asks, for a
parameterized regular expression e, whether w ∈ L∗(e). In other words, w is fixed. It turns out that for the ♦-semantics,
this version is efficiently solvable, but for the �-semantics, it remains intractable unless restricted to simple expressions.

Theorem 5. 1. There is awordw ∈ Σ∗ such that the problemMembership�(w) is coNP-hard (even over the class of expressions
of star-height 0).

2. For each wordw ∈ Σ∗, the problemMembership�(w) is solvable in linear time, if restricted to the class of simple expressions.
3. For each word w ∈ Σ∗, the problem Membership♦(w) is solvable in time O(n log2 n), where n is the size of the expression.

Proof. We prove each item separately.
(1)We proved in [7] that there exists a wordw ∈ Σ∗ and a class A of NFAs over alphabet ({0, 1}∪V) such that the problem
of checking, for a given A ∈ A, whether w ∈ L(ν(A)), for each valuation ν for A, is a coNP-hard problem. It is clear
from the construction in [7] that there is a polynomial time algorithm that, given an NFA A ∈ A, constructs a star-free
regular expression e over alphabet ({0, 1} ∪ V) such that L(A) = L(e). We can conclude, from Lemma 1, that the problem
Membership�(w) is coNP-hard, even if restricted to the class of star-free regular expressions.
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(2) Second, we prove that, for eachwordw ∈ Σ∗, the problemMembership�(w) can be solved in polynomial time (actually,
in linear timewith respect to the size of the expression) if restricted to the class of simple expressions. In order to do this, we
first define a high-level procedure CheckSimpleNonMemb�, that takes as input a simple parameterized regular expression
e over Σ and a nonempty finite set W ⊂ Σ∗, and checks whether there exists an assignment ν for e such that no word from
W belongs to L(ν(e)). Then the answer toMembership�(w) for an expression e is ¬CheckSimpleNonMemb�(e, {w}).

The procedure CheckSimpleNonMemb� works recursively on input e and W. For each internal node of the parse tree of
e it iterates over some sets W1 (or pairs of sets (W1, W2) respectively), and for each such set (or pair) calls itself recursively
on the children of the analyzed node. If the returned answers of one of the sets (or pairs) satisfy a given condition, the call
accepts.

The details of the definition of CheckSimpleNonMemb� are the following.

1. If e = ε, then CheckSimpleNonMemb�(e, W) accepts if and only if ε ∉ W.
2. If e = a, for a ∈ Σ , then CheckSimpleNonMemb�(e, W) accepts if an only if a /∈ W.
3. If e = x, for x ∈ V , then CheckSimpleNonMemb�(e, W) accepts if and only if W does not contain all one-letter words.
4. If e is of the form e1 ∪ e2, then CheckSimpleNonMemb�(e, W) accepts if and only if CheckSimpleNonMemb�(e1, W)

accepts and CheckSimpleNonMemb�(e2, W) accepts.
5. If e is of the form e1e2, then CheckSimpleNonMemb�(e, W) accepts if and only if there exist finite sets W1 ⊂ Σ∗, W2 ⊂

Σ∗ such that: (1) for eachwordw1w2 ∈ W it is the case thatw1 ∈ W1 orw2 ∈ W2, (2) CheckSimpleNonMemb�(e1, W1)
accepts and (3) CheckSimpleNonMemb�(e2, W2) accepts.

6. If e is of the form (e1)∗, then CheckSimpleNonMemb�(e, W) accepts if and only if ε ∉ W and there is a finite setW1 ⊂ Σ∗

such that: (1) for each w1, w2, . . . , wk ∈ Σ+, if w1w2 · · · wk ∈ W then at least one wi (1 ≤ i ≤ k) belongs to W1, and
(2) CheckSimpleNonMemb�(e1, W1) accepts.

It is interesting to see why CheckSimpleNonMemb� needs to operate on sets of words instead of single words. The above
procedure may construct non-singleton sets in case of concatenation and Kleene star and we cannot analyze their elements
separately, because in each case we must judge the existence of a valuation ν, which would simultaneously prevent all
possible matches of w on ν(e) from being accepting.

Next we prove that the procedure described above is sound and complete; that is, we prove that for each simple
expression e over Σ and W ⊂ Σ∗, CheckSimpleNonMemb� accepts input e and W if and only if there exists a valuation ν
for e such that no word in W belongs to L(ν(e)). We do this by induction.

1. The basis cases – when e = ε, e = a, for a ∈ Σ , or e = x, for x ∈ V – are trivial.
2. Assume e is of the form e1 ∪ e2. Then there is a valuation ν for e such that no word in W belongs to L(ν(e)) if and only

if there is a valuation ν for e such that for each w ∈ W we have w ∉ L(ν(e1)) and w ∉ L(ν(e2)). But since we consider
only simple expressions here, the latter holds if and only if there are valuations ν1 for e1 and ν2 for e2 such that (a) no
word w ∈ W belongs to L(ν1(e1)), and (b) no word w ∈ W belongs to L(ν2(e2)). By the inductive hypothesis, the
latter holds if and only if CheckSimpleNonMemb�(e1, W) accepts and CheckSimpleNonMemb�(e2, W) accepts, which,
by definition, is equivalent to the fact that CheckSimpleNonMemb�(e, W) accepts.

3. Assume e is of the form e1e2. Then there is a valuation ν for e such that no word w ∈ W belongs to L(ν(e)) if and only if
there is a valuation ν for e such that for each word w1w2 ∈ W it is the case that w1 ∉ L(ν(e1)) or w2 ∉ L(ν(e2)). But
since we consider only simple expressions here, the latter holds if and only if there are valuations ν1 for e1 and ν2 for e2
such that for each w1w2 ∈ W it is the case w1 ∉ L(ν1(e1)) or w2 ∉ L(ν2(e2)).

Clearly, the latter holds if and only if there are valuations ν1 for e1 and ν2 for e2 and there are finite sets W1, W2 ⊂ Σ∗

such that: (1) for each w1w2 ∈ W it is the case that w1 ∈ W1 or w2 ∈ W2, and (2) no word w1 ∈ W1 belongs to
L(ν1(e1)), and (3) no word w2 ∈ W2 belongs to L(ν2(e2)). By the inductive hypothesis, the latter holds if and only if
there are finite sets W1, W2 ⊂ Σ∗ such that for each word w1w2 ∈ W it is the case that w1 ∈ W1 or w2 ∈ W2, and both
CheckSimpleNonMemb�(e1, W1) and CheckSimpleNonMemb�(e2, W2) accept. By definition, the latter is equivalent to
the fact that CheckSimpleNonMemb�(e, W) accepts.

4. Assume e is of the form (e1)∗. Then there is a valuation ν for e such that no word w ∈ W belongs to L(ν(e)) if and only
if ε ∉ W and there is a valuation ν1 for e1 such that for each w1, w2, . . . , wk ∈ Σ+, if w1w2 · · · wk ∈ W then some wi
(1 ≤ i ≤ k) does not belong to L(ν1(e1)). Clearly, the latter holds if and only if ε ∉ W and there is a valuation ν1 for e1
and a finite set W1 ⊂ Σ∗ such that: (1) for each w1, w2, . . . , wk ∈ Σ+, if w1w2 · · · wk ∈ W then some wi (1 ≤ i ≤ k)
belongs to W1, and (2) no word from W1 belongs to L(ν1(e1)). By the inductive hypothesis, the latter holds if and only if
ε ∉ W and CheckSimpleNonMemb�(e1, W1) accepts for some finite set W1 ⊂ Σ∗ that satisfies the following: for each
w1, w2, . . . , wk ∈ Σ+, if w1w2 · · · wk ∈ W then some wi (1 ≤ i ≤ k) belongs to W1. By definition this is equivalent to
the fact that CheckSimpleNonMemb�(e, W) accepts.

