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Buckling of longitudinal reinforcement in reinforced concrete (RC) columns or walls is commonly seen
with a length equal to the spacing between stirrups (local buckling), but experimental observations have
shown that the length of buckling can span a larger length, deforming several stirrups within the buckling
length (global buckling).

The behavior of the longitudinal reinforcement under compression resulting in global buckling is stud-
ied in this work, based on a concentrated plasticity fiber model that considers four (4) plastic hinges. The
model was originally validated for local buckling and here is extended to global buckling by introducing
the effect of transversal reinforcement and expansion of the core concrete in the analysis. Modeling of the
forces from the stirrups acting on the longitudinal bar assumes that part of the force is transferred
directly to the expanding concrete core and the remaining force is balanced by internal stresses in the
longitudinal bar.

The bar buckling behavior is evaluated for different buckling length values and the length is chosen
such that it delivers the lowest maximum stress. The proposed model is validated by comparison of
the predicted buckling mode with experimental test results from the literature. The average error in
the mode prediction is �0.59 (about half the space between stirrups), which is a reasonably good value
considering that the database of tests used covers buckling modes from 1 to 7 (stirrup spacing). Besides of
providing good critical buckling length predictions, it allows obtaining the stress versus strain curve for
the overall buckling bar.

Analysis of three column specimens from the literature indicates that the overall stress versus strain
response can be obtained with a reasonable accuracy. Peak stress is obtained within an error of about
10% compared to the test result for a strain well represented by the model. The post-peak slope also gives
a good estimate for the degradation stage.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In a seismic context, elements designed to withstand significant
forces and deformations in compression or large tensile strains fol-
lowed by compression, which could happen in columns or walls
boundary elements, should account for potential loss of resistance
generated by the buckling of longitudinal reinforcement. It has
been observed that the concrete cover, since it is not confined,
spalls at longitudinal strain values between 0.003 and 0.004 [1],
therefore, does not constitute an effective lateral restraint and
buckling of longitudinal reinforcement is avoided or limited by
the resistance of the stirrups.

Usually, buckling of longitudinal reinforcement is considered
located in a length determined by the distance between stirrups,
which is called local buckling of the reinforcement (Fig. 1a). How-
ever, experimental observations have shown that in elements with
a good distribution of stirrups, the buckling length may be longer,
stretching those stirrups that are within the buckling length, pre-
vailing over the local buckling. This is called global buckling of
the reinforcement (Fig. 1b). Thus, the buckling length is not com-
pletely determined by the spacing of stirrups, but also by the flex-
ibility of the reinforcement (longitudinal and transversal). In order
to study this phenomenon it is necessary to appropriately repro-
duce the behavior of the elements involved in rebar buckling.

The objective of this work is to use an existing model [2], which
has shown good performance in representing the local buckling of
reinforcing and extending its application to global buckling.

2. Literature review

One of the first works that studied buckling of longitudinal rein-
forcement in concrete columns is the publication by Bresler and
Gilbert [3]. Among its contributions are a method that predicts
the critical load and buckling shape providing the minimum stiff-
ness (or minimum diameter) of the stirrups in order to limit their
elongation while the longitudinal reinforcement deforms, and
therefore, avoiding global buckling.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2013.11.015&domain=pdf
http://dx.doi.org/10.1016/j.engstruct.2013.11.015
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http://dx.doi.org/10.1016/j.engstruct.2013.11.015
http://www.sciencedirect.com/science/journal/01410296
http://www.elsevier.com/locate/engstruct


Nomenclature

Ai tributary area of each fiber i
At sectional area of a stirrup bar
db diameter of longitudinal reinforcement
dt diameter of transverse reinforcement
e imperfection applied at the bar mid-length, set as

e = 0.01db to avoid obtaining the solution without buck-
ling effect (trivial solution)

EI reduced stiffness (a section going in compression within
the hardening region of steel and another going under
elastic unloading).

E0 initial elastic reloading/unloading module, set as E0 -
= Es(1 � De) [7].

Ec concrete elastic modulus
Es steel stiffness
Et stirrups bar elastic modulus
f 0c unconfined compressive strength of concrete
Fj stirrups total forces
Fh

j stirrups forces due to the concrete expansion
k longitudinal reinforcement normalized stiffness
keq equivalent stiffness (normalized)
kt stirrup stiffness
kv calibration factor for ect

lp plastic hinge length, set as lp = db

lt stirrup total length
l0t stirrup effective length
Lmode i buckling length of mode i, set as Lmode i = i � s
L buckling bar length
m internal hinge moment, set as m ¼

P
i
riAixi

M internal hinge moment for global buckling
nl number of reinforcing bars subjected to buckling in the

direction of analysis
nt number of stirrups in the considered direction
N number of stirrups within the buckling length
N0 number of stirrups for analysis
p applied load, set as p ¼ �

P
i
riAi

P applied load for global buckling
Pc critical load
Po critical load for a buckling length of s
Q curve A parameter, set as Q ¼ ððrf � r0Þ=

ðef � e0ÞE0 � aÞ=ð1� aÞ, with a ¼ ð1þ ðE0ðef � e0Þ=
ðrf � r0ÞÞRÞ�1=R

R parameter representing the Bauschinger effect, set as
R ¼ 14ðeyÞ1=3ð1� 14DeÞ for the unloading stage and
R ¼ 20ðeyÞ1=3ð1� 18DeÞ for the reloading stage [7].

