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Given a set P of n points in R
d , where each point p of P is associated with a weight w(p)

(positive or negative), the Maximum-Weight Box problem is to find an axis-aligned box B
maximizing

∑
p∈B∩P w(p). We describe algorithms for this problem in two dimensions

that run in the worst case in O (n2) time, and much less on more specific classes of
instances. In particular, these results imply similar ones for the Maximum Bichromatic

Discrepancy Box problem. These improve by a factor of Θ(lg n) on the previously known
worst-case complexity for these problems, O (n2 lg n) (Cortés et al., 2009 [9]; Dobkin et
al., 1996 [10]). Although the O (n2) result can be deduced from new results on Klee’s

Measure problem (Chan, 2013 [7]), it is a more direct and simplified (non-trivial) solution.
We exploit the connection with Klee’s Measure problem to further show that (1) the
Maximum-Weight Box problem can be solved in O (nd) time for any constant d � 2; (2)
if the weights are integers bounded by O (1) in absolute values, or weights are +1 and
−∞ (as in the Maximum Bichromatic Discrepancy Box problem), the Maximum-Weight

Box problem can be solved in O ((nd/ lgd n)(lg lg n)O (1)) time; (3) it is unlikely that the
Maximum-Weight Box problem can be solved in less than nd/2 time (ignoring logarithmic
factors) with current knowledge about Klee’s Measure problem.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Consider a set P of n points in R
d , such that the points

are in general position (i.e., no pair of points share the
same x or y coordinate). Each point p of P is assigned

✩ A previous version of this paper appeared in the Proceedings of the
25th Canadian Conference on Computational Geometry (CCCG’13).

* Corresponding author.
E-mail addresses: jbarbay@dcc.uchile.cl (J. Barbay),

tmchan@cs.uwaterloo.ca (T.M. Chan), gnavarro@dcc.uchile.cl (G. Navarro),
pablo.perez@uv.cl (P. Pérez-Lantero).

1 Partially funded by Millennium Nucleus Information and Coordination
in Networks ICM/FIC P10-024F, Mideplan, Chile.

2 Partially supported by grant CONICYT, FONDECYT/Iniciación
11110069, Chile.
http://dx.doi.org/10.1016/j.ipl.2014.03.007
0020-0190/© 2014 Elsevier B.V. All rights reserved.
a weight w(p) ∈ R that can be either positive or negative.
For any subset B ⊆ R

d let W (B) := ∑
p∈B∩P w(p). A box is

an axis-aligned hyper-rectangle, and we say that the weight
of a box B is W (B). We consider the Maximum-Weight

Box problem, which given P and w() is to find a box B
with maximum weight W (B).

Depending on the choice of the weights w(), this geo-
metric optimization problem has various practical applica-
tions, such as machine learning [10] and data classification
and clustering [11].

Related work In one dimension, the coordinates of the
points matter only in the order they induce on their
weights, and the problem reduces to the Maximum-Sum

Consecutive Subsequence problem [4], which can be
solved in O (n) time if the coordinates are already sorted.
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Fig. 1. (a) A point set composed of δ = 3 strips. The points with positive weight are represented as solid dots, and the points with negative weight as tiny
circles. (b) A cluster partition (C1, . . . , C5). (c) A diagonalization (C1, . . . , C6).
In 2009, Cortés et al. [9] solved the dynamic version
of this problem supporting updates of weights for a fixed
point set. They described a data structure called MCS-
tree, which supports in O (lg n) time both updates and
Maximum-Sum Consecutive Subsequence queries on any
interval of the sequence of points. The Maximum-Weight

Box problem in two dimensions was introduced by Cortés
et al. [9], who gave an algorithm running in time within
O (n2 lg n) and space within O (n). They reduce any in-
stance of the Maximum-Weight Box problem in two di-
mensions to O (n2) instances of the problem in one dimen-
sion, each solved dynamically in O (lg n) with an MCS-tree.

In 2011, Bautista-Santiago et al. [3] considered convex
objects other than axis-aligned rectangles, and gave an
O (n3)-time algorithm that finds a convex polygon maxi-
mizing the sum of the weights of the points it contains.
In the case of a half-plane of maximum weight, the prob-
lem can be easily solved in O (n2) time by using duality in
the plane, and it is 3SUM-hard [5]. Combining the standard
lifting transformation and duality in three dimensions, the
disk of maximum weight can be found in O (n3) time.

In 2012, Barbay et al. [2] generalized the Maximum-

Weight Box problem to the Optimal Planar Box prob-
lem, where the sum of the weights is replaced by any
monotone decomposable function f (), and described sev-
eral adaptive improvements on Cortés et al.’s solution [9].
These include adapting to strips and other clusterings of
the input, which we also consider in this work (see Sec-
tions 3 and 4). They also replaced MCS-trees by variants
based on splay trees [8], which yielded an adaptive vari-
ant executing in time O (n2(1 + lg(1 + λ/n))) and linear
space, where λ ∈ [0..n2] is the sum of the distances be-
tween the insertion positions of the consecutive points ac-
cording to their x-coordinate, when given in the order of
their y-coordinate. All of their algorithms perform in time
Θ(n2 lg n) in the worst case over all instances of n points.

We consider the Maximum-Weight Box problem in two
dimensions on a set P of n weighted points, such that no
pair of points share the same x or y coordinate.

