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a b s t r a c t

In this work we propose a new model to simulate biofilm structures (‘‘finger-like’’, as
well as, compact structures) as a result of microbial growth in different environmental
conditions. At the same time, the numerical method that we use in order to carry out the
computational simulations is new to the biological community, as far as we know. The use
of our model sheds light on the biological process of biofilm formation since it simulates
some central issues of biofilm growth: the pattern formation of heterogeneous structures,
such as finger-like structures, in a substrate-transport-limited regime, and the formation of
more compact structures, in a growth-limited-regime. Themain advantage of our approach
is that we consider several of the most relevant aspects of biofilm modeling, particularly,
the existence and evolution of a biofilm–liquid interface. At the same time, in order to
performnumerical simulations,wehave used sophisticated numerical techniques based on
mixing the immersed interfacemethod and the level-setmethod, which arewell described
in the present work.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Biofilm processes are of interest to researchers in a wide variety of fields including purposes of filtration, bioremediation,
or barrier formation. A biofilm is a complex and heterogeneous matrix of microorganisms attached to and growing on a
surface. Biofilms are most often found on solid substrates that are exposed to an aqueous solution [1]. The liquid usually
supplies nutrients (substrates) utilized by the microorganisms in the biofilm, while pieces of biofilm solids detach from
the biofilm compartment and move to the bulk-liquid compartment. The exchange between the biofilm and the liquid
may lead to spatially heterogeneous architectures that can induce complex flow patterns and affect mass transport. Thus,
mass transport due to diffusion and advection in the fluid compartment should be explicitly considered. The latter implies
that the hydrodynamic flow field should be taken into account as well [2–6]. The accumulation of biofilm depends on
hydrodynamic processes that bring cells to the biofilm surface, physical–chemical properties that determine the propensity
of microbes to attach to the biofilm, and environmental characteristics such as substrate concentrations that determine
biofilm growth. Cellsmay also be removed from the biofilm by biological processes or flowproperties that lead to desorption
and detachment [1].
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In this paper, we study a model that considers most of the key aspects mentioned in the previous paragraph. The only
feature that we do not consider is the attachment/detachment of cells to the biofilm. Instead, we consider a biofilm already
attached to a surface and study the effects of the substrate, the pressure inside of the biofilm, as well as the hydrodynamic
flow field in its growth. A model, which considers attachment/detachment, would require discrete representations of
microorganisms that may hold them together or, if fluid stress is large, the fluid may yield and release microbes [1]. There is
consensus that the most relevant aspects in a biofilm model are, on the one hand, the existence of an interface between the
biofilm and the liquid and, on the other hand, the biofilm structure, which is affected by the influence of biomass growth
in relation to substrate transport. Porous biofilms, with many channels and voids between the ‘‘finger-like’’ or ‘‘mushroom’’
outgrowth, were obtained in a substrate-transport-limited regime. Conversely, compact and smooth biofilms occurred in
systems limited by the biomass growth rate and not by the substrate transfer rate [3].

In this paper we propose a newmodel for biofilm formation and use the immersed interface method (IIM), coupled to the
level set method for its numerical implementation. The IIM, first introduced by LeVeque and Li [7] to model elliptic problems
with discontinuous coefficients and singular source terms, has evolved (coupledwith othersmethods) into a general blended
method that can be used to study two-phase flows, among others applications. The name of the method derives from the
fact that the interface between both fluids is modeled as a free boundary, which may have a complex structure, immersed
in a unique fluid. Thus, this interface defines and separates different regions inside the fluid.

Biofilm research is an active area within the microbiology community, as researchers recognize that attached organisms
often predominate in a wide range of medical, natural, and industrial environments. Consequently, effective biofilmmodels
could be a fast and cost-effective aid for biologists. The problem of biofilm growth has been studied intensively in the recent
years. Here we mention the following papers, which are closely related with the use of partial differential equations based
models:

• The paper byDockery andKlapper [8], inwhich a biofilmmodel is considered to be analogous to a fluid flowing in a porous
medium. These authors compute the velocity and pressure of the biofilm, modeling it as an incompressible viscous fluid.
• The paper by Eberl andDemaret [9] studies a biofilmmodel based on a degenerated diffusion–reaction equation, inwhich

the biomass density of the biofilm is the unknown, and assuming a non-linear dependence of the diffusion coefficient on
this biomass density.
• The paper by Dillon et al. [1], in which a biofilm model is studied using a variant of the immersed boundary method,

introduced by Peskin [10] in the modeling of blood flow in the heart. This model incorporates various hydrodynamic
coupled effects like reaction, diffusion and convection of a substrate, as well as the chemotactic response of microbes to
attachment/detachment (both cell–cell aggregation and cell-wall adhesion). The problemof thismodel is the fact that it is
too difficult to be implemented and requires numerical resolution of Navier–Stokes equations with a singular force term.
• Studies by others authors [3–6] analyze a biofilm model based on a hybrid differential-discrete cellular automaton ap-

proach. Picioreanu et al. [3] characterized the complete biofilm structure (surface and volume structure) and found that
a key factor affecting biofilm structure is the influence of biomass growth in relation to the substrate transfer. These
authors represent soluble components (e.g., substrates) in a continuous field, whereas a discrete mapping is used for the
solid components (e.g., biomass). They validate their results with measured data from a well-characterized system: the
growth of immobilized cells in a gel matrix. Finally, Picioreanu et al. [6] investigated the effect of convective and diffusive
substrate transport on biofilm heterogeneity. They obtained similar results as in their previous work, namely that varia-
tions in external mass transfer resistance (due to convection and flow-driving mechanisms) have less effects on biofilm
development. Thus, they concluded that the determining factor is still the internal resistance to substrate transport.
• The paper by Alpkvist and Klapper [11] proposes a model for the heterogeneous growth of biofilm systems with multi-

ple species and multiple substrates. This paper is a generalization of the previous 2-D model [8] and of the earlier 1-D
model [12], and enabled the authors to perform simulations that may represent biofilm systems for which a one-
dimensional model is an inadequate description or, conversely, may under some circumstances, verify adequacy of one
dimensional representation.
• The paper by Duddu et al. [13] proposes a hybrid extended Finite Element Method (XFEM)—level set method for the