s spacing of stirrups
v vertical displacement
w Additional lateral deformation associated to a vertical

displacement m
xi location of fiber i
xj vertical distance of the force DFj relative to the extreme

hinge
x0

j vertical distance xj at the beginning of the analysis
yj transverse displacement of the force DFj

a function of the steel stiffness and the stirrups arrange-
ment

c stiffness parameter
DFj stirrups forces associated to longitudinal reinforcement

buckling, set as DFj ¼ Fj � Fh
j

De half cyclic strain variation, set as De = |ef - e0|/2.
e axial strain at mid-section
�e resultant average bar strain
eo strain at the beginning of curve A
euc strain at unconfined compressive strength of concrete
ecc confined concrete compressive strain at the maximum

stress, set as ecc ¼ euc 1þ 24:6keqsry

f 0c

� �
ect strains in the stirrups due to the lateral expansion of the

concrete core
ef strain at the end of curve A
ei axial strain at location xi, set as ei = e + /xi (Bernoulli

hypothesis)
em peak strain
esh strain at initiation of strain hardening
ewj strains in the stirrups due to longitudinal reinforcement

buckling
ey yield strain
h hinge rotation, set as h = / � lp
he initial rotation due to imperfection e, set as he = tan�1(e/

(L/2 � lp))
hp rotation due to lateral displacement w
/ curvature
mo concrete Poisson’s modulus
qs amount of volumetric transverse reinforcement
�r resultant average bar stress
ri steel stress at location xi

r0 stress at the beginning of curve A
rf stress at the end of curve A
rm peak stress
ry yield stress
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Scribner [4] focused the attention in reproducing the observed
behavior of beams during bending tests, noting that buckling of
the longitudinal reinforcement typically occurs where the con-
crete has spalled, which corresponds approximately to a length
of the height of the beam. Scribner models buckling over a length
equal to three stirrup spacing. Similar to the work by Bresler and
Gilbert, the critical load is estimated. Based on an energy model
of the system, a simplified expression is analytically determined
to limit the diameter of the bars to promote a local buckling fail-
ure over a global buckling failure, suggesting that the ratio of the
diameter of longitudinal reinforcement (db) to the transverse
reinforcement (dt) should be db/dt = 1.85. Performing a similar
analysis, the diameter ratio for a buckling length of two stirrup
spacings is 1.69, and considering a buckling length of four
spacings is 2.11.

According to Papia et al. [1] in many tests of strongly confined
concrete columns it has been observed that buckling of longitudi-
nal reinforcing involves deforming stirrups, and causing them to
fail in tension. The loss of confinement accelerates failure of the
column, being able to reach a lower strain level than expected with
full confinement. Once concrete cover spalls, the longitudinal bar is
free to deform outward. When reaching the critical buckling condi-
tions for the longitudinal bar, and the column has a suitable con-
finement, the longitudinal reinforcement is commonly in the
region of strain hardening and the transverse reinforcement could
be either in the linear-elastic or strain hardening zone, depending
on the transversal strain.

They proposed a model that assumes a positive symmetrical
shape function representing the transversal deformation of the
longitudinal bar, and based on the system energy, the critical con-
dition is established. Based on their methodology, the critical load
ratio (Pc/Po) and critical buckling length (L/s) are provided, which is
dependent on c ¼ as3

EI , where L is the buckling bar length, s is the
spacing of stirrups, a, is a function of the steel stiffness and the stir-
rups arrangement, Pc is the critical load of the problem analyzed,
P0 ¼ p2EI

s2 the critical load for a buckling length of s with the same



Fig. 1. Longitudinal reinforcement buckling mode – (a) Local buckling, and (b)
Global buckling.

Fig. 3. Buckling scheme of a group bar.

Table 1
keq Values for different buckling modes (after [6]).

Buckling mode, n keq avg

1 0.7500
2 0.1649
3 0.0976
4 0.0448
5 0.0084
6 0.0063
7 0.0037
8 0.0031
9 0.0013

10 0.0009
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material properties, and EI is a reduced stiffness based on part of
the cross-section going in compression within the hardening
region of steel and another part of the cross-section going under
elastic unloading.

Thus, they constructed the curve Cc = Pc/Po in Fig. 2, which re-
lates the stiffness parameter c of the stirrups, with the critical
buckling load and the length of the bar. Additionally, the curve L/
s is included [5], which is related to the number of stirrups within
the buckling length. Calculation of parameter c requires the value
of the stirrups stiffness, a, which depend on the configuration of
stirrups and the steel stiffness (Es) at the buckling condition (lin-
ear-elastic zone or hardening). Different configurations are consid-
ered for longitudinal and transverse reinforcement, which for a
corner longitudinal bar, results in a ¼ 2 EsAt

lt
(other cases are simi-

lar), with At sectional area of a stirrup bar and lt the stirrup length.
Dhakal and Maekawa [6], similarly to other authors, deter-

mined the critical load based on the energy stored in the system
by equating and matching the energy for 2 consecutive failure
modes. The model assumes a sinusoidal deformed shape within
the buckling length with the stirrups simulated as discrete elastic
springs whose rigidity is zero, if they are located within a central
section of the buckled length and elastic elsewhere. The flexural
rigidity of the longitudinal bar is simplified and explicitly deter-
mined considering that it is beyond the elastic region, as

EI ¼ 0:5EsI
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ry

400 MPa

q
, where Es is stiffness of the elastic section, ry
Fig. 2. Critical load and buckling length (after [1,5]).
is the yield stress. The longitudinal reinforcement normalized

stiffness is defined as k ¼ p4EI
s3 . The stirrup stiffness, kt ¼ Et At

l0t

nt
nl

, is cal-

culated as the axial stiffness of one stirrup multiplied by the num-
ber of stirrups in the considered direction, nt (Fig. 3), divided by the
number of reinforcing bars subjected to buckling in the direction of
analysis, nl (Fig. 3), where Et is the stirrups bar elastic modulus and
l0t is the stirrup effective length. The equivalent stiffness (normal-
ized) limit values, keq = kt/k, for the different buckling modes are
tabulated in Table 1.

