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Clustering is one of the most widely used approaches in data mining with real life

applications in virtually any domain. The huge interest in clustering has led to a possibly

three-digit number of algorithms with the k-means family probably the most widely used

group of methods. Besides classic bivalent approaches, clustering algorithms belonging to

the domain of soft computing have been proposed and successfully applied in the past four

decades. Bezdek’s fuzzy c-means is a prominent example for such soft computing cluster

algorithms with many effective real life applications. More recently, Lingras and West en-

riched this area by introducing rough k-means. In this article we compare k-means to fuzzy

c-means and rough k-means as important representatives of soft clustering. On the basis of

this comparison, we then survey important extensions and derivatives of these algorithms;

our particular interest here is on hybrid clustering, merging fuzzy and rough concepts. We

also give some exampleswhere k-means, rough k-means, and fuzzy c-means have been used

in studies.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The interest in data mining has been growing rapidly in the past decades. Mainly driven by the increasing ability of

modern information technology the amount of data collected has increased substantially. Obviously, this leads to an evident

need to analyze these data and derive valuable new insights out of them.

This phenomenon is not limited to a special industry or application but can be observed in virtually any industry and

almost any field of application, covering such diverse areas like marketing, bioinformatics, or engineering.

Clustering is among the most widely used techniques in data mining addressing this challenge [34,106]. The objective of

clustering is to group similar objects together in the same clusterwhile dissimilar objects should belong to different clusters.

Classic k-means [33,57] is probably still the most frequently used clustering algorithm. It unambiguously assigns objects

to a predefined number of clusters. Therefore, the classic k-means is also called hard k-means (HKM) in differentiation to soft

computing approaches. These soft clustering techniques are characterized by a relaxation of the hard borders of k-means

towards soft constraints. The soft borders address some particular challenges in many typical real-life applications where

overlapping clusters, outliers or uncertain cluster memberships can often be observed.

A well established soft clustering approach is Bezdek’s [7,8] fuzzy c-means (FCM). Ten years ago, Lingras and West [51]

enriched this field by introducing rough k-means (RKM).
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Fig. 1. Grouping objects in clusters.

In the meantime several extensions and derivatives of these clustering approaches have been suggested. In the context of

our paper we define extensions and derivatives as follows:

• Extensions aremodifications of the clustering algorithmwithin the same uncertainty domain. 1 For example, we consider

a dynamic or an evolutionary version of one of these algorithms as an extension. 2

• Derivatives are modifications that change the uncertainty dimension of the underlying clustering algorithm. E. g. Kr-

ishnapuram and Keller’s [40] possibilistic c-means (PCM) has been directly derived from fuzzy c-means; the kind of

uncertainty used in FCM has been generalized toward a possibilistic nature in PCM.

There have already been some comparative studies on the relationships among these clustering algorithms. The link

between k-means and fuzzy c-means has been addressed in several publications, see for example Mingoti and Lima [69].

Krishnapuram and Keller [40] discussed the relationship between fuzzy and possibilistic c-means and Lingras et al. [53]

compared conventional and rough k-means while Joshi et al. [36] correlated fuzzy and rough clustering. However, a current

comparison and survey of soft clustering techniques, including recent hybridizations is most desirable.

The remainder of the article is organized as follows. In Section 2 we discuss the properties of hard, fuzzy, and rough

clustering, including examples for extensions of these algorithms. In the subsequent section we survey derivatives of fuzzy

and rough clustering approaches. Then, in Section 4, we overview application areas regarding the fundamental algorithms

discussed in Section 2. The article concludes with a summary in Section 5.

2. Foundations of clustering

2.1. Introductory notes

The fundamental objective of clustering is to group similar objects in the same cluster and dissimilar objects in different

clusters (see Fig. 1).

Acommoncategorization is todistinguishbetweenhierarchical andpartitive clustering [37]. In this article,weconcentrate

on partitive clustering, in particular the k-means algorithm [57] and some of its important soft computing derivatives:

Bezdek’s fuzzy c-means [6–8] and Lingras’ rough k-means [51].We limit our analysis to objects that are described exclusively

by numeric features where, e.g., an Euclidean distance between two objects can be defined. A discussion of more general

distance measures for non-numeric features would go beyond the scope of this paper; the interested reader is referred to,

e.g., Xu and Wunsch [106].

2.2. Algorithmic structure

The partitive clustering approaches that we survey in the paper have similar algorithmic structures as depicted in Fig. 2.

In the initialization phase, the number of clusters K has to be set and further parameters where applicable (e.g., the fuzzifier

parameter in fuzzyc-meansorweights in roughk-means). Then theobjectshave tobeassigned to theclusters (e.g., randomly).

1 We are aware of the ongoing intense discussion of the term “uncertainty”, in particular on the relationship of it with respect to probability and soft computing.

It would go beyond the scope of the article discussing it here. Hence, we use “uncertainty” in an opportunistic way.
2 In the meantime a huge number of extensions have been suggested in particular for k-means and fuzzy c-means. Hence, in the particular sections of our

paper we can just give almost arbitrary examples for extensions without demanding completeness.
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Fig. 2. Algorithmic structure of partitive clustering.