Next we show that there is an implementation of the procedure CheckSimpleNonMemb� that works in O(|e|) time, if
we assume that the input consists of a simple parameterized regular expression e and a fixed set of words W.

The implementation works recursively as follows. If e is of the form ε, or a, for a ∈ Σ , or x ∈ V , or e1 ∪ e2, then we
implement recursively in the same way as it is described in CheckSimpleNonMemb�. If, on the other hand, e is of the form
e1e2 or (e1)∗, then we have to be slightly more careful since we have to define how to search for sets W1 and W2. We do this
as follows.
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1. Assume first that e is of the form e1e2. Then CheckSimpleNonMemb� accepts e and W if and only if there are finite sets
W1, W2 ⊂ Σ∗ such that: (1) if w1w2 ∈ W, then w1 ∈ W1 or w2 ∈ W2, (2) CheckSimpleNonMemb�(e1, W1) accepts,
and (3) CheckSimpleNonMemb�(e2, W2) accepts. Our implementation, however, does not look over arbitrary sets W1
and W2, but only over the sets which can be constructed as follows: for each w ∈ W and for each w1, w2 ∈ Σ∗ such that
w = w1w2, either pick up w1 and place it in W1 or pick up w2 and place it in W2. If for some pair (W1, W2) constructed
in this way it is the case that CheckSimpleNonMemb�(e1, W1) accepts and CheckSimpleNonMemb�(e2, W2) accepts,
then CheckSimpleNonMemb�(e, W) accepts.

2. Assume second that e is of the form (e1)∗. Then CheckSimpleNonMemb� accepts if and only if ε ∉ W and there is a
finite set W1 ⊂ Σ∗ such that: (1) for each w1, w2, . . . , wk ∈ Σ+, if w1w2 · · · wk ∈ W then some wi (1 ≤ i ≤ k)
belongs toW1, and (2) CheckSimpleNonMemb�(e1, W1) accepts. Again, our implementation does not look over arbitrary
sets W1, but only over the sets which can be constructed as follows. For each decomposition w1w2 · · · wk of a word in
W, where wi ∈ Σ+ for each 1 ≤ i ≤ k, pick up an arbitrary 1 ≤ i ≤ k and place wi in W1. If for some set W1
constructed in this way CheckSimpleNonMemb�(e1, W1) accepts, then CheckSimpleNonMemb�(e, W) accepts. Clearly,
our implementation continues being sound and complete.

To estimate the time complexity of the above implementation, first we need to see that all elements of allW encountered
in the algorithm are subwords of w and thus every W belongs to W, where W is the powerset of all subwords of w. Clearly
the size of W is dependent only on |w|. Also the number of cases tried by each subcall of CheckSimpleNonMemb� and the
number of steps needed to construct each W1 (and W2 respectively) is dependent only on |w|. Hence all these values are
constant.

If along the algorithm we memorize the answers to subcalls, then our complexity will be upper-bounded by
the complexity of a dynamic version of the above algorithm, which would calculate CheckSimpleNonMemb�(e1, W1)
for all subexpressions e1 of e′ and all W1 ∈ W in a bottom-up order. In this approach, the computation of
CheckSimpleNonMemb�(e1, W1) would take constant time, because answers to subcalls would have been precomputed.
Thus the total complexity of CheckSimpleNonMemb� is linear with respect to the size of the parse tree of e′ and thus with
respect to e as well.

(3)We finally prove that, for eachwordw ∈ Σ∗, the problemMembership♦(w) can be solved in timeO(n log2 n). Obviously,
we can consider all labels a ∈ Σ which do not occur in w as equal. This simple observation makes the alphabet size fixed:
|Σ | ≤ |w|+1. Now, letw be a word overΣ . Next we construct an algorithm that, given a parameterized regular expression
e over Σ , checks whether w ∈ L♦(e).

Assume that W ⊂ V is the set of variables that appear in e. Using techniques from [24] the algorithm first constructs an
NFAA overΣ ∪W that is equivalent to e, withO(n) states andO(n log2 n) transitions, and then performs a nondeterministic
logarithmic space algorithm on A. Let us assume, without loss of generality, that q0 is the unique initial state of A. Further,
assume that w = a1a2 · · · am, where each ai (1 ≤ i ≤ m) is a symbol in Σ . Then we perform the following nondeterministic
algorithm over A: the algorithm works in at most m + 1 steps. At each step 0 ≤ i ≤ m the state of the algorithm consists
of a pair (qi, µi), where qi ∈ Q and µi is a mapping from some subset Wi of W into Σ . The initial state of the algorithm is
(q0, µ0), where µ0 : ∅ → Σ (recall that q0 is the initial state of A). Assume that the state of the algorithm in step i < m is
(qi, µi). Then in step i+ 1 the algorithm nondeterministically picks up a pair (qi+1, µi+1) and checks that at least one of the
following conditions holds.

• There exists a transition labeled ai ∈ Σ from qi to qi+1 in A and µi = µi+1; that is, both µi and µi+1 are mappings from
Wi into Σ , and µi+1(x) = µi(x), for each x ∈ Wi.

• There exists a transition labeled x ∈ V from qi to qi+1 in A, x ∉ Wi and µi+1 : Wi ∪ {x} → Σ is defined as follows:
µi+1(y) = µi(y), for each y ∈ Wi, and µi+1(x) = ai.

• There exists a transition labeled x ∈ V from qi to qi+1 in A, x ∈ Wi, µi(x) = ai and µi = µi+1.

The procedure accepts if it reaches step n in state (qn, µn), for some accepting state qn of A. Notice that, since w is fixed, the
size of each mapping µ from a subset of W into Σ is also fixed: |µ| ≤ min{|w|, |W |}. That is because the initial mapping is
empty and in each step of the algorithm it can grow only by one. This means that the nondeterministic procedure described
above works in NLogspace.

It is not hard to prove (essentially using the same techniques than in the second part of the proof of Proposition 4) that
the procedure described above accepts the parameterized regular expression e if and only if w ∈ L♦(e).