Basic definitions A strip is the area delimited by two lines
parallel to the same axis. Given the point set P , we say
that a strip S is monochromatic if S ∩ P is not empty and
the weights of all elements of S ∩ P have the same sign.
A monochromatic strip S is positive (resp. negative) if S
contains points of P with positive (resp. negative) weights.
We say that P is composed of δ strips if P can be covered by
δ (parallel) pairwise disjoint monochromatic strips of alter-
nating signs (see Fig. 1a). Given any bounded set S ⊂ R

2,
let Box(S) denote the smallest box covering S . We say that
(C1, C2, . . . , Ck) is a cluster partition of P if {C1, C2, . . . , Ck}
is a partition of P and in every axis the orthogonal projec-
tions of Box(C1),Box(C2), . . . ,Box(Ck) are pairwise dis-
joint (see Fig. 1b). A cluster partition (C1, C2, . . . , Ck) of
P ⊂ R

2 is a diagonalization of P if (a) k � 2 and there
is an index j ∈ [1..k − 1] such that sets C1 ∪ · · · ∪ C j

and C j+1 ∪ · · · ∪ Ck belong to opposed quadrants defined
by a horizontal and a vertical line, and (C1, . . . , C j) and
(C j+1, . . . , Ck) are diagonalizations of C1 ∪ · · · ∪ C j and
C j+1 ∪ · · · ∪ Ck , respectively, or (b) k = 1 and the points in
C1 cannot be further clustered into a diagonalization other
than (C1) (see Fig. 1c).

Results We obtain the following results for the Maximum-

Weight Box problem in two dimensions. All of our algo-
rithms use space linear in the number of input points.

• Over instances composed of n weighted points, each of
our algorithms runs in O (n2) time (Theorem 2.2).

• If the point set P is composed of δ ∈ [1..n] (either
horizontal or vertical) strips, our algorithm executes
adaptively in SORT(n)+ O (δn) ⊂ O (n lg n+δn) ⊂ O (n2)

time (Theorem 3.2), where SORT(n) is the time re-
quired to sort the elements of P by the x-coordinates
and by the y-coordinates, which is within O (n lgn) in
the comparison model, and can be for instance within
O (n

√
lg lg n) ⊂ o(n lg n) in the RAM model with ran-

domization or within O (n lg lg n) ⊂ o(n lg n) determin-
istic, if the coordinates of the points are integer num-
bers [13].

• Given a cluster partition (C1, C2, . . . , Ck) of P , where
cluster Ci contains ni points for every i ∈ [1..k]
and is composed of δi strips, our algorithm runs in
O (

∑k
i=1 niδi + k2) ⊂ O (

∑k
i=1 n2

i + k2) ⊂ O (n2) time
(Theorem 4.3).
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• There exists a unique diagonalization (C1, C2, . . . , Ck)

of the point set P (it might be (C1) = (P ) in the
worst case) and our algorithm finds it in O (n lg n)

time (Lemma 4.4). A maximum-weight box can be
computed in overall O (n lgn + ∑k

i=1 niδi) ⊂ O (n lg n +∑k
i=1 n2

i ) ⊂ O (n2) time (Theorem 4.5), where O (n lg n)

is the time to construct such a diagonalization (which
is distinct from SORT(n), the time required to sort the
points by their coordinates, in the results mentioned
above).

Applications to other known problems Let P be a set of n
planar points, each being colored either red or blue.

The Maximum Bichromatic Discrepancy Box prob-
lem [9,10] is to find a box that maximizes the absolute
difference between the numbers of red and blue points
it contains, and was solved in O (n2 lg n) time by Dobkin
et al. [10]. Any instance of this problem can be reduced
to two particular instances of the Maximum-Weight Box

problem [9]. In one, red points have weight +1 and blue
points weight −1, and conversely in the other. Then our
results imply an O (n2) worst-case time algorithm, and
adaptive algorithms as well, for the Maximum Bichro-

matic Discrepancy Box problem, improving upon previous
O (n2 lg n)-time algorithms [9,10].

The Maximum Box problem [9,11,14] is to find a box
B containing the maximum number of blue points and
no red point. Eckstein et al. [11] introduced it in general
dimension, proving that if the dimension d of the points
is part of the input then the problem is NP-hard. In two
dimensions it was later solved in O (n2 lg n) time by Liu
and Nediak [14]. In 2010 Backer et al. [1] showed that the
Maximum Box problem in two dimensions can be solved
in O (n lg3 n) time and O (n lgn) space, and that for any
fixed dimension d � 3 it can be solved in time within
O (nd lgd−2 n).

Any instance of the Maximum Box problem is equiv-
alent to a particular case of the Maximum-Weight Box

problem in which blue points have weight +1 and red
points have weight −∞ [9]. Then our techniques imply
an O (n2) worst-case time algorithm for this problem, and
adaptive algorithms as well. While this time complexity is
worse than the best known solution [1], it requires only
linear space.

Note that our specialized results are faster on some
classes of instances that arise naturally in applications,
such as instances where one needs to find a maximum box
over an imbalanced red–blue dataset in data mining and/or
data analysis [11,12,16]. Generally, if the ratio of the num-
ber of blue points over the number of red points is within
o(1) or ω(1),3 then our techniques achieve o(n2) time on
an instance of n points.