Fig. 3. Memberships for hard k-means.

After initialization a three step iteration is performed. First, thenewcluster centers (means) aredetermined. Then, theobjects

are assigned to the clusters and finally the algorithms check for convergence.

However, the clustering approaches are differentwith respect to their details, in particular, how they address uncertainty.

In the following subsections we discuss these clustering techniques in the chronological order of their introduction.

2.3. Clustering algorithms

2.3.1. Hard k-means

Algorithm. The k-means algorithm [57] partitions objects i (i = 1, . . . ,N) into K disjoint subsets Sk (k = 1, . . . , K).
The objects are described by a feature vector xi = (xi1, . . . , xif , . . . , xiF) with f = 1, . . . , F features. The objective is

to minimize the sum of all squared distances d2(xi, μk) of the clusters’ objects xi to its corresponding means μk with

d2(xi, μk) = ‖xi − μk‖2:

min

⎧⎨⎩J =
K∑

k=1

∑
xi∈Sk

‖xi − μk‖2

⎫⎬⎭ (1)

In k-means clustering only bivalent membership degrees of object i to cluster k are allowed: λi,k ∈ {0, 1}. If an object

i is a member of a cluster it cannot be a member of any other cluster (see Fig. 3). Its memberships can be expressed by a

membership vector �i = (λi,1, . . . , λi,K) with λi,h = 1 for h ∈ {1, . . . , K} and λi,l = 0 for l = 1, . . . , K ∧ l �= h.

The classic k-means is very widely used in virtually any domain. Reasons probably include that the algorithm is easy to

understand, transparent and can be implemented quickly. Furthermore, awide variety of free aswell as commercial software

packages is obtainable to support analyses based on k-means.

Themain strengthof thek-means is in applicationswhere the analyzed clusters arewell separated and/or ahard (bivalent)

decision is required.

Extensions. Out of the numerous extensions of k-means we only give one example which has raised great attention in the

past decade. Pelleg and Moore [87] suggested the x-means that incorporates the selection of the number of clusters in the

algorithm.

2.3.2. Fuzzy c-means

Algorithm. In fuzzy clustering [7,25] the objects are assigned to K fuzzy clusters S̃k (k = 1, . . . , K) with a corresponding

degree of membership for each cluster. Its objective is to minimize the weighted sum of Euclidean distances between the

objects i and the means μk of the corresponding clusters k. The weights are derived from the membership degrees of the



310 G. Peters et al. / International Journal of Approximate Reasoning 54 (2013) 307–322

Fig. 4. Memberships for fuzzy c-means.

objects to the clusters (Fig. 4).

min

⎧⎨⎩J =
K∑

k=1

N∑
i=1

λm
i,k‖xi − μk‖2

⎫⎬⎭ (2)

with λi,k the membership degree of object i to cluster k:

λi,k = 1∑K
j=1

(
d(xi,μk)
d(xj,μk)

) 2
m−1

(3)

andm ∈ (1, ∞) the fuzzifier parameterwhich defines the clusters’ fuzziness. Form → ∞ allmembership degrees converge

towards 1/K , the most fuzziest result possible. For m → 1 each membership degree λi,k converges towards 0 or to 1, i.e.

fuzzy c-means provides hard results as in classic k-means. Selecting an appropriate m is challenging and depends on the

given data as well as on the expected results. A still well accepted compromise is to set m = 2.0 [77]. However, studies

also show that this selection is not appropriate for some applications (see e.g., [19,99] for studies in bioinformatics). Further

methods that address the selection of m have been discussed by Yu et al. [109] and Wu [105].

Themembership degreesλi,k showhow representative an object i is for cluster k (withλi,k ∈ [0, 1] ∀ i, k). Amembership

degree of 0 indicates “not representative at all” while a membership degree of 1 indicates that the object represents the

cluster perfectly. The sum of the membership degrees of an object i to all clusters is required to equal 1 in order to assure

the algorithm’s convergence [7]:

K∑
k=1

λi,k = 1 ∀i = 1, . . . ,N (4)

Overlapping classes constitute a main application area of fuzzy clustering. Furthermore, fuzzy membership degrees are

very suitable when, e.g., in complex decision processes, information from different sources has to be aggregated to arrive at

a final decision.

Optionally, after performing fuzzy c-means, the results can be defuzzified in a final step of the analysis when hard

decisions are required.

Extensions. In our paper we can only give very few examples for extensions of fuzzy clustering. Gustafson and Kessel [27]

suggested a seminal fuzzy clustering approach using fuzzy covariance matrices. Pedrycz [80] introduced conditional fuzzy

clustering as an extension of fuzzy clustering. Pedrycz [82] also proposed collaborative fuzzy clustering. Coletta et al. [13]

recently presented some refinements and design guidelines of collaborative fuzzy clustering. Ménard et al. [68] proposed

fuzzy c+2 means addressing the ambiguity rejection in clustering. Their approach has similar objectives to Davé’s noise

clustering [17] and its extensions [3,18]. Crespo and Weber [15] suggested a dynamic fuzzy c-means. Rhee [98] addressed

uncertainty aspects in fuzzy clustering.

