
Nonlinear Analysis 89 (2013) 299–321

Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Resonance phenomenon for a Gelfand-type problem✩

Wenjing Chen ∗, Juan Dávila
Departamento de Ingeniería Matemática and CMM, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile

a r t i c l e i n f o

Article history:
Received 30 March 2013
Accepted 9 May 2013
Communicated by Enzo Mitidieri

Keywords:
Singular solution
Multiplicity
Morse index
Resonance

a b s t r a c t

We consider positive radially symmetric solutions of

−∆u = λ(eu − 1), in B, u = 0 on ∂B,

where B is the unit ball in RN , N ≥ 3 and λ > 0 is a parameter. We establish infinite multi-
plicity of regular solutions for 3 ≤ N ≤ 9 and some λ, and we obtain a bound for theMorse
index and the number of solutions when N ≥ 10.
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1. Introduction

In this article, we are interested in the structure of the solution set of the boundary value problem
−1u = λ(eu − 1), u > 0 in B;
u = 0 on ∂B, (1.1)

where B is the unit ball in RN ,N ≥ 3 and λ > 0 is a parameter. Smooth solutions to (1.1) are radially symmetric and
decreasing by the classical result of Gidas, Ni and Nirenberg [1].

Problem (1.1) is related to the following Gelfand problem:
−1u = λeu, in B;
u = 0 on ∂B. (1.2)

Barenblatt [2] and Joseph and Lundgren [3], using phase-plane analysis, gave a complete description of the classical solutions
to (1.2), which are again radially symmetric [1].

Proposition 1.1. Assume N ≥ 1, then there exists λ∗
= λ∗(N) > 0, such that

• for 0 < λ < λ∗, (1.2) has the minimal solution uλ;
• for λ = λ∗, (1.2) has a unique solution;
• for λ > λ∗, (1.2) has no solution (even in the weak sense).

Moreover, we have the following.

(a) if N = 1, 2, then for 0 < λ < λ∗, there are exactly two solutions to (1.2), one of them is the minimal solution uλ. The other
one, denoted by Uλ, has Morse index 1.

✩ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which
permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
∗ Corresponding author. Tel.: +56 2 9784554.

E-mail addresses:wjchen1102@yahoo.com.cn, wjchen1102@gmail.com (W. Chen), jdavila@dim.uchile.cl (J. Dávila).

0362-546X/$ – see front matter© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.na.2013.05.008

http://dx.doi.org/10.1016/j.na.2013.05.008
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.na.2013.05.008&domain=pdf
mailto:wjchen1102@yahoo.com.cn
mailto:wjchen1102@gmail.com
mailto:jdavila@dim.uchile.cl
http://dx.doi.org/10.1016/j.na.2013.05.008


300 W. Chen, J. Dávila / Nonlinear Analysis 89 (2013) 299–321

(b) If 3 ≤ N ≤ 9, then λ∗ > 2(N − 2). For 0 < λ < λ∗, λ ≠ 2(N − 2), (1.2) has finitely many solutions; for λ = 2(N − 2),
(1.2) has infinitely many solutions; for λ close to 2(N − 2), (1.2) has a large number of solutions that converge to −2 log |x|.

(c) If N ≥ 10, then λ∗
= 2(N − 2) and u∗ = −2 log |x|. Moreover (1.2) has a unique minimal solution uλ for each λ ∈ (0, λ∗).

Nagasaki and Suzuki [4] classified the solutions of (1.2) according to their Morse index. In a few words, the family of
regular solutions of (1.2) can be described as a curve (u(s), λ(s))with s ∈ [0,∞), such that (u(s), λ(s)) → (0, 0) as s → 0
and (u(s), λ(s)) → (uσ , λσ ) as s → ∞, whereuσ (r) = −2 log(r), λσ = 2(N−2) is a singular solution of (1.2). In dimensions
3 ≤ N ≤ 9, λ(s) oscillates around 2(N − 2) as s → ∞ and the Morse index of u(s) increases by one in each oscillation.
In dimensions N ≥ 10, λ(s) is monotone, u(s) is monotone and is stable for each s. We refer the reader to the book of
L. Dupaigne [5] for further references on problem (1.2). Moreover, Berchio, Gazzola and Pierotti in [6] studied Gelfand type
elliptic problems under Steklov boundary conditions.

A problem analogous to (1.1) is
−1u = up

+ λu, u > 0 in B;
u = 0 on ∂B (1.3)

where p > 1 and λ > 0 is a parameter. According to classical bifurcation theory [7], the point (µ1, 0) is a bifurcation point
fromwhich emanates an unbounded branchC of solutions of (1.3), whereµ1 is the first eigenvalue of the negative Laplacian
operator under Dirichlet boundary condition in B.

• If p < N+2
N−2 (N ≥ 3), for λ < µ1, there is a positive solution of (1.3) by a standard constrained minimization procedure

involving compactness of the Sobolev embedding. Moreover, by Pohozaev’s identity [8], problem (1.3) has no solutions
for λ ≤ 0 whenever p ≥

N+2
N−2 .

• If p =
N+2
N−2 , which is the classical Brezis–Nirenberg problem [9], problem (1.3) has a solution for 0 < λ < µ1 if N ≥ 4,

and for 1
4µ1 < λ < µ1 if N = 3.

• If p > N+2
N−2 , Dolbeault and Flores found that if p > N+2

N−2 , and p < N−2
√
N−1

N−2
√
N−1−4

or N ≤ 10, then there is a unique number
λ∗ > 0, such that for λ close to λ∗, a large number of classical solutions of (1.3) exist. In particular, there are infinitely
many classical solutions for λ = λ∗. Recently, Guo and Wei in [10] showed that the structure of the branch C changes
for p ≥ pc and N+2

N−2 < p < pc , where pc =
(N−2)2−4N+8

√
N−1

(N−2)(N−10) if N ≥ 11; and pc = ∞ if 2 ≤ N ≤ 10. Moreover, they
established that for N+2

N−2 < p < pc,C turns infinitely many times around λ∗ ∈ (0, µ1). For p ≥ pc , all solutions have a
finite Morse index, and for N ≥ 12 and p > pc sufficiently large all solutions have exactly Morse index one.

This paper is devoted to the study of the structure of solutions to problem (1.1). We start with some general remarks.
First, classical solutions of (1.1) can exist only for λ in some interval.

Proposition 1.2. Let µ1 be the first eigenvalue of the −∆ under Dirichlet boundary condition in B. Then there exists λ0 > 0,
such that a necessary condition for existence of classical solutions to problem (1.1) is λ ∈ (λ0, µ1).

See a proof in the Appendix. By classical bifurcation theory [11,7] we have that (µ1, 0) is a bifurcation point of solutions
to (1.1). Both observations are also valid if we replace the ball by a bounded smooth domain (star shaped in the case of
Proposition 1.2).

We are interested also in weak solutions, allowing for possible singularities.

Definition 1.3. We say that u ∈ H1
0 (B) is a weak solution of (1.1) if eu ∈ L1(B) and

B
∇u∇ϕ = λ


B
(eu − 1)ϕ for all ϕ ∈ C∞

0 (B). (1.4)

We say that a weak solution u of (1.1) is regular (resp., singular) if u ∈ L∞(B) (resp., u ∉ L∞(B)).
We say that a radial weak solution u of (1.1) is a weakly singular solution if it is singular and limr→0 ru′(r) exists.

We first study singular solutions to (1.1).

Theorem 1.4. Assume N ≥ 3. Let λ > 0 and suppose that u ∈ C2(B\{0}), u ≥ 0 is a radial solution of

−1u = λ(eu − 1) in B\{0}. (1.5)

Then either

(a) u can be extended as a function in C∞(B) and (1.5) holds in B,
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or
(b) u is singular at r = 0 and satisfies

lim
r→0

(u(r)+ 2 log r) = log
2(N − 2)

λ
,

lim
r→0

ru′(r) = −2.

As a consequence, u is a radial singular weak solution to (1.1) if and only if u is a weakly singular solution.

Theorem 1.5. For N ≥ 3, there exists a unique λ∗ > 0, such that (1.1) admits a radial singular solution for λ = λ∗, and the
radial singular solution is unique.

By Theorem 1.4 the singular solution is weakly singular.
Next, we consider the question of multiplicity of solutions to (1.1).

Theorem 1.6. If 3 ≤ N ≤ 9, then problem (1.1) has infinitely many regular radial solutions for λ = λ∗. For λ ≠ λ∗ but close to
λ∗, there is a large number of regular radial solutions for (1.1).

For a weak solution (λ, u) of (1.1) we define the Morse index of u as the largest dimension k of a subspace Y ⊂ C∞
c (B)

such that

Qu(ϕ) =


B
|∇ϕ|

2
− λeuϕ2 < 0 ∀ ϕ ∈ Y\{0}.

If u is a regular solution this is the number of negative eigenvalues, counting multiplicity, of the operator −∆ − λeu. By
Theorem 3 of Dancer and Farina [12], if 3 ≤ N ≤ 9, for a sequence of solutions (λn, uλn) to (1.1) with ∥un∥L∞(B) → ∞ as
n → ∞, then the Morse index of uλn goes to infinity as n → ∞.

Theorem 1.7. AssumeN ≥ 10. Then there exists K < ∞ such that theMorse index of any radial solution (λ, uλ) of (1.1) (regular
or singular) is bounded by K . The number of intersections of any regular solution and the radial singular solution is uniformly
bounded by 2K + 1. Moreover, for each λ ∈ (λ0, µ1), the number of regular solutions to (1.1) is bounded by (K + 1)2.

Anatural conjecture forN ≥ 10,which is observed in numerical calculations, is that theMorse index of any radial solution
of (1.1) (regular or singular) is 1, the number of intersections of any regular solution and the radial singular solution is 1,
and that for each λ ∈ (λ∗, µ1) there is a unique solution.