Now let M be the set of all mappings µ from subsets of W to Σ , which can occur in the algorithm presented above, and
V be the number of all states (q, µ), which can occur therein. To see the precise time complexity, we need to estimate |M|

and |V |. First, |M| = O

|Σ |

min{|w|,|W |}

, which is fixed in our case. Then, V = O(n · |M|), which is linear in the number of

states of A.
Now let us imagine a directed graph G with the set of vertices V , in which there is an edge from state (q, µ) to state

(q′, µ′) if and only if the pair (q′, µ′) can be picked up from pair (q, µ) according to the algorithm presented above. Each
edge (q, µ) → (q′, µ′) corresponds to an edge q → q′ in A and for each edge q → q′ in A there are at most |M| edges
(q, µ) → (q′, µ′) (one for each µ ∈ M). Therefore, G has O(n log2 n) edges, since |M| is fixed. We can also construct G in
O(n log2 n) time and space.
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Finally, it suffices to perform a reachability search in G to see whether an accepting state can be reached from node
(q0, µ0) in G, which can clearly be done in linear time with respect to the size of G, which gives us an algorithm with
O(n log2 n) time complexity or, by dropping the assumption of w being fixed — O


|w| · |Σ |

min{|w|,|W |}
· n log2 n


time

complexity. Moreover, we can spare space by not constructing G and by computing it ‘‘on the fly’’, because standard graph
search algorithms run in O(V ) space. It might be also useful in terms of time, because a fixed word w either attains an
accepting state within a short path or does not do so at all, so usually most parts of G would not be touched by the search
algorithm at all.

It is worth analyzing the gain in performance, which the above method gives in comparison to the direct approach. The
straightforward algorithm calculates an NFA accepting L♦(e) and runs reachability search on it. The size of such NFA is
O(|Σ |

|W |), so the time complexity becomes O(|w| · |Σ |
|W |

· n log2 n). Hence, the only gain, that the former algorithm gives
is lowering the exponent over Σ from |W | to min{|w|, |W |} and this is because it takes into advantage a smaller class of
mappings, confined by the length of the run of w on A. In fact, this gain is very large if we speak of problem instances with
a relatively small w and a huge e. �

On the other hand, it is straightforward to show that the membership problem for fixed expressions can be solved
efficiently for both semantics.

4.3. Universality

Somewhat curiously, the universality problem is more complex for the possibility semantics L♦. Indeed, consider a
parameterized expression e over Σ , with variables in W . For the certainty semantics, it suffices to guess a word w and
a valuation ν : Σ → W such that w ∉ L(ν(e)). This gives a Pspace upper bound for this problem, which is the best
that we can do, as the universality problem is Pspace-hard even for standard regular expressions. On the other hand, when
solving this problem for the possibility semantics, one can expect that all possible valuations for ewill need to be analyzed,
which increases the complexity by one exponential. (In fact, when one moves to infinite alphabets, this problem becomes
undecidable [17]). The lower bound proof is again by a generic reduction.
Theorem 6. • The problem Universality� is Pspace-complete.
• The problem Universality♦ is Expspace-complete.

Proof. We only need to show the second part. We begin with the upper bound. It is well known that there is an algorithm
to decide whether the language of a standard regular expression e (that is, without variables) is universal, that requires
polynomial space with respect to the size of the input expression e. Given a parameterized regular expression e′, construct
the regular expression e =


{ν(e′) | ν is a valuation for e′

} without variables. Clearly, L♦(e′) = L(e). We can then decide
universality of L♦(e′) by first computing the regular expression e, and then checking if L(e) is universal using the standard
algorithm for regular expressions without variables. Since the expression e is of size exponential with respect to the original
expression e′ (the number of possible valuations for e′ is |Σ |

|W |, where W is the set of variables in e′), the above procedure
runs in Expspace.

For the lower bound we present a reduction from the complement of the acceptance problem of a Turing machine. Let
L be a language that belongs to Expspace, and let M be a Turing machine that decides L in Expspace. Given an input ā, we
construct in polynomial time with respect to M and ā a parameterized regular expression eM,ā over some alphabet ∆ such
that L♦(eM,ā) consists of all the strings over ∆ if and only if M does not accept input ā.

Just as in Section 4.1, we assume that M = (Q , Γ , q0, {qm}, δ), where Q = {q0, . . . , qm} is the set of states, Γ is
the tape alphabet (that contains the distinguished blank symbol B), the initial state is q0, qm is the unique final state, and
δ : (Q \ {qm}) × Γ → Q × Γ × {L, R} is the transition function. Notice that we assume without loss of generality that no
transition is defined on the final state qm. Since M decides L in Expspace, there is a polynomial S() such that, for every input
ā over Σ , M decides ā using space of order 2S(|ā|).

Let ā = a0a1 · · · ak−1 ∈ Σ∗ be an input forM (that is, each ai, 0 ≤ i ≤ k−1 is a symbol in Γ ). For notational convenience
we will assume from now on that S(|ā|) = n.

We also find it convenient to introduce the following notation. For an alphabet Σ = {b1, . . . , bp} of symbols, we abuse
notation and denote byΣ the regular expression (b1 | · · · | bp). Thus, for example, assume thatΓ = {b1, . . . , bp}∪{B}. Then,
whenwewrite (Γ ∪(Γ ×Q ))we represent the language given by (b1 | · · · | bp | B | (b1, q0) | · · · | (B, qm)). Furthermore, we
reuse the notation introduced in Section 4.1, and write the shorthand [i] to denote the binary representation of the number
i as a string of n characters (i.e., [0] corresponds to the word 0n, and [2] corresponds to the word 0n−210).

Our parameterized expression eM,ā uses the alphabet ∆ = {0, 1,#,&, %} ∪ Γ ∪ (Γ × Q ). The idea of the reduction is as
follows. Using ∆, we represent a configuration of M by words in ∆∗ of the form:

# · [0] · (Γ ∪ (Γ × Q )) · & ·

[1] · (Γ ∪ (Γ × Q )) · & ·

[2] · (Γ ∪ (Γ × Q )) · &
...

[2n
− 1] · (Γ ∪ (Γ × Q )) · & · % (3)
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Intuitively, the strings [0], [1], . . . , [2n
− 1] indicate each one of the 2n cells of M, and the symbol following these strings

represents either the content of the cell, or the content of the cell plus the state of M, if M is pointing into that particular
cell of the tape in the configuration that is being encoded.

Since each word of the form (3) represents a configuration of M, we can represent a run of M on input ā as a sequence
of concatenations of words of the form (3), as long as each one of these configurations is consistent with the computation of
M. The idea of the reduction is to construct a parameterized regular expression eM,ā that represent all words w in ∆∗ that
are either not valid concatenations of subwords of the form (3), or, in case that they are, that the sequence of configurations
represented by w is not a valid run of M on input ā. In other words, any word in ∆∗ that does not belong to L♦(eM,ā) is
bound to represent a valid run of M over input ā, thus obtaining that L♦(e) ≠ ∆∗ if and only if M accepts on input ā.

We split the definition of eM,ā into five parts: eM,ā = e1 | e2 | e3 | e4 | e5, where:

• e1 describes all the words that are not concatenations of subwords of form (3);
• e2 describes all the words that, even if they are concatenations of subwords of form (3), these subwords do not represent

valid configurations of M;
• e3 describes words that do not start with a subword of form (3) correctly describing the initial configuration of M over

input ā;
• e4 describes words whose final subword of form (3) does not contain any final states (and is therefore not a final

configuration of M);
• e5 describes words that contains two consecutive subwords of form (3) that represent configurations α and β forM such

that α and β do not agree on δ.