All previous models were intended to determine the critical
load and the number of stirrups involved. The model described in
this study, besides of predicting the buckling mode, provides the
stress–strain curve for the buckled bars (r–e) which can be used
in sectional, element or system nonlinear analysis. Current design
in many cases (e.g., in tall buildings in Los Angeles, California) in-
volve nonlinear analysis often within the performance-based de-
sign framework. It would be even more beneficial for assessment
of existing buildings, since in those cases provisions for transversal
reinforcement diameter from current design codes that intend to
prevent global buckling of reinforcement might not be present.

3. Concentrated plasticity model – local buckling

The model described by Massone and Moroder [2] is used to
study the buckling response of bare longitudinal reinforcement,
which captures the behavior of reinforcement in monotonic com-
pression without constrains in its length, and has been slightly
modified by Lacaze [7]. The original model considers a bar with
fixed ends free to move vertically in its upper end, with an initial
imperfection given by a lateral displacement in the middle of its
length. The deformations are concentrated in four plastic hinges lo-
cated symmetrically at positions of maximum moment for a point
load or imperfection e applied at the bar mid-length (Fig. 4). Addi-
tional lateral deformation w is associated to a vertical displace-
ment v of the free end due to an applied load p. The plastic hinge
length is set as the bar diameter, lp = dp, with a constant curvature



Fig. 4. Local buckling model with initial imperfection (after [2]).

Fig. 5. Cyclic material model (after [2,7]).
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distribution along it, such that the hinge rotation, h, is related to
the curvature /. The imperfection e can be introduced as an initial
rotation he.

At the beginning of the axial loading, the load p and the moment
m at the hinges are zero. A vertical displacement v of the upper end
has an associated additional rotation of the hinge hp and a lateral
displacement of the central zone of the bar w. The relationship be-
tween rotation and lateral movement is given by,

eþw ¼ ðL=2� lpÞ sinðhe þ hpÞ= cos he ð1Þ

Lacaze [7] introduces a change in the original model in order to rep-
resent cyclic behavior and properly characterize the response in
tension without hinge formation. For this purpose, rotations (curva-
tures) are concentrated at the plastic hinge, but axial deformations
are distributed along the bar.

The internal forces at the hinges are determined by the axial
strain at mid-section, e, and the curvature, /. The cross-section is
discretized into a finite number of axially deformable fibers (i.e.,
20 fibers), with each fiber having a strain ei. By means of the con-
stitutive material law, the steel stress is obtained for each fiber i
(ri) of tributary area Ai, resulting, by equilibrium, in an axial force
p and a moment m at the hinge.

The resultant average bar stress ð�rÞ and strain ð�eÞ are,

�r ¼ pP
iAi

ð2Þ

�e ¼ v
L
¼ eþ 1� 2

lp
L

� �
1� cosðhe þ hpÞ

cos he

� �
ð3Þ

The numerical nonlinear problem is reduced to a 1 DOF system,
where given an axial deformation, �e, the formulation iterates over
the value for the additional curvature, /p, until equilibrium defined
as Eq. (4) is achieved (within a tolerance). Equilibrium is deter-
mined for a quarter of the bar, such that it involves an inflexion
point (zero moment) and another end within the plastic hinge with
moment m, with a relative lateral displacement of (e + w)/2.

m ¼ pðeþwÞ=2 ð4Þ

The currently implemented model considers that the initial imper-
fection is present in the bar without residual stresses, i.e., the bar
was not deformed, but intrinsically has an imperfection.

3.1. Monotonic steel model

Tensile response is modeled as suggested by Mander et al. [8].
The model considers an elasto-plastic behavior with initial stiff-
ness Es, and a yield stress and strain point given by (ry, ey). Strain
hardening starts from an strain value of esh and ends at the point
(em, rm) where the peak stress is reached. A linear degradation is
defined from the peak stress point to fracture.

Commonly, steel compression behavior is represented by the
same curve as for the steel in tension. However, the use of engi-
neering coordinates (referred to initial length and cross-section)
gives no reliable values due to important variation of the reinforce-
ment cross-section and length at large drift values. The use of true
coordinates, adopted in this work, allows considering the fact that
the area changes as the load is applied. The response in compres-
sion taken as identical to tension in true coordinates provides a
good correlation until reaching the buckling load [9].

3.2. Cyclic steel model

The steel cyclic model is based on a simple phenomenological
formulation that requires unloading and reloading rules. In princi-
ple, the curves for the tensile and compressive monotonic steel are
maintained, but outside the linear range the unloading point con-
tinues towards a point (end) with the same strain as in the previ-
ous reloading point, according to curve A (Fig. 5), which represents
the Bauschinger effect. Curve A can be used as a transition point
between unloading/reloading points, which has the form,

rs ¼ r0 þ E0ðes � e0Þ Q þ ð1� QÞ 1þ Eo
es � e0

rf � r0

� �� �R
 !1=R,0

@
1
A
ð5Þ

where R is the parameter representing the Bauschinger effect (the
smaller the value of R, the smoother the transition), E0 is the initial
elastic reloading/unloading module, e0 and r0 are strain and stress
at the beginning of curve A, and ef and rf are the strain and stress
at the end of curve A. Q is a shape parameter. The values of E0

and R suggested by Lacaze [7] provide good cyclic predictions of
the model.