To obtain multiplicity of solutions to problem (1.1) we use geometric theory of dynamical systems in three-dimensional
phase space, which was applied in [13], and subsequently in [14–16]. There are some analogies between the results and
techniques of this work and [17–21] on fourth order problems involving the exponential nonlinearity. In Section 2 we give
some preliminaries. In Section 3 we prove Theorem 1.4, namely that radial solutions either are regular or weakly singular.
Theorem 1.5, which is about the existence and uniqueness of a singular solution is proved in Section 4. In Section 5we prove
Theorem 1.6 on the multiplicity of solutions in dimensions 3 ≤ N ≤ 9. In Section 6 we analyze the Morse index of solutions
to problem (1.1), give the structure of the branch of solutions to (1.1), and prove Theorem 1.7. Finally, we give the proof of
Proposition 1.2 in the Appendix.

2. Preliminary results

Let u satisfy (1.1) and make the change of variables

v(t) = u(r) with r = et , for t ∈ (−∞, 0). (2.1)

Then problem (1.1) becomes
−v′′(t)+ (2 − N)v′(t) = λe2t(ev(t) − 1), t ∈ (−∞, 0)
v(0) = 0, lim

t→−∞
e−tv′(t) = 0. (2.2)

Define
v1(t) =

λ

2(N − 2)
ev(t)+2t ,

v2(t) = v′(t),
v3(t) = λe2t .

(2.3)

We find that (v1, v2, v3) satisfies the following differential systemv
′

1 = v1(v2 + 2),
v′

2 = −2(N − 2)v1 − (N − 2)v2 + v3,
v′

3 = 2v3,
(2.4)



302 W. Chen, J. Dávila / Nonlinear Analysis 89 (2013) 299–321

with the condition

v3(0) = 2(N − 2)v1(0). (2.5)

System (2.4) has two stationary points

P1 = (0, 0, 0) and P2 = (1,−2, 0).

The linearization of (2.4) around P1 is given by X ′
= M1X , with

M1 =

 2 0 0
−2(N − 2) 2 − N 1

0 0 2


.

The eigenvalues of M1 are ν̃1 = ν̃2 = 2, ν̃3 = 2 − N . Thus for N ≥ 3, P1 = (0, 0, 0) is a hyperbolic point, which has a
2-dimensional unstable manifoldW u(P1) and a 1-dimensional stable manifoldW s(P1).

The linearization of (2.4) around P2 is given by X ′
= M2X , with

M2 =

 0 1 0
−2(N − 2) 2 − N 1

0 0 2


. (2.6)

The eigenvalues ofM2 are given by

ν1 = 2, ν2,3 =
(2 − N)±

√
(N − 2)(N − 10)
2

. (2.7)

For 3 ≤ N ≤ 9, ν2 and ν3 are complex conjugates and Re(ν2) = Re(ν3) =
2−N
2 < 0. For N ≥ 10, all the eigenvalues are real

and ν1 > 0, ν2 < 0, ν3 < 0. Thus for all N ≥ 3, P2 = (1,−2, 0) is a hyperbolic point, which has a 1-dimensional unstable
manifoldW u(P2) and a 2-dimensional stable manifoldW s(P2). ActuallyW s(P2) is contained in the plane {v3 = 0}, which is
invariant for (2.4).

Also we note that solutions of system (2.4) restricted to {v3 = 0} are related to radial solutions of the equation

−1u = λeu (2.8)

by exactly the same change of variables (2.1) and the first two equations in (2.3). This yields immediately a heteroclinic
connection from P1 to P2, which is associated to the unique radial solution of (2.8) with λ = 2(N − 2) and initial condition
u(0) = u′(0) = 0.

Proposition 2.1. For N ≥ 3, system (2.4) has a heteroclinic orbit from P1 to P2, which is contained in the plane {v3 = 0}.

Thanks to a result of Belickiı̆ [22], we have the following lemma.

Lemma 2.2. The system (2.4) is C1-conjugate to its linearization around P2 = (1,−2, 0).

Proof. We just need to check that none of the following relations

Re(νi) = Re(νj)+ Re(νk), (2.9)

holds for different indices i, j, k ∈ {1, 2, 3} such that Re(νj) < 0 and Re(νk) > 0, where ν1, ν2, ν3 are corresponding
eigenvalues of M2. It is easy to check this by calculation for N ≥ 3. �

Lemma 2.3. Let v(1), v(2), v(3) be the eigenvectors of M2 associated to ν1, ν2, ν3. Then v(k) = (1, νk, νk(νk−(2−N))+2(N−2))
and v(1) is always real; for 3 ≤ N ≤ 9, v(2), v(3) are complex conjugates. In particular the components of v(1) = (1, 2, 4(N−1))
are positive.

Proof. By direct calculation, v(k) = (1, νk, νk(νk − (2 − N))+ 2(N − 2)) is an eigenvector associated to νk. �

3. Characterization of weakly singular solutions

In this section our aim is to prove Theorem 1.4. We assume that u ∈ C2(0, 1), u ≥ 0 satisfies

−1u = 2(N − 2)(eu − 1) in (0, 1), (3.1)

where we assume, by using a scaling, that λ = 2(N − 2). The scaling changes the length of the interval where the solution
is defined, but this is not relevant for the next arguments, so we assume that the interval is (0, 1).

Define v(t) = u(et), w(t) = v(t)+ 2t for t ≤ 0. Thenw satisfies

− w′′(t)+ (2 − N)w′(t) = 2(N − 2)

ew(t) − e2t − 1


for all t ≤ 0. (3.2)

We also let v1, v2, v3 be defined in (2.3).
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By similar arguments as in [20], we have the following results.

Lemma 3.1. One has

lim inf
t→−∞

w(t) ≤ 0. (3.3)

Proof. We follow [23]. Let L := lim inft→−∞w(t) and suppose by contradiction that L > 0. Then there exists T0 > 0, such
thatw(t) ≥ L/2 for all t ≤ −T0. Let φ be a smooth cut-off function in R such that 0 ≤ φ(t) ≤ 1, φ(t) = 0 for t ≤ −(T0 +3)
and t ≥ −T0; φ(t) = 1 for t ∈ [−(T0 + 2),−(T0 + 1)], and for i = 1, 2

−T0

−(T0+3)

(φ(i))2

φ
dt := ci < +∞.

Let τ > 1 and φτ (t) = φ( t
τ
). Multiplying (3.2) by φτ and integrating, we get

−T0τ

−(T0+3)τ
(ew(t) − 1)φτdt =

2
i=1

ai


−T0τ

−(T0+3)τ
wφ(i)τ dt +


−T0τ

−(T0+3)τ
e2tφτdt, (3.4)

where a1 =
1
2 , a2 = −

1
2(N−2) . Using Young’s inequality with ε1 > 0 to be fixed later on, we have −T0τ

−(T0+3)τ
wφ(i)τ dt

 ≤ ε1


−T0τ

−(T0+3)τ
w2φτ dt + Cε1


−T0τ

−(T0+3)τ

(φ(i)τ )
2

φτ
dt

≤ ε1


−T0τ

−(T0+3)τ
w2φτ dt + Cε1ciτ

1−2i. (3.5)

We also have
−T0τ

−(T0+3)τ
e2tφτ dt ≤

1
2
e−2T0τ . (3.6)

From (3.4)–(3.6) we get
−T0τ

−(T0+3)τ


ew(t) − 1 − ε1Kw(t)2


φτ dt ≤ Cε1K max

i=1,2
ciτ 1−2i

+
1
2
e−2T0τ

with K = |a1|+ |a2|. Sincew(t) ≥ L/2 > 0 for all t ≤ −T0, we can choose ε1 > 0 small, such that ew(t)−1− ε1Kw(t)2 ≥ ϱ
for t ≤ −T0, where ϱ > 0 is fixed. Then

ϱτ ≤


−T0τ

−(T0+3)τ


ew(t) − 1 − ε1Kw(t)2


φτ dt ≤ Cε1K max

i=1,2
ciτ 1−2i

+
1
2
e−2T0τ ,

which is impossible for τ > 1 large. �

Lemma 3.2. We have

lim sup
t→−∞

w(t) < +∞.

Proof. Assume by contradiction that lim supt→−∞w(t) = +∞. Then there is a sequence tk → −∞ such that w(tk) →

+∞. Furthermore we can assume that for all k ≥ 1 we have tk+1 + log 2 < tk, w(tk+1) ≥ w(tk).
Set Mk = w(tk), rk = etk and ρk =

rk+1
rk

. Note that 0 < ρk <
1
2 . Let ηk(r) =

N−2
N r2k (1 − r2) so that it satisfies

−1ηk = 2(N − 2)r2k in B, ηk = 0 on ∂B.

Define

uk(r) = u(rrk)− Mk + 2 log(rk)+ ηk(r).

Then we have

−1uk(r) = 2(N − 2)r2k e
u(rkr) = 2(N − 2)eMk−ηk(r)euk(r), for 0 < r < r−1

k .

Since ηk is bounded from above,

−1uk ≥ C0eMkeuk ∀0 < r < r−1
k , (3.7)
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for some C0 > 0 independent of k. Also note that

uk(1) = u(rk)− Mk + 2tk = 0,
uk(ρk) = Mk+1 − Mk + 2(tk − tk+1)+ ηk(ρk) ≥ 0.

Let λ1,k be the first eigenvalue for −∆ with Dirichlet boundary condition in the annulus B\Bρk and φk > 0 be the corre-
sponding eigenfunction, that is,

−1φk = λ1,kφk, φk > 0 in B\Bρk;
φk = 0; on ∂


B\Bρk


,

normalized so that ∥φk∥L∞(B) = 1. Multiplying (3.7) by φk and integrating in B\Bρk , we get

C0eMk


B\Bρk

eukφk dx ≤


∂(B\Bρk )

∂φk

∂ν
uk dσ + λ1,k


B\Bρk

ukφk dx.

But uk ≥ 0 and ∂φk
∂ν

≤ 0 on ∂(B\Bρk) so that

C0eMk


B\Bρk

eukφk dx ≤ λ1,k


B\Bρk

ukφk dx.

Now using the inequality eu ≥ u, it yields that

C0eMk ≤ λ1,k.