growth of biofilms. This method does not require an explicit representation of the biofilm–fluid interface (as in our
method). These authors obtained finger formation and incipient tip splitting, behaviors observed in real biofilms.
• The paper by Cogan [14] proposes a model of biofilm disinfection in two dimensions, where the biofilm is treated as a

viscous fluid immersed in a fluid of less viscosity. The motion of the fluid is coupled to the biofilm inducing motion in
it. Both the biofilm and the bulk fluid are dominated by viscous forces; hence the Reynolds number is negligible and
the appropriate equations are Stokes equations. In our paper, we also model the biofilm as a slow viscous fluid, but we
assume that the biofilm as well as the liquid satisfies the Hele-Shaw equations instead of the Stokes equations.
• The paper by Ward et al. [15] proposes mathematical models for the formation, growth and quorum sensing activity of

bacterial biofilms in its early development.
• Similarly in others papers [16–18] a hierarchy ofmathematical models for antibacterial therapies targeted at the primary

quorum-sensing system of a well-mixed, planktonic population and an early-stage (closely packed) biofilm is developed.
• The papers by Zhang et al. [19,20] develop a hierarchy of phase field-based models for biofilms in 1-D and 2-D respec-

tively. In [19] a set of phase fieldmodels for biofilms using the one-fluid two-component formulation is derived, in which
the combination of extracellular polymeric substances (EPS, or polymer networks) and the bacteria is effectively mod-
eled as one fluid component, while the collective ensemble of nutrient substrates and the solvent are modeled as the
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other. Then, in [20] the biofilm–flow interaction is studied resulting in biofilm growth, deformation and detachment
phenomena in a cavity and shear flow using the phase field model developed before.

Despite several studies about of biofilm growth, we have developed a totally novel model that could contribute to the
understanding of this very interesting problem. Our model has been specially designed to capture real characteristics of
a biofilm, namely, as it has been empirically observed, that many biofilms grow to form finger-like structures. In order to
capture this phenomenon in a suitable way, we have developed a totally novel model that mirrors the growth of a biofilm to
a Hele-Shaw flow.We do this since the Hele-Shaw flow can reproduce this type of growth quite accurately in the case of two
fluids with different viscosities separated by an interface. On the other hand, the IIM has been coupled with the level-set
method in several papers including the Hele-Shaw flow to compute unstable fronts in different contexts [21–24] but it has
never been used in the past to solve biofilm models. In the present work, we have applied this approach for simulating the
evolution of a biofilm, and as far as we know it is the first time this is applied to the field of biology. This is a central point of
this paper. The IIM has been implemented since it offers an efficient approach to model interface problems [7,21,25], and in
coupling this with the Level-Set method as it was originally designed to deal with moving free-boundary problems [26,27].

2. The mathematical model

Since a biofilm behaves as a very viscous fluid with large viscosity relative to water [11], it is valid to think that biofilm
dynamics would behave as a slow viscous fluid. Thus, we assume that the system composed of a biofilm and a liquid that
supplies it nutrients (substrates), behaves as a Hele-Shaw flow, that is, two fluids with different viscosities, separated by an
interface, that flow with relatively low velocity, from the regions with high pressure towards those with low pressure (op-
posite the direction of increasing gradient). A Hele-Shaw type-like modeling was chosen primarily because it is well known
among physicists that is able to reproduce finger-shaped structures, which is a prominent feature in biofilm formation.

Let Ω := (0, LX ) × (0, LZ ) ⊂ R2 be a region of the plane, in which we distinguish two subregions: the region Ω1(t)
which represents the liquid, and the regionΩ2(t)which represents the biofilm, separated by an interface Γ (t). We remark
that such an interface is an element of the mathematical modeling and does not correspond to an observed feature in
real biofilms. However, most of biofilm models (in particular all biofilm models discussed in this paper) include such a
hypothetical interface as well, either explicitly by construction or implicitly as a consequence of the model equations.

As said before, the whole medium (biofilm plus liquid) is modeled as a slow two-phase flow, whose phases are fluids
with different viscosities. In accordance with the Hele-Shaw flow, we have

u = −λ∇p inΩ,

where u is the velocity vector field (m s−1), p is the pressure field (kgm−1 s−2) and λ (kgm3 s) is a parameter which varies in
form inversely proportional to the viscosities (see p. 271 in [25]). Although, by simplicitywehave assumed in our simulations
that λ is a small constant, in order to take into account the fact that the biofilm behaves as a fluid with large viscosity.

For modeling the fact that the biofilm may be growing (or decaying) at any given location, we impose that the biofilm
contains sources and/or sinks [8]. This is, the velocity field in the biofilm compartment is not divergence-free, i.e.,

∇ · u = g,

where g is a prescribed source (or sink) term (s−1). This yields the following relation:

− λ∇2p = g, (1)

which holds in the biofilm compartment. The normal velocity of the biofilm interface Γ is λ∇p ·n|Γ− , where n is the unitary
upward normal and Γ − indicates the evaluation of∇p · n from the side of the biofilm region. Due to the fact that the liquid
does not grow or decay (indeed water is an incompressible fluid), it is quite natural to impose that the velocity field in the
liquid compartment is divergence-free, i.e.,

∇ · u = 0,

and therefore

− λ∇2p = 0, (2)

in the liquid compartment.
In order to uniquely determine the pressure from Eqs. (1) and (2), we have to add external boundary conditions. For

instance, we assume that no biofilm goes in or out by the bottom ofΩ:

λ
∂p
∂z


z=0
= 0.