Higher dimensions and lower bounds Our worst-case result
in two dimensions can be seen as a particular case of re-
cent results related to Klee’s Measure problem [7], yet it is
a more direct and simple solution (which we further im-

3 All our asymptotic notations are for n growing to infinity and other
parameters, such as δ, fixed.
prove on various classes of instances). By exploiting the
connections between these two problems, we obtain sev-
eral further results:

• We show that the Maximum-Weight Box problem can
be solved in time O (nd) in any constant dimension
d � 2. The best previous result was O (n2d−2 lg n) [9].

• We show that, when the weights are all O (1), the
Maximum-Weight Box problem can be solved in
time within O ((nd/ lgd n)(lg lg n)O (1)). This improve-
ment applies, in particular, in simpler problems such
as Maximum Bichromatic Discrepancy problem and
Maximum Box problem, where the best previous al-
gorithms for the former run in time O (n2 lg n) for
d = 2 [9,10], and the best for the latter require time
O (nd lgd−2 n) for d � 3 [1].

• By reducing from the Weighted Depth problem, we
show that the Maximum-Weight Box problem is
W [1]-hard, and unlikely to be solved in time within
o(nd/2): such an improvement would require a break-
through on the current knowledge of Klee’s Measure

problem and impact on a large set of related problems
in computational geometry.

Outline In Section 2 we describe the general O (n2)-time
algorithm. In Section 3 we describe the adaptive algorithm
running in SORT(n) + O (δn) time, where SORT(n) is the
time required to sort the elements of P by their x- and
y-coordinates and δ is the number of strips of the point
set. In Section 4 we present the results concerning clus-
ter partitions and diagonalizations. Finally, in Section 5,
we discuss further results in connection to Klee’s Mea-

sure problem, such as extensions to higher dimensions,
polylogarithmic-factor speedups, and lower bounds.

2. Quadratic worst-case time algorithm

Assume the elements of P are sorted twice, first by
x-coordinates and second by y-coordinates, in SORT(n)

time.
We say that X ⊆ P is a box set if X is the intersection

of P with some box. For any box set X ⊆ P we define the
score of X , S(X), as the following four boxes (see Fig. 2).
Let [x1, x2] × [y1, y2] := Box(X):

(1) Box(X);
(2) a box BL(X) ⊆ Box(X) of X of maximum weight, such

that it is of the form [x1, x] × [y1, y2] for x1 � x � x2;
(3) a box BR(X) ⊆ Box(X) of X of maximum weight, such

that it is of the form [x, x2] × [y1, y2], for x1 � x � x2;
and

(4) a box B0(X) ⊆ Box(X) of X of maximum weight, such
that it is of the form [x, x′] × [y1, y2], for x1 � x �
x′ � x2.

For each of these boxes we keep only two opposed ver-
tices defining it and its weight, so that representing a box
set X by S(X) := (Box(X),BL(X),BR(X),B0(X)) requires
only constant space.

We say that a box set X ⊆ P is scored if S(X) is com-
puted, and we use Box(X) to represent X instead of X
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Fig. 2. The score S(X) = (Box(X),BL(X),BR (X),B0(X)) of a box set
X ⊆ P .

itself. Let the operator ⊕ : 2P × 2P → 2P be defined over
all pairs (X1, X2) of scored box sets of P such that: X1 and
X2 can be separated with a vertical line, X1 is to the left
of X2, and X1 ∪ X2 is a box set. Then X1 ⊕ X2 returns the
scored set X1 ∪ X2, and it can be computed in O (1) time
from the next observations:

W (X1 ∪ X2) = W (X1) + W (X2)

W
(
BL(X1 ∪ X2)

)
= max

{
W

(
BL(X1)

)
, W (X1) + W

(
BL(X2)

)}
W

(
BR(X1 ∪ X2)

)
= max

{
W

(
BR(X2)

)
, W (X2) + W

(
BR(X1)

)}
W

(
B0(X1 ∪ X2)

) = max
{

W
(
B0(X1)

)
, W

(
B0(X2)

)
,

W
(
BR(X1)

) + W
(
BL(X2)

)}
Notice that by applying the operators ⊕ to singletons {p}
over all points p of P in left-to-right order, we can com-
pute B0(P ), i.e., the maximum-weight vertical strip, in
time within O (n). After projection to the x-axis, this im-
mediately gives a linear-time algorithm for the Maximum-

Sum Consecutive Subsequence problem, studied by Bent-
ley [4] and often taught in undergraduate algorithms
classes.

Let S be a horizontal strip such that exactly m points
of P are not in S . The vertical lines passing through the
m points of P \ S split S into m + 1 boxes denoted S1,
S2, . . . ,Sm+1 from left to right. Let B be a box of maxi-
mum weight that has its top side above S and its bottom
side below S , and let i, j ∈ [1..n + 1] be the indices such
that the left and right sides of B intersect Si and S j , re-
spectively. If i < j, then W (B ∩ Si) and W (B ∩ S j) are
precisely W (BR(P ∩ Si)) and W (BL(P ∩ S j)), respectively
(see Fig. 3). Therefore we have W (B) = W (BR(P ∩ Si)) +∑ j−1

t=i+1 W (St) + W (BL(P ∩ S j)) + W (B \ S). On the other
hand, if i = j, then W (B) equals W (B0(P ∩ Si)).