The implementation for the first cycle involves knowing the end
point of curve A, which was obtained originally by first shifting the
steel envelope stress–strain curve to a point where elastic unload-
ing results in zero stress, and then estimating the stress in the
shifted curve at zero strain. However, Lacaze compared results ob-
tained with this modeling approach and test results for the first cy-
cle, and improved the response by taking the final point strain
value equal (absolute) to the maximum attained in the opposite
direction. For subsequent cycles the start and end points corre-
spond to points (strains) at the previous unloading and reloading
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points. After reaching the end of curve A, it returns to the shifted
monotonic envelope. For internal cycles the end point corresponds
to the start of the outer loop, rather than the inside loop (Fig. 5).

The need of a cyclic material lays in the fact that under mono-
tonic compression of a bar and before instability clearly affects the
response, all fibers are under compression. At larger compressive
strains and considering that instability results in buckling the most
compressive fiber goes further in compression (inside of concave
zone of buckling), whereas other fibers towards the other end of
the section would revert the strain direction resulting in unloading.
In the case of cyclic analysis with buckling the entire material cyc-
lic definition is required.

4. Concentrated plasticity model – global buckling

Global buckling is introduced in the model (local buckling) for
concentrated plasticity by Massone and Moroder [2], and modified
by Lacaze [7]. Global buckling incorporates the effect of stirrups
along the buckled shape of the longitudinal reinforcement, as well
as the impact of concrete expansion. Thus, overall response of lon-
gitudinal reinforcement in columns or wall boundary elements can
be studied with the formulation.

The buckling length, L, is associated to discrete buckling modes,
where an index i is used to identify how many spaces between stir-
rups cover the buckled shape of the longitudinal bar. Thus, mode i
correspond to a buckling length Lmode i = i � s, with s the distance be-
tween stirrups, so that local buckling of reinforcement is repre-
sented by mode 1, and, in general, the total number of stirrups
considered for the analysis is given by N = i + 1. For modes i > 1,
the model requires, considering that at early stages of compressive
strains concrete cover spalls, that the constraining effect from the
stirrups is incorporated.

Previous researches have considered (e.g. [1,10]) that the lateral
expansion of concrete is enough to cause the stirrups large strains,
such that they are in the hardening region of the steel stress–strain
response once buckling of longitudinal reinforcement occurs. On
the other hand, Dhakal and Maekawa [6] mentioned that this
expansion is not enough to take the stirrup beyond the elastic
range; however, their model approach considered that the expan-
sion of concrete consumes almost all the elastic deformation of the
steel. Thus, the concrete presence should not be neglected. In fact,
ignoring the concrete expansion effect practically leads to only lo-
(a) Initial condition (b) Deformed s
without buckli

Fig. 6. Global buckling model scheme – (a) Initial condition, (b) Deform
cal buckling, that is, between 2 consecutive stirrups, given their
high stiffness and strength. Thus, for stirrups within the buckling
length of the longitudinal reinforcement, two sources of deforma-
tion are considered: first, the lateral expansion undergone by the
confined concrete, and second, the additional tensile strain by lat-
eral displacement of the longitudinal bar once buckling starts.

The bar that is susceptible of buckling is initially in contact
with the concrete core, but once buckling starts lateral confine-
ment is reduced facilitating the expansion of the concrete inside
the buckled length of the bar, so that, contact between reinforce-
ment and concrete can be maintained. Thus, the forces are trans-
mitted from the stirrups to the concrete core, as well as to
internal stresses in the longitudinal bar. In order to introduce
the force in the stirrups, initially, an intermediate stage would
be considered, where for an axial imposed strain, �e, the bar does
not buckle, Fig. 6b, and strains in the stirrups are only due to the
lateral expansion of the concrete core, ect, considered identical
for all stirrups. Under these conditions, the stirrups forces only
due to the concrete expansion, Fh

j , are transmitted completely
to the concrete core.

When considering the longitudinal reinforcement buckling an
additional strain is introduced into each stirrup, ewj, which is asso-
ciated to a force increment, DFj, as shown in Fig. 6c. These addi-
tional forces are balanced by internal moments at the hinges,
regardless of an increase in the concrete core within the buckled
bar length. The internal moment of a hinge, M, is identical for all
hinges, because they share the same rotation, balancing the addi-
tional forces in the stirrups, DFj, and the moment generated by
the eccentricity of the axial force, P � (e + w). Then, the analysis is
reduced to capture the effect of incremental forces on the bar,
and given the symmetry only half of the total bar length is consid-
ered, as shown in Fig. 7. Thus, the problem considers the stirrups 1
to N0, where N0 depends on whether N (number of stirrups within
the buckled bar length) is even (N0 = N/2, see Fig. 7a) or odd
(N0 = (N + 1)/2, see Fig. 7b), where in the case of an odd value of
N, half of the force Fh

N0 should be considered. It is considered that
the forces DFj act perpendicularly to the main direction of rein-
forcement, i.e., the stirrups only work in tension, neglecting other
actions. Then the equilibrium equation for the hinges in the middle
of the bar is given by Eq. (6), where xj is the vertical distance of the
force DFj relative to the extreme hinge, which in the case of Fig. 7
corresponds to the upper hinge.
tate
ng

(c) Deformed state
with buckling

ed state without buckling, and (c) Deformed state with buckling.
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P � ðeþwÞ þ
XN0
j¼2

DFj � xj � 2 �M ¼ 0 ð6Þ

When the upper end moves the bar sections incline, then the dis-
tance xj varies as displacement of the upper end, v, increases. It is
assumed that the stirrup does not slide with respect to the longitu-
dinal bar and therefore the force exerted by each stirrup is firmly
joined to a fixed point of the model. Thus, xj depends on the section
of the bar where the stirrup is located. If x0

j is called the xj distance
at the beginning of the analysis, at any other instant xj is given by
Eq. (7). For small deformations it can be assumed that xj ¼ x0

j .