Moreover, for numerical convenience, we assume that p is periodic in the x-direction. On the other hand, assuming that on
the top of the domain there is a constant pressure (atmospheric pressure), and since this is always defined up to an additive
constant, without loss of generality, we will impose the following boundary condition:

p = 0 on z = LZ .
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In the Hele-Shaw flow, g represents the injection of a low-viscosity fluid into a high-viscosity one. The evolution of such
a system exhibits the development of finger-like structures, which is precisely a feature observed in real behavior of biofilm
formation. In our biofilm model g represents the local biomass volumetric flow rate (s−1), i.e., the biomass volumetric flow
rate through a closed surface Σ can be calculated as the integral of g over the volume enclosed by Σ . The function g is
determined by local conditions in the biofilm and also, in principle, by the biofilm history. For simplicity purposes, however,
we assume that g depends only on the concentration S(x, z, t) of a single limiting substrate, e.g., oxygen or glucose (kgm−3).
In particular,we assume that g = g(U(S)), whereU(S) is the so-calledusage function or substrate uptake rate, which indicates
the reaction rate of substrate usage (kg m−3 s−1). Note that U and g do not explicitly depend on time or space in the model
presented here. Our choice consists of the following Monod-type reaction kinetics [6]:

U(S) = δUUSm(1+ µ)
S

KS + S
. (3)

The parameters USm and KS represent the maximum substrate consumption rate (kg m−3 s−1) and the saturation constant
for substrate (kg m−3), respectively. Moreover δU and µ are dimensionless quantities representing a scaling parameter
(introduced for computational convenience) and a maintenance coefficient, respectively.

A relation similar to U(S) is also often used for the local biomass volumetric flow rate g . In the present model, we define
g by the relation:

g(U) = δgµm


(1+ µ)

S
KS + S

− µ


. (4)

The parameterµm is themaximumbiomass growth rate (s−1), whereas δg is a dimensionless quantity representing a scaling
parameter (introduced for computational convenience).

The presence of microorganisms at the biofilm/liquid interface influences both the flow dynamics and the substrate
field [1]. The equations which describe the advection, diffusion, and consumption of a single chemical species within the
biofilm-filled pores are

St +∇ · (Su)− DS∇
2S = 0, inΩ1(t),

St +∇ · (Su)− DS∇
2S = −U(S), inΩ2(t),

coupledwith the following boundary conditions: S|z=LZ = Sm (the substrate concentration is at itsmaximum level at the top
of Ω) and ∂S

∂z


z=0 = 0 (no substrate goes in or out by the bottom of Ω). Moreover, for numerical convenience, we assume

that S is periodic in the x-direction. In equations above DS stands for the diffusion coefficient of the substrate (m2 s−1).
Due to the presence of the interface, it is necessary to impose internal boundary conditions or transmission conditions

on the interface. These conditions must be physically reasonable and represent the dynamical growth of the biofilm front,
as it was previously specified (that is, biofilm grows to form eventually finger-like structures). These conditions are given
by the Hele-Shaw flow. They can be expressed as follows:

[p] = γ κ on Γ (t), (5)

[λpn] = 0 on Γ (t), (6)

where [f ] denotes the jump of a function f across the interface Γ (t), i.e., the difference of the limiting values of f from each
side of the interface; γ > 0 is the surface tension coefficient (kg s−2) and κ = κ(x, z, t) is the mean curvature at the point
(x, z) on the interface Γ (t) (m−1).

Condition (5) allows the substrate to penetrate into the biofilm, in such a way that the biofilm/liquid interface could
exhibit a fingering phenomenon. As in a Hele-Shaw flow, this is thanks to the surface tension which behaves in such a way
that the smaller the surface tension is, the more unstable is the biofilm–flow [21]. Hence, this model also provides insight
in the physical–biological process of biofilm formation in the sense that it reproduces, on one hand, the interface between
the biofilm and the surrounding medium and, on the other hand, eventually the pattern formation of finger-like structures,
which can be observed in real biofilm growth.

Finally, for the substrate, we assume natural transmission conditions, i.e.,

[S] = 0 on Γ (t),
∂S
∂n


Γ+

=
∂S
∂n


Γ−

on Γ (t).

3. Dimensionless form and parameters of the model

Gathering the equations of the previous section, we have the following model:

−λ∇2p = g(U)χΩ2(t) inΩ, (7)
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[p] = γ κ on Γ (t),
[λpn] = 0 on Γ (t),
p = 0 on z = LZ ,
λpz = 0 on z = 0,
p(0, z) = p(LX , z) ∀z ∈ (0, LZ ),

St +∇ · (Su)− DS∇
2S = −U(S)χΩ2(t) inΩ, (8)

[S] = 0 on Γ ,
[Sn] = 0 on Γ ,
S = Sm on z = LZ ,
Sz = 0 on z = 0,
S(0, z) = S(LX , z) ∀z ∈ (0, LZ ).

In Eqs. (7) and (8) we have denoted by χΩ2(t) the characteristic function of the biofilm compartment at time t .
For numerical reasons, it is better to use a dimensionless model. Setting the dimensionless variables:

x̄ =
x
LZ
; z̄ =

z
LZ
; L̄X =

LX
LZ
; L̄Z =

LZ
LZ
= 1;

t̄ =
t
T
; S̄ =

S
Sm
; p̄ =

λν

DSG
p;

ū = −∇(x̄,z̄)p̄; ḡ =
νSm
USm

g; Ū(S̄) =
TU(S)
Sm
;

we obtain the following dimensionless model:

−∇
2
(x̄,z̄)p̄ = ḡ(Ū)χΩ2(t) inΩ, (9)

[p̄] = d0κ on Γ , (10)
[p̄n̄] = 0 on Γ , (11)
p̄ = 0 on z̄ = 1, (12)
p̄z̄ = 0 on z̄ = 0, (13)

p̄(0, z̄) = p̄(L̄X , z̄) ∀z̄ ∈ (0, 1), (14)

S̄t̄ +∇(x̄,z̄) · (S̄ū)−
DST
L2Z
∇

2
(x̄,z̄)S̄ = −Ū(S̄)χΩ2(t) inΩ, (15)

[S̄] = 0 on Γ , (16)

[S̄n̄] = 0 on Γ , (17)

S̄ = 1 on z̄ = 1, (18)

S̄z̄ = 0 on z̄ = 0, (19)

S̄(0, z̄) = S̄(L̄X , z̄) ∀z̄ ∈ (0, 1). (20)

The key parameters of the dimensionless model are d0 the amalgamated surface tension coefficient (with dimension of
length) (see p. 272 in [25]), G, the growth number of the biofilm and ν, which are defined by

d0 =
λγ ν

DSG
, (21)

G =
L2ZUSm

DSSm
, (22)

ν =
TUSm

Sm
. (23)

The growth number G is a dimensionless quantity representing, in one parameter, the factors that many researchers have
found to affect the biofilm structure: the vertical length, since this is the direction in which the substrate diffuses, the
concentration of soluble nutrient in the bulk, Sm; its diffusion coefficient DS , and the maximum substrate consumption
rate, USm. High G makes the biofilm structure more heterogeneous. At low G, the resulting structure is more compact and
homogeneous (see [3]). In the numerical section, we refer these two scenarios as substrate transport limited regime (high
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G or low d0) and growth limited regime (low G or high d0) respectively. Another important parameter, involved in the
definition of the dimensionless pressure p̄ and of d0, is ν whichmeasures the ratio between the time scale of biofilm growth,
T , and the substrate consumption time, Sm/USm, near the top of the biofilm.