However, since the annulus B\Bρk has a width that does not converge to zero, λ1,k remains uniformly bounded. It follows
thatMk is bounded as k → ∞, which is a contradiction. �

Lemma 3.3. For i = 0, 1, 2, we have

|w(i)(t)| ≤ C(1 + |t|) for all t ≤ 0, (3.8)

and for all i = 1, 2, 3

|vi(t)| ≤ C(1 + |t|) for all t ≤ 0. (3.9)

Proof. Since u ≥ 0 and w is bounded above, we have |w(t)| ≤ C(1 + |t|). Moreover, by Eq. (3.2), and interpolation
inequalities such as in Chapter 6 of [24], we get that for any t ≤ −1 and i = 1, 2

|w(i)(t)| ≤ C sup
[t−1,t+1]


|w| + 2(N − 2)|ew − e2t − 1|


≤ C sup

[t−1,t+1]
(|w| + 2(N − 2)|ew − 1|) .

Since w is bounded above, the second term in the supremum is bounded. Then (3.8) and (3.9) follow from the bound of
w. �

Lemma 3.4. For i = 1, 2, 3

|vi(t)| ≤ C for all t ≤ 0, (3.10)

for i = 1, 2

|w(i)(t)| ≤ C for all t ≤ 0. (3.11)

Proof. It is direct that v3 is bounded for all t ≤ 0. Since v1(t) = ew(t) (recall the change of variables (2.3) and that we assume
λ = 2(N − 2)) and w is bounded above, we have v1(t) is bounded as t → −∞. Next we prove that v2 is bounded for all
t ≤ 0.

Integrating the following equation

d
ds


v2(s)e(N−2)s

= [−2(N − 2)v1(s)+ v3(s)] e(N−2)s

in [t, t0] with t ≤ t0 ≤ 0, we get

v2(t) = e−(N−2)t


v2(t0)e(N−2)t0 + 2(N − 2)

 t0

t
e(N−2)sv1(s) ds −

2(N − 2)
N

(eNt0 − eNt)


.
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Since v1 is bounded, the integral
 t0
−∞

e(N−2)sv1(s) ds exists. If

2(N − 2)
N

eNt0 − 2(N − 2)
 t0

−∞

e(N−2)sv1(s) ds ≠ v2(t0)e(N−2)t0 ,

we deduce that |v2(t)| grows exponentially as t → −∞, which contradicts (3.9). Therefore we get

v2(t0) = −2(N − 2)e−(N−2)t0

 t0

−∞

e(N−2)sv1(s) ds +
2(N − 2)

N
e2t0 ∀ t0 ≤ 0. (3.12)

It follows that |v2(t)| ≤ C for all t ≤ 0, because v1 is bounded.
Finally, the relations

w′(t) = v2 + 2, w′′(t) = −2(N − 2)v1 + (2 − N)v2 + v3,

imply (3.11). �

Proof of Theorem 1.4. The statements in the theorem are consequence of the following properties, thatwewill prove next.

(i) If lim inft→−∞w(t) = −∞, thenw(t) → −∞, vi(t) → 0 as t → −∞ for i = 1, 2, 3, and u is a regular solution.
(ii) If lim inft→−∞w(t) > −∞, thenw(t) → 0, (v1, v2, v3) → P2 as t → −∞, and u is a weakly singular solution.

To prove these claims it is useful to define

E(t) =
1
2
(w′(t))2 + 2(N − 2)(ew(t) − w(t))− (N − 2)C1e2t ,

where C1 > 0 is a constant such that |w′(t)| ≤ C1 for all t ≤ 0. This constant exists thanks to Lemma 3.4. Let us compute

E ′(t) = (w(t)′′ + 2(N − 2)(ew(t) − 1))w(t)′ − 2(N − 2)C1e2t

for t ≤ 0. Using Eq. (3.2) we get

E ′(t) = −(N − 2)w′(t)2 + 2(N − 2)e2t(w′(t)− C1) ≤ 0. (3.13)

Let us prove (i) and so we assume lim inft→−∞w(t) = −∞. First, we show that w(t) → −∞ as t → −∞. By
contradiction, we assume thatw(t) does not tend to −∞ as t → −∞. Then we can find sequences sk → −∞, τk → −∞,
such that sk > τk,

w(sk) → −∞, w(τk) is bounded.

But then E(τk) is bounded and E(sk) → ∞ as k → ∞. However, by (3.13), E(sk) ≤ E(τk), which is a contradiction.
Now, since w(t) → −∞ as t → −∞, we can easily deduce v1(t) → 0 as t → −∞. Using formula (3.12), we obtain

v2(t) → 0 as t → −∞. Therefore limt→−∞ V (t) = P1.
Since v2(t) → 0 as t → −∞, we have limr→0 ru′(r) = 0. Then for any ϵ > 0, there exists r0 > 0 such that for any

0 < r < r0, we have |ru′(r)| < ϵ. Integrating from r to r0 in this inequality, for any 0 < r < r0 we obtain

0 ≤ u(r) ≤ −ϵ ln r + C, eu(r) ≤ Cr−ϵ, (3.14)

for some C > 0.
We can then get that u′(r) is bounded for r > 0 small enough. In fact, Eq. (1.1) can be written as

−

sN−1u′(s)

′
= λsN−1(eu(s) − 1).

Integrating above equation from δ to r with (δ, r) ⊂ (0, r0) and using (3.14), letting δ → 0, we have

|u′(r)| ≤ Cr1−N
 r

0
sN−1 s−ϵ − 1


ds ≤ C

for 0 < r < r0. From the boundedness of u′ near r = 0we also get that u is bounded near r = 0. This shows that u is regular.
We prove now (ii), so we assume that lim inft→−∞w(t) > −∞. Since w is bounded above by Lemma 3.2, we have

w is bounded. By Lemma 3.4, the derivatives of w are bounded, then we get that E(t) is bounded as t → −∞. From the
boundedness of E together with the boundedness of the derivatives ofw and (3.13), we deduce that 0

−∞

w′(t)2 dt < +∞. (3.15)

Set ψT (t) = w′(t + T ), then we get that

ψT → 0 in L2(0, 1) as T → −∞.
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Moreover, ψT satisfies the equation

−ψ ′′

T (t)+ (2 − N)ψ ′

T (t) = 2(N − 2)ew(T+t)ψT (t)− 4(N − 2)e2(T+t).

Using regularity theory, we have ψT (
1
2 ) → 0 and ψ ′

T (
1
2 ) → 0 as T → −∞. Thus we obtain that w′(t) → 0 as t → −∞

and similarly w′′(t) → 0 as → −∞. This implies that limt→−∞ v
′(t) = −2. Since v′(t) = u′(et)et we see that u is

a weakly singular solution by the definition. We get in addition that (v1, v2, v3) → (1,−2, 0) as t → −∞. That is,
limt→−∞ V (t) = P2. �

A direct corollary of the proof of Theorem 1.4 is the following.

Corollary 3.5. Let u be a radial singular solution to (1.1) and let V (t) = (v1(t), v2(t), v3(t)) be the corresponding trajectory
to (2.4). Then limt→−∞ V (t) = P2 = (1,−2, 0).

As a consequence of Theorem 1.4 and Corollary 3.5, we have the following.

Corollary 3.6. For u a radial solution of (1.1) we have:
(a) u is regular if and only if limt→−∞ V (t) = P1;
(b) u is singular if and only if limt→−∞ V (t) = P2.

4. The unstable manifold at P2

In this section, we study the unstable manifold of P2 and prove Theorem 1.5. First we have the following result.

Proposition 4.1. Let V (t) = (v1(t), v2(t), v3(t)) : (−∞, T ) → R3 be the trajectory in W u(P2) such that v′

3(t) > 0 as
t → −∞, where T is the maximal time of existence. Then there exists some t < T such that v3(t) ≥ 2(N − 2)v1(t).

Proof. First we observe that this trajectory satisfies

v′

1(t) > 0, v′

2(t) > 0, v′

3(t) > 0

for t close to −∞ since the tangent vector to this trajectory becomes parallel to (1, 2, 4(N − 1)) as it approaches P2.
Let z(t) = v3(t)− 2(N − 2)v1(t) and by contradiction we assume that

z(t) < 0 for ∀t ∈ (−∞, T ). (4.1)

First, we remark that

v2(t) < 0 for ∀t ∈ (−∞, T ). (4.2)

To prove this, let us suppose it fails, and so there is the first time t0 ∈ (−∞, T ), such that v2(t0) = 0. Since limt→−∞ v2(t) =

−2 we must have v′

2(t0) ≥ 0. But writing the second equation in (2.4) as

v′

2(t) = z(t)− (N − 2)v2(t)

we would get z(t0) ≥ 0, a contradiction with (4.1).
Using (2.4) and v2(t) < 0 for all t < T we can assert that the solution is defined for all t , that is T = +∞. Indeed, the

first equation in (2.4) yields

v1(t) = v1(t0)e
 t
t0
(2+v2(s)) ds. (4.3)

Since v2(t) < 0 we see that v1(t) cannot blow up as t → T , if T were finite. Also v3 cannot blow up. This and the linearity
of the second equation in (2.4) yield that T = +∞.

Now, let us establish that

v1(t) > 0 for ∀t ∈ (−∞,+∞). (4.4)

In fact, this is valid for t near −∞ since v1(t) → 1 as t → −∞. If inequality (4.4) does not hold, then v1(t0) = 0 for some
t0, and it follows from (4.3) that v1(t) = 0 for all t , a contradiction.

Next, we prove that

lim sup
t→+∞

v2(t) = 0. (4.5)

Indeed, suppose not, we assume that there is a small number δ > 0 such that v2(t) < −δ < 0 for all t . From the first
equation in (2.4), we then get v′

1(t) < (2 − δ)v1(t), so we have v1(t) < v1(0)e(2−δ)t for all t > 0. But by the third equation
in (2.4), we have v3(t) = v3(0)e2t . Hence z(t) = v3(0)e2t − 2(N − 2)v1(0)e(2−δ)t ≥ 0 for some t > 0, which contradicts
assumption (4.1).