xj ¼
x0

j �
cosðheþhpÞ

cosðheÞ if 0 < x0
j <

L
2�

lp
2

x0
j þ L

2� lp
	 
 cosðheþhpÞ

cosðheÞ � 1
� �

if L
2�

lp
2 � x0

j

8<
: ð7Þ

Similarly, the transverse displacement (yj) due to buckling also de-
pends on the zone of the longitudinal bar where the stirrup is lo-
cated, as shown in Eq. (8). This displacement is added to the
initial imperfection e and it is related to the strain imposed to the
stirrup. In Eqs. (7) and (8), L is the initial length of the bar, he and
(a) Even N value

Fig. 7. Free body diagram of global buckling (half

Fig. 8. Location of transversal reinforcement (xj) and deformation (yj)
hp are rotations due to the initial imperfection e and the additional
displacement w described in the original model (local buckling) and
lp corresponds to the plastic hinge length. Fig. 8 presents a scheme
of xj; x0

j and yi., which helps understanding the formulation of Eqs.
(7) and (8). In the figure, the stirrups are considered that they do
not slide over the longitudinal bar and the portion of the longitudi-
nal bar between hinges does not shorten for simplification. This im-
plies that xj and x0

j share a common side along the longitudinal bar.
Similarly, assuming that common shared side along the bar helps
determining the additional transversal deformation from stirrups
(beyond the imperfection) yj.

yj ¼
x0

j �
sinðheþhpÞ

cosðheÞ � x0
j � tanðheÞ if 0< x0

j <
L
2�

lp
2

L
2� lp
	 
 sinðheþhpÞ

cosðheÞ �
L
2� lp
	 


tanðheÞ if L
2�

lp
2 6 x0

j

8<
: ð8Þ
4.1. Forces in stirrups and cross-ties

As stated earlier, in order to correctly characterize the response
of stirrups and cross-ties the concrete core expansion, as well as
(b) Odd N value

bar) – (a) Even N value, and (b) Odd N value.

– (a) Initial state (with imperfection), and (b) buckling included.
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the additional deformation that comes from the buckled bar should
be considered. The total force on each stirrup, Fj, is determined by
the total strain, which considers both the deformation due to the
concrete lateral expansion, ect, and the lateral deformation that im-
poses the buckled bar, ewj. Two steel models are considered to char-
acterize the steel response of stirrups to better capture the
available experimental data [8,11]. In both cases, after reaching
the maximum stress, the capacity remains constant.

The force DFj corresponds to the additional force above the one
introduced by concrete expansion, Fh

j , which is described as
DFj ¼ Fj � Fh

j , as shown in Fig. 9.

4.1.1. Concrete core expansion, ect

The strain ect is dependent of the concrete axial strain, which in
this case is taken as the average axial strain �e within the buckling
length. This strain can be determined with the Eq. (9) for any aver-
age axial strain �e [10],

ect ¼ �m0�eþ ð1� 2m0Þ
keqsry

Ec
� ecc

ð1� 2m0Þ
2

�e� 0:00015=m0

ecc � 0:00015=m0

� �2

ð9Þ

where ecc is the confined concrete compressive strain at the maxi-
mum stress, qs is the amount of volumetric transverse reinforce-
Fig. 9. Force distribution in stirrups.

Fig. 10. Calibration of kv. Experimental data reported by Bayrak and Sheikh
ment, Ec is the concrete elastic modulus, f 0c is the unconfined
compressive strength of concrete and euc the correspondent strain,
v0 corresponds to the initial Poisson’s ratio, which is taken as 0.2
[1,10]. The effectiveness factor of confinement ke is determined as
in Mander et al. [12]. This equation is based on the behavior of con-
crete with a constant lateral pressure, yielding to uniform strain
distribution without showing the reduction of strain expected at
the stirrup location.In order to represent the impact of stirrups in
the local expansion at their location, a calibration factor kv is intro-
duced by weighting the volumetric expansion component of the
original expression. Besides, for simplicity, the term associated di-
rectly to confinement (small contribution) is removed given that
confinement is already taking into account. Thus, the expression re-
duces to,

ect ¼ �m0�e� kvecc
ð1� 2m0Þ

2
�e� 0:00015=m0

ecc � 0:00015=m0

� �2

ð10Þ

Factor kv that multiplies the volumetric expansion component of Eq.
(10) is calibrated according to experimental measurements to ad-
just the measured strains in stirrups. For this purpose, the data pre-
sented by Bayrak and Sheikh [13] for tests carried out elsewhere
[14] is used. Least squares method is used to calibrate kv to the data
obtained experimentally as shown in Fig. 10. As an example, spec-
imen 4A3-7 shows the best correlation with kv = 0.3 (Fig. 10b). All
other specimens show a similar response, with an average best fit
parameter of kv = 0.33 (Fig. 10a), which is used for further analysis.

4.1.2. Stirrup strain due to longitudinal bar buckling, ewj

Strains or stresses in stirrups are considered, in part, as a resul-
tant from the displacements induced by bar buckling, acting in
each contact point in the opposite direction to buckling (outward).
Wall boundary elements with little or no confinement would usu-
ally result in buckling of the longitudinal reinforcement moving
away from the wall face for both layers of reinforcement [15,16].
The same behavior would be expected in columns under pure axial
load (Fig. 11). In the case of columns under axial load and bending,
it is more probable to have buckling in the most compressed zone.
Corner bars are considered to buckle in the main direction, which
coincide with the lower stirrup stiffness. Thus, the stirrup strain is
given by,
[13] – (a) All considered test, and (b) calibration of specimen 4A3-7.