4. Numerical methods

In what follows, we describe the numerical methods required to solve ourmodel, namely, Eqs. (9)–(20).We note that the
unknowns of our model are: p̄, S̄ and Γ . The equations for p̄ and S̄ are the biofilm balance (9), together with their boundary
conditions, and the substrate balance (15), together with their boundary conditions, respectively.

4.1. Numerical method for the interface evolution

The method we have used to compute the interface evolution is the level set method, which was introduced by S. Osher
and J.A. Sethian [26]. The central idea of the level set method is to define a smooth (at least Lipschitz continuous) function
φ(x, z, t), called the level set function, that represents the unknown interface as the set where φ(x, z, t) = 0. Therefore, the
interface is to be captured for all later times by locating the set Γ (t) for which φ vanishes. The motion of the interface is
analyzed by convecting the values of φ (level sets of φ) with the velocity field u. This elementary equation is as follows:

φt + u · ∇φ = 0.

The dimensionless form of the previous equation is

φt̄ + ū · ∇(x̄,z̄)φ = 0. (24)

We add an initial condition, which implicitly represents the initial interface (i.e., the zero level set of the initial level set
function corresponds to the initial interface).

The numerical method we have used to solve Eq. (24) is a combination of the second-order TVD RK approximation [28]
to update φ from time tn to tn+1 with the second-order ENO approximation to ∇(x̄,z̄)φ, as devised in [29]. See also the book
by S. Osher and R. Fedkiw (see pp. 31–33 in [27]). Of course, in order to guarantee the stability of the numerical method, we
have taken the usual CFL time-step restriction:

1t <
h

max |ū|
.

Implicit in the level set method is the fact that φ(x, z, t) corresponds to the signed normal distance from the point (x, z)
to the interface Γ (t). This is considering the definition of the level set function, which takes a negative value in the biofilm
compartment, positive in the liquid region, and zero at the interface. Although Eq. (24) transports the interface at the right
velocity ū, it is generally not valid to say that φ coincides with the signed normal distance to the interface. To overcome this
difficulty, we have used the reinitialization process, which consists in solving the following Hamilton–Jacobi equation:

ψτ + Sg(φ)(|∇ψ | − 1) = 0,
ψ(x, z, 0) = φ(x, z, t), (25)

where φ(x, z, t) corresponds to the level set function calculated by solving Eq. (24) at one temporal iteration, and Sg(φ) is
the one dimensional sign function composed of φ. The idea is to solve (25) performing enough temporal iterations (τ →∞)
in order to numerically obtain that |∇ψ | ≈ 1. The new function ψ calculated in this way satisfies the property of having
the same level sets as φ and, in particular, preserves the right position of the interface. Moreover, it is the signed normal
distance to the interface.

The reinitialization can be quite complicated, expensive, and have subtle by-products. In [30], the reinitialization is
achieved by solving Eq. (25) to its steady state, by choosing a certain approximation of Sg(φ). This approach works well
when the level set function φ is initially not far away from a distance function, but may become too slowwhen φ is flat near
the interface, or even worse, it may move the interface across the grid points when the interface becomes steep. Thus we
have used a variant of the method introduced by Sussman et al. [30], which has been proposed by Peng et al. [31]. In this
variant, the sign function Sg(φ) is approximated in a different way to ensure that the interface does notmove across the grid
points, if it moves at all. Another practical question addressed by [31] is the fact that one does not need to reinitialize the
level set function every time step. Indeed, reinitialization every time step is necessary when the interface undergoes a rapid
change and φ deviates dramatically away from the signed distance function. Otherwise this is excessive. In our simulations,
as we model biofilm formation, whose structure has a time scale>105 sec. (approx. a day) (see p. 57 in [2]), it is clear that
the biofilm/liquid interface does not undergo a rapid change and thus φ does not deviate toomuch from the signed distance
function. Moreover, from the discussion in [21], the reinitialization plays a role of geometric regularization and stabilizing
high frequency components of the solution. Thus if one reinitializes too much, starting from an almost flat interface, this
behavior will remain as the time evolves, and therefore the simulation will not necessarily show the real biofilm growth,
which depending on the parameters, it has been shown that irregular structuresmay occur, as discussed in previous sections.
In fact, for very unstable problems, the different reinitialization process will affect the computational results, including the
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location of the interface [21]. Thus, in our simulations we have obtained the best results when we have carried out the
reinitialization every 15 time steps, and by checking convergence of this procedure in a narrow tube of different width for
each simulation.

Remark 4.1. It is worth noting that the main difference between our approach and that of Dockery and Klapper [8] is the
fact that our pressure equation is written in the entire domain Ω and, indeed, it experiments a jump across the interface
Γ . Therefore, it is natural to impose transmission conditions on the interface Γ ((10) and (11)) in order to determine its
dynamics.Moreover, we do not assume that the liquid is at rest. It has been shown that a potentially important phenomenon
in the analysis of the overall biofilm system includes the effects of fluid motion and advective substrate transport in and out
of the biofilm [1] (see p. 104 and the references cited therein [2]). In our case, even if we have taken into account the flow
field induced by themotion of the biofilm/liquid interface (and not a flow field induced by the bulk-liquid itself), this induces
an advective substrate transport whose contribution could be significant. In contrast, the pressure equation used in [8] is
written only for the biofilm compartment, with a Dirichlet boundary condition (p̄ = 0) at the interface Γ ; moreover these
authors do not consider the influence of the fluid motion (neither induced by the bulk-liquid nor by the motion of the
biofilm/liquid interface) nor the advective substrate transport. On the other hand, since shape and position of the interface
are unknowns in our model, it is reasonable to set conditions that take into account the motion of the interface. Indeed, we
havemodeled suchdynamics by using a systemof equations,which is based on theHele-Shaw flow. Finally, fromanumerical
point of view and in reference to [8], the pressure equation is solved in the biofilm compartment and the biofilm/liquid front
line is directly moved by advection of the level set function as a passive scalar by using the velocity field inside the biofilm
and linearly extending the pressure across the interface. This is done in order to create an advection velocity field in the
liquid region near the interface, which is smoothed to zero away from the interface. By contrast, our method follows natural
conditions since the pressure is computed in thewhole domainΩ , describing appropriate transmission conditions to capture
the motion of the interface so that we do not need to extend the pressure to reproduce the interfacial motion.