From (4.2) and (4.5), there exists a sequence (tk)with tk → +∞ as k → +∞, such that

v′

2(tk) > 0, and v2(tk) → 0 as k → +∞.
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Moreover, by the second equation in (2.4) we have 0 > z(tk) = v′

2(tk)+ (N − 2)v2(tk) > (N − 2)v2(tk). Therefore,

z(tk) → 0 as k → +∞. (4.6)

From (2.4), we have z ′(t)− 2z(t) = −2(N − 2)v1(t)v2(t). Multiplying by e−2t and integrating from t to tk, we get

z(tk) = e2(tk−t)

z(t)− 2(N − 2)e2t

 tk

t
e−2sv1(s)v2(s)ds


. (4.7)

From (4.2), (4.4), (4.6) and (4.7) we have that
+∞

t
e−2sv1(s)|v2(s)|ds < +∞ for any t < +∞. (4.8)

Note that v1(t) =
v3(t)−z(t)
2(N−2) and hence

z ′(t)− 2z(t) = (z(t)− v3(t))v2(t).

Multiplying by e−2t and integrating from 0 to tk, we find

z(tk) = e2tk

z(0)+

 tk

0
e−2sz(s)v2(s)ds −

 tk

0
e−2sv2(s)v3(s)ds


.

Since z(0) < 0,
 tk
0 e−2sz(s)v2(s)ds and −

 tk
0 e−2sv2(s)v3(s)ds are positive, we get

+∞

0
e−2s

|v2(s)|v3(s)ds < +∞. (4.9)

Since v3(t) = v3(0)e2t , (4.9) implies that
+∞

0
|v2(s)|ds < +∞. (4.10)

Since z(t) < 0 by assumption, we have v2(s) ≤ v2(0)e−(N−2)s for s ≥ 0. Then for t ≥ 0,
+∞

t
e−2sv1(s)|v2(s)|ds = −


+∞

t
e−2sv1(s)v2(s)ds

≥ −v2(0)


+∞

t
e−Nsv1(s)ds. (4.11)

Integrating by parts and using (2.4) we get
∞

t
e−Nsv1(s) ds =

1
N
e−Ntv1(t)+

1
N


∞

t
e−Nsv′

1(s) ds

=
1
N
e−Ntv1(t)+

2
N


∞

t
e−Nsv1(s) ds +

1
N


∞

t
e−Nsv1(s)v2(s) ds

and we deduce
∞

t
e−Nsv1(s) =

1
N − 2

e−Ntv1(t)+
1

N − 2


∞

t
e−Nsv1(s)v2(s) ds.

Hence for t > 0, and since v2(s) < 0
∞

t
e−Nsv1(s) ≥

1
N − 2

e−Ntv1(t)+
1

N − 2


∞

t
e−2sv1(s)v2(s) ds. (4.12)

From (4.11) and (4.12) we have
+∞

t
e−2sv1(s)|v2(s)|ds ≥ −

v2(0)
N − 2

v1(t)e−Nt
+
v2(0)
N − 2


+∞

t
v1(s)|v2(s)|e−2sds,

which implies that
+∞

t
e−2sv1(s)|v2(s)|ds ≥

−v2(0)
N − 2 − v2(0)

v1(t)e−Nt . (4.13)
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Now, from (4.6) and (4.7) we have

− z(t) = 2(N − 2)e2t


+∞

t
e−2sv1(s)|v2(s)|ds. (4.14)

From (4.14) and (4.13), we observe that

− z(t) ≥
−2(N − 2)v2(0)
N − 2 − v2(0)

v1(t)e(−N+2)t . (4.15)

Moreover, using (4.10)

v1(t) = v1(0)e2te
 t
0 v2(s)ds = v1(0)e2te−

 t
0 |v2(s)|ds ≥ v1(0)e−Ce2t (4.16)

for some constant C > 0. Hence,

− z(t) ≥
−2(N − 2)v1(0)v2(0)

N − 2 − v2(0)
e−Ce(4−N)t

:= C1e(4−N)t , (4.17)

for C1 > 0, which is a contradiction with (4.6) for N = 3, 4.
From now on we assume N > 4. By the second equation in (2.4) and z(t) = v3(t)− 2(N − 2)v1(t), we get that

−v2(t) = −v2(0)e(2−N)t
+ e(2−N)t

 t

0
(−z(s))e(N−2)sds.

By (4.17) we have

|v2(t)| = −v2(t) ≥ −v2(0)e(2−N)t
+ C1e(2−N)t

 t

0
e2sds

≥
C1

2
e(2−N)t(e2t − 1) ≥ C2e(4−N)t ,

for t > 1 where C2 is a positive constant. Therefore,
+∞

t
e−2sv1(s)|v2(s)|ds ≥ C2


+∞

t
e(2−N)sv1(s)ds, (4.18)

while, for N > 4 and t > 0
+∞

t
e(2−N)sv1(s)ds =

1
N − 2

v1(t)e(2−N)t
−

1
N − 2


+∞

t
e(2−N)sv1(s)|v2(s)|ds +

2
N − 2


+∞

t
e(2−N)sv1(s)ds

≥
1

N − 2
v1(t)e(2−N)t

−
1

N − 2


+∞

t
e−2sv1(s)|v2(s)|ds +

2
N − 2


+∞

t
e(2−N)sv1(s)ds.

So, 
+∞

t
e(2−N)sv1(s)ds ≥

1
N − 4

v1(t)e(2−N)t
−

1
N − 4


+∞

t
e−2sv1(s)|v2(s)|ds. (4.19)

Combining (4.18) and (4.19), we get
+∞

t
e−2sv1(s)|v2(s)|ds ≥

C2

N − 4 + C2
v1(t)e(2−N)t . (4.20)

Then, from (4.14), (4.16) and (4.20) we obtain that

− z(t) ≥
2(N − 2)C2v1(0)e−C

N − 4 + C2
e(6−N)t

:= C3e(6−N)t , (4.21)

for C3 > 0, which is a contradiction with (4.6) for N = 5, 6.
Starting with (4.21) we can do the same process and obtain a contradiction for all N ≥ 3. This ends the proof of the

proposition. �

Proposition 4.2. At any point of W u(P2) ∩ {v3 = 2(N − 2)v1} the intersection is transversal.
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Proof. Let V (t) = (v1, v2, v3) be a trajectory in W u(P2) with t in some interval (−∞, T ) and limt→−∞ V (t) = P2.
Suppose that t1 is such that v3(t1) = 2(N − 2)v1(t1). By contradiction, assume that V ′(t1) is not transversal to the plane
{v3(t) = 2(N − 2)v1(t)}, that is,

V ′(t1) ∈ {v3 = 2(N − 2)v1}.

Then, v3(t1) = 2(N − 2)v1(t1), v′

3(t1) = 2(N − 2)v′

1(t1). From (2.4) we get v2(t1) = 0. Let z(t) = v3(t) − 2(N − 2)v1(t).
The ODE (2.4) implies that

v′

2 = z − (N − 2)v2, z ′
= 2z − 2(N − 2)v1v2.

Treating v1 as a given function, we see that v2, z satisfy a first order non-autonomous linear ODE and the initial condition
v2(t1) = 0, z(t1) = 0. Since v2 = z = 0 is a solution of the ODE with the same initial condition, by uniqueness we deduce
v2(t) = 0 for all t where it is defined. This contradicts limt→−∞ v2(t) = −2. �

Proof of Theorem 1.5. The existence of some λ∗ > 0 such that (1.1) has a singular solution is a consequence of
Proposition 4.1. Indeed, let V (t) = (v1(t), v2(t), v3(t)) : (−∞, T ) → R3 be the trajectory in W u(P2) such that v′

3(t) > 0
as t → −∞, where T is the maximal time of existence. Then there exists some t < T such that v3(t) ≥ 2(N − 2)v1(t).
Let t1 be the first time such that v3(t1) = 2(N − 2)v1(t1). Because the system (2.4) is autonomous, by shifting time, we can
assume t1 = 0. Let P∗

= V (0) be the point of intersection, and write P∗
= (P∗

1 , P
∗

2 , P
∗

3 ). Then

u(r) = −2 log(r)+ log

2(N − 2)v1(log(r))

λ∗


is a singular solution of (1.1) for λ∗ = P∗

3 .
The uniqueness ofλ∗ such that a singular solution of (1.1) exists is a consequence of Corollary 3.6,which says that singular

solutionsmust be associated to trajectories inW u(P2), and the trajectory inW u(P2)with tangent vector close (1, 2, 4(N−1))
as it approaches P2 is unique except a shift in time. This also yields the uniqueness of the singular solution. �

5. Multiplicity result: proof of Theorem 1.6

In this section, we assume that 3 ≤ N ≤ 9 and prove multiplicity of solutions to problem (1.1). Let P1 = (0, 0, 0) and
P2 = (1,−2, 0) be the stationary points of (2.4). We recall that P1 has a 2-dimensional unstable manifold W u(P1) and 1-
dimensional stable manifold W s(P1), while P2 has a 1-dimensional unstable manifold W u(P2) and a 2-dimensional stable
manifoldW s(P2).

From Corollary 3.6 it follows that each regular radial solution of (1.1) corresponds to exactly one point in W u(P1) ∩

{v3 = 2(N − 2)v1}. By Proposition 4.2, we define λ∗ to be the height v3 = λ∗ where W u(P2) first intersects the plane
{v3 = 2(N − 2)v1}, and we denote this intersection point by

P∗
= (P∗

1 , P
∗

2 , P
∗

3 ) =


λ∗

2(N − 2)
, P∗

2 , λ∗


. (5.1)

Let V0 : R → R3 be the heteroclinic connection from P1 to P2 contained in {v3 = 0} as stated in Proposition 2.1 and let
V̂0 = V0(−∞,+∞). Then V̂0 is contained in bothW u(P1) and W s(P2).