Fig. 11. Direction of buckling.
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ewj ¼ yj=l0t ð11Þ

where l0t is the effective length of the stirrup, which can be regarded
as the total length (lt) or half the length (lt/2) depending if the col-
umn is in bending or under pure axial compression, respectively. In
case of pure axial compression, it is supposed that there is simulta-
neity and symmetry of buckling (2 opposite sides of the column),
such that each longitudinal reinforcement bar acts on a length equal
to half the total length of the stirrup. In case of bending, the bars
buckle in the region of highest compression of the element section
(one side only of the column), acting over the total length of the
stirrup, as the bars of the other end being in tension or lower level
of compression will not suffer buckling.

4.2. Methodology – buckling of group bars

The analysis of elements such as walls or columns with longitu-
dinal reinforcement prone to buckle, requires defining the number
bars that might buckle on one side of the section (n1), and the num-
ber of legs of stirrups providing support against buckling in that
direction (nt), as shown in Fig. 3. The original equilibrium equation
(Eq. (6)) for bare bar under global buckling is modified to account
for all reinforcement involved in group bar global buckling (longi-
tudinal bars and stirrups) by weighting the corresponding forces
(or moment) by nl and nt, depending on whether they correspond
to longitudinal or transverse reinforcement, respectively, similarly
as used by Dhakal and Maekawa [6], yielding:
(a)

Fig. 12. Critical buckling length selection – (a) minimum peak cap
nl � P � ðeþwÞ þ nt �
XN0
j¼2

DFj � xj � nl � 2 �M ¼ 0 ð12Þ

This methodology attempts to capture an average behavior of all
bars, rather than an individual behavior, so that it makes no distinc-
tion between bars directly constrained by a stirrup bar or an inter-
mediate bar.

4.2.1. Critical buckling length selection
The analysis considers a known buckling length, L, however, in

reality this length depends on the characteristics of the longitudi-
nal reinforcement and the restriction presented by the stirrups to
buckling. Thus, the buckling length can cover from one spacing be-
tween stirrups (local buckling), s, to a length where several stirrups
are involved (L/s > 1). It is common to find local buckling when
there is a very high axial stiffness of the stirrups compared with
the flexural stiffness of the longitudinal reinforcement, as is the
case of very thick stirrups or very slender longitudinal reinforce-
ment because of a large separation of stirrups or a small longitudi-
nal reinforcement diameter.

As a selection criterion, it is considered that the buckling mode
that yields the lowest peak capacity is the most probably mode,
which corresponds to a simple condition consistent with the crite-
rion used by other researchers to estimate the critical buckling
load (e.g., [1,6,10]). Due to the shape of the overall stress–strain
curves there are two types of behavior: the most common is that
the maximum is at a value higher than the yield stress (e.g.,
Fig. 12a, L/s = 3 selected) and another where the differentiation of
the curves occurs soon after a drop past yielding (e.g., Fig. 12b, L/
s = 4 selected), in which case the second peak is considered for
the analysis. This is because the major transverse displacement
caused by buckling occurs after exceeding the first maximum.
Although, this methodology requires this additional effort, its re-
wards lies in the fact that the stress–strain curve can also be ob-
tained and could be used to model wall or column response.

Analyzing the behavior of the bar for several buckling modes (L/
s = 1, 2, 3, etc.), in some configurations, might involve analyzing the
buckling of a bar with slenderness (L/db) less than 4 due to the rel-
atively short distance between stirrups. The original model consid-
ers that the plastic hinge length is the diameter of the
reinforcement (db). Thus, to avoid the overlap of the 4 plastic
hinges, their length is limited to L/4.
(b)

acity (most cases), and (b) minimum peak post-yield capacity.



Table 2
Main test parameters and model predictions.

Autor ID Long. Reinf. Transv. Reinf. Concrete L/S

nl ry (MPa) rm (MPa) nt ry (MPa) f0c (MPa) Test D&M Model

Kato et al. [17] Series A 4D16D10S93 2 342 497 2 352 28 1 1 1
4D13D10S93 2 343 495 2 352 28 1 1 1
4D10D10S93 2 379 523 2 352 28 1 1 1
4D16D6S70 2 342 497 2 348 24.9 3 2 2
4D13D6S70 2 343 495 2 348 24.9 2 2 2
4D10D6S70 2 379 523 2 348 24.9 1 1 1
4D16D6S47 2 342 497 2 348 24.6 4 4 3
4D13D6S47 2 343 495 2 348 24.6 3 2 2
4D10D6S47 2 379 523 2 348 24.6 3 2 1
4D16D6S35 2 342 497 2 348 23.9 5 5 3
4D13D6S35 2 343 495 2 348 23.9 4 4 3
4D10D6S35 2 379 523 2 348 23.9 2 2 2
4D16D4S47 2 342 497 2 583 25.5 5 5 4
4D13D4S47 2 343 495 2 583 25.5 4 4 4
4D10D4S47 2 379 523 2 583 25.5 3 2 2
4D16D4S35 2 342 497 2 583 25.1 6 5 5
4D13D4S35 2 343 495 2 583 25.1 5 5 5
4D10D4S35 2 379 523 2 583 25.1 3 3 3
4D16D4S23 2 342 497 2 583 22 7 7 8
4D13D4S23 2 343 495 2 583 22 5 5 5
4D10D4S23 2 379 523 2 583 22 3 5 5