Next we show how to construct expressions e1, e2, e3, e4, e5. We do not provide the precise details of e1, since it is
straightforward to define it from (3). Expression e2 is defined as the union of the following two expressions, stating that:

• between a symbol # and % there is no symbol in (Γ × Q ) (in other words, the machine is pointing at none of the cells in
that configuration):

e21 = ∆∗
· # · (∆ \ ({%} ∪ Γ × Q ))∗ · % · ∆∗

• between a symbol # and % there is more than one symbol in (Γ × Q ) (a configuration features two positions being read
by the machine):

e22 = ∆∗
· # · (∆ \ {%})∗ · (Γ × Q ) · (∆ \ {%})∗ · (Γ × Q ) · (∆ \ {%})∗ · % · ∆∗

Expression e3 is the union of the following expressions, describing that:

• the first configuration does not contain the initial state in the first position of the tape, reading the first symbol of the
output:

e31 = # · [0] · Γ ∪

(Γ × Q ) \ {(q0, a0)}


· ∆∗

• the rest of the k − 1 symbols of the tape do not agree with the input:

e32 = # · [0] · (Γ ∪ (Γ × Q )) · & · [1] · (Γ ∪ (Γ × Q ) \ {a1}) · ∆∗

... =
...

e3k = # · [0] · (Γ ∪ (Γ × Q )) · & · · · [k − 1] · (Γ ∪ (Γ × Q ) \ {ak−1}) · ∆∗

• the rest of the symbols of the first configuration are not blank symbols:

e3k+1 = # · [0] · ∆ · & · · · [k − 1] · ∆ · & · (∆ \ {%})∗ · (0 | 1)n · (Γ ∪ (Γ × Q ) \ {B}) · ∆∗

Expression e4 describes words whose final configuration is not in a final state:

e4 = ∆∗
· # · (∆ \ {%})∗ ·


Γ × (Q \ {qm})


· (∆ \ {%})∗ · %

Finally, we describe expression e5. Intuitively, it describes words that feature two subsequent configurations that are not
consistent with each other. More precisely, it is the union of the following expressions, stating that:

• a cell not pointed by the head changed its content from one configuration to the subsequent one:

e51 =


a∈Γ

∆∗
· x1 · · · xn · a · & · (∆ \ {%})∗ · % ·

# ·

(0|1)n · (Γ ∪ (Γ × Q )) · &

∗
· x1 · · · xn ·


(Γ \ {a}) ∪ ((Γ \ {a}) × Q )


· ∆∗
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• a configuration that is not final features a pair in Q × Σ for which no transition is defined (the symbol # states the
configuration is not the final one):

e52 =


{(a,q) | δ(q,a) is not defined}

∆∗
· (a, q) · ∆∗

· # · ∆∗

• the change of state does not agree with δ:

e53 =


{(a,q) | δ(q,a)=(q′,a′,{L,R})}

∆∗
· (a, q) · (∆ \ {%})∗ · % ·

# · (∆ \ {%})∗ · (Γ × (Q \ {q′
})) · ∆∗

• the symbol written in a given step does not agree with δ:

e54 =


{(a,q) | δ(q,a)=(q′,a′,{L,R})}

∆∗
· y1 · · · yn · (a, q) · (∆ \ {%})∗ · % ·

(∆ \ {%})∗ · y1 · · · yn · (Γ \ {a′
}) · ∆∗

• the movement of the head does not agree with δ:

e55 =


{(a,q) | δ(q,a)=(q′,a′,R)}

∆∗
· z1 · · · zn · (a, q) · (∆ \ {%})∗ · % ·

(∆ \ {%})∗ · z1 · · · zn · a′
· & ·


ε | ((0|1)n · Γ · (∆ \ {%}))∗


· % · ∆∗

e56 =


(a,q) | δ(q,a)=(q′,a′,L)

∆∗
· w1 · · · wn · (a, q) · (∆ \ {%})∗ · % ·

# ·

ε | ((∆ \ {%})∗ · (0|1)n · Γ · &)


· w1 · · · wn · ∆∗

Having defined eM,ā, it is now straightforward to show that L♦(eM,ā) = ∆∗ if and only if M does not accept on input ā.
This finishes the proof of the Expspace lower bound. �

Similarly to the nonemptiness problem (studied in Section 4.1), the Expspace bound for Universality♦ is quite resilient,
as it holds even for simple expressions (note that it makes no sense to study expressions of star-height 0, as they denote
finite languages and thus cannot be universal).

Proposition 7. The problem Universality♦ remains Expspace-hard over the class of simple parameterized regular expressions.

Proof. We sketch how to adapt the reduction of Theorem 6 to hold for simple parameterized regular expressions (i.e.
without repetitions of variables).

Recall that the previous reduction used the alphabet {0, 1, %,#,&} ∪ Γ ∪ (Γ × Q ). In this case, we need a slightly
bigger alphabet. Let ∆ = {0, 1,&,#even, %even,#odd, %odd} ∪ Γ ∪ (Γ × Q ). The idea is to modify the way configurations are
represented.

Previously, we had that runs of M were represented by words in the language:
# · [0] · (Γ ∪ (Γ × Q )) · & · · · [2n

− 1] · (Γ ∪ (Γ × Q )) · & · %
∗

Wemodify the coding, so that configurations are represented in the following way:
#even · [0] · (Γ ∪ (Γ × Q )) · & · · · [2n

− 1] · (Γ ∪ (Γ × Q )) · & · %even ·

#odd · [0] · (Γ ∪ (Γ × Q )) · & · · · [2n
− 1] · (Γ ∪ (Γ × Q )) · & · %odd

∗

The intuition is that configurations using #even and %even represent an even step of the computation of the Turingmachine,
whereas configurations using #odd and %odd represent an odd step. Notice that one can assume, without loss of generality,
that the run of M over input ā ends after an odd number of computations.

All that remain to do is to adapt the definition of the expression eM,ā = e1 | · · · | e5 so that it works under this modified
coding, and such that eM,ā is simple. We omit most of the details, since most of the expressions in e1, . . . , e5 do not use
parameters, and thus are not difficult to modify.

To see how the expressions using parameters can be modified so that they are simple, we show how to adapt the
expression e51, that intuitively accepts all words describing two configurations in which a cell not pointed by the head
changed its content. It was defined previously as

e51 =


a∈Γ

∆∗
· x1 · · · xn · a · & · (∆ \ {%})∗ · % ·

# ·

(0|1)n · (Γ ∪ (Γ × Q )) · &

∗
· x1 · · · xn ·


(Γ \ {a}) ∪ ((Γ \ {a}) × Q )


· ∆∗
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A straightforward idea is to explicitly state even–odd and odd–even cases, that is, redefine e51 as e51,e | e51,o, where

e51,e =


a∈Γ

∆∗
· x1 · · · xn · a · & · (∆ \ {%even, %odd})

∗
· %even ·

#odd ·

(0|1)n · (Γ ∪ (Γ × Q )) · &

∗
· x1 · · · xn ·


(Γ \ {a}) ∪ ((Γ \ {a}) × Q )


· ∆∗

e51,o =


a∈Γ

∆∗
· y1 · · · yn · a · & · (∆ \ {%even, %odd})

∗
· %odd ·

#even ·

(0|1)n · (Γ ∪ (Γ × Q )) · &

∗
· y1 · · · yn ·


(Γ \ {a}) ∪ ((Γ \ {a}) × Q )


· ∆∗

The problem is that these expressions are not simple: they reuse the variables x1, . . . , xn or y1, . . . , yn. The solution is
instead a bit more technical. We redefine e51 as e61,e | e61,o, where:

e61,e =


a∈Γ

∆∗#even · (∆ \ {%even})
∗
·

x1 · · · xn ·


a · & · (∆ \ {%even})