4.2. Numerical method for solving the substrate equation

In the sequel, by simplicity, we shall omit the ‘‘bar’’ in the notation for the dimensionless variables. For instance, we shall
write p instead of p̄, S instead of S̄ and so on.

In order to solve (15), together with the boundary conditions (18)–(20), we have used a fractional step method (see
pp. 237–239 in [32]). Thus, we split (15) into three equations:

St −
DST
L2Z
∇

2S = 0 inΩ, (26)

St +∇ · (Su) = 0 inΩ, (27)
St = −U(S)χΩ2(t) inΩ. (28)

The numerical solution of (15) is then achieved in three steps. In the first step, we solve Eq. (26) for initial data Sn, in the
second step we solve Eq. (27) whose initial data is the numerical solution obtained in the first step, and finally, in the third
step we solve Eq. (28) whose initial data is the numerical solution obtained in the second step. Next, we will explain each
one of the steps.
Step 1. In this step we solve (26), which is a standard parabolic equation. Thus, at each time step, we solve Eq. (26) together
with the boundary conditions (18)–(20), by means of the semi-implicit Crank–Nicolson scheme (see pp. 195–196 in [32]).
At every time step, we solve the resulting linear system by means of the GMRES algorithm, starting from an initial guess
given by the forward Euler method for Eq. (26), which converges in few iterations (see pp. 96–99 in [32]).
Step 2. In this step we have to solve (27) with initial data given by the numerical solution of Step 1. Eq. (27) is an advection
equation, whose numerical solution has been approximated by the same method as for level-set Eq. (24).
Step 3. In this step we have to solve (28) with initial data given by the numerical solution of Step 2. Eq. (28) is a reaction
equation, whose numerical solution was computed by using an exponential time differencing method (see pp. 240–242
in [32]).

4.3. Numerical method for solving the pressure equation

In this subsection we explain how the biofilm balance equation (9) has been solved:

∇
2p = −δgν

µmSm
USm


(1+ µ)

S
S + K

− µ


χΩ2(t) inΩ. (29)

Here above, K = KS/Sm is the dimensionless Monod saturation constant.
In order to solve Eq. (29) together with the transmission/boundary conditions (10)–(11), and (12)–(14), respectively, a

suitable numerical method is needed. This is because the pressure is discontinuous at the interface, and therefore it has to
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be accurately approximated across it, which is a fact that guarantees a good approximation, as well as for the velocity u,
which is given (under dimensionless form) by u = −∇p.

In practice, the approximation of the derivatives of p is the same as for S, except that at those grid pointswhich are near of
the interface, the finite difference formulamust be adjusted. This is done by adding a corrector term on the right-hand side of
the numerical equation, so as to impose the transmission conditions that satisfy p at the interface, in such a way that a high
accuracy is achieved in the numerical reconstruction of the solution. This is the main principle of the immersed interface
method (IIM). This method was first introduced to deal with partial differential equations whose solution or coefficients,
as well as its gradients in the normal direction, may have a jump of discontinuity at the interface. The interested reader is
referred to the book by Li and Ito [25] for more details.

Next, a short description of the IIM is given. The numerical approximation for pn+1 is based upon the classical centered
five-point finite difference scheme. Eq. (29) is solved by means of the centered five-point finite difference scheme:

∇
2
hp

n+1
i,j = −δgν

µmSm
USm


(1+ µ)

Sni,j
Sni,j + K

− µ


χΩn

2
+ Cn

i,j, (30)

∀i = 0, . . . ,NX ,∀j = 0, . . . ,NZ . Here above, ∇2
hp

n+1 is the discrete Laplace operator, computed by using the centered
five-point finite difference scheme, χΩn

2
is the characteristic function ofΩn

2 (the biofilm compartment at time tn), Sni,j is the
numerical solution to (15), and Cn

i,j is a corrector term which acts only on the irregular grid points (i, j). A grid point (i, j)
is called an irregular grid point in reference to the standard 5-point finite difference stencil centered at (i, j) if the five grid
points are not on the same side of the interface. By contrast, the grid points whose standard five-point stencil centered
around it is located only on one side of the interface are called regular grid points.

Thus,

Cn
i,j =


0 if (i, j) is a regular grid point,
≠ 0 if (i, j) is an irregular grid point.

Since the irregular grid points are adjacent to the interfacial curve and form a lower-dimensional set, it turns out to be
sufficient to require an O(h) truncation error at these points. Roughly speaking, the idea behind obtaining the corrector
terms is as follows: let (i, j) be an irregular grid point, and let us denote by (i+ ik, j+ jk) the grid points of the standard five-
point stencil centered at (i, j) (each ik, jk takes values in the set {−1, 0, 1}). Let us expand pn+1(xi+ik , zj+jk) around a point
(x∗i , z

∗

j ) at the interface, close to (xi, zj) (for example the projection of (xi, zj) on the interface). Then, by using the interface
relations (10)–(11), and imposing that the truncation error at (xi, zj) is O(h), the desired corrector term Cn

i,j is obtained. For
a complete review of the IIM, we recommend to the interested reader the Refs. [7,25].

Note that the matrix of the resulting system for (30) does not change with the application of the IIM, because we just
have to change the right-hand side, andmoreover it does not changewith the time iterations. Thus, we compute the solution
by means of the LU factorization of the matrix system, which is only computed once before of the time iterations. Once p is
calculated the velocity of the medium, has to be computed, which is given by u = −∇p. Again, this is computed by using
classical finite difference formulae at regular grid points, and by using a corrector term as devised by the IIM, at irregular
grid points [7,25].