Kato et al. [17] Series B 4D16HD10S140 2 739 847 2 352 64 1 1 1
4D16LD6S70 2 343 497 2 761 66 2 2 3
4D13LD6S70 2 336 482 2 761 66 2 2 2
4D13LD6S47 2 336 482 2 761 64 3 2 3
4D16HD6S35 2 739 847 2 761 66 4 5 3
4D16LD6S35 2 343 497 2 761 66 4 5 4
4D13LD6S35 2 336 482 2 761 66 3 4 3
4D10LD6S35 2 379 523 2 761 66 2 2 3

(b)
Ooya and Kato [20] 12D10D6S70 4 351 479 2 363 27.1 1 1* 1

12D10D6S70I 4 351 479 4 363 27.1 1 1* 1
12D13D6S47 4 336 482 2 363 27.5 4 4* 3
12D13D6S47I 4 336 482 4 363 27.5 4 3* 3
12D10D6S47 4 351 479 2 363 27.5 4 2* 2
12D10D6S47I 4 351 479 4 363 27.5 2 2* 1
12D10D4S47 4 351 479 2 671 25.3 5 4* 3
12D10D4S47I 4 351 479 4 671 25.3 3 2* 3
12D13D4S35 4 336 482 2 671 27 6 5* 5
12D13D4S35I 4 336 482 4 671 27 5 5* 3
12D10D4S35 4 351 479 2 671 27 4 5* 3
12D10D4S35I 4 351 479 4 671 27 4 4* 3

Masamoto et al. [19] 8D10D6S70 3 379 523 2 392 27.1 1 1* 1
8D10D6S70T 3 379 523 3 392 27.1 1 1* 1
8D13D6S47 3 336 482 2 392 27.5 4 3* 3
8D13D6S47T 3 336 482 3 392 27.5 3 2* 3
8D10D6S47 3 379 523 2 392 27.5 3 2* 2
8D10D6S47T 3 379 523 3 392 27.5 3 2* 1
8D10D4S47 3 379 523 2 671 25.3 4 3* 3
8D10D4S47T 3 379 523 3 671 25.3 3 2* 3
8D13D4S35 3 336 482 2 671 27 6 5* 5
8D13D4S35T 3 336 482 3 671 27 6 5* 3
8D10D4S35 3 379 523 2 671 27 5 4* 3
8D10D4S35T 3 379 523 3 671 27 4 4* 3

Kikukawa et al. [18] 8D13LD6S70 3 336 481 2 761 68.8 3 2* 2
8D13LD6S70T 3 336 481 3 761 68.8 2 2* 1
8D13LD6S47 3 336 481 2 761 68.8 4 3* 3
8D13LD6S47T 3 336 481 3 761 68.8 3 3* 3
8D13LD4S70 3 336 481 2 704 68.8 2 3* 2
8D13LD4S70T 3 336 481 3 704 68.8 3 2* 3
8D13LD4S47 3 336 481 2 704 70 4 5* 3
8D13LD4S47T 3 336 481 3 704 70 4 4* 3

* Estimate based on Dhakal and Maekawa [6].

492 L.M. Massone, E.E. López / Engineering Structures 59 (2014) 484–494
5. Model results for buckling of group bars

Several tests have been carried out to evaluate global and lo-
cal buckling for columns with concentric axial load (e.g., [17–
20]). The relevant material data and the lower observed buckling
mode are shown in Table 2. The columns had an square section
of 150 mm side with a core confined dimension estimated as
l = 130 mm and a total length of L = 530 mm. The spacing of
the stirrups ranged from 1.5db to 11db, with most test in the
range 4db to 6db. The rebar yield stress for the specimens consid-
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ered for comparison ranged from 336 to 761 MPa, whereas the
concrete strength ranged from 22 to 70 MPa for a total of 61
tests. The material information is based on ry and rm, as well
as the stress–strain response in tension for most cases, which
are available in the literature. Few cases presented incomplete
information, for which common parameter values were selected.
The identification of the tests is as follows: ðno

1ÞDðn
o
2ÞDðn

o
3ÞSðn

o
4Þ,

where ðno
1Þ represents the total amount of longitudinal rebar,

ðno
2Þ the diameter of longitudinal reinforcement, ðno

3Þ diameter
of stirrups, and ðno

4Þ the separation of transverse reinforcement.
The ending identification l or T reveals the presence of stirrup
bars in intermediate bars in the case of 8 and longitudinal rein-
forcing bars 12, respectively. The high steel reinforcement
(D13H-1) was not considered in the analysis, given the large dif-
ference observed for both models (13 cases).

A comparison between the buckling mode obtained with the
proposed model for global buckling (Model), the model results
by Dhakal and Maekawa (DM) and experimental results [17–
20] is made. The results obtained for the models are shown in
Table 2 and in Fig. 13a. Fig. 13a shows the correlation between
the observed and predicted buckling mode for all cases. Perfect
correlation would results in a diagonal representation. The num-
bers within the circles (and size – the bigger the size, the larger
number of cases) correspond to the number of occurrence cases.
The error values between the experimental observation and the
buckling modes obtained with the model are shown in
Fig. 13b. The error, in this case, is calculated as
ErrorMode ¼ ModeModel �ModeTest . The model yields global buckling
modes lower than those observed experimentally with slightly
higher errors (avg = �0.59, std = 0.88) than those obtained by
applying the methodology by Dhakal and Maekawa (see Table 2),
which gives an average error of -0.26 and standard deviation of
0.73. Most cases show an error of 0 or �1, indicating that the
model fails to predict the number of stirrups within the buckled
shape commonly in 0 or 1 (less than observed) unit. Although
the differences, the model described in this study also allows
defining the overall stress versus strain curve for the buckled
bars which can be used in sectional or elements, such as columns
or walls, nonlinear analysis.