∗
· %even · #odd(∆ \ {%odd})

∗
· &


|


((Γ \ {a}) ∪ ((Γ \ {a}) × Q )) · (∆ \ {%odd,#even, %even})

∗
∗

· %odd · ∆∗

e61,o =


a∈Γ

∆∗#odd · (∆ \ {%odd})
∗
·

y1 · · · yn


a · & · (∆ \ {%odd})

∗
· %odd · #even(∆ \ {#even})

∗
· &


|


((Γ \ {a}) ∪ ((Γ \ {a}) × Q )) · (∆ \ {%even,#odd, %odd})

∗
∗

· %even · ∆∗

Notice then that e61,e | e61,o is a simple parameterized regular expression. In order to see that the intended meaning of
these expressions remains the same, notice that L♦(e51,e) ⊆ L♦(e61,e) and L♦(e51,o) ⊆ L♦(e61,o). Moreover, it is not difficult
to check that none of the words that belong to L♦(e61,e) but not to L♦(e51,e) represent a valid run of M, and neither does
any word in L♦(e61,o) but not in L♦(e51,o). Thus, the words in L♦(e61,e) but not in L♦(e51,e) (respectively, in L♦(e61,o) but not in
L♦(e51,o)) are not harmful for our purposes, since these extrawords already belong to the language of some other disjunction
in eM,ā.

With these observations, it is not difficult to modify the remainder of the reduction of the proof of Theorem 6 so that
every expression is simple. The proof then follows along the same lines as the proof of Theorem 6. �

4.4. Containment

Recall that the Containment problem asks, given parameterized regular expressions e1 and e2, whether L�(e1) ⊆

L�(e2) or L♦(e1) ⊆ L♦(e2) holds. The bounds for the containment problem are easily obtained from the fact that both
nonemptiness and universality can be cast as its versions. That is, we have the following.

Theorem 8. Both Containment� and Containment♦ are Expspace-complete.

Proof. Since Σ∗
⊆ L♦(e) iff Universality♦(e) is true, and L�(e) ⊆ ∅ iff Nonemptiness�(e) is false, we get Expspace-

hardness for both containment problems. To check whether L�(e1) ⊆ L�(e2), we must check that


ν L(ν(e1)) ∩

L(ν ′(e2)) = ∅ for each valuation ν ′ on e2. This is doable in Expspace, since one can construct exponentially many automata
for L(ν(e1)) in Exptime, as well as the automaton for the complement L(ν ′(e2)), and checking nonemptiness of the
intersection of those is done in polynomial space in terms of their size, i.e., in Expspace. Since this needs to be done for
exponentially many valuations ν ′, the overall Expspace bound follows. The proof for the L♦ semantics is almost identical.

�

Containment with one fixed expression. We look at two variations of the containment problem, when one of the
expressions is fixed: Containment∗(e1, ·) asks, for a parameterized regular expression e2, whether L∗(e1) ⊆ L∗(e2);
and Containment∗(·, e2) is defined similarly. The reductions proving Theorem 8 show that Containment�(·, e2) and
Containment♦(e1, ·) remain Expspace-complete. For the other two versions of the problem, the proposition below shows
that the complexity is lowered by at least one exponential.

Proposition 9. • Containment�(e1, ·) is Pspace-complete.
• Containment♦(·, e2) is coNP-complete.
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Proof. (Part 1) It is well known that Containment�(e1, ·) is Pspace-hard even for standard regular expressions. For the
upper bound, let e′

1 be an expression such that L(e′

1) = L�(e1). Since e1 is fixed, the expression e′

1 can be computed in
constant time. Then, it suffices to guess a valuation ν and a word w such that w ∈ L(e′

1), but w /∈ L(ν(e2)), which can
clearly be done in Pspace.

(Part 2) We begin with the upper bound for the problem Containment♦(·, e2). Assume that the input is a parameterized
regular expression e1 over Σ , and that W ⊂ V is the set of variables mentioned in e1. The following coNP algorithm solves
the problem Containment♦(·, e2). First, construct a DFA Ae2 such that L(Ae2) = L♦(e2), and then construct AC

e2 , the DFA
that accepts the complement of L(Ae2). Since e2 is fixed, AC

e2 can be constructed in constant time. Next, guess a valuation
ν : W → Σ , and, from ν(e1), construct the NFA Aν(e1) that accepts L(ν(e1)). It is well-known that this automaton can be
constructed in polynomial time from ν(e1). Finally, check thatAν(e1) ∩AC

e2 ≠ ∅, which can be performed in polynomial time
using a standard reachability test over the product of Aν(e1) and AC

e2 . It is not hard to see that this algorithm is sound and
complete for the problem. In fact, if Aν(e1) ∩AC

e2 ≠ ∅, then there is a wordw ∈ L(ν(e1)), and hence in L♦(e1), that does not
belong to L♦(e2). This implies that L♦(e1) is not contained in L♦(e2). On the other hand, it is clear that if Aν(e1) ∩ AC

e2 = ∅

for all possible valuations ν from W to Σ , then L♦(e1) is contained in L♦(e2).
The lower bound is established via a reduction from 3-SAT to the complement of Containment�(·, e2), where e2 is the

following regular expression over the alphabet Σ = {0, 1,#}:

e2 :=

(10 | 01)∗#((0 | 1)3)∗000((0 | 1)3)∗


|

((0 | 1)2)∗(00 | 11)Σ∗


|

Σ∗#Σ∗#Σ∗


.

Notice that e2 mentions no variables, and hence L♦(e2) = L(e2).
Let ϕ =


1≤i≤n(ℓ

1
i ∨ ℓ2

i ∨ ℓ3
i ) be a propositional formula in 3-CNF over variables {p1, . . . , pm}. That is, each literal ℓj

i, for
1 ≤ i ≤ n and 1 ≤ j ≤ 3, is either pk or ¬pk, for 1 ≤ k ≤ m. Next we show how to construct in polynomial time from ϕ a
parameterized regular expression e1 over the alphabetΣ = {0, 1,#} such that ϕ is satisfiable if and only ifL♦(e1) ⊈ L(e2).

Let W = {xi, x̂i | 1 ≤ i ≤ m}. Intuitively, each xi represents the value assigned to pi, and x̂i represents the value of ¬pi.
Moreover, assume that h is a mapping from the literals ℓ

j
i (1 ≤ i ≤ n and 1 ≤ j ≤ 3) to W , defined as expected: h(ℓj

i) = xk
if ℓj

i is pk, for some 1 ≤ k ≤ m, and h(ℓj
i) = x̂k if ℓ

j
i is ¬pk.

Define e1 as follows:

e1 = x1x̂1 · · · xmx̂m#h(ℓ1
1)h(ℓ

2
1)h(ℓ

3
1) · · · h(ℓ1

n)h(ℓ
2
n)h(ℓ

3
n).

We show that ϕ is satisfiable if and only if L♦(e1) ⊈ L(e2).
(⇒): Assume that ϕ is satisfiable by valuation σ . Let ν be a valuation from W to Σ , defined as follows.