4.4. Summary of the algorithm

We can summarize our algorithm as follows:

1. n← 0. Initialize the initial interface, i.e., initialize the level-set function φ(x, z, t = 0). Moreover, at time zero, substrate
is at its maximum concentration and uniformly distributed in the space S(x, z, t = 0) = 1 for all (x, z) ∈ Ω .

2. Solve Eq. (29) with transmission and boundary conditions (10)–(11) and (12)–(14), respectively, and compute u = −∇p
based on the IIM, at time tn = n1t , as explained in Section 4.3. The time-step1t is chosen in such away that the level-set
Eq. (24) be numerically stable, as explained in Section 4.1.

3. Solve Eq. (24) at time tn = n1t , with u = −∇p, and reinitialize φ by solving Eq. (25), as explained in Section 4.1. The
zero level-set of φ gives us the new position of the interface.

4. Solve Eq. (15) coupled with the boundary conditions (18)–(20) at time tn = n1t , as explained in Section 4.2.
5. Change n← n+ 1. Repeat steps (2)–(5) to let the system evolve.

5. Numerical results and discussion

We have done numerical experiments with the same initial biofilm–liquid interface and different growth numbers (or
surface tensions). The crucial parameterwhich affects the stability in theHele-Shaw flow is the amalgamated surface tension
coefficient d0, and thus the growth numberG (see (21)). The greater theG (or lower the d0), themore unstable the Hele-Shaw
flow [21]. Below some results and analysis are presented. In all the simulations the time is in hours.
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(a) The whole interface. (b) Zoom of the middle of the interface.

(c) Zoom of the left of the interface. (d) Zoom of the right of the interface.

Fig. 1. Grid refinement analysis for the first simulation. Convergence is observed.

5.1. Grid refinement analysis

In this subsectionwe present a grid refinement analysis of our numericalmethod. To demonstrate the convergence of our
method, we carry out our analysis for three different simulations. The first one consists of an initial condition representing
an already formed homogeneous biofilm layer. To do this we take an interface which is a perturbed horizontal straight line,
defined implicitly by the level set function:

φ0(x, z) = (z − LZ/4)+ 0.02 cos(4πx/LX ). (31)

We start our study with a uniform grid of 30 intervals in the x-direction and 45 in the z-direction, and double it twice to
conduct the grid refinement analysis. In the sequel of this section, we refer as the coarse grid that is composed of 30 intervals
in the x-direction and 45 in the z-direction (whose grid step size is h = 1/45 = 0.0222), as the intermediate grid that is
composed of 60 intervals in the x-direction and 90 in the z-direction (whose grid step size is h = 0.0111), and by the fine
grid that is composed of 120 intervals in the x-direction and 180 in the z-direction (whose grid step size is h = 0.0056),
respectively.

As discussed in Section 4.1, we have applied the reinitialization procedure [31] every 15 time iterations for the three
grids. If we apply the reinitialization too many times for the coarse grid, then we will not allow the biofilm to grow, because
the reinitialization plays a role of geometric regularization. Thus, starting from a homogeneous biofilm, the reinitialization
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(a) The whole interface. (b) Zoom of the middle of the interface.

(c) Zoom of the left of the interface. (d) Zoom of the right of the interface.

Fig. 2. Grid refinement analysis for the second simulation. Convergence is observed.

prevents the development of irregular forms in the biofilm structure, which is observed in real biofilms and also in biofilm
model simulations for a transport-limited regime (high metabolic rates, that is, high G) [6]. Moreover, the application of
reinitialization every time iteration is required only when the interface undergoes a rapid change and the level-set function
deviates toomuch from the signed distance function [31]. In this sense, we have found that our simulations describewell the
biofilm formationwhenwe apply the reinitialization procedure every 15 time iterations for the three grids, and by requiring
the stopping criterion that leads to impose the condition

|∇φ| = 1+ O(h2),

for the reinitialized level set function φ, on the grid points located in a tube about the interface, where h is the grid size.
The actual version of the model code was run on an Intel Core Duo CPU P9600 machine at 2.67 GHz. Typical runs take

several hours of computations. For instance, 1440 time iterations take 1468 s, in the finest grid.
We present our first grid refinement analysis for

G = 395, Sm = 4 · 10−3 kg m−3,

for a transport-limited regime (high metabolic rates). The values for the parameters Sm,DS, KS and µm were obtained
from [6]. The parameter USm was estimated in order to obey relation (22) for a biofilm of characteristic length LZ = 2 · 10−3
m. The time scale of biofilm growth was taken as T = 1000 s [20]. The parameter γ is the surface tension of the water (see



44 P. Cumsille et al. / Computers and Mathematics with Applications 67 (2014) 34–51

(a) The whole interface. (b) Zoom of the interface.

Fig. 3. Grid refinement analysis for the third simulation. Convergence is observed.

p. 408 in [33]). The parameters ν and d0 were derived from the values of the other parameters according to (21) and (23),
respectively. The parameter µ was estimated in the order of a usual maintenance coefficient [4], λ was estimated in order
to take into account that the biofilm behaves as a fluid with large viscosity (λ has to be small as discussed in Section 2)
and particularly to obtain d0 in a reasonable physical range [21] (see (21)). Finally the scaling parameters δU and δg were
estimated in order to reproduce the desired behavior (mushroom-shaped biofilm/liquid interface for high G and low Sm, and
more compact and homogeneous biofilm structure for low G and high Sm). The values for the parameters DS, KS , µm and
T are the same through all the simulations, whereas the values for G, Sm,USm, d0, µ, ν, δU and δg were varied in order to
simulate other behaviors (such as biofilm growth-limited regime). See Table 1 for a list of the common parameters. See also
Table 2 for a list of the parameters used in the first simulation.