2.3.3. Rough k-means

Algorithm. In rough k-means [52] a cluster is described by two hard approximations, a lower and upper approximation

or respectively a lower approximation and a boundary region (Fig. 5). 3

Hence, an object i has two bivalent membership degrees to a cluster k, one for its lower approximation and one for its

boundary: 4

λ
Lower Approximation
i,k = λi,k ∈ {0, 1} and λ

Boundary
i,k = λ̂i,k ∈ {0, 1}.

3 The join of the lower approximation and the boundary form the upper approximation.
4 Throughout the paper we indicate lower approximations as underlined and boundaries by a ĥat.
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Fig. 5. Memberships for rough k-means (lower approximation).

While objects in the lower approximation surely belong to the corresponding cluster, objects in the boundary regionmay

belong to the cluster. The decision if an object i belongs to the lower approximation of a cluster or to its boundary region is

based on the object’s distances to all clusters and a threshold ζ as shown in Eq. (5):

T =
{
k : d(xi, μk)

d(xi, μh)
� ζ ∧ h �= k

}
. (5)

assuming that object i is closest to cluster center h among all cluster centers, i.e. d(xi, μh) � d(xi, μk) ∀k = 1, . . . , K .
If set T is empty, then object i belongs to the lower approximation of cluster h. In the opposite case object i belongs to

the boundary regions of cluster h and all clusters k with k ∈ T . The following statements hold for an object’s membership

relations with respect to all clusters (see also Lingras and Peters [50]):

• An object cannot be simultaneously member of a cluster’s lower approximation and the same cluster’s boundary region.
• If an object is member of a cluster’s lower approximation it cannot belong to any other cluster, neither to its lower

approximation nor to its boundary region.
• If an object is not a member of any lower approximation it must belong to the boundary regions of at least two clusters.

Regarding the membership relations of an object i to a cluster k we get three possibilities:

• (λi,k, λ̂i,k) = (1, 0): object i is a sure member of cluster k.

• (λi,k, λ̂i,k) = (0, 1): object i is a member of cluster k’s boundary region.

• (λi,k, λ̂i,k) = (0, 0): object i does not belong to cluster k at all.

Finally, the objective criterion is to minimize the weighted sum of the Euclidean distances of the objects in the lower

approximations and those in the boundary regions to the respective cluster centers: 5

min

⎧⎨⎩J =
K∑

k=1

⎛⎝ w

|Sk|
∑
xi∈Sk

‖xi − μk‖2 + ŵ

|̂Sk|
∑
xi∈Ŝk

‖xi − μk‖2

⎞⎠⎫⎬⎭ (6)

where

• w: weight for the lower approximations,
• ŵ = 1 − w: weight for the boundary regions,
• |Sk|: number of objects in the lower approximation of cluster k,
• |̂Sk|: number of objects in the boundary region of cluster k.

Amain areaof applicationof rough clustering is presentwhenclear casesneed tobedistinguished fromunclear cases. This

is given, e.g., in quality control where definitely good products can pass immediately whereas products with some doubts

regarding their quality need a “second look”. Such a situation will be revealed by the boundary (“buffer zone”) around the

lower approximation.

Extensions. Extensions of rough k-means include Mitra’s evolutionary rough k-means [70], some refinements suggested

by Peters [88,89], Peters and Lampart’s rough k-medoids [90] and Lingras’ approach [46] based on self-organizing maps

5 For simplicity reasons we assume |Sk| �= 0 and |̂Sk| �= 0.
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Table 1

Range of membership degrees.

Algorithm Membership degrees

Valence Grades λi,k Restrictions for an object i

k-Means Bivalent λi,k ∈ {0, 1} K∑
k=1

λi,k = 1

RKM Trivalent λi,k, λ̂i,k ∈ {0, 1}
(

K∑
k=1

λi,k = 1 ∧ K∑
k=1

λ̂i,k = 0

)
∨(

K∑
k=1

λi,k = 0 ∧ K∑
k=1

λ̂i,k ≥ 2

)
FCM Continuous λi,k ∈ [0, 1] K∑

k=1

λi,k = 1

Table 2

Objective criteria.

Algorithm Objective criterion (minimization)

k-Means
K∑

k=1

∑
xi∈Sk

‖xi − μk‖2

RKM
K∑

k=1

(
w

|Sk |
∑

xi∈Sk

‖xi − μk‖2 + ŵ

|̂Sk |
∑

xi∈Ŝk

‖xi − μk‖2

)

FCM
K∑

k=1

N∑
i=1

λm
i,k‖xi − μk‖2

(SOM). Mitra et al. [72] developed rough collaborative clustering and Peters et al. [92] introduced dynamic rough clustering.

For an advanced review on recent developments in rough clustering the reader is referred to Lingras and Peters [50].

2.4. Characteristics of and relationships among the algorithms

In the followingparagraphs,wefirst compare theclusteringalgorithms’ characteristicsbymeansof their valence, objective

criteria, and initial settings. Subsequently, we briefly address under which conditions the soft clustering algorithms reduce

to hard k-means.

2.4.1. Valence

An important difference between the clustering algorithms is how the membership of an object to a cluster is defined.