Lemma 5.1. W u(P1) and W s(P2) intersect transversally on points of V̂0. More precisely, for points Q ∈ V̂0 sufficiently close to
P2, there are directions in the tangent plane to W u(P1) which are almost parallel to v(1), the tangent vector to W u(P2) at P2.

Proof. Let uβ be the solution of the following initial value problem
−1uβ(r) = 2(N − 2)euβ (r) − β for 0 < r < R(β),
uβ(0) = 0, u′

β(0) = 0, (5.2)

where β ∈ R is a parameter and R(β) > 0 is the maximal time of existence. We claim that R(β) = +∞. Indeed, assume
R(β) < +∞ and fix r0 < R(β). Then for r ∈ [r0, R(β)), from Eq. (5.2) we get

u′

β(r) = rN−1
0 u′

β(r0)r
1−N

− r1−N
 r

r0
tN−1 2(N − 2)euβ (t) − β


dt, (5.3)

and this implies

u′

β(r) ≤ rN−1
0 u′

β(r0)r
1−N

+
|β|

N
(r − r1−N rN0 ) for r0 ≤ r < R(β).

Integrating we see that

lim sup
r→R(β)

uβ(r) < +∞.
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Since uβ is bounded above in [r0, R(β)), using again (5.3) we obtain

rN−1
0 u′

β(r0)r
1−N

− C(r − r1−N rN0 ) ≤ u′

β(r) for r0 ≤ r < R(β),

and this shows that

lim inf
r→R(β)

uβ(r) > −∞.

Control of uβ as r → R(β) also yields control of u′

β by (5.3) and this contradicts that R(β) is the maximal time of existence.
Therefore the solution uβ(r) of (5.2) is defined for all r > 0.

Let vβ(t) = uβ(r)with r = et for t ∈ (−∞,+∞) and set

v1,β(t) = evβ (t)+2t , v2,β = v′

β(t), v3,β(t) = βe2t .

Then v1,β , v2,β , v3,β satisfies system (2.4). Let Vβ = (v1,β , v2,β , v3,β). We have created in this way a family of trajectories
in W u(P1) with β as a parameter. Note that for β = 0, V0 is just the heteroclinic connection of system (2.4) from P1 to P2
contained in the plane {v3 = 0} described in Proposition 2.1.

Define X =
∂V
∂β

|β=0. Then X satisfies

X ′
= (M2 + R(t))X (5.4)

whereM2 is the matrix defined in (2.6) and

R(t) =


v2,0(t)+ 2 v1,0(t)− 1 0

0 0 0
0 0 0


.

Note that there exist C, α > 0, such that |V0(t) − P2| ≤ Ce−αt for all t ≥ 0, which follows for example from Lemma 2.2.
Therefore |R(t)| ≤ Ce−αt for all t ≥ 0. Recall that the eigenvalues ofM2 are ν1 > 0 and ν2, ν3, which are complex conjugates
with negative real part. Let v(k) ∈ C3 be the eigenvector associated to νk. By Theorem 8.1 of Chapter 3 in [25], there are
solutions ψk to

ψ ′

k = (M2 + R(t))ψk, for t > 0

such that limt→∞ ψk(t)e−νkt = v(k). Then

X(t) =

3
k=1

ckψk

for some constants c1, c2, c3 ∈ C. Since ν2, ν3 have negative real parts, ψk(t) → 0 as t → ∞, for k = 2, 3. If c1 = 0 then
X(t) → 0 as t → ∞ and this contradicts ∂v3,β

∂β
|β=0(t) = e2t > 0 for all t ≥ 0. So c1 ≠ 0 and therefore

X(t) = c1v(1)eν1t + o(eν1t) as t → ∞.

This shows X(t) is almost parallel to v(1) as t → ∞. Since v(1) is the tangent vector to W u(P2), then X(t) is not tangent
to W s(P2) for t large. On the other hand, X =

∂V
∂β

|β=0 is tangent to W u(P1). This implies W s(P2) and W u(P1) intersect

transversally on points of V̂0 close to P2. Since the flow is invertible near V̂0,W u(P1) and W s(P2) intersect transversally at
every point of V̂0. �

We write (v1, v2, v3) as points in the phase space R3 and let {e1, e2, e3} denote the canonical basis of R3.
We call S ⊂ R3 a spiral around P∗ if there exist independent vectors σ1, σ2 ∈ R3, a continuous positive function

ρ : [0,∞) → R with ρ(t) → 0 as t → ∞, and ω ∈ R such that

S = {P∗
+ ρ(t) cos(ωt)σ1 + ρ(t) sin(ωt)σ2 + o(ρ(t)) : t ≥ 0}.

Lemma 5.2. W u(P1) ∩ {v3 = 2(N − 2)v1} contains a spiral S around the point P∗.

Proof. The linearization of (2.4) at P2 is given by the systemv̄
′

1 = v̄2,
v̄′

2 = −2(N − 2)v̄1 + (2 − N)v̄2 + v̄3,
v̄′

3 = 2v̄3,

which is represented by the matrixM2. Let M̄2 denote the matrix

M̄2 =

Re(ν2) −Im(ν2) 0
Im(ν2) Re(ν2) 0

0 0 ν1


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where ν1, ν2 are the eigenvalues (2.7). By Lemma 2.2, system (2.4) is C1-conjugate in a neighborhood of P2 to the flow
generated by M̄2 around 0. More precisely, let Xt denote the flow generated by (2.4) and Yt = eM̄2t . Then there are open
neighborhoods U of P2 and V of Ō = (0, 0, 0), and a C1 diffeomorphism Φ : U → V such that Yt(x) = Φ ◦ Xt ◦ Φ−1(x)
whenever x ∈ V andΦ−1(x) ∈ U.

Let D be the 2-dimensional disk

D =

V = (v1, v2, v3) : v3 = 2(N − 2)v1, |V − P∗

| < r0

,

where r0 > 0 is fixed and small, so that W u(P2) ∩ {v3 = 2(N − 2)v1} contains only the point P∗. This r0 > 0 exists
by Proposition 4.2. Also by this proposition, D is transversal to W u(P2). Let Bs

⊂ W s(P2) ∩ U ⊂ {v3 = 0} ∩ U be an
open neighborhood of P2 relative to W s(P2), which is diffeomorphic to a 2-dimensional disk. Define Dt as the connected
component of Xt(D) ∩ U that contains Xt(P∗). We choose U smaller if necessary so that by the λ-Lemma of Palis [26], Dt is
a C1 manifold, which is C1 close to Bs for t sufficiently negative. More precisely, let ε > 0 be small to be fixed later on. Then
there exists t0 < 0, |t0| large, such that for all t ≤ t0, there is a diffeomorphism ηt : Dt → Bs such that ∥i′ ◦ ηt − i∥C1(Dt ) ≤ ε
where i, i′ denote the inclusion maps. From now on we let M = Dt0 .

We fix Q ∈ V̂0 such that Q ∈ U is sufficiently close to P2. From Lemma 5.1, we can find a C1 curve Γ contained inW u(P1)
of the form Γ = {γ (s) : |s| < δ0} with γ : (−δ0, δ0) → R3 a C1 function such that γ (0) = Q and γ ′(0) not tangent to
W s(P2) at Q . We can also assume that Γ is contained in U by taking δ0 small. Choosing ε > 0 smaller if necessary we can
assume that Γ intersects M.

We want to prove that for t > 0 large, there is a point Pt ∈ Xt(Γ ) ∩ M and that the collection of points Pt describes a
spiral around the point Xt0(P

∗).
By the conjugation Φ , we will assume that P2 is at the origin and near the origin the flow is given by Yt = eM̄2t . Thus

the image of W s(P2) ∩ U through Φ is {(y1, y2, y3) : y3 = 0}, which is inside V , and the image of Bs is {(y1, y2, y3) : y3 =

0, |y| < δ} for some δ > 0.
Choosing ε small in the λ-Lemma, we can assume that the normal vector of M := Φ(M) near Φ(P∗) is almost parallel

to e3 = (0, 0, 1). Thus by taking a subset of M, we may assume that M is a C1 graph with respect to the variables (y1, y2),
that is, there exists a C1 function ϕ : {ỹ = (y1, y2) ∈ R2, |ỹ| < δ} → R such thatM = {(ỹ, ϕ(ỹ)) : ỹ ∈ R2, |ỹ| < δ}.

Since γ ′(0) is not tangent to W s(P2) at γ (0), we have γ ′

3(0) ≠ 0. We may assume that ϕ(ỹ) > 0 for ỹ near the origin and
γ ′

3(0) > 0.
We claim that for all t > 0 large there is a unique s = s(t) > 0 small so that Yt(γ (s)) ∈ M. Indeed, this condition is

equivalent to

eν1tγ3(s) = ϕ(eν2t(γ1(s)+ iγ2(s))). (5.5)

Let τ = 1/t > 0 and define, for (τ , s) ∈ (0, δ1)× (−δ1, δ1) (δ1 > 0 a small fixed number)

F(τ , s) = γ3(s)− e−ν1/τϕ(eν2/τ (γ1(s)+ iγ2(s))).

Then, since ν1 > Re(ν2), F admits a C1 extension to τ = 0 and

F(0, s) = γ3(s),
∂F
∂τ
(0, s) = 0,

∂F
∂s
(0, s) = γ ′

3(s).