The way to calculate the errors is explained below. We estimate the error on each grid by using the next finer grid as the
reference solution, rather than using the same reference solution for both coarser grids. More precisely, we compute the
errors at each time t as follows:

Eh(t) = ∥φh(t)− φh/2(t)∥L1(Th)/Mh,

Eh/2(t) = ∥φh/2(t)− φh/4(t)∥L1(Th/2)/Mh/2,

whereMh (resp.Mh/2) stands by the number of grid points in Th = {|φh| ≤ αh} (resp. Th/2 = {|φh/2| ≤ αh/2}), where αh (resp.
αh/2) is the tube width Th (resp. Th/2) for the reinitialization procedure corresponding to the coarse (resp. intermediate) grid.
Errors Eh and Eh/2 measure the difference of the computed level-set functions in (averaged) L1-norm in the tube where we
test the convergence of our reinitialization procedure (see [30]), that is, we measure the errors in a vicinity of the interface,
because its location and shape are the best indicators of the convergence of our method. In order to determine the order
of convergence, we examine the ratio Eh/2/Eh, which should be at most 0.25 if the method is second-order accurate (see
[32, pp. 257–258]). See Table 3 for a list of the numerical parameters αh used in each simulation.

Fig. 1 qualitatively demonstrates the convergence of our method as we refine the mesh. The figure depicts the zero level
set ofφ (the biofilm/liquid interface) at time t = 17.6056. Table 4 depicts quantitatively the grid refinement analysis at three
different times, by showing the computed errors as explained before. The results in Table 4 clearly indicate second-order
accuracy at three different times.

Our second simulation consists in the same initial condition as for the first simulation (see (31)), but with different
parameters. See Table 5 for a list of the parameters used in the second simulation. The results in Table 6 clearly show second-
order accuracy at three different times. Fig. 2 qualitatively shows convergence for the second simulation at time t = 0.1956.

Our third simulation consists in a semicircular biofilm colony growing towards the substrate source (the top of the
domain). The initial condition is given by the level set function:

φ0(x, z) =

(x− LX/2)2 + z2 − 0.11.

The parameters for this simulation are given in Table 7. The results in Table 8 clearly show second-order accuracy at three
different times. Fig. 3 qualitatively shows convergence for the third simulation at the three different times given in Table 8.
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(a) (b)

(c) (d)

Fig. 4. Four different snapshots of a mushroom-shaped biofilm, simulated with the intermediate grid (first simulation).

Table 1
Common parameters to all simulations.

Parameter Symbol Value Units

Time scale of biofilm growth T 1000 s
Monod half-saturation constant KS 3.5 · 10−4 kgm−3

Diffusion coefficient DS 2.3 · 10−9 m2 s−1

Surface tension coefficient in water γ 72.8 ·10−3 kg s−2

Maximum specific growth rate µm 1.5 · 10−5 s−1

5.2. Further experiments and analysis

Below we compare our results with those obtained in the literature. We compare the first two simulations shown in the
grid refinement analysis: the first one for G = 395 and Sm = 4 ·10−3 kgm−3, for a transport-limited regime, and the second
one for G = 16 and Sm = 1 · 10−1 kg m−3, for a growth-limited regime, starting from the same initial condition (31).
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(a) (b)

(c) (d)

Fig. 5. Four different snapshots of a compact-shaped biofilm, simulated with the intermediate grid (second simulation).

Table 2
Parameters used in the first simulation.

Parameter Symbol Value Units

System dimensions
Length LX 1.333 · 10−3 m
Height LZ 2 · 10−3 m
Substrate concentration in the bulk liquid Sm 4 · 10−3 kg m−3

Maximum substrate consumption rate USm 9.088 · 10−4 kg m−3 s−1

Ratio between biofilm growth and substrate consumption ν 4.4014 · 10−3 Dimensionless
Proportionality coefficient in pressure equation λ 4.4014 · 10−11 kg−1 m3 s
Maintenance coefficient µ 1.3204 · 10−4 Dimensionless
Amalgamated surface tension d0 8.0106 · 10−4 m
Scaling parameter for U δU 8 · 10−3 Dimensionless
Scaling Parameter for g δg 6.6021 · 10−4 Dimensionless
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Table 3
Tube width used in each simulation.

Grid First Second Third

Coarse 1/350 1/40 1/230
Intermediate 1/340 1/400 1/305
Fine 1/1250 1/250 1/720

Table 4
Grid refinement analysis for the first simulation.

Time Eh Eh/2 Eh/2/Eh

5.8685 4.1248 ·10−6 1.7253 ·10−7 0.0418
11.7371 4.6715 ·10−6 4.9488 ·10−7 0.1059
17.6056 4.3121 ·10−6 3.1629 ·10−7 0.0733

Table 5
Parameters used in the second simulation.

Parameter Symbol Value Units

System dimensions
Length LX 1.1926 · 10−4 m
Height LZ 1.7889 · 10−4 m
Substrate concentration in the bulk liquid Sm 1 · 10−1 kg m−3

Maximum substrate consumption rate USm 1.136 · 10−1 kg m−3 s−1

Ratio between biofilm growth and substrate consumption ν 8.8028 · 10−4 Dimensionless
Amalgamated surface tension d0 2.00 · 10−2 m
Proportionality coefficient in pressure equation λ 8.8028 · 10−12 kg−1 m3 s
Maintenance coefficient µ 2.6408 · 10−5 Dimensionless
Scaling parameter for U δU 7.0423 · 10−2 Dimensionless
Scaling parameter for g δg 7.0423 · 10−3 Dimensionless

Table 6
Grid refinement analysis for the second simulation.

Time Eh Eh/2 Eh/2/Eh

0.1467 2.5060 ·10−6 5.4183 ·10−7 0.2162
0.1956 5.0392 ·10−6 8.7318 ·10−7 0.1733
0.2445 7.7270 ·10−6 1.8515 ·10−6 0.2396

Table 7
Parameters used in the third simulation.

Parameter Symbol Value Units

System dimensions
Length LX 1.3333 · 10−3 m
Height LZ 2 · 10−3 m
Substrate concentration in the bulk liquid Sm 4 · 10−3 kg m−3

Maximum substrate consumption rate USm 9.088 · 10−4 kg m−3 s−1

Ratio between biofilm growth and substrate consumption ν 4.4014 · 10−3 Dimensionless
Amalgamated surface tension d0 8.0106 · 10−4 m
Proportionality coefficient in pressure equation λ 4.4014 · 10−11 kg−1 m3 s
Maintenance coefficient µ 1.3204 · 10−4 Dimensionless
Scaling parameter for U δU 3.1 · 10−2 Dimensionless
Scaling parameter for g δg 1.3644 · 10−2 Dimensionless

Table 8
Grid refinement analysis for the third simulation.