We can identify two groups with similar characteristics: discrete vs. continuous methods:

• DiscreteMethods (Bi- and Trivalent). In k-means aswell as in rough k-meansmembership values are discrete and restricted

toλ ∈ {0, 1}. The fundamental difference between these two algorithms is that in rough k-means the core clusters (lower

approximations) are surrounded by boundary regions. 6 Hence, the membership degrees of an object to a cluster are not

bivalent like in k-means but trivalent.
• Continuous Methods. Fuzzy c-means provides continuous membership degrees which range from 0 to 1.

These results are summarized in Table 1. 7 To reflect the grouping as discussed above we rearrange the presentation of

the cluster algorithms from chronological order to the two groups as defined above: clustering algorithms with discrete

memberships (k-means, rough k-means) and the algorithm with continuous memberships (fuzzy c-means).

2.4.2. Objective criteria

Comparing k-means and rough k-means reveals that the rough k-means’ objective function is basically the one used by

k-means extended by incorporating the boundary region. In fuzzy c-means the distances between the objects and the cluster

centers are weighted by their modified membership degrees λm
i,k with the parameter m defining the degree of fuzziness of

the clusters. Table 2 summarizes the algorithms’ objective criteria.

2.4.3. Initial settings

Setting the initial parameters is crucial to obtain useful clustering results. Although some guidelines are available how to

set these initial parameters it generally remains a challenge (see e.g., Mitra [70]).

Table 3 shows the required parameters for the initial settings that are relevant for the clustering algorithms dealt with in

Section 2.

• Number of Clusters K. In all algorithms the number of clusters K has to be set. E.g., for hard clustering enhanced algorithms

have been suggested, in particular the x-means [87], that support the determination of K . For fuzzy c-means cluster

6 Note, the boundary region is generally not spatial.
7 In Table 1 we again assume |Sk| �= 0 and |̂Sk| �= 0 for simplicity reasons.
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Table 3

Initial settings.

Algorithm Initial settings

k-Means K

RKM K , ζ , w, ŵ = 1 − w

FCM K , m, ε

Table 4

Membership relationship and convergence of the clustering algorithms.

k-Means RKM FCM

λi,k ∈ {0, 1} λi,k ∈ {0, 1}
k-Means – → →

(λi,k,̂λi,k) ∈ {(0, 0), (1, 0), (0, 1)} λi,k ∈ [0, 1] ∧ ∑K
k=1 λi,k = 1

RKM ζ → 1 – �

FCM m → 1 � –

validity measures support the identification of the optimal number of clusters (e.g., by Pal and Bezdek [77] or Windham

[104]). For rough k-means cluster validity indexes have been suggested (e.g., Mitra et al. [72], Peters [91] or Lingras et al.

[47]) that may support in the selection of the appropriate number of clusters. However, it should be mentioned that the

“correct number of clusters” does not exist in general. Themost adequate cluster number in a given application is always

a compromise between the optimization of some validitymeasures on the one hand and practical and application driven

considerations on the other hand.
• Threshold ζ andWeights w, ŵ. Besides the number of clusters, in rough k-means the threshold ζ and the weightw has to

be set. The boundary weight ŵ then is ŵ = 1 − w. Up to today setting these initial parameters remains one of the great

challenges of rough clustering since no well accepted guidelines have been proposed. However, Malyszko and Stepaniuk

[63] proposed rough entropy to determine the weights while Wang and Zhou [103] suggested adaptive weights and a

hybrid threshold. The parametersw, ŵ and ζ also provide degrees of freedom to optimize rough k-means by tuning them

adequately (see e.g., Mitra [70] or Peters et al. [91]).
• Fuzzifier Parameter m and the Threshold ε. As already discussed the fuzzifier parameter for fuzzy c-means is commonly,

due to better knowledge, set to m = 2.0. However, better substantiated methods have also been suggested (e.g., by Wu

[105] or Yu [109]). The threshold ε is used to decide on the convergence of fuzzy c-means; when the improvements

obtained in an iteration are less than ε the algorithm terminates. 8

2.4.4. Convergence towards k-means

Table 4 shows the relationships among soft clustering algorithms and particularly if and how they can be converted into

each other. The entries above the diagonal in the table show how the membership values λi,k are transformed from one

cluster approach to another. The lightning symbol� indicates that a direct transformation between the respective algorithms

does not exist. The fields below the diagonal display the parameter settings that are required tomelt down a cluster approach

to another.

Note, that rough k-means as well as fuzzy c-means can melt down into k-means. However, a direct transformation of

rough k-means into fuzzy c-means and vice versa is impossible.

2.5. Discussion of theoretical aspects

There is an ongoing intense debate about soft computing concepts and their relationships to classic approaches, in

particular probabilistic approaches. It would go beyond the scope of this article to address the differences among these

concepts in detail. However, we shall briefly discuss important insights that are relevant in the context of clustering.