Since F(0, 0) = 0 and ∂F
∂s (0, 0) > 0, by the implicit function theorem, given t > 0 large there is a unique s small so that

F(1/t, s) = 0. We obtain a C1 function s(t) > 0 defined for all t large such that Yt(γ (s(t))) ∈ M. Using (5.5) we see that

s(t) =
e−ν1t

γ ′

3(0)
ϕ(0)(1 + o(1))

as t → ∞. Writing ν2 = α + iω, the point of intersection has the form

P̃t = Yt(γ (s(t))) = (0, 0, ϕ(0, 0))+ eαt cos(ωt)σ̃1 + eαt sin(ωt)σ̃2 + o(eαt)

where

σ̃1 =


γ1(0), γ2(0),

∂ϕ

∂y1
(0, 0)γ1(0)+

∂ϕ

∂y2
(0, 0)γ2(0)


σ̃2 =


−γ2(0), γ1(0),−

∂ϕ

∂y1
(0, 0)γ2(0)+

∂ϕ

∂y2
(0, 0)γ1(0)


.
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Therefore the curve {P̃t , : t > t1}, where t1 > 0 is large, defines a spiral contained in M. Applying the conjugation Φ−1 we
obtain a collection of points Pt = Φ−1(P̃t) in M ∩ Xt(Γ ) that forms a spiral around Xt0(P

∗). Applying the flow X−t0 we see
that

S = {Xt−t0(γ (s(t))) : t ≥ t1}

with t1 > 0 large has the structure of a spiral around P∗. By construction S is contained inW u(P1)∩{v3 = 2(N − 2)v1}. �

Proof of Theorem 1.6. Let us define λ∗ to be the height v3 = λ∗, where W u(P2) first intersects the boundary plane
{v3 = 2(N − 2)v1}. Define Hλ = {v3 = λ}. If λ = λ∗, we know that P∗ lies on the line {v3 = λ∗, v3 = 2(N − 2)v1}.
From Lemma 5.2, W u(P1) ∩ {v3 = 2(N − 2)v1} contains a spiral S around the point P∗. Since the plane Hλ is transversal to
{v3 = 2(N − 2)v1}, it is possible to show that Hλ∗

and S intersect an infinite number of times, which means that problem
(1.1) has infinitely many radial regular solutions; see for example Lemma 4 in [14]. If λ ≠ λ∗, but λ is close to λ∗, we
have that Hλ ∩ S contains a large number of points, which means that problem (1.1) has a large number of radial regular
solutions. �

6. Proof of Theorem 1.7

In this section we always assume that N ≥ 10 and prove Theorem 1.7.
First we give the asymptotic behavior of a radial singular solution to problem (1.1) near the origin.

Lemma 6.1. Assume that (λ∗, u∗) is a radial singular solution of (1.1). Then

u∗(r) = −2 log r + log
2(N − 2)
λ∗

+ r2 + o(r2) as r → 0. (6.1)

Proof. By Theorem 1.4, u∗ is a weakly singular radial solution of (1.1). Define v(t) = u∗(r) with r = et , and v1, v2, v3 are
given by (2.3). Therefore, from Corollary 3.6,

lim
t→−∞

(v1, v2, v3) = (1,−2, 0).

By Lemmas 2.2 and 2.3, we have

(v1, v2, v3) = (1,−2, 0)+ (1, 2, 4(N − 1))e2t

1 + o(eδt)


as t → −∞,

with δ > 0 small. We then get

u∗(r) = v(t) = −2t + log
2(N − 2)v1(t)

λ∗

= −2 log r + log
2(N − 2)


1 + e2t + o(e(2+δ)t)


λ∗

= −2 log r + log
2(N − 2)
λ∗

+ log(1 + r2 + o(r2+δ))

= −2 log r + log
2(N − 2)
λ∗

+ r2 + o(r2) as r → 0. �

For λ > 0, let us define

w(r) = −2 log r + log
2(N − 2)

λ
+

λ

2N
r2. (6.2)

Let ρ > 0 be a small number, which will be fixed later and let us write cρ = w(ρ). Thenw satisfies
−1w ≤ λ(ew − 1) in Bρ,
w(ρ) = cρ on ∂Bρ,

(6.3)

where Bρ is a ball with radius ρ and center at the origin.
We have the following stability property ofw.

Lemma 6.2. Suppose N ≥ 10 and let w be defined in (6.2). There exists ρ ∈ (0, 1) small, such that w is stable in Bρ , in the sense
that 

Bρ
|∇ϕ|

2
≥ λ


Bρ

ewϕ2 for all ϕ ∈ C∞

c (Bρ). (6.4)
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Proof. Write A =
λ
2N . Since N ≥ 10,

Bρ
|∇ϕ|

2
− λewϕ2

=


Bρ

|∇ϕ|
2
− 2(N − 2)

ϕ2

r2
eAr

2

=


Bρ


|∇ϕ|

2
− 2(N − 2)

ϕ2

r2


− 2(N − 2)(A + o(1))


Bρ
ϕ2

≥


Bρ


|∇ϕ|

2
−
(N − 2)2

4
ϕ2

r2


− 2(N − 2)(A + o(1))


Bρ
ϕ2,

where o(1) → 0 as ρ → 0. Let us recall the following improved Hardy inequality from [27]: for ϕ ∈ C∞
c (Bρ)

Bρ


|∇ϕ|

2
−
(N − 2)2

4
ϕ2

r2


≥ H2ρ

−2

Bρ
ϕ2,

where the constant H2 is the first eigenvalue of the Laplacian in the unit ball in N = 2, hence it is positive and independent
of N .

Choose ρ > 0 such that 2(N − 2)(A + o(1)) ≤ H2ρ
−2. Then (6.4) holds. �

Lemma 6.3. Let ρ ∈ (0, 1) be small and satisfy Lemma 6.2. Then for any radial regular solution u of (1.1) we have

u(r) ≤


w(r) in Bρ
cρ in B\Bρ,

(6.5)

wherew(r) is defined in (6.2).

Proof. Arguing by contradiction, suppose there exists r0 ∈ (0, ρ), such that u(r0) = w(r0). Then
−1u = λ(eu − 1) in Br0;

−1w ≤ λ(ew − 1) in Br0;

u = w on ∂Br0 .
(6.6)

Therefore,
−∆(w − u) ≤ λ


ew − eu


in Br0 ,

w − u = 0 on ∂Br0 .
(6.7)

Multiplying by (w − u)+ and integrating in (6.7), we obtain
Br0

|∇(w − u)+|
2

≤ λ


Br0

(ew − eu)(w − u)+. (6.8)

From Lemma 6.2,w is stable in Br0 , by taking ϕ = (w − u)+ in (6.4), we then have
Br0

|∇(w − u)+|
2
− λew((w − u)+)2 ≥ 0. (6.9)

Combining (6.8) and (6.9), we get

λ


Br0

ew((w − u)+)2 ≤ λ


Br0

(ew − eu)(w − u)+.

We rewrite it as
Br0


(ew − eu)(w − u)+ − ew((w − u)+)2


≥ 0.

By convexity, the integrand is nonpositive, therefore,

(ew − eu)(w − u)+ − ew((w − u)+)2 = 0 a.e. in Br0 ,

then

(w − u)+ = 0 a.e. in Br0 .

It implies thatw ≤ u in Br0 , which is impossible because u is a radial regular solution. Then u(r) ≤ w(r) for r ∈ (0, ρ).
Since u is a radially decreasing regular solution, u ≤ cρ in B\Bρ . �
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Now, let (λ, uλ) be any radial solution to (1.1) (regular or singular), and define the operator Lγ as

Lγ (φ) = −1φ − λeuλφ + γφ

with γ > 0 large but fixed. We have the following lemma.

Lemma 6.4. If γ > 0 is fixed large enough, we have:

(a) for N ≥ 11, ⟨Lγ (φ), φ⟩ ≥ C1∥φ∥
2
H1
0 (B)

for all φ ∈ C∞
c (B);

(b) for N = 10, ⟨Lγ (φ), φ⟩ ≥ C2∥φ∥
2
L2(B)

for all φ ∈ C∞
c (B),

where C1 and C2 are positive constants.

Proof. For ρ > 0 small given in Lemma 6.2, from Lemmas 6.1 and 6.3, we have

⟨Lγ (φ), φ⟩ =


B
Lγ (φ)φ =


B


|∇φ|

2
− λeuλφ2

+ γφ2
=


B
|∇φ|

2
−


Bρ
λeuλφ2

−


B\Bρ

λeuλφ2
+


B
γφ2

≥


B
|∇φ|

2
− 2(N − 2)


Bρ

φ2

r2
(1 + Ar2 + o(r2))− C


B\Bρ

φ2
+


B
γφ2

≥


B


|∇φ|

2
− 2(N − 2)

φ2

r2


+ [γ − max{2(N − 2)(A + o(1)), C}]


B
φ2

where A =
λ
2N for a radial regular solution uλ, A = 1 for a radial singular solution uλ, and o(1) → 0 as ρ → 0. Choose γ

large such that the second term of above is nonnegative, we then get the conclusion by Hardy’s inequality. �

We now define

∥φ∥
2
H :=


B


|∇φ|

2
− λeuλφ2

+ γφ2
which is a norm on C∞

c (B)with associated inner product

(φ, ϕ)H =


B


∇φ∇ϕ − λeuλφϕ + γφϕ


.

Completing C∞
c (B) with respect to this norm we obtain a Hilbert space H . We denote by H∗ the dual of H . We have

H1
0 (B) ⊂ H ⊂ L2(B) and therefore L2(B) ⊂ H∗

⊂ H−1(B). Actually by Lemma 6.4, if N ≥ 11, the space H is just H1
0 (B).

Given h ∈ L2(B) ⊂ H∗ we consider the following problem

Lγφ = h in B, and φ = 0 on ∂B. (6.10)

We say that φ ∈ H is a weak solution of problem (6.10) if

(φ, ϕ)H = ⟨h, ϕ⟩H∗,H for all ϕ ∈ H.

By the Lax–Milgram theorem, for h ∈ L2(B), problem (6.10) has a unique weak solution φ ∈ H .

Lemma 6.5. Let T : L2(B) → L2(B) be the operator defined by Th = φ, where φ is the solution of (6.10). Then T is compact and
the natural embedding H ↩→ L2(B) is compact.

Proof. For N ≥ 11, both statements hold since T : L2(B) → H = H1
0 (B) and H1

0 (B) ↩→ L2(B) is compact, by the
Rellich–Kondrachov theorem. For N = 10, we observe that Lγ satisfies

⟨Lγ (φ), φ⟩ ≥ cr∥φ∥
2
Lr (B) ∀φ ∈ C∞

c (B)

for 2 ≤ r < 2N
N−2 where cr > 0, thanks to an improved Hardy inequality of Brezis and Vázquez [27]. Then the statements

are proved in [28]. �

Proposition 6.6. The radial singular solution (λ∗, u∗) of (1.1) has a finite Morse index.