Time Eh Eh/2 Eh/2/Eh

0.4450 1.9491 ·10−6 1.0460 ·10−7 0.0537
0.8900 1.6364 ·10−6 1.6036 ·10−7 0.0980
1.3351 1.7299 ·10−6 2.4036 ·10−7 0.1389

The evolution of a biofilm (in hours) is presented in Figs. 4 and 5. In these figures, we have plotted the negative level
sets of the level function φ (with a variation of h = 0.0111 between lines), i.e., those level sets corresponding to the biofilm
compartment. The thicker line represents the zero level set of φ, and it corresponds to the biofilm/liquid interface.
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(a) (b)

(c) (d)

Fig. 6. Four different snapshots of a finger-shaped biofilm, simulated with the intermediate grid (fourth simulation).

At the beginning, when there is sufficient substrate in the environment (i.e., there is no important nutrient limitation),
the biofilm grows in all directions (see Fig. 4(a)–(b), and Fig. 5(a)–(b)). As the biofilm gets thicker, two situations can occur.
If there is still no substrate limitation (i.e., low G) the biofilm grows forming a relatively compact or smooth structure (see
Fig. 5(c)–(d)). The other possible scenario iswhen the nutrient is depleted in the biofilm depth. In this case, there is almost no
flux of substrate to the cells situated in the ‘‘valleys’’. Since only microbes in the top regions are active, dividing and creating
new biomass, the biofilm grows forming ‘‘finger’’ or ‘‘mushroom’’ like structures towards the liquid bulk (see Fig. 4(c)–(d)).
In general, for homogeneously distributed biomass on the carrier (Fig. 5), the preferential growth direction is perpendicular
to the carrier surface. This is consistent with the following fact mentioned in Section 2: the smaller the surface tension
d0 is (the greater the growth number G) the more unstable is the biofilm interface (for a more detailed discussion, see
pp. 277–278 in [25,21]).

We can observe the formation of finger-like structures after longer periods of time (see Fig. 4(c)–(d)), which is a common
pattern observed in biofilm growth (see Refs. [2–6,8]). In the second simulation (Fig. 5), starting from the same initial
interface, but using different values for the parameters than those used in the first simulation, it can be observed that the
biofilm arrives to the top of the computational domain (where the source of substrate is located) faster than in the previous
simulation. This is because of the growth-limited regime (low G), in whose case there is not an important limitation of
substrate. The behavior shown in the two simulations, carried out in this subsection, shows that our model can followmore
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(a) (b)

(c) (d)

Fig. 7. Four different snapshots of a compact-shaped biofilm, simulated with the intermediate grid (fifth simulation).

smooth development of biofilms structures in the shorter timeperiods as depicted in Fig. 5 in the second simulation,whereas
in longer time periods more pronounced ‘‘finger’’ like structures as depicted in Fig. 4(d). Since this is a numerical solution
in which parameters may be adjusted to the specific biofilm that needs to be simulated, it clearly shows that the model
proposed in this paper has the potential to simulate a range of behaviors that have been observed in biofilm models and
their practical behavior.

The same analysis done before for simulations 1 and 2 also holds true for simulations 4 and 5, which are shown in Figs. 6
and 7 respectively. Finally, to conclude this section, Fig. 8 depicts a semicircular biofilm colony that grows towards the top of
the domain (where the source of substrate is located). We see in Fig. 8 that the colony grows forming a finger-like structure.

6. Conclusions

1. A 2-D mathematical model was elaborated for biofilm evolution including biomass growth and decay, diffusive and
convective transport, and transformation of substrates and flow around the biofilm structure. This model is different
from existing models, since it simulates a biofilm–liquid interface by means of convective biomass transport, instead of
spreading biomass concentration under the influence of substrate transport, as was done by [3–6]. On the other hand,
the only model that is similar to ours [8] does not include several effects: convective transport of substrate, flow field
induced by the motion of the biofilm/liquid interface, and a set of equations describing the evolution of the interface.
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(a) (b)

(c) (d)

Fig. 8. Four different snapshots of a semicircular biofilm, simulated with the intermediate grid (third simulation).

Indeed, the conditions describing themotion of the interface are a key issue in ourmodel that have been extensively used
for describing a wide and growing class of free interface problems (see Chapter 11 in the book [25] and the references
cited therein).

2. The evaluation of this model requires the use of sophisticated numerical techniques – the Immersed Interface Method
(IIM) coupled to the Level-SetMethod –which have been applied for the very first time to theHele-Shaw flow to solve the
increasingly important phenomenon of biofilm growth. The novel approach to biofilm modeling followed in the paper
is, as far as we know, for the first time applied in the field of biology, and hence introduces biologists to a method that is
likely to find applications.

3. Using this model, we have performed numerical simulations that predict the formation of biofilms in a range of different
processes. The use of our model sheds light on the biological process of biofilm formation, since it simulates central
issues for biofilm growth: the eventual pattern formation of heterogeneous structures, such as finger-like structures. Hence,
we have considered the results obtained by [3–6], whose predictions show that structures with high degrees of surface
irregularity develop in biofilm growth regimes limited by the rate of substrate transport (internal, as well as external).
Biofilms grow in these conditions as ‘‘finger-like’’ or filamentous structures. As the nutrient availability increases, there
is a gradual shift towards more compact and smooth biofilms. This is consistent with the fact that the smaller the surface
tension d0 (i.e., the higher the growth number G) is, the more unstable the biofilm interface becomes (see [21] and
pp. 277–278 in [25]).
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4. The most relevant characteristic of this novel and more rigorous approach, based on existing mathematical analysis, is
that it can simulate and follow the behavior of a range of previously described biofilm models that simulate practical
biofilm behavior. Detailed comparisons with experimental data should be the result of future research.

5. Themodel could consider two ormore substrates interactingwith each other. This amounts to introducing newequations
to the model, taking into account transport and interaction of the various substrates.

6. The model could also consider biofilm systems with multiple species [11].
7. In addition, we could consider the flow field induced by the bulk-liquid itself. In this case, the liquid would have its own

motion, which should be coupled to the biofilm motion by means of appropriate conditions on the interface.
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