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Abstract In most multiple-point simulation algorithms, all statistical features are
provided by one or several training images (TI) that serve as a substitute for a ran-
dom field model. However, because in practice the TI is always of finite size, the
stochastic nature of multiple-point simulation is questionable. This issue is addressed
by considering the case of a sequential simulation algorithm applied to a binary TI
that is a genuine realization of an underlying random field. At each step, the algo-
rithm uses templates containing the current target point as well as all previously sim-
ulated points. The simulation is validated by checking that all statistical features of
the random field (supported by the simulation domain) are retrieved as an average
over a large number of outcomes. The results are as follows. It is demonstrated that
multiple-point simulation performs well whenever the TI is a complete (infinitely
large) realization of a stationary, ergodic random field. As soon as the TI is restricted
to a limited domain, the statistical features cannot be obtained exactly, but integral
range techniques make it possible to predict how much the TI should be extended
to approximate them up to a prespecified precision. Moreover, one can take advan-
tage of extending the TI to reduce the number of disruptions in the execution of the
algorithm, which arise when no conditioning template can be found in the TI.
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1 Introduction

Initiated by Guardiano and Srivastava (1993), multiple-point statistics (MPS) have
known a surge of interest once that Strebelle (2002) discovered efficient ways to
implement them for geostatistical simulation. Nowadays, MPS are the object of ex-
tensive developments, especially in hydrology and reservoir engineering, where the
challenges are to deal with continuous variables (Mariethoz et al. 2010), to account
for nonstationarities (Strebelle and Zhang 2005) and to accommodate various types
of constraints (Hu and Chugunova 2008; Renard et al. 2011). The reasons that explain
the success of MPS techniques include their generality, their capability to reproduce
complicated shapes as well as their conceptual simplicity. Owing to the experience
gained over the last years, the status of the training image (TI) that is generally used
to compute MPS is worthwhile being revisited. As mentioned by Ortiz (2008), its
link with random fields has not been properly addressed. This is what is investigated
in this paper. To this end, a TI that is a genuine realization of a stationary, ergodic ran-
dom field (SERF) is considered. The objective is to check whether or not the multiple-
point techniques can produce outcomes that are statistically acceptable as realizations
of the SERF. For the sake of simplicity, the SERF is assumed binary (taking values
in {0,1}). Discrete SERFs (taking a finite set of values) could be treated similarly.
Two different cases will be successively considered, depending on whether the TI is
defined in the whole space or in a limited domain. A note on terminology: throughout
the paper, the word “outcomes” refers to the simulations produced by multiple-point
algorithms, whereas the word “realizations” refers to those constructed from random
field models.

2 Basic Concepts and Notation

2.1 Translation, Dilation, and Erosion Operators

Throughout this paper, the workspace is Z
2 and its origin is denoted by o. Let h be

a point of Z2 and X be a subset of Z2. Then the translation of X with respect to
−→
oh

is denoted by τhX. Let K be another subset of Z2. The dilation and the erosion of X

by K are respectively defined as

δKX = {
h ∈ Z

2 : τhK ∩ X �= ∅}
εKX = {

h ∈ Z
2 : τhK ⊂ X

}
.

2.2 Level Set, Template, and Hit-or-Miss Transform

A binary image I with support D(I) ⊂ Z
2 can be characterized by its level sets

S0(I ) = {
x ∈ D(I) : I (x) = 0

}
S1(I ) = {

x ∈ D(I) : I (x) = 1
}
.

Let T = (K0,K1) be an ordered pair of subsets of Z2, which will be called a template.
The hit-or-miss transform of I by T is the set of points where the pair (K0,K1) fits
the values of I (Serra 1982) (Fig. 1)

ηI
T = {

x ∈ Z
2 : τxK0 ⊂ S0(I ), τxK1 ⊂ S1(I )

}
.
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Fig. 1 Example of a hit-or-miss transform: the original image I with levels sets painted in white and gray
(left), a four-point template T centered at the origin (middle), and the result ηI

T
(set of points painted in

green) (right)

2.3 Random Fields, Stationarity, and Ergodicity

Consider now a binary random field Z defined on Z
2. Its statistical properties are

characterized by the spatial distribution of its level sets, that is the set of probabilities
of the form Prob{K0 ⊂ S0(Z),K1 ⊂ S1(Z)} when K0 and K1 are finite subsets of
Z

2. Z is stationary if its spatial distribution is invariant under translation

∀h ∈ Z
2 Prob

{
τhK0 ⊂ S0(Z), τhK1 ⊂ S1(Z)

} = Prob
{
K0 ⊂ S0(Z),K1 ⊂ S1(Z)

}
.