Proof. By Lemma 6.5, if γ > 0 is large, (−∆−λ∗eu∗ +γ )−1 is well defined and compact from L2(B) into itself, and hence its
spectrum except 0 consists of eigenvalues, and these eigenvalues form a sequence that converges to 0. Hence −∆ − λ∗eu∗

is negative definite on a finite dimensional space only. �

Next we prove a bound for the Morse index of any radial regular solution of (1.1).
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Proposition 6.7. There is an integer K ≥ 1 independent of λ, such that for any radial regular solution uλ of (1.1) we have

1 ≤ m(uλ) ≤ K , (6.11)

where m(uλ) denotes the Morse index of uλ.

Proof. From (1.1) we get
B
|∇uλ|2 = λ


B
(euλ − 1)uλ.

Therefore,
B


|∇uλ|2 − λeuλu2

λ


= λ


B


euλ − 1 − euλuλ


uλ < 0,

so m(uλ) ≥ 1.
We prove the proposition by contradiction. Suppose that {(λn, un)} is a sequence of radial regular solutions of problem

(1.1) and assume thatm(un) → ∞ as n → ∞. Let us writem(un) = mn and

Ln = −∆− λneun .

Let

En = span

ϕ ∈ L2(B) : ϕ is eigenvector of Ln with negative eigenvalue


so that dim(En) = mn. Since Ln is symmetric there exist eigenfunctions ϕ1,n, . . . , ϕmn,n ∈ En, namely

Lnϕi,n = µi,nϕi,n in B,
ϕi,n = 0 on ∂B,

with µi,n < 0, that form an orthonormal basis of En in L2(B) sense, that is
B
ϕi,nϕj,n = δij for i, j ∈ {1, 2, . . . ,mn}, (6.12)

where δij is Kronecker’s delta.
Multiplying by ϕi,n and integrating on B, we find

B


|∇ϕi,n|

2
− λneunϕ2

i,n


= µi,n


B
ϕ2
i,n < 0.

Then 
B
|∇ϕi,n|

2 <


B
λneunϕ2

i,n =


Bρ
λneunϕ2

i,n +


B\Bρ

λneunϕ2
i,n

≤


Bρ
λne

−2 log r+log 2(N−2)
λn

+Anr2ϕ2
i,n + C


B\Bρ

ϕ2
i,n

= 2(N − 2)

Bρ

ϕ2
i,n

r2
(1 + Anr2 + o(r2))+ C


B\Bρ

ϕ2
i,n

≤
8

N − 2


B
|∇ϕi,n|

2
+ max {2(N − 2)(An + o(1)), C}


B
ϕ2
i,n.

If N ≥ 11 we deduce
B
|∇ϕi,n|

2
≤

N − 2
N − 10

max {2(N − 2)(An + o(1)), C} ,

where An =
λn
2N . Let us assume N ≥ 11 and leave the case N = 10 for later. Thus (ϕi,n)n is bounded in H1

0 (B). By a
diagonal argument, there is a subsequence (which we write the same), such that for each i ∈ {1, 2, . . .}, ϕi,n ⇀ ϕi weakly
in H1

0 (B), ϕi,n → ϕi strongly in L2(B) and almost everywhere in B as n → +∞. Therefore for all i ≥ 1,

∥ϕi∥H1
0 (B)

≤ lim inf
n→+∞

∥ϕi,n∥H1
0 (B)

≤ C, ∥ϕi∥L2(B) = 1.

Moreover, taking n → ∞ in (6.12)
B
ϕiϕj = δij for i, j ≥ 1. (6.13)
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Since (ϕi)i≥1 is bounded in H1
0 (B), there is a subsequence (ϕij)j of (ϕi) such that ϕij → ϕ in L2(B) as j → +∞, and

∥ϕ∥L2(B) = 1. But from (6.13) we get
B
ϕijϕim = 0 for j ≠ m.

Taking the limit, as j → +∞ and m → +∞, we have
B
ϕ2

= 0,

which is a contradiction.
For N = 10, we define the Hilbert space H as the completion of C∞

c (B)with respect to the norm

∥φ∥
2
H :=


B


|∇φ|

2
− λ∗eu∗φ2

+ γφ2
with γ > 0 large but fixed and u∗ the radial singular solution of (1.1) with λ = λ∗. Then

∥ϕi,n∥
2
H =


B


|∇ϕi,n|

2
− λ∗eu∗ϕ2

i,n


+ γ


B
ϕ2
i,n

= µi,n


B
ϕ2
i,n +


B


λneun − λ∗eu∗


ϕ2
i,n + γ


B
ϕ2
i,n

<


B


λneun − λ∗eu∗


ϕ2
i,n + γ


B
ϕ2
i,n.

Let ρ > 0 be as in Lemma 6.2. Let An =
λn
2N . From Lemmas 6.1 and 6.3, we find

B


λneun − λ∗eu∗


ϕ2
i,n =


Bρ


λneun − λ∗eu∗


ϕ2
i,n +


B\Bρ


λneun − λ∗eu∗


ϕ2
i,n

≤


Bρ


λne

−2 log r+log 2(N−2)
λn

+Anr2
− λ∗e

−2 log r+log 2(N−2)
λ∗

+r2+o(r2)

ϕ2
i,n + C


B\Bρ

ϕ2
i,n

≤ C

B
ϕ2
i,n.

Thus we get

∥ϕi,n∥
2
H ≤ (C + γ )


B
ϕ2
i,n ≤ C .

That is, (ϕi,n)n is bounded in H . By Lemma 6.5, the natural embedding H ↩→ L2(B) is compact, so using the same argument
as the case N ≥ 11 we obtain a contradiction. This ends the proof of Proposition 6.7. �

Lemma 6.8. Suppose that u1, u2 are radial regular solutions of (1.1) associated to the same parameter λ > 0. Then the graph of
u1 must intersect with the graph of u2.

Proof. By contradiction, assume that u1(r) > u2(r) for any r ∈ (0, 1), and set v = u1 − u2. By Eq. (1.1) we have
−1v = λ(eu1 − eu2) > λeu2v in B;
v > 0 in B;
v = 0 on ∂B.

(6.14)

We consider the following eigenvalue problem
−1ψ = λeu2ψ + µψ in B;
ψ > 0 in B;
ψ = 0 on ∂B.

(6.15)

Multiplying by ψ and v in (6.14) and (6.15) respectively, and then integrating on B, we get

λ


B
eu2ψv + µ


B
ψv > λ


B
eu2ψv,

so µ > 0, that is u2 is a stable radial regular solution. Thenm(u2) = 0 and this contradicts Proposition 6.7. �
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Proof of Theorem 1.7. The first part follows from Propositions 6.6 and 6.7.
Let K be an integer such that m(uλ) ≤ K for any radial regular solution uλ of (1.1) and m(u∗) ≤ K . This integer exists by

Propositions 6.6 and 6.7. Next we prove that the graph of any radial regular solution uλ of (1.1) intersects with that of the
radial singular solution u∗ at most 2K + 1 times in (0, 1). We follow the idea of Theorem 1.2 in [10].

By contradiction, suppose that the graph of uλ intersects with the graph of u∗ at least 2K + 2 times in (0, 1). There are
two cases: λ < λ∗ and λ ≥ λ∗.

For λ < λ∗, we can showm(uλ) ≥ K +1, contradicting Proposition 6.7. Indeed, since the graph of (λ, uλ) intersects with
that of (λ∗, u∗) at least 2K + 2 times in (0, 1), there are at least K + 1 intervals Ji ⊂ (0, 1)(i = 1, 2, . . . , K + 1) such that
uλ > u∗ in Ji. Let

hi =


uλ − u∗ in Ji;
0 in (0, 1)\Ji.

Since uλ and u∗ satisfy Eq. (1.1), we have

−∆(uλ − u∗) = λ(euλ − 1)− λ∗(eu∗ − 1)
< λ(euλ − eu∗) ≤ λeuλ(uλ − u∗).

Therefore

Quλ(hi) =


B
[|∇hi|

2
− λeuλh2

i ]dx < 0.

Since the functions hi, i = 1, . . . , K + 1 are linearly independent, we conclude thatm(uλ) ≥ K + 1.
For λ ≥ λ∗, similarly we can obtain thatm(u∗) ≥ K + 1. This contradicts Proposition 6.6. In fact, because the graph of uλ

intersects with that of u∗ at least 2K + 2 times in (0, 1), there are at least K + 1 intervals Jk ⊂ (0, 1) (k = 1, 2, . . . , K + 1)
such that u∗ > uλ in Jk. Let

hk =


u∗ − uλ in Jk;
0 in (0, 1)\Jk.

Note that

−1hk < λ∗eu∗hk in Jk

and this implies

Qu∗
(hk) =


B
[|∇hk|

2
− λ∗eu∗h2

k]dx < 0.

Thereforem(u∗) ≥ K + 1.
Next we prove that the number of regular solutions to (1.1) is bounded by (K + 1)2 for each λ ∈ (λ0, µ1).
By contradiction, for each fixed λ ∈ (λ0, µ1), we suppose that there are at least (K + 1)2 + 1 radial regular solutions

to (1.1), denoted by ui (i = 0, 1, . . . , (K + 1)2). Without loss of generality, assume u0(0) > u1(0) > · · · > u(K+1)2(0).
By Lemma 6.8, the graph of ui, i = 1, . . . , (K + 1)2, must intersect with that of u0. Let ai be the first point such that
ui(ai) = u0(ai) for i = 1, . . . , (K + 1)2. Then there are the following two cases.
Case 1: There are at least (K + 1) different points ai such that u0 − ui > 0 in (0, ai) and ui(ai) = u0(ai).
Case 2: There exists some point ai0 ∈ (0, 1), such that there are at least (K + 1) regular solutions that first intersect u0
at ai0 .
Case 1. We rearrange the indices so that a1 < · · · < aK+1. Now u1(0), . . . , uK+1(0) are not necessarily ordered. Let
ϕi = (u0 − ui)χ(0,ai). We claim that {ϕi : i = 1, 2, . . . , (K + 1)} is linearly independent. Indeed, suppose that

K+1
i=1

ciϕi = 0.