• For each 1 ≤ k ≤ m, ν(xk) = 1 if σ(pk) = 1, and ν(xk) = 0 otherwise.
• For each 1 ≤ k ≤ m, ν(x̂k) = 0 if σ(pk) = 1, and ν(x̂k) = 1 otherwise.

Notice that L(ν(e1)) consists of the single word:

ν(x1)ν(x̂1) · · · ν(xm)ν(x̂m)#ν(h(ℓ1
1))ν(h(ℓ2

1))ν(h(ℓ3
1)) · · · ν(h(ℓ1

n))ν(h(ℓ2
n))ν(h(ℓ3

n)).

Weshall abuse notation anddenote by ν(e1) both thisword and the aforementioned expression. It is clear that ν(e1) contains
a single symbol #, and starts with a prefix in (01 | 10)∗#. Thus, if L♦(e1) ⊆ L(e2) it must be that ν(e1) is defined by the
expression (10 | 01)∗#((0 | 1)3)∗000((0 | 1)3)∗. But this implies that there are literals ℓ1

i , ℓ
2
i and ℓ3

i , for some 1 ≤ i ≤ n, such
that ν(h(ℓ1

i ))ν(h(ℓ2
i ))ν(h(ℓ3

i )) = 000. By construction of ν, it must be the case that σ falsifies the i-th clause of ϕ, which
contradicts the fact that σ is a satisfying assignment.

(⇐): Assume on the other hand that L♦(e1) ⊈ L(e2). From the definition of the ♦-semantics, there is at least one
valuation ν from W to Σ such that L(ν(e1)) ⊈ L(e2). Notice again that, by construction of e1, ν(e1) consists of the single
word:

ν(x1)ν(x̂1) · · · ν(xm)ν(x̂m)#ν(h(ℓ1
1))ν(h(ℓ2

1))ν(h(ℓ3
1)) · · · ν(h(ℓ1

n))ν(h(ℓ2
n))ν(h(ℓ3

n)).

Again, we shall denote this word also by ν(e1). Then if L(ν(e1)) ⊈ L(e2) it must be the case that ν(e1) is not in L(e2). This
immediately entails that ν(e1) cannot have two or more copies of the symbol #, and thus we conclude that ν assigns to each
variable W a symbol in {0, 1}. From this it follows that the following valuation σ for the variables in ϕ is well defined:

• σ(pi) = 1 if ν(xi) = 1, and σ(pi) = 0 if ν(xi) = 0.

Next we show that for each 1 ≤ i ≤ m, it is the case that ν(xi) ≠ ν(x̂i). Assume for the sake of contradiction that for some
i ≤ i ≤ m we have ν(xi) = ν(x̂i). From the construction of e1 it must be the case that ν(e1) is denoted by the expression
((0 | 1)2)∗(00 | 11)Σ∗, which contradicts the fact that ν(e1) is not in L(e2). Finally, we claim that ϕ is satisfiable by the
valuation σ . Assume the contrary. Then there is a clause (ℓ1

i ∨ ℓ2
i ∨ ℓ3

i ), for 1 ≤ i ≤ n, such that, for each 1 ≤ j ≤ 3, if ℓj
i is

the literal pk, for some 1 ≤ k ≤ m, then σ assigns the value 0 to pk, and if ℓj
i is the literal ¬pk, for some 1 ≤ k ≤ m, then σ

assigns the value 1 to pk. It is now straightforward to conclude that this fact contradicts the assumption that ν(e1) is not in
L(e2), by studying all of the 8 possible cases. �
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4.5. Intersection with a regular language

This problem is a natural analog of the standard decision problem solved in automata-based verification; we also saw in
the introduction that it arises when one computes certain answers to queries over incompletely specified graph databases.

Checking whether L(e′) ∩ L�(e) ≠ ∅ can be done in Expspace using the same brute-force algorithm as for the
nonemptiness problem (intersection of exponentiallymany regular languages). Since the nonemptiness problem is a special
case with e′

= Σ∗, we get the matching lower bound by Theorem 1. For L♦(e), an NP upper bound is easy: one just guesses
a valuation so that L(e′) ∩ L(ν(e)) ≠ ∅. If e′ denotes a single word w, we have an instance of the membership problem,
and hence there is a matching lower bound, by Theorem 3. Summing up, we have the following.

Corollary 2. • The problem NonemptyIntReg� is Expspace-complete.
• The problem NonemptyIntReg♦ is NP-complete.

5. Computing automata

In this section, we first provide upper bounds for algorithms for building NFAs over Σ capturing L♦(e) and L�(e), and
then prove their optimality, by showingmatching lower bounds on the sizes of suchNFAs. Recall thatwe are dealingwith the
problem ConstructNFA∗: given a parameterized regular expression e, construct an NFAA overΣ such thatL(A) = L∗(e).

Proposition 10. The problem ConstructNFA♦ can be solved in single-exponential time, and the problem ConstructNFA� can
be solved in double-exponential time.

These bounds are achieved by using naive algorithms for constructing automata: namely, one converts a parameterized
regular expression e over variables in a finite set W into an automaton Ae, and then for |Σ |

|W | valuations ν computes the
automata ν(Ae). This takes exponential time. To obtain anNFA forL♦(e) one simply combines themwith a nondeterministic
choice; for L�(e) one takes the product of them, resulting in double-exponential time.

We now show that these complexities are unavoidable, as the smallest NFAs capturingL♦(e) orL�(e) can be of single or
double-exponential size, respectively. We say that the sizes of minimal NFAs for L∗ are necessarily exponential (resp., double-
exponential) if there exists a family {en}n∈N of parameterized regular expressions such that:

• the size of each en is O(n), and
• every NFA A satisfying L(A) = L∗(en) has at least 2n (resp., 22n ) states.

Theorem 11. The sizes of minimal NFAs are necessarily double-exponential for L�, and necessarily exponential for L♦.

Proof. We begin with the double exponential bound for L�. For each n ∈ N, let en be the following parameterized regular
expression over alphabet Σ = {0, 1} and variables x1, . . . , xn+1:

en = ((0 | 1)n+1)∗ · x1 · · · xn · xn+1 · ((0 | 1)n+1)∗.

Notice that each en uses n + 1 variables, and is of linear size in n. We first show a technical lemma.

Lemma 3. Let u ∈ {0, 1}n+1 be a word of size n + 1. Then u is a subword of every word w ∈ L�(en). Moreover, there is a match
for u in w that starts in a position j of w (1 ≤ j ≤ |w|) such that j = 1 mod n + 1.

Proof. Consider an arbitrary word u = u1, . . . , un+1 ∈ {0, 1}n+1, and let ν be the valuation for en such that ν(xi) = ui, for
1 ≤ i ≤ (n + 1). Then ν(en) = ((0 | 1)n+1)∗ · u · ((0 | 1)n+1)∗, and thus all words w in L(ν(en)) contain u as a subword,
matching in a position j = 1 mod n + 1 of w. The lemma follows since by definition L�(en) ⊆ L(ν(en)). �

In order to show that every NFA deciding L�(en) has 22n states, we use the following result.

Theorem 12. [25] If L ⊂ Σ∗ is a regular language, and there exists a set of pairs P = {(ui, vi) | 1 ≤ i ≤ m} ⊆ Σ∗
× Σ∗ such

that:

1. uivi ∈ L, for every 1 ≤ i ≤ m, and
2. ujvi /∈ L, for every 1 ≤ i, j ≤ m and i ≠ j,

then every NFA accepting L has at least m states.