In our article, hard k-means takes over the role as representative for classic approaches; sometimes it is also attributed

as “statistical k-means” [102] which is in line with a common definition that statistics “may be defined as the collection,

presentation, analysis, and interpretation of numerical data” [16]. However, it is not a probabilistic approach: it neither

explicitly requires any probability distribution of the data to be clustered nor it does deliver any probability for an object

being a membership to a certain cluster. It plainly delivers bivalent membership degrees to hard clusters on the basis of

Euclidean distances.

Rough clustering enriches k-means by a boundary region that addresses uncertainty. 9 In classic rough set theory ob-

jects belong to a set or they do not belong to that set. With respect to this bivalent membership concept rough sets have

8 In hard k-means and rough k-means the algorithm terminates when the cluster assignment of the objects has not changed in an iteration. So, a similar

threshold is not required.
9 Note, rough clustering belongs to the branch of rough set theorywhich is interval based. Hence, the given interpretation assumes the transfer of the principles

of original set-based rough set theory to its interval-based interpretation.
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Fig. 6. Derivatives of k-means.

identical characteristics as the classic k-means. However, in rough clustering this bivalent membership concept of sure

membership values is enriched by objects that still surely belong to one and only one cluster but it is not known to which

one; there might be several candidate clusters for such an object. Reasons for its unclear status may include missing infor-

mation or errors in the data collection process. Such a candidate object is assigned to the boundary of the corresponding

clusters.

Hence, rough k-means addresses uncertaintywhich stems frommissing information instead of simultaneous similarities

to several clusters as is the case of fuzzy c-means. This enhancement of k-means constitutes one branch of soft clustering

algorithms (see the left pylon in Fig. 6).

In contrast to this, in fuzzy c-means thehardmembership values are generalized by allowing graded similarities of objects

to clusters which range from 0 (totally dissimilar) to 1 (perfect representative of the cluster). Sometimes fuzzy c-means is

denoted as “probabilistic” [4,67] in contrast to possibilitistic approaches (see Section 3.1.1). A motivation behind this may

be that the membership degrees formally fulfill the Kolmogorov axioms of probability theory [38]. However, we are not

aware of strong supporting arguments for this probabilistic interpretation beyond these formal arguments. Nevertheless,

wewill use the term “probabilistic” in the above sense in the course of the paperwhenever the authors of the original papers

use it.

Note that – starting from k-means - fuzzy c-means addresses a specific kind of ambiguity inherent in clustering results;

it cannot unambiguously be decided to which cluster an object belongs, but the respective algorithms determine a precise

number (membership degree) which represents the degree of similarity an object has to a particular cluster.

This increasing flexibility to describe similarities constitutes another branch of soft clustering algorithms (see the right

pylon in Fig. 6).

3. Derivatives of fuzzy and rough clustering

In the context of this paper derivatives of fuzzy c-means are clustering algorithms that inspired from fuzzy c-means and

enhance it with respect to the kind of uncertainty considered, i.e. possibilitistic and evidential approaches.We are not aware

of similar derivatives of rough k-means. However, there are several hybrid derivatives merging fuzzy and rough concepts

which we discuss in Section 3.3: Hybrid Derivatives of Fuzzy and Rough Clustering.

3.1. Derivatives of fuzzy c-means

In the following paragraphs we survey possibilistic, evidential, and belief c-means as derivatives of fuzzy c-means.

3.1.1. Possibilistic c-means

Krishnapuram and Keller [40] proposed possibilistic c-means as a derivative of fuzzy c-means. Both, fuzzy c-means as

well as possibilistic c-means provide continuous membership degrees. The significant difference between them is that for

each object the sum of its membership values to all classes must equal 1 for fuzzy c-means and has to be between 0 and 1

for possibilistic c-means:

K∑
k=1

λi,k � 1 ∀i = 1, . . . ,N (7)

This relaxation makes it possible to better describe objects that are dissimilar to all clusters, e.g., outliers.

Pal et al. [78] denote a membership degree obtained by fuzzy c-means as an indicator for the relative typicality of an

object to a cluster while a membership degree obtained by possibiltistic clustering as an indicator for the absolute typicality.
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Table 5

Example for evidential clustering [65].

A m1(A) m2(A) m3(A) m4(A) m5(A)

∅ 1 0 0 0 0

{ω1} 0 0 0 0.2 0

{ω2} 0 1 0 0.4 0

{ω1, ω2} 0 0 0 0 0

{ω3} 0 0 0.2 0.4 0

{ω1, ω3} 0 0 0.5 0 0

{ω2, ω3} 0 0 0 0 0

� 0 0 0.3 0 1

In case of possibilistic clustering the objective function of the fuzzy c-means algorithm has to be extended by a termwith

a Lagrange multiplier which assures a non-trivial relaxation of the sum of the membership degrees:

min

⎧⎨⎩J =
K∑

k=1

N∑
i=1

λm
i,k‖xi − μk‖2 +

K∑
k=1

ηk

N∑
i=1

(1 − λi,k)
m

⎫⎬⎭ (8)

with ηk a suitable positive number. Krishnapuram and Keller [40] suggested how to set η in possibilistic c-means. The reader

is referred to their paper for further details.

As hybridizations of fuzzy and possibilistic clustering Pal et al. suggested fuzzy-possibilistic c-means [78] as well as a

possibilistic-fuzzy c-means algorithm [79]. Massulli and Rovetta [67] proposed a soft transition model from probabilistic to

possibilistic fuzzy clustering.