Since ai−1 < ai, there exists ri−1 ∈ (ai−1, ai), such that ϕ1(ri−1) = 0, ϕ2(ri−1) = 0, . . . , ϕi−1(ri−1) = 0, ϕi(ri−1) ≠ 0, then
we can get ci = 0, for i = 1, 2, . . . , (K + 1). Then

Qu0(ϕi) =


{|x|<ai}

[|∇ϕi|
2
− λeu0ϕ2

i ]dx

= λ


{|x|<ai}

[eu0 − eui − eu0(u0 − ui)](u0 − ui)dx < 0

by strict convexity and u0 − ui > 0 in {|x| < ai}. This implies thatm(u0) ≥ K + 1, contradicting Proposition 6.7.
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Case 2. Rearranging indices, there are at least K + 1 solutions u1, . . . , uK+1 that satisfy (u0(r) − uj(r)) > 0 for r ∈ (0, ai0)
and uj(ai0) = u0(ai0), j = 1, . . . , K + 1. Set ϕj = (u0 − uj)χ(0,ai0 )

, we claim that

{ϕj : j = 1, . . . , K + 1} is linearly independent. (6.16)

Claim (6.16) together with Qu0(ϕj) < 0 yields thatm(u0) ≥ K + 1, contradicting 1 ≤ m(u0) ≤ K .
Let us show that the claim (6.16) holds. From now on, wewrite r0 = ai0 . We assume that there exist cj, j = 1, . . . , K +1,

such that
K+1
j=1

cjϕj(r) = 0 for all r ∈ (0, r0],

that is,

K+1
j=1

cjuj(r) =


K+1
j=1

cj


u0(r) for all r ∈ (0, r0]. (6.17)

We will deduce c1 = · · · = cK+1 = 0 from the following assertion:

K+1
j=1

cj(u′

j(r0))
n

=


K+1
j=1

cj


(u′

0(r0))
n, for all integers n ≥ 0. (6.18)

In the following we will establish (6.18). We denote g(n) the n-th derivative of g and set

f (u) := −λ(eu − 1), ∀u ∈ R; b = u0(r0).

Then f (n)(uj(r0)) = −λeb for any integer n ≥ 1.
In order to prove (6.18), we shall show that for each j ∈ {0, 1, 2, . . . , K + 1},

u(n)j (r0) = Pn(u′

j(r0)) for any integer n ≥ 1, (6.19)

where Pn is a polynomial of degree 1 for n = 1, 2, and of degree n− 2 for n ≥ 3, whose coefficients depend only on N, n, r0,
and b.

Indeed, for n = 1, (6.19) is direct and for n = 2 this follows from Eq. (1.1). By induction, assume that (6.19) holds for
n = k ≥ 2. From Eq. (1.1), we have

(1uj)
(k−1)

= (f (uj))
(k−1). (6.20)

We see that for n ≥ 0,

(1uj)
(n)

= u(n+2)
j +

N − 1
r

u(n+1)
j − n

N − 1
r2

u(n)j + n(n − 1)
N − 1
r3

u(n−1)
j − · · ·

+ (−1)n−1n!
N − 1
rn

u′′

j + (−1)nn!
N − 1
rn+1

u′

j, (6.21)

and by the formula for derivatives of a composition (e.g. Faa di Bruno [29]) we obtain

(f (uj))
(n)

= −λeuj


α1,...,αn

n!
α1!(1!)α1α2!(2!)α2 · · ·αn!(n!)αn

n
i=1

(u(i)j )
αi , (6.22)

where the sum ranges over integers α1 ≥ 0, . . . , αn ≥ 0 with α1 +2α2 +· · ·+nαn = n. Using (6.20)–(6.22) with n = k−1
and r = r0, we get

u(k+1)
j (r0) = −

N − 1
r0

u(k)j (r0)+ (k − 1)
N − 1
r20

u(k−1)
j (r0)− · · ·

− (−1)k−2(k − 1)!
N − 1

rk−1
0

u′′

j (r0)− (−1)k−1(k − 1)!
N − 1
rk0

u′

j(r0)

− λeb


α1,...,αk−1

(k − 1)!
α1!(1!)α1α2!(2!)α2 · · ·αk−1!((k − 1)!)αk−1

k−1
i=1

(u(i)j (r0))
αi ,

where the sum ranges over integers α1 ≥ 0, . . . , αk−1 ≥ 0 with α1 + 2α2 + · · · + (k − 1)αk−1 = k − 1. By the induction
assumption (6.19), we have

k−1
i=1 (u

(i)
j (r0))

αi is a polynomial in u′

j(r0) of degree at most α1 + α2 + α3 + 2α4 + 3α5 + · · · +

(k − 3)αk−1 ≤ k − 1. Thus we see the validity of (6.19).
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Next we prove that (6.18) holds, again by induction. From (6.17), we have

K+1
j=1

cju
(n)
j (r0) =


K+1
j=1

cj


u(n)0 (r0) for any integer n ≥ 0, (6.23)

and so (6.18) holds for n = 0, 1. Suppose (6.18) holds for n = k. By Eq. (1.1), we get

(1uj)
(n)

= (f (uj))
(n). (6.24)

Since uj(r0) = u0(r0) for j = 1, 2, . . . , K + 1, from (6.21)–(6.24), we obtain for any integer n ≥ 0,

K+1
j=1

cj

u′

j(r0)
n

+ Aj,n


=


K+1
j=1

cj

 
u′

0(r0)
n

+ A0,n


(6.25)

where

Aj,n =


α1,...,αn

n!
α1!(1!)α1α2!(2!)α2 · · ·αn!(n!)αn

n
i=1

(u(i)j (r0))
αi

and the sum ranges over integers 0 ≤ α1 < n, α2 ≥ 0, . . . , αn ≥ 0with α1 +2α2 +· · ·+nαn = n. In writing (6.25) we have
used again the formula for the n-th order derivative of a composition, where we have isolated one term. Consider (6.25) for
n = k + 1. By (6.19) we know that

k+1
i=1 (u

(i)
j (r0))

αi is a polynomial in u′

j(r0) of degree at most

α1 + α2 + α3 + 2α4 + 3α5 + · · · + (k − 1)αk+1.

Since 0 ≤ α1 < k + 1, we see that

α1 + α2 + α3 + 2α4 + 3α5 + · · · + (k − 1)αk+1 < α1 + 2α2 + · · · + (k + 1)αk+1 = k + 1

and therefore Aj,n can be expressed as a polynomial in u′

j(r0) of degree at most k. Thus by the induction assumption, we have

K+1
j=1

cjAj,n =


K+1
j=1

cj


A0,n

and so (6.18) holds for any integer n ≥ 0.
Finally we turn to the proof of (6.16), namely the linear independence of ϕj, j = 1, . . . , K + 1. We denote u′

0(r0) =

d0, u′

j(r0) = dj for j = 1, 2, . . . , K + 1. For n = 1, 2, . . . , K + 1, we can rewrite (6.18) as
d1 − d0 d2 − d0 · · · dK+1 − d0
d21 − d20 d22 − d20 · · · d2K+1 − d20
d31 − d30 d32 − d30 · · · d3K+1 − d30
...

...
. . .

...

dK+1
1 − dK+1

0 dK+1
2 − dK+1

0 · · · dK+1
K+1 − dK+1

0




c1
c2
c3
...

cK+1

 = 0. (6.26)

A calculation shows that the determinant of the coefficient matrix of (6.26) is equal to a (K + 2) × (K + 2) Vandermonde
determinant and the value is

0≤j<i≤K+1

(di − dj) ≠ 0.

Thus c1 = c2 = · · · = cK+1 = 0 and this ends the proof of Theorem 1.7. �
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Appendix

Proof of Proposition 1.2. Supposeu is a classical solution of (1.1). Letφ1 > 0be the first eigenfunction of−∆ corresponding
to the first eigenvalue µ1. Multiplying problem (1.1) by φ1 and integrating over B, we find

µ1


B
uφ1 = λ


B
(eu − 1)φ1 > λ


B
uφ1.

Thus λ < µ1.



320 W. Chen, J. Dávila / Nonlinear Analysis 89 (2013) 299–321

Multiplying problem (1.1) by x · ∇u, and integrating over B, we have

−


B
1u(x · ∇u) = λ


B
(eu − 1)(x · ∇u). (A.1)

But

−


B
1u(x · ∇u) = −

1
2


∂B

|∇u|2x · ν +


1 −

N
2


B
|∇u|2

≤


1 −

N
2


B
|∇u|2, (A.2)

since x · ν ≥ 0 on ∂B. Moreover,

λ


B
(eu − 1)(x · ∇u) = −λN


B
(eu − 1 − u). (A.3)

From (A.1)–(A.3), we get
N
2

− 1


B
|∇u|2 ≤ λN


B
(eu − 1 − u).

We rewrite the above inequality as

N − 2
4


B
|∇u|2 ≤ λN


B
(eu − 1 − u)−

N − 2
4


B
|∇u|2.

Multiplying Eq. (1.1) by u and substituting we get

N − 2
4


B
|∇u|2 ≤ λ


B


N(eu − 1 − u)−

N − 2
4

(eu − 1)u

.

The integrand on the right hand is negative for u ≥ C0, with C0, a positive constant, so the integral can be restricted to the
region {x : u(x) ≤ C0} and in this region

N(eu − 1 − u)−
N − 2

4
(eu − 1)u ≤ C1u2.

Thus
N − 2

4


B
|∇u|2 ≤ λC1


B
u2

≤ λC2


B
|∇u|2,

where C1 > 0, C2 > 0. This implies that u = 0 if 0 < λ < N−2
4C2

. �
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