Consider the following Strip-Constrained Maximum-

Weight Box problem: Let P be a weighted point set and S
be a horizontal strip so that: P \ S consists of n points already
sorted from left to right; S splits P \S into two halves; the ver-
tical lines through the points of P \ S split S into the boxes
S1 , S2, . . . ,Sn+1 from left to right; and the points of P ∩S are
Fig. 3. The strip S is partitioned into m + 1 boxes S1, S2, . . . ,Sm+1 by
the vertical lines passing through the m points in P \ S . If the left and
right sides of an optimal box B cross Si and S j , respectively, then they
are determined by BR (P ∩Si) and BL(P ∩S j).

summarized by the scored box sets P ∩S1, . . . ,P ∩Sn+1 . Find
a maximum-weight box of P , with the top side above S and the
bottom side below S .

The key to our new solution is an O (n2)-time algorithm
for this constrained problem, using an approach which
may be nick-named “divide–summarize-and-conquer”.

Lemma 2.1. The Strip-Constrained Maximum-Weight Box

problem admits a solution in O (n2) time and O (n) space.

Proof. Let F (n) denote the time required to solve a given
instance of the Strip-Constrained Maximum-Weight Box

problem over n points. We apply divide-and-conquer: Split
the points of P above (resp. below) S into two halves with
a horizontal line �1 (resp. �2). Let P1 denote the points
above �1, P2 denote the points in between �1 and S , P3
denote the points in between S and �2, and P4 denote the
points below �2. Then the problem can be reduced to the
next four subproblems:

(1) the points of P1 ∪ P4 outside a strip S ′ covering P2 ∪
P3 ∪ S;

(2) the points of P1 ∪ P3 outside a strip S ′ covering
P2 ∪ S;

(3) the points of P2 ∪ P3 outside the strip S ′ = S; and
(4) the points of P2 ∪ P4 outside a strip S ′ covering

P3 ∪ S .

The reduction to subproblem (1) can be done in time
within O (n) as follows: Take each point p of P2 ∪ P3
and compute the score S({p}). Simulate the merging
of the left-to-right orders of P1 ∪ P4, P2 ∪ P3, and
S1,S2, . . . ,Sn+1 (each of which can be obtained in O (n)

time) to compute the corresponding scored box sets in the
new strip S ′ . This computation can be done by applying
the operator ⊕ to successive scored box sets in between
consecutive points of P1 ∪ P4 in the left-to-right order.
The reductions to subproblems (2)–(4) are similar.

The base case occurs when n ∈ {1,2}. In the most gen-
eral setting (n = 2) we have one point p1 above S and one
point p2 below S , defining boxes S1, S2, and S3 on S .
Assume w.l.o.g. that p1 is to the left of p2 and w(p1),
w(p2) > 0 (for example, if w(p1) < 0, we can eliminate
p1). Then the solution is B0((P ∩ S1) ∪ {p1} ∪ (P ∩ S2) ∪
{p2} ∪ (P ∩ S3)), which can be computed in constant time
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Fig. 4. The base case of the algorithm of Lemma 2.1.

by applying the operator ⊕ to the scored box sets P ∩ S1,
{p1}, P ∩ S2, {p2}, and P ∩ S3 (see Fig. 4).

This yields the recurrence F (n) ∈ 4F (n/2)+ O (n), where
F (1) ∈ O (1). Then F (n) ∈ O (n2). The space G(n) is within
O (n): the four subproblems are solved independently one
after the other, and the recurrence is G(n) ∈ G(n/2)+ O (n),
whose solution is within O (n). �

The reduction from the original Maximum-Weight Box

problem to the constrained problem follows from a more
straightforward divide-and-conquer:

Theorem 2.2. The Maximum-Weight Box problem admits a
solution in O (n2) time and O (n) space on instances of n points.

Proof. We first sort the points of P by their x-coordinates
in SORT(n) time and then apply a recursive procedure,
whose time over n weighted points will be T (n). The
recursion applies divide-and-conquer as follows: Draw a
horizontal strip S (a line) splitting P into two halves
P1 and P2, where P1 is above S and P2 is below S .
Then we can find a maximum-weight box B1 for P1,
a maximum-weight box B2 for P2, and a maximum-weight
box B1,2 for P1 ∪ P2 restricted to intersect S . Then the
box among B1, B2, and B1,2 maximizing W () is the so-
lution. To compute B1,2 we will use the solution for the
Strip-Constrained Maximum-Weight Box problem over P
and S , for which we split S into n + 1 empty scored
boxes S1, . . . ,Sn according to all the x-coordinates of P .
This requires O (n) time and then Lemma 2.1 allows us
to compute B1,2 in O (n2) time and O (n) space. Since
B1 and B2 are computed recursively, the time complex-
ity is T (n) ∈ 2T (n/2) + O (n2), where T (1) ∈ O (1). Hence
T (n) ∈ O (n2). As for the space S(n), the three subproblems
are solved independently one after the other, and thus it
holds that S(n) ∈ max{S(n/2), S(n/2), O (n)} ⊆ O (n). �
3. δ-Sensitive analysis

Assume that P is composed of δ ∈ [1..n] strips, and sup-
pose w.l.o.g. that these strips are horizontal. These strips
can be identified in time within O (n) from the sorting of
the points in P by their y-coordinates. One does not need
to consider boxes whose horizontal sides are in the mid-
dle of some of these strips: there always exists an optimal
box such that each horizontal side is aligned with an edge
of some strip; specifically, the top (resp. bottom) of an op-
timal box will align with a positive point at the top (resp.
bottom) of a positive strip. Using this observation we re-
fine the results of Section 2.