Given a collection S of words over {0, 1}, let wS denote the concatenation, in the lexicographical order, of all the words
that belong to S, and let wS̄,n denote the concatenation of all words in {0, 1}n+1 that are not in S.

Then define a set of pairs Pn = {(wS, wS̄,n) | S ⊂ {0, 1}n+1 and |S| = 2n
}. Since there are 2n+1 binary words of length

n + 1, there are
2n+1

2n

different subsets of {0, 1}n+1 of size 2n, and thus Pn contains

2n+1

2n


≥ 22n pairs. Next, we show that
L�(en) and Pn satisfy properties (1) and (2) in Theorem 12, which proves the double exponential lower bound.
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1. We need to show that for every set S ⊂ {0, 1}n+1 of size 2n, the word wS · wS̄,n belongs to L(ν(en)), for every possible
valuation ν : Σ → {x1, . . . xn+1}. Then let S be an arbitrary subset of {0, 1}n+1 of size 2n, and let ν be an arbitrary
valuation from Σ to {x1, . . . , xn+1}. Define u = ν(x1) · · · ν(xn+1). Then u is a substring of either wS or wS̄,n. Assume the
former is true (the other case is analogous). Then the word wS · wS̄,n can be written in the form v · u · v′

· wS̄,n, with
v, v′

∈ L((0 | 1)n+1). This shows that wS · wS̄,n belongs to L(ν(en)).
2. Assume for the sake of contradiction that there are distinct subsets S1, S2 of {0, 1}n+1 of size 2n such that wS1 · wS̄2,n

belongs to L�(en). Since S1 and S2 are distinct, proper subsets of {0, 1}n+1 (they are of size 2n), there must be a word
in {0, 1}n+1 that belongs to S2 but not to S1. Let s be such word. Given that the word wS1 · wS̄2,n belongs to L�(en), by
Lemma 3 we have that s is a subword of wS1 · wS̄2,n that matches wS1 · wS̄2,n in a position j such that j = 1 mod n + 1.
There are two possibilities. First, it could be that j < |wS1 |. But since j = 1 mod n + 1, this means that s corresponds to
one of the words in S1, that gives form to wS1 , which is a contradiction. On the other hand, if j ≥ |wS1 |, using essentially
the same argument we conclude that s does not belong to S2, which is also a contradiction.

We use essentially the same technique to address the ♦-semantics. To show the exponential lower bound for L♦, define
en = (x1 · · · xn)∗, and let Pn = {(w, w) | w ∈ {0, 1}n}. Clearly, Pn contains 2n pairs. All that is left to do is to show thatL♦(en)
and Pn satisfy properties (1) and (2) in Theorem 12.

1. From the fact that L♦(en) =


w∈{0,1}n w∗, we have that for each u ∈ {0, 1}n the word uu belongs to L♦(en).
2. The same fact shows that for every u, v ∈ {0, 1}n, if u ≠ v, then uv /∈


w∈{0,1}n w∗, and thus uv /∈ L♦(en).

This finishes the proof of the theorem. �

Note that the bounds of Theorem 11 apply to simple regular expressions.

6. Extending domains of variables

So far we assumed that variables take values in Σ: our valuations were partial maps ν : V → Σ . We now consider a
more general case when the range of each variable is a regular subset of Σ∗.

Let e be a parameterized regular expression with variables x1, . . . , xn, and let L1, . . . , Ln ⊆ Σ∗ be nonempty regular
languages. We shall write L̄ for (L1, . . . , Ln). A valuation in L̄ is a map ν : x̄ → L̄ such that ν(xi) ∈ Li for each i ≤ n. Under
such a valuation, each parameterized regular expression e is mapped into a usual regular expression ν(e) over Σ , in which
each variable xi is replaced by the word ν(xi). Hence we can still define

L�(e; L̄) =


{L(ν(e)) | ν is a valuation over L̄}
L♦(e; L̄) =


{L(ν(e)) | ν is a valuation over L̄}

According to this notation, L�(e) = L�(e; (Σ, . . . , Σ)), and likewise for L♦.
Note however that intersections and unions are now infinite, if some of the languages Li’s are infinite, so we cannot

conclude, as before, that we deal with regular languages. And indeed they are not: for example, L♦(xx; Σ∗) is the set of
square words, and thus not regular.

We now consider two cases. If each Li is a finite language, we show that all the complexity results in Fig. 1 remain true.
Then we look at the case of arbitrary regular Li’s. Languages L♦(e; L̄) need not be regular anymore, but languages L�(e; L̄)
still are, and we prove that the complexity bounds from the certainty column of Fig. 1 remain true. For complexity results,
we assume that in the input (e; L̄), each domain Li is given either as a regular expression or an NFA over Σ .

6.1. The case of finite domains

If all domain languages Li’s are finite, all the lower bounds apply (theywere shownwhen each Li = Σ). For upper bounds,
note that each finite Li contains at most exponentially many words in the size of either a regular expression or an NFA that
gives it, and each such word is of polynomial size. Thus, the number of valuations is at most exponential in the size of the
input, and each valuation can be represented in polynomial time. The following is then straightforward.

Proposition 13. If domains Li’s of all variables are finite nonempty subsets of Σ∗, then both L�(e; L̄) and L♦(e; L̄) are regular
languages, and all the complexity bounds on the problems related to them are exactly the same as stated in Fig. 1.

6.2. The case of infinite domains

We have already seen that if just one of the domains is infinite, then L♦(e; L̄) need not be regular (the L♦(xx; Σ∗)
example). Somewhat surprisingly, however, in the case of the certainty semantics, we recover not only regularity but also
all the complexity bounds.

Theorem 14. For each parameterized regular expression e using variables x1, . . . , xn and for each n-tuple L̄ of regular languages
over Σ , the language L�(e; L̄) ⊆ Σ∗ is regular. Moreover, the complexity bounds are exactly the same as in the � column of the
table in Fig. 1.
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Proof sketch. We only need to be concerned about regularity of L�(e; L̄) and upper complexity bounds, as the proofs of
lower bounds apply for the case when all Li = Σ . For this, it suffices to prove that there is a finite set U of NFAs so that
L�(e; L̄) =


A∈U L(A). Moreover, it follows from analyzing the proofs of upper complexity bounds, that the complexity

results will remain the same if the following can be shown about the set U:

• its size is at most exponential in the size of the input;
• checking whether A ∈ U can be done in time polynomial in the size of A;
• each A ∈ U is of size polynomial in the size of the input (e; L̄).