3.1.2. Evidential c-means

Inspired by Dempster–Shafer’s theory of evidence [20,100,107] and Davé’s [17] approach to detect noise in clustering

Denœux and Masson [21,22] developed credal partitions. A credal partition allows an object to be assigned to more than

one subset of classes.

To obtain the credal partitions Denœux and Masson suggested the EVCLUS-EVidential CLUStering algorithm [21,22].

Masson and Denœux proposed a variant of the EVCLUS for interval-valued dissimilarity data [64] and later the evidential

c-means (ECM) [65].

In the context of our paper we just present the very basic idea of the ECM concentrating on the generalization of the

memberships of objects to clusters. The reader is referred to the original paper of Masson and Denœux [65] for more details.

The memberships are given in the form of basic belief assignments (bba): m(A) with
∑

A⊆� m(A) = 1 and � =

{ω1, . . . , ωK} the set of K clusters.

To illustrate the ECM let us discuss an example as given by Masson and Denœux [65]: five objects (i = 1, . . . ,N with

N = 5) are assigned to three clustersω1, . . . , ω3 (see Table 5). Then the degrees of memberships of an object to the clusters

are given by basic belief assignments (bba):mi(A). Note, the functionm is also labeled as “mass”.

Table 5 can be interpreted as follows [65]:

• Object1 (m1(A)): Themassm1(∅) = 1 indicates thatobject1doesnotbelong toanyof thegivenclusters�= {ω1, ω2, ω3}.• Object 2 (m2(A)): The massm2({ω2}) = 1 indicates that object 2 certainly belongs to cluster ω2.• Object 3 (m3(A)): The mass m3 is divided among {ω3}, {ω1, ω3} and �. Therefore, only partial knowledge about the

membership of object 3 is available.
• Object 4 (m4(A)): The mass m4 is allocated to singletons only: {ω1}, {ω2}, {ω3}. Hence, m4 is called Bayesian mass.

Obviously, as in the case before, only partial knowledge is available.
• Object 5 (m5(A)): The massm5(�) = 1 indicates that the corresponding cluster of object 5 is unknown. It is just known

that it belongs to one of the clusters � = {ω1, ω2, ω3}.
Masson and Denœux [65] showed that the ECM can be melted down to fuzzy and possibilistic clustering. Hence, it can

be considered as their generalization which gives more flexibility and more degrees of freedom when complex clustering

tasks have to be performed.

However, Liu at al. [55] pointed out that in ECM it can happen that cluster centers get very close and that the clusters

eventually totally overlap. They addressed this issue by proposing the belief c-means approach (BCM). Further developments

of ECM include a relational evidential c-means algorithm (RECM) [66] and a constrained evidential c-means algorithm

(CECM) [2].

Recently Joshi and Lingras [35] discussed the relationship of evidential and rough clustering and found a great deal of

agreement between the cluster assignments by ECM and RKM. In addition, ECM was able to identify outliers by assigning

large bba values to an empty set. However, RKM, on the other hand, produced more reasonable clustering schemes for very

large data sets with high dimensions.
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3.2. Derivatives of rough k-means

As already mentioned, in the context of our paper, derivatives of rough k-means are clustering algorithms that derive

from rough k-means and enhance it with respect to the kind of uncertainty. Note, we restrain from enhancements based on

rough and derived concepts since we are dealing with them separately in Section 3.3: Hybrid Derivatives of Fuzzy and Rough

Clustering. Within these limitations we are not aware of any derivatives of rough k-means.

3.3. Hybrid derivatives of fuzzy and rough clustering

In the past two decades increasing attention has been directed to the hybridization of fuzzy and rough concepts. Dubois

and Prade [23] fundamentally addressed rough-fuzzy and fuzzy-rough hybridization already in 1990. Hybrid rough-fuzzy

and fuzzy-rough approaches include e.g., Huang [32], Petrosino and Ceccarelli [93] or Petrosino and Salvi [94]. Lingras and

Jensen [49] surveyed rough and fuzzy hybridization.

In the context of our paper we review hybridization of fuzzy and rough clustering approaches in the following sub-

sections.

3.3.1. Rough-fuzzy clustering

In this section we discuss two rough-fuzzy clustering algorithms that are named identically but integrate fuzzy concepts

into the rough k-means slightly differently:

• Mitra’s et al. Rough-Fuzzy Clustering [72]
• Maji and Pal’s Rough-Fuzzy Clustering [58]

Mitra’s et al. Rough-Fuzzy Clustering. Mitra et al. [72] introduced a hybrid rough-fuzzy clustering algorithm (RFCM) with

fuzzy lower approximations and fuzzy boundaries. The RFCM mainly differs from the original RKM (i) with respect to the

assignment of the objects to a lower approximation or a boundary and (ii) with respect to the calculation of the means:

(i) Object’s assignment to a lower approximation or a boundary. The idea is to replace the Euclidean distances used in rough

k-means to distinguish between the objects in the boundary and in the lower approximations bymembership degrees

obtained by fuzzy clustering (see Eq. (3) in Section 2.3.2 for the original fuzzy approach).