Lemma 3.1. The Strip-Constrained Maximum-Weight Box

problem admits a solution in O (δn) time and O (n) space if the
points of P above (resp. below) S are composed of δ/2 strips.

Proof. Let F (n, δ) denote the time required to solve the
problem. We modify the divide-and-conquer algorithm
from the proof of Lemma 2.1 as follows: We split the
points above S with a horizontal line �1 and the points
below S with a horizontal line �2, and define P1, . . . , P4
as before. However, we choose �1 and �2 differently, not to
ensure that each Pi has n/4 points as in Lemma 2.1, but
to ensure that each Pi is composed of δ/4 strips. Let ni

denote the size of Pi (so that n1 + n2 + n3 + n4 = n).
The base case arises when there is at most one strip

above (resp. below) S , and can be solved as follows: As-
sume w.l.o.g. that the weights of these at most two strips
are positive (if one of the strips has all negative weights,
we can eliminate all of its points). Then the solution is
B0(P ), which can be computed by applying the operator
⊕ to the sequence, arranged in left-to-right order, consist-
ing of P ∩ S1, . . . ,P ∩ Sn+1 together with singletons {pi}
over all pi in P \S . The base case then requires O (n) time.

The recurrence from Lemma 2.1 is now modified to the
following:

F (n, δ) ∈ F (n1 + n3, δ/2) + F (n1 + n4, δ/2)

+ F (n2 + n3, δ/2) + F (n2 + n4, δ/2) + O (n)

where F (n,1) ∈ O (n). Observe that the recursion tree for
F (n, δ) has at most lg δ levels (because n � δ), and that in
the i-th level the computation time besides recursive calls
is O (2in). Then F (n, δ) ∈ O (δn). The space is within O (n)

as in Theorem 2.2. �
Theorem 3.2. The Maximum-Weight Box problem admits a
solution in SORT(n) + O (δn) time and O (n) space on instances
of n points composed of δ strips.

Proof. Let T (n, δ) denote the time required to solve the
Maximum-Weight Box problem over n points composed of
δ strips. We apply divide-and-conquer as in Theorem 2.2,
but selecting strip S such that both resulting sets P1 and
P2 are composed of δ/2 strips, and n1 points and n2 points
respectively. If there is only δ = 1 strip then the solution is
either empty (if the strip is negative) or all the points (if
it is positive), so in the base case T (n,1) ∈ O (n). In the
recursive case we have:

T (n, δ) = T (n1, δ/2) + T (n2, δ/2) + F (n, δ)

∈ T (n1, δ/2) + T (n2, δ/2) + O (δn).

The recursion tree of T (n, δ) has at most lg δ levels and in
the i-th level the computation time besides recursive calls
is O (δn/2i), and thus T (n, δ) ∈ O (δn). Again, the space is
O (n) as before. �
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Fig. 5. The boxes B1(X), B2(X), B3(X), B4(X), B1,2(X), B2,3(X), B3,4(X), and B4,1(X) of a box set X ⊆ P .
Some naturally occurring instances will have a low
number of strips. For example, instances with an unbal-
anced number of positive and negative points are due to
contain few strips. The following corollary captures this
observation.

Corollary 3.3. Let n+ and n− be the number of points with pos-
itive and negative weight of an instance of n = n+ + n− points,
respectively. Then the Maximum-Weight Box problem admits
a solution in SORT(n) + O (n min{n+,n−}) time.

Proof. Observe that δ � 2 min{n+,n−} + 1 and apply The-
orem 3.2. �
4. Cluster partition analysis

Let (C1, C2, . . . , Ck) be a cluster partition of P , where
cluster Ci contains ni points for every i ∈ [1..k] and is com-
posed of δi strips.

For any non-empty subset X ⊆ P we define a set of ten
boxes of X , denoted by Ten(X), as the set with the follow-
ing maximum-weight boxes of X , all contained in Box(X):
(1) Box(X); (2) a box of maximum weight Bopt(X) of X ;
(3)–(6) a box of maximum weight B1(X) (resp. B2(X),
B3(X), B4(X)) of X that contains the bottom-left (resp.
bottom-right, top-right, top-left) vertex of Box(X); and
(7)–(10) a box of maximum weight B1,2(X) (resp. B2,3(X),
B3,4(X), B4,1(X)) of X that contains the bottom (resp.
right, top, left) vertices of Box(X) (see Fig. 5).

Lemma 4.1. For any non-empty subset X ⊆ P and any clus-
ter partition (X1, X2) of X, Ten(X) can be computed in O (1)

composition operations from Ten(X1) and Ten(X2).

Proof. Suppose that cluster X1 is below cluster X2 (re-
member that X1 is also to the left of X2 by definition).
The case in which X1 is above X2 is similar. The lemma
follows from the next observations:

W (X) = W (X1) + W (X2)

W
(
Bopt(X)

) = max
{

W
(
Bopt(X1)

)
, W

(
Bopt(X2)

)
,

W
(
B3(X1)

) + W
(
B1(X2)

)}
W

(
B1(X)

) = max
{

W
(
B1(X1)

)
, W (X1) + W

(
B1(X2)

)}
W
(
B2(X)

) = max
{

W
(
B2(X1)

)
, W

(
B2(X2)

)
,

W
(
B2,3(X1)

) + W
(
B1,2(X2)

)}
W

(
B1,2(X)

) = max
{

W
(
B1,2(X1)

)
,

W (X1) + W
(
B1,2(X2)

)}
Symmetric arguments can be given for computing the
weights of the other boxes. �
Lemma 4.2. Given a cluster partition (C1, C2, . . . , Ck) of P so
that Ten(C1),Ten(C2), . . . ,Ten(Ck) are computed, a maxi-
mum-weight box of P can be found in O (k2) time.