To show these, take Ae and from it construct a reduced automaton A′
e in which all transitions (q, xi, q′) are eliminated

whenever Li is infinite. We then show that L�(Ae; L̄) = L�(A′
e; L̄) (the definition of L� extends naturally from regular

expressions to automata for arbitrary domains). The automaton A′
e represents a finite set U of NFAs, obtained by applying

valuations to each of the transitions of A′
e. Note that the set U is finite because the codomain of the valuations is now finite,

as it is the union of all finite Li’s. It is now possible to show that these automata satisfy the required properties.
It will bemore convenient for us toworkwith automata thanwith regular expressions.We deal with NFAswith extended

transitions, which can be not just of the form (q, a, q′), where q and q′ are states, and a ∈ Σ , but also (q, w, q′), where
w ∈ Σ∗. Such an automaton accepts a word s ∈ Σ∗ in the standard way: in a run, in state q, if the subword starting in
the current position is w, it can skip w and move to q′ if there is a transition (q, w, q′). Note that such automata are a mere
syntactic convenience (they will appear as the results of applying valuations), as any such automatonA can be transformed,
in polynomial time, into a usual NFA A′ so thatL(A) = L(A′). Indeed, for each transition t = (q, w, q′)withw = a1 . . . am,
introduce new states q1t , . . . , q

m−1
t and add transitions (q, a1, q1t ), (q

1
t , a2, q

2
t ), . . . , (q

m−1
t , an, q′) to A′. Thus, we shall work

with automata with extended transitions.
Let e be a parameterized regular expression with variables x1, . . . , xn, whose domains are regular languages L1, . . . , Ln.

Let Ae be an NFA equivalent to e, over the alphabet Σ ∪ {x1, . . . , xn}. If we have a valuation ν so that ν(xi) ∈ Li for each
i ≤ n, then ν(Ae) is an automaton with extended transitions: in it, each transition (q, xi, q′) is replaced by (q, ν(xi), q′). It is
then immediate from the construction that L(ν(e)) = L(ν(Ae)) and thus L�(e) =


ν L(ν(Ae)).

Next, consider finitary valuations ν, which are partial functions defined on variables xi such that Li is a finite language;
of course ν(xi) ∈ Li. On variables xj with infinite Lj such valuations are undefined. By ν(Ae) we mean the automaton (with
extended transitions) resulting from Ae as follows. First, all transitions (q, a, q′), where a is a letter, are kept. Second, if
(q, xi, q′) is a transition, then ν(Ae) contains (q, ν(xi), q′) only if ν(xi) is defined. In other words, transitions using variables
whose domains are infinite, are dropped.

Let ν1, . . . , νM enumerate all the finitary valuations (clearly there are finitely many of them). Let Ai = νi(Ae), for i ≤ M .
We now show that L�(Ae) =


i≤M L(Ai).

First, if νi is a finitary valuation and ν is any extension of νi to a valuation on all the variables x1, . . . , xn, then
clearly L(νi(Ae)) ⊆ L(ν(Ae)). Moreover, let Vi be the set of all valuations that are extensions of νi. Then we have
that L(νi(Ae)) ⊆


z∈Vi

L(z(Ae)). But note that every valuation ν is an extension of some finitary valuation νi, and
thus L�(Ae) =


all valuations ν L(ν(Ae)) ⊇


i≤M L(νi(Ae)). For the reverse inclusion, let w ∈ L�(Ae); in particular,

w ∈ L(ν(Ae)) for every valuation ν. Take an arbitrary finitary valuation νi and let Vi be the (infinite) set of all the valuations
ν that extend νi. Let Vi(w) be the subset of Vi that contains valuations ν with the property that for each variable xj with
an infinite domain Lj, we have |ν(xj)| > |w|; clearly Vi(w) is an infinite set as well. Take any ν ∈ Vi(w); we know from
w ∈ L�(Ae) thatw ∈ L(ν(Ae)). In particular, there is an accepting run of ν(Ae) that never uses any transition (q, ν(xj), q′)
with Lj infinite, since |ν(xj)| > |w|. Thus, such an accepting run may only use transitions resulting from valuations of
variables with finite domains, and hence it is also an accepting run of νi(Ae). This shows that w ∈ L(νi(Ae)); since νi was
chosen arbitrarily, it means that w ∈


i≤M L(νi(Ae)), and thus proves L�(Ae) =


i≤M L(νi(Ae)) =


i≤M L(Ai).

This immediately shows that L�(e) = L�(Ae) is regular, as a finite intersection of regular languages. Lower bounds
on complexity apply immediately as they were all established for the case when each Li = Σ . So we need to prove upper
bounds. To do so, one can see, by analyzing the proofs for the case when all domains are Σ , that it suffices to establish the
following facts on the set of automata Ai, for i < M:

• M is at most exponential in the size of the input;
• checking whether a given automaton A is one of the Ai’s can be done in time polynomial in the size of A; and
• for each Ai, for i < M , its size it at most polynomial in the size of the input.

(To give a couple of examples, to see the Expspace-bound onNonemptiness�, we construct exponentiallymany automata
of polynomial size and check nonemptiness of their intersection. To see the NP upper bound on Membership♦ for finite
valuations, one guesses a polynomial-size Ai, checks in polynomial time that it is indeed a correct automaton, and then
checks again in polynomial time whether a given word is accepted by it.)

Recall that the input to the problem we are considering is (e; L̄), or (Ae; L̄), and we can assume that each Li is given by
an NFA Bi (if part of the input is a regular expression, we can convert it into an NFA in O(n log2 n) time [24]).

To show the bounds, assume without loss of generality that from each Bi all nonreachable states, and states from which
final states cannot be reached, are removed (this can be done in polynomial time). Then L(Bi) is finite iff Bi does not have
cycles. Thus, if ni is the number of states of Bi, then the longest word accepted by Bi is of length ni, and hence the size of
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each finite Li = L(Bi) is at most |Σ |
ni+1. Hence, the total number of all the words in the finite languages Li’s is less than

|Σ |
N , where N = n +


ni, with the sum taken over indexes i such that Li is finite. This means that in turn the number

of finitary valuations M , i.e. mappings from some of the variables xi’s into words in these finite languages is at most |Σ |
Nn,

which is thus exponential in the size of the input.
The remaining two properties are easy. Since the length of each word accepted by one of the Bi’s is at most the number

of states in Bi, the size of all the automata νi(Ae) is bounded by a polynomial in the size of the input; changing extended
transitions in those to the usual NFA transitions involves only a linear increase of size. To check whether an automaton A
is one of the Ai’s, we check whether all its transitions involving both states from Ae come from Ae or from a single-letter
valuation. Every other transitionmust be on a path between two states fromAe. One readswords on these paths, and checks
if they form a finitary valuation. This can easily be done in polynomial time. �

7. Future work

For most bounds (except universality and containment), the complexity under the possibility semantics is reasonable,
while for the certainty semantics it is quite high (i.e., double-exponential in practice). At the same time, the concept of
L�(e) captures many query answering scenarios over graph databases with incomplete information [7]. One of the future
directions of this work is to devise better algorithms for problems related to the certainty semantics under restrictions
arising in the context of querying graph databases.

Another line of work has to do with closure properties: we know that results of Boolean operations on languages
L�(e) and L♦(e) are regular and can be represented by NFAs; the bounds on sizes of such NFAs follow from the results
shown here. However, it is conceivable that such NFAs can be succinctly represented by parameterized regular expressions.
To be concrete, one can easily derive from results in Section 5 that there is a doubly-exponential size NFA A so that
L(A) = L�(e1) ∩ L�(e2), and that this bound is optimal. However, it leaves open a possibility that there is a much
more succinct parameterized regular expression e so that L�(e) = L�(e1) ∩ L�(e2); in fact, nothing that we have shown
contradicts the existence of a polynomial-size expression with this property. We plan to study bounds on such regular
expressions in the future.
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