(ii) Calculation of the means. When calculating the means in rough clustering, the objects in the lower approximation as

well as in the boundary are weighted by their respective fuzzy membership degrees.

As Mitra et al. found out the inclusion of fuzzymemberships into rough clustering adds robustness to the algorithmwith

respect to the selection of its initial parameters.

For the fuzzifier parameter m → 1 the rough-fuzzy cluster algorithm converges towards rough k-means. For a small

threshold ζ in rough k-means the boundary region becomes empty; hence, it converges towards fuzzy c-means.

In a subsequent paper Mitra and Barman [73] applied rough-fuzzy c-means successfully to medical imagery.

Maji andPal’s Rough-FuzzyClustering.Maji andPal [58] introducedavariationofMitra’s et al. hybrid rough-fuzzy clustering

algorithm. They proposed that all objects in a lower approximation should have identical influence on the determination of

their means and should be independent from other clusters. Hence, they suggested a rough-fuzzy c-means with crisp lower

approximations and fuzzy boundaries. Obviously, in Maji and Pal’s [58] algorithm the lower approximation has a higher

impact on clustering in comparison to Mitra’s et al. [72] approach where the objects in lower approximation are weighted

by factors between 0 and 1 (membership degrees raised to the power of m).

Applications of Maji and Pal’s RFCM are, for example, in the fields of microarray gene expression data [61,62] and image

segmentation [60].

Fig. 7 summarizes Mitra’s et al. [72] and Maji and Pal’s [58] versions of the rough-fuzzy c-means.

3.3.2. Rough-fuzzy possibilistic clustering

In 2007 Maji and Pal [59] introduced a rough set based generalized fuzzy c-means algorithm which they called RFPCM

(rough fuzzy possibilistic c-means). It merges fuzzy and possibilistic approaches and rough k-means in a way that these

clustering algorithms can be derived from it. Therefore, it is a unifying soft clustering approach.

Like in Maji and Pal’s [58] RFCM a cluster is approximated by a crisp lower approximation and a fuzzy boundary. Addi-

tionally, in the RFPCM, the boundary can be characterized by possibilistic elements (see Fig. 7). 10 The reader is referred to

the paper of Maji and Pal [59] for further details.

10 Maji and Pal [59] use the term probabilistic for the memberships obtained by FCM and possibilistic for the memberships obtained by PCM. The term fuzzy

subsumes both.
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Fig. 7. Mitra’s et al. [72] and Maji and Pal’s [58] RFCM and Maji and Pal’s RFPCM [59].

Fig. 8. Shadowed sets (adapted from [81]).

3.3.3. Shadowed set clustering

In the field of probability sets [31] it has been observed thatmembership grades around 0 or 1 can rather easily be defined

while determining grades around 0.5 is particularly difficult.

The reason for this might be that objects with membership grades close to 1 can normally be regarded as members of

a certain class while objects with membership grades close to 0 are normally no members of the corresponding class. In

contrast to this, the objects around 0.5 form a particular challenge since they are undecided in-betweens. Any small change

in their estimated grades could possibly change their anticipated memberships to a class. Hence, assigning them the right

probability is much more important than in the rather clear cases close to 0 or 1.

These findings inspired Pedrycz [81] to introduce shadowed sets by transferring this fundamental idea tomemberships in

fuzzy set theory. He proposed to approximate a membership function by three zones: the core, the shadow and the exclusion

(see Fig. 8):

• Core. Membership degrees close to 1 are simply set to 1.
• Exclusion. Membership degrees close to 0 are simply approximated by 0.
• Shadow. Membership degrees that are neither close to 0 nor close to 1 constitute a shadowed region.



318 G. Peters et al. / International Journal of Approximate Reasoning 54 (2013) 307–322

Fig. 9. Computation of the threshold α.

To determine the size of the shadow Pedrycz [85] proposed to balance vagueness, i.e. the shadowed region on the one

hand and the regions with the “wiped-out” detailed membership degrees on the other hand should be identically large. The

borders between these regions are symmetric and defined by α for the lower bound and respectively 1 − α for the upper

bound. Then, the parameter α is determined as shown in Fig. 9.

At the first sight shadowed sets seem to be identical to rough sets. But this is only true with respect to the categorization

of the objects to three classes: (1) sure members, (2) sure non-members, and (3) objects in-between. A closer looks reveals

distinct differences between shadowed and rough sets. These include:

• In contrast to rough sets the equivalence classes are defined dynamically in shadowed sets, i.e. the respective thresholds

are derived depending on the data sets, whereas in rough sets the thresholds are determined by a user.
• A similar property like in rough sets that an object must belong to a least two shadowed regions (rough sets: upper

approximations) if it is not a member of any core (rough sets: lower approximation) does not exist for shadowed sets.

Obviously, the idea of shadowed sets can be applied to clustering [81,83,84]. Mitra et al. [74] suggested a shadowed

c-means (SCM) as an integration of fuzzy and rough clustering. Their main idea is to weight the members in the core of a

shadowed set by 1, the objects in the shadowed region like in fuzzy sets by λm
ik and the objects in the exclusion zones by

membership degrees “double-powered” by the fuzzifier parameterm: λmm

ik .