Proof. An optimal box of P which is not among Bopt(C1),

. . . ,Bopt(Ck) can be computed as follows. Since the or-
thogonal projections of Box(C1), . . . ,Box(Ck) are pairwise
disjoint in both axes, we can consider each cluster Ci as
a single point. Then we can run the algorithm correspond-
ing to Theorem 2.2 making the following consideration. For
any box set X of m clusters denoted from left to right C ′

1,
C ′

2, . . . , C ′
m the score S(X) must satisfy the following equa-

tions:

W (X) =
m∑

j=1

W
(
C ′

j

)

W
(
BL(X)

) = max
j∈[1..m]

j−1∑
i=1

W
(
C ′

i

) + W
(
BL

(
C ′

j

))

W
(
BR(X)

) = W
(
BR

(
C ′

j

)) + max
j∈[1..m]

m∑
i= j+1

W
(
C ′

i

)

By using the operator ⊕, this can be guaranteed by con-
sidering for each cluster Ci that BL(Ci) = B4,1(Ci), and
BR(Ci) = B2,3(Ci). In the base case of the recursion there is
at most one cluster above (resp. below) the strip S of the
simplified Strip-Constrained Maximum-Weight Box prob-
lem for P . Consider the general setting in which there is
a cluster C ′

1 above S and a cluster C ′
2 below S , partition-

ing S into three boxes S1, S2, and S3. The other cases are
similar and simpler to solve. Assume w.l.o.g. that C ′

1 is lo-
cated to the left of C ′

2. Then the solution is the Box(·) of
one of the following ten sets, which represent all the forms
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Fig. 6. The base case of the algorithm of Lemma 4.2.

of combining boxes of Ten(C ′
1) ∪ Ten(C ′

2) with boxes of
S(P ∩ S1), S(P ∩ S2), and S(P ∩ S3) (see Fig. 6):

Q (1)
1 = BR(P ∩ S1) ∪ B1

(
C ′

1

)
Q (2)

1 = BR(P ∩ S1) ∪ B1,2
(
C ′

1

) ∪ BL
(

P ∩ (S2 ∪ S3)
)

Q (3)
1 = B2

(
C ′

1

) ∪ BL
(

P ∩ (S2 ∪ S3)
)

Q (1)
2 = BR

(
P ∩ (S1 ∪ S2)

) ∪ B4
(
C ′

2

)
Q (2)

2 = BR
(

P ∩ (S1 ∪ S2)
) ∪ B3,4

(
C ′

2

) ∪ BL(P ∩ S3)

Q (3)
2 = B3

(
C ′

2

) ∪ BL(P ∩ S3)

Q (1)
1,2 = B2

(
C ′

1

) ∪ S2 ∪ B4
(
C ′

2

)
Q (2)

1,2 = B2
(
C ′

1

) ∪ S2 ∪ B3,4
(
C ′

2

) ∪ BL(P ∩ S3)

Q (3)
1,2 = BR(P ∩ S1) ∪ B1,2

(
C ′

1

) ∪ S2 ∪ B4
(
C ′

2

)
Q (4)

1,2 = BR(P ∩ S1) ∪ B1,2
(
C ′

1

) ∪ S2

∪ B3,4
(
C ′

2

) ∪ BL(P ∩ S3)

Since the algorithm runs over k points the result holds
from Theorem 2.2. �

Combining Theorem 3.2 with Lemma 4.2, joint with the
fact that the algorithm of Theorem 3.2 can be generalized
to compute Ten(P ) in SORT(n)+ O (δn) time, and also that

k∑
i=1

n2
i + k2 <

(
k∑

i=1

ni

)2

+ n2 = 2n2,

we obtain the next result:

Theorem 4.3. Given a cluster partition (C1, C2, . . . , Ck) of P ,
the Maximum-Weight Box problem admits a solution run-
ning in time within O (

∑k
i=1 niδi + k2) ⊂ O (

∑k
i=1 n2

i + k2) ⊂
O (n2).

Among all cluster partitions of P , only one is a diag-
onalization. Let (C1, C2, . . . , Ck) be a diagonalization of P .
A diagonalization tree of P , denoted by D-tree, is a binary
tree whose leaves are C1, C2, . . . , Ck from left to right and
each internal node u has two children u1 and u2 so that
(P (u1), P (u2)) is a cluster partition of P (u), where for
each node u set P (u) denotes the union of the clusters
in the leaves of the subtree rooted at u (see Fig. 7).

Lemma 4.4. A D-tree of P requires Θ(n) space and can be built
in O (n lg n) time.