Fig. 14 shows the overall response of column specimen
4D16HD6S35 (Fig. 14a) tested by Kato et al. [17], and specimens
12D10D6S47 (Fig. 14b) and 12D10D6S47I (Fig. 14c) tested by Ooya
and Kato [20]. All columns are 150 by 150 mm on side and are rein-
forced with either 4/16 mm high strength longitudinal bars
(4D16HD6S35) or 12/10 mm normal strength longitudinal bars
and with /6 mm stirrups at either 35 mm (4D16HD6S35) or
47 mm on center surrounding longitudinal bars (see Table 2). Spec-
imen 12D10D6S47I presented additional transversal reinforce-
(a)

Fig. 13. Model buckling mode predictions – (a) L/s
ment tying all longitudinal bars. In order to determine the
contribution of the longitudinal reinforcement to the overall re-
sponse other identical columns were tested under the same condi-
tions and configurations, except for the amount of longitudinal
reinforcement. Specimens 4D16HD6S35 and 12D10D6S47 were
compared with specimens with 4/4 mm bars, whereas specimen
12D10D6S47I was compared with a specimen with 12/4 mm bars
in order to provide the same amount of transversal reinforcement,
reducing the amount longitudinal reinforcement from about 4% to
0.2% in the first two cases, and reducing it to only 0.7% in the latest
case. Although, the latest case correspond to a no significant rein-
forcement reduction, the response of a column with / 4 mm re-
sults in a more pronounce degradation due to buckling given the
larger stirrup versus longitudinal bar-diameter ratio. The longitu-
dinal reinforcement contribution was determined by subtraction
between the force applied to column under analysis with the force
applied to the column with reduced longitudinal reinforcement.
For comparison purposes the overall response has been corrected
to the damaged length, determined by visual inspection, in order
to compare with the model results. The strain within the damage
length was determined as the displacement in the measurement
length subtracted by the displacement determined with strain
gauges outside the damaged length [17,20]. All test results indicate
that the longitudinal bar buckles over 4 stirrups, i.e., L/s = 4 for
specimen 4D16HD6S35, L/s = 4 for specimen 12D10D6S47 and L/
s = 2 for specimen 12D10D6S47I. The model response is shown
for cases with different buckling critical length (e.g., L/s = 1, 3, 4,
6), where L/s = 3 (specimen 4D16HD6S35), L/s = 2 (specimen
12D10D6S47) and L/s = 1 (specimen 12D10D6S47I) correspond to
the case with the smallest peak capacity for each specimen, and
therefore are selected as the characteristic lengths. Even though,
those differ with the experimental observations, the overall stress
versus strain response is quite similar to the experimental curve,
except for the initial stage (before peak). It is important to indicate
that other failure modes present strength that could be up to 30%
higher than the one for the selected mode. The peak stress values
for the selected model are about 10% lower than the experimental
values, with a strain at the peak stress well represented by the
model. Post-peak slope is important since it might be associated
to overall degradation, which is associated to localization of dam-
age as it has been seen in past earthquake [16]. The post-peak slope
is also well capture with the model, with the largest difference ob-
served for specimen 4D16HD6S35. In that case, the selected curve
by the model presents a peak capacity just 3% lower than the next
bucking length mode (L/s = 4), indicating that small changes in
material properties or column geometry might easily change the
selected curve to such case, which shows an improved post-peak
response.
(b)

test versus L/s model, and (b) error estimate.



Fig. 14. Stress versus strain response – (a) 4D16HD6S35 [17], (b) 12D10D6S47 [20], and (c) 12D10D6S47I [20].
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6. Summary and conclusions

The objective of this study is to represent the behavior of the
longitudinal reinforcement in monotonic compression buckling
considering the instability of the bar at a length that exceeds the
distance between the stirrups and introducing the effect of trans-
verse reinforcement in the analysis. For these purposes the model
by Massone and Moroder [2] for local buckling of reinforcement,
based on 4 plastic hinges, is adjusted to introduce the forces asso-
ciated with transverse reinforcement within the buckling length
and the effect of concrete expansion. Forces generated on stirrups
beyond the action of the concrete expansion are balanced with the
internal moment in the buckled bar.

For the analysis of group bar buckling in an element, an aver-
age behavior of the group bar is established based on equilib-
rium that includes all the stirrups acting at a certain height of
the bar with identical longitudinal elongation and with all longi-
tudinal bars under the same axial force (same bar diameter is
considered), regardless of their location in the element cross sec-
tion. This can be justified because the experimental evidence
shows that differences between the buckling mode of bars di-
rectly constrained by a stirrups and unconstrained bars present
is small, usually not exceeding the stirrup spacing. The selection
criterion was taken as the buckling mode that yields the lowest
maximum stress.

In terms of the buckling mode obtained with the model,
expressing it in the amount of stirrup spacing L/s, the results
are relatively good yielding an error comparable to the model
by Dhakal and Maekawa [6], with an average error of �0.59
(about half a stirrup spacing) which is a good value, considering
that the test database used has buckling modes ranging from 1
to 7. The methodology used for determining the buckling mode
involves generating curves for several possible cases, thus, alter-
natively, the formulation by Dhakal and Maekawa could be used
to select the buckling mode. The model described in this study,
differently than most previous works, besides of predicting the
buckling mode, provides the stress–strain curve for the buckled
bars (r–e) which can be used in sectional or element analysis.
Analysis of three column specimens from the literature indicates
that even though the buckling mode might not be perfectly cap-
tured, the overall stress versus strain response can be obtained
with a reasonable accuracy. Peak stress is obtained with an error
about 10% compared to the test result for a strain well repre-
sented by the model. The post-peak slope also gives a good esti-
mate for the degradation stage.
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