Hence, objects in the core count full, while objects in the shadowed regions count like in regular fuzzy clustering. Due to

the “double-powering” m the objects in the exclusion regions have very little impact on the clustering results. Anticipating

that outliers should normally be located in exclusion regions their influence on the clustering result is small.

Recently, Zhou et al. [86] discussed shadowed sets in the characterization of rough-fuzzy clustering.

4. Applications

Since clustering is a standard approach in data mining it has been applied in virtually any domain. As mentioned before

k-means is probably the most widely used clustering algorithm. But also fuzzy and possibilistic c-means have been used

in a numerous number of real life applications. Since rough k-means is relatively new the number of its applications is

smaller than that of the previouslymentionedmethods. However, it has also been applied in several real life studies already.

Evidential c-means and hybrid clustering algorithms have been proposed very recently. Hence, they are mostly applied to

common data sets given supporting arguments for their usefulness.

In the following paragraphs we present a small selection of applications of the fundamental clustering algorithms we

discussed in Section 2 (including possible extensions). 11 We provide examples for the partly overlapping domains Biology

andBioinformatics, Engineering (includingPatternRecognition), Business andEconomics aswell asMiscellaneous (including

information technology).

Hard k-means:

• Biology and Bioinformatics

– Protein structure prediction [28]

– Gene expression data analysis [56]

– Exploring local protein sequence motifs [110]
• Engineering

– Optical character recognition, speech recognition, and encoding/decoding [1]

11 Note that considering the huge number of applications the selection must be arbitrary. The examples are only intended to give an impression of the diversity

of applications of the algorithms and by no means intended to be comprehensive.
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– Image retrieval system [54]

– Color image segmentation [97]
• Business and Economics

– Exploration of shopping orientations and online purchase intention [10]

– Applications in marketing [95]

– Clustering companies [96]
• Miscellaneous

– Understanding motivation effort in free/open source software projects [42]

– Prediction of students’ academic performance [76]

– Network traffic classification [108]

Rough k-means:

• Biology and Bioinformatics

– Identify patterns of gene expression in cancer datasets [41]

– Analyzing microarray data [91]

– Bioinformatics [71]
• Engineering

– Medical imagery [73]

– Speech recognition [70]

– Forest cover data [70]
• Business and Economics

– Changing retail data [14]

– Supermarket data [48]
• Miscellaneous

– Clustering path profiles on a website [12]

– Traffic monitoring [45]

– Neighborhood clustering of web users [101]

Fuzzy c-means:

• Biology and Bioinformatics

– Survey on fuzzy pattern recognition in medicine [5]

– Clustering analysis of microarray data [29]

– Clustering in data analysis of metabolomics [44]
• Engineering

– Segmentation of a thematic mapper image [11]

– Application to remote sensing [24]

– Color segmentation of thermal infrared breast images [26]
• Business and Economics

– Classification of knowledge intensity in China’s manufacturing industry [9]

– Market segmentation [39]

– Clustering in marketing [95]
• Miscellaneous

– Detection of polluted sites [30]

– Profiling network applications [43]

– Soil pattern recognition [75]

Many applications of the recently proposed derivatives are in the field of bioinformatics while the “older” PCM has a

longer history with many applications in various domains.

5. Conclusion

Soft clustering goes back to the beginning of the seventies of the last century when Dunn [25] introduced fuzzy ISODATA

in 1973. In our survey we have summarized some of the important contributions to this area over the past 40 years.

Bezdek’s fuzzy c-means [7] has probably become the most popular soft clustering algorithm so far with many real life

applications in a very diverse range of domains. Its derivatives include possibilistic clustering [40] as well as more recent

approaches based on evidence [65]. These algorithms constitute one family of soft clustering algorithms.
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Lingras and West [51] suggested rough k-means ten years ago. We showed that rough k-means is much closer related

to k-means than to fuzzy c-means and its derivatives. We would like to stress this point since this goes beyond a pure

categorization of terminologies but might also influence the awareness for and acceptance of rough k-means, especially in

domains where hard k-means is dominantly used currently.

While fuzzy c-means generalizes k-means with respect to ambiguity based on similarity between objects and clusters,

rough k-means adds a dimension of uncertainty due to missing or wrong information. Hence, rough k-means constitutes a

different family of soft clustering algorithms.

In the past years, intensive work has been directed towards the hybridization of clustering approaches, in particular on

the hybridization of fuzzy and rough concepts (e.g., Maji et al. [58,59] and Mitra et al. [72]). The obtained cluster algorithms

generally perform more robustly with respect to the initial settings and/or in the presence of outliers than their original

approaches. Last but not least clustering approaches based on Pedrycz’s shadowed sets [81] have been integrating fuzzy and

rough clustering [74,86] recently.

In particular the recent promising developments in the hybridization of soft cluster algorithms show the need for ap-

proaches that holistically address uncertainty. Hence, soft clustering will remain in the interest of researchers and most

probably attract even more practitioners in the field of data mining in support of their real life applications.
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