Proof. Let p1, p2, . . . , pn denote the elements of P sorted
by x-coordinates, and let pπ1 , pπ2 , . . . , pπn denote the ele-
ments of P sorted by y-coordinate. Considering the com-
putation of permutation π as a preprocessing, we now
show that: If P admits a cluster partition ({p1, . . . , ps},
{ps+1, . . . , pn}) then it can be determined in O (min{s,
n − s}) comparisons. Otherwise, if such a partition does
not exist, then this can be decided in O (n) time. For
each index i ∈ [1..n], let ML(i) = max j∈[1..i] π j , mL(i) =
min j∈[1..i] π j , MR(i) = max j∈[i..n] π j , and mR(i) =
min j∈[i..n] π j .

Observe that if ({p1, . . . , ps}, {ps+1, . . . , pn}) is a cluster
partition of P , then index s ∈ [1..n − 1] satisfies ML(s) = s
or mL(s) = n − s + 1. Furthermore, ML(s) = s and mL(s) =
n − s + 1 are equivalent to mR(s + 1) = s + 1 and MR(s + 1)

= n − s, respectively.
Then we can determine such a partition of P , if it ex-

ists, as follows: For j = 1..�n/2 decide if ({p1, . . . , p j},
{p j+1, . . . , pn}) is a cluster partition (i.e., ML( j) = j or
mL( j) = n − j + 1) or ({p1, . . . , pn− j}, {pn− j+1, . . . , pn}) is
a cluster partition (i.e., MR(n − j + 1) = j or mR(n −
j + 1) = n − j + 1). Note that if j > 1 then ML( j), mL( j),
MR(n − j + 1), and mR(n − j + 1) can all be computed in
O (1) time from ML( j − 1), mL( j − 1), π j , MR(n − j + 2),
mR(n − j + 2), and πn− j+1. Therefore, if there is a clus-
ter partition ({p1, . . . , ps}, {ps+1, . . . , pn}) of P it is de-
cided for j = min{s,n − s} � �n/2, and thus determined
in O ( j) time. If no such partition is found for any value
of j ∈ [1..�n/2], then the algorithm spends O (n) time in
total.

We can then build a D-tree of P recursively as fol-
lows. Run the above algorithm for P . If a cluster parti-
tion ({p1, . . . , ps}, {ps+1, . . . , pn}) of P exists, which was
determined in O (t) comparisons, where t = min{s,n − s},
then create a root node and set as left child a D-tree of
{p1, . . . , ps} and as right child a D-tree of {ps+1, . . . , pn}.
Otherwise, if P does not admit such a partition, which was
decided in O (n) time, then create a leaf node with clus-
ter P . This results in the next recurrence equation for the
total number T (n) of comparisons, where 1 � t � �n/2:

T (n) =
⎧⎨
⎩

O (t) + T (t) + T (n − t)
n > 1, a cluster partition exists

O (n) otherwise.

W.l.o.g. assume that the constants in O (t) and O (n) in the
recurrence are equal to one. Then we prove by induction
that T (n) � n + n lg n. The base case of the induction is the
second line of the recurrence equation, where n � n+n lg n
always holds. In the inductive case, we have T (n) = t +
T (t)+ T (n − t) � n + t + t lg t + (n − t) lg(n − t) = n +n lgn +
n(t/n + H(t/n)) � n + n lg n, where H(x) = x lg(1/x) + (1 −
x) lg(1/(1−x)) is the binary entropy function, with x = t/n,
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Fig. 7. A D-tree of the point set P over the diagonalization (C1, . . . , C6).
and we use the analytic inequality x � H(x), which holds
at least for x � 1/2. Thus T (n) � n +n lg n and then T (n) is
within O (n lg n). One can see that this solution is tight by
considering the case t = n/2. �
Theorem 4.5. The Maximum-Weight Box problem admits a
solution running in time within O (n lg n + ∑k

i=1 niδi + k) ⊂
O (n lg n + ∑k

i=1 n2
i ) ⊂ O (n2), where k is the size of the diago-

nalization (C1, . . . , Ck) of P , and ni is the number of points of
cluster Ci , which is composed of δi strips.

Proof. Run the algorithm of Lemma 4.4 to build a D-
tree of P in O (n lg n) time. The i-th leaf of the D-tree
from left to right contains cluster Ci . Compute Ten(Ci)

in time within O (niδi) using the algorithm from Theo-
rem 3.2, assuming that P is already sorted in SORT(n) ⊂
O (n lg n) time. Using a post-order traversal of the D-tree,
for each internal node u with child nodes u1 and u2, com-
pute Ten(P (u)) in constant time from Ten(P (u1)) from
Ten(P (u2)) by using Lemma 4.1. The result clearly follows
from Ten(u), where u is the root of the D-tree. �
5. Upper and lower bounds in d dimensions

In this section we study connections between the
Maximum-Weight Box problem and others, deriving new
upper and lower bounds for various related problems, in
two and more dimensions.

Connection to Klee’s Measure problem and higher dimensions
Our O (n2) time algorithm for the Maximum-Weight prob-
lem is actually a special case of a more general result for a
problem related to the well known Klee’s Measure prob-
lem (computing the volume of a union of n boxes).

In the d-dimensional Weighted Depth problem, we are
given a set of n weighted boxes in R

d and we want a point
p ∈ R

d that maximizes the depth, defined as the sum of
the weights of the boxes that contain p. All known al-
gorithms for Klee’s Measure problem can be modified to
solve the Weighted Depth problem. In particular, Over-
mars and Yap’s algorithm [15] runs in O (nd/2 lg n) time,
Chan’s algorithm [6] runs in O (nd/22O (lg∗ n)) time, and a
new simple algorithm by Chan [7] runs in O (nd/2) time.

The following result has not been noted before:
Theorem 5.1. The Maximum-Weight Box problem in any con-
stant dimension d can be reduced to the Weighted Depth prob-
lem in dimension 2d.

Proof. Given a point set P in R
d , we map each point

p = (a1, . . . ,ad) ∈ P to a region R p in R
2d , consisting of

all 2d-tuples (x1, . . . , xd, x′
1, . . . , x′

d) such that p lies inside
the box with opposite corners (x1, . . . , xd) and (x′

1, . . . , x′
d);

in other words, R p = {(x1, . . . , xd, x′
1, . . . , x′

d) | [(x1 � a1 �
x′

1)∨(x′
1 � a1 � x1)]∧· · ·∧[(xd � ad � x′

d)∨(x′
d � ad � xd)]}.

We can decompose R p into a constant number of boxes in
R

2d , which will have weight w(p). The maximum-weight
box for P corresponds to a point (x1, . . . , xd, x′

1, . . . , x′
d)

that has the maximum depth among these regions. �
According to the above theorem, our O (n2) result for

the Maximum-Weight Box problem in two dimensions
can also be deduced from Chan’s latest result for the
Weighted Depth problem in d = 4 dimensions [7]. In fact,
the O (n2)-time algorithm presented in this paper is in-
spired by Chan’s algorithm [7], which is also based on a
“divide–summarize-and-conquer” approach. The algorithm
here is a more direct solution, avoiding the need to work
explicitly in the 4-dimensional space, and also a ped-
agogical introduction to the algorithm running in time
SORT(n) + O (δn).

The above theorem also implies that the Maximum-

Weight Box problem in d dimensions can be solved in
O (nd) time by Chan’s new algorithm. Previously, only an
O (n2d−2 lg n) time bound was reported [9].

Polylogarithmic-factor speedups Chan [7] also showed how
to further speed up his algorithm by a polylogarithmic fac-
tor for the Weighted Depth problem, but only when the
dimension is sufficiently large (in particular, not for d = 4).

However, in the unweighted case of the Depth problem,
polylogarithmic speedup is possible [6,7] for any d � 3: the
time can be reduced to O ((nd/2/ lgd/2 n)(lg lg n)O (1)). This
extends to the case where the weights are integers with
absolute value bounded by O (1), since we can replace a
box with positive weight c by c copies of the box, and we
can replace a box with negative weight −c by c copies of
its complement (which can be decomposed into a constant
number of boxes).

Therefore, we can solve the Maximum-Weight Box

problem for the case of +1 and −1 weights in
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O ((nd/ lgd n)(lg lg n)O (1)) time. The same bound thus fol-
lows for the Maximum Bichromatic Discrepancy problem.
Previously, only an O (n2 lg n) bound was known for d = 2
[9,10]. Similarly, by straightforward changes to incorporate
−∞ weights, the Maximum Box problem can be solved
in O ((nd/ lgd n)(lg lg n)O (1)) time, improving the previous
O (nd lgd−2 n) time bound for d � 3 [1].

Problem complexity It is unknown whether O (nd) is the
best possible time complexity for the Maximum-Weight

Box problem, even in two dimensions: reducing the 3SUM
problem to it, or proving an Ω(n2) lower bound in some
restricted model, would improve our understanding of a
large family of problems in computational geometry. Note
that if d is part of the input then the Maximum-Weight

Box problem is NP-hard, since it generalizes the Maximum

Box problem [11]. In this regard, we can show the follow-
ing:

Theorem 5.2. The Weighted Depth problem in any constant
dimension d can be reduced to the Maximum-Weight Box

problem in dimension d.

Proof. We first reduce the Weighted Depth problem to
a special case of the Weighted Depth problem where
all the input boxes are “dominance” ranges of the form
(−∞,b1]×· · ·×(−∞,bd]. To see this, for a given i ∈ [1..d],
we replace any input box [a1,b1] × · · · × [ad,bd] of weight
w with two boxes: [a1,b1]× · · ·× [ai−1,bi−1]× (−∞,bi]×
[ai+1,bi+1] × · · · × [ad,bd] of weight w , and [a1,b1] ×
· · · × [ai−1,bi−1] × (−∞,ai] × [ai+1,bi+1]× · · · × [ad,bd] of
weight −w . By repeating this for each i ∈ [1..d], each orig-
inal box is replaced with 2d boxes of the desired special
form.

Now, given an instance of this special case of the
Weighted Depth problem, we map each input box b =
(−∞,b1] × · · · × (−∞,bd] to the point pb = (b1, . . . ,bd),
of the same weight. We have the obvious property that pb
lies inside the box [x1,∞) × · · · × [xd,∞) iff (x1, . . . , xd)

lies inside b. We add an extra point at (∞, . . . ,∞)

with weight M for a sufficiently large number M . The
maximum-weight box containing the resulting point set
must be of the form [x1,∞)×· · ·× [xd,∞) because of this
extra point, and so corresponds to a point of maximum
depth of the given boxes. �
The above theorem implies the W [1]-hardness of the
Maximum-Weight Box problem with respect to d, since
Klee’s Measure problem and the Weighted Depth prob-
lem are W [1]-hard [6]. It also implies the unlikeness of
an algorithm that runs in time within o(nd/2) (ignoring
logarithmic factors) with current knowledge about Klee’s

Measure problem.
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