When Z is stationary, Z is also ergodic if its spatial distribution can be retrieved from
any of its realizations, say z (Matheron 1989; Chilès and Delfiner 2012)

Prob
{
K0 ⊂ S0(Z),K1 ⊂ S1(Z)

} = lim
λ→∞

#[ηz
T ∩ Sq(λ)]
#Sq(λ)

, (1)

where T = (K0,K1), Sq(λ) is the square of side length 2λ + 1 centered at o, and
# indicates cardinality. For example, a random field with no spatial structure, made
of independent and identically distributed Bernoulli random variables, is stationary
and ergodic, by virtue of the strong law of large numbers. In contrast, a random field
made of the same Bernoulli random variable at every point of Z

2 is not ergodic:
Indeed, the values observed in one realization are all the same, providing a marginal
distribution with zero variance, whereas the true underlying distribution is a Bernoulli
distribution.

3 Multiple-Point Simulation with an Infinite TI

3.1 Nonconditional Algorithm

Let I be a TI that is an entire realization over Z2 of a binary SERF Z. The following
algorithm sequentially simulates the level sets S0 and S1 in a finite domain D. In
this algorithm, U (A) and U denote the uniform distribution over A and over ]0,1[,
respectively.
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Algorithm 1

(i) set S0 = S1 = ø;
(ii) generate x ∼ U (D\(S0 ∪ S1)), and put T0 = (S0 ∪ {x}, S1), T1 = (S0, S1 ∪ {x});

(iii) compute

p = lim
λ→∞

#[ηI
T1

∩ Sq(λ)]
#[ηI

T0
∩ Sq(λ)] + #[ηI

T1
∩ Sq(λ)] ;

(iv) generate u ∼ U , and put S1 = S1 ∪ {x} if u < p and S0 = S0 ∪ {x} otherwise;
(v) if S0 ∪ S1 �= D, then go to (ii);

(vi) stop.

Algorithm 1 is nothing but a standard sequential algorithm, except that p is com-
puted from the TI instead of being assigned the value Prob{Z(x) = 1 |Z(S0) = 0,

Z(S1) = 1} calculated from the random field model. One must ensure that p takes
the correct value and is not of the form 0/0 at any time. The proof is deferred to
Appendix A.

3.2 Conditional Algorithm

Let now C0 and C1 be conditioning data points for both level sets. A natural idea
is to run the nonconditional algorithm by assuming that the conditioning data points
correspond to already simulated values, which boils down to replacing S0 = S1 = ø
by S0 = C0 and S1 = C1 at step (i) of Algorithm 1. This effectively works, provided
that Prob{Z(C0) = 0,Z(C1) = 1} > 0. In the opposite case, the conditioning infor-
mation is not compatible with the random field model from which the TI is derived.
The algorithm stops because no data template can be found in the TI.

4 Multiple-Point Simulation with a Finite TI

In this section, the TI considered is a realization of a SERF that is limited to a finite
domain D(I).

4.1 Nonconditional Algorithm

It does not look significantly different from that of the infinite case. The only differ-
ence is that the computation of the Bernoulli parameter p is simplified.

Algorithm 2

(i) set S0 = S1 = ø;
(ii) generate x ∼ U (D\(S0 ∪ S1)), and put T0 = (S0 ∪ {x}, S1), T1 = (S0, S1 ∪ {x});

(iii) compute

p = #ηI
T1

#ηI
T0

+ #ηI
T1

;
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(iv) generate u ∼ U , and put S1 = S1 ∪ {x} if u < p and S0 = S0 ∪ {x} otherwise;
(v) if S0 ∪ S1 �= D, then go to (ii);

(vi) stop.

This basically corresponds to the SNESIM algorithm (Strebelle 2002), except that
the neighboring data search is not restricted. At each stage, all the previously simu-
lated values are used as conditioning data, not only those that are close to the target
point x. As a matter of fact, the computation of parameter p at step (iii) is not even
required. Because ηI

T0
∩ ηI

T1
= ø, one has Prob{I (τy{x}) = 1} = p if y is a uniform

point of ηI
T0

∪ ηI
T1

. Accordingly, borrowing an idea from Mariethoz et al. (2010) (di-
rect sampling), Algorithm 2 can be rewritten as follows.

Algorithm 3

(i) set S0 = S1 = ø;
(ii) generate x ∼ U (D\(S0 ∪ S1)), and put T0 = (S0 ∪ {x}, S1), T1 = (S0, S1 ∪ {x});

(iii) generate y ∼ U (ηI
T0

∪ ηI
T1

);
(iv) put SI (τy{x}) = SI (τy{x}) ∪ {x};
(v) if S0 ∪ S1 �= D, then go to (ii);

(vi) stop.

Algorithm 3 shows that only the templates contained in the TI can be reproduced.
Consequently, the final outcome is nothing but a piece of the TI. An immediate im-
plication is that a TI can produce but a limited number of outcomes. This may be a
source of problems when many outcomes are required to derive confidence limits for
regional features. Another limitation of this algorithm is that ηI

T0
∪ηI

T1
may be empty,

in which case no uniform point y can be selected at step (iii), and no random value
can be assigned to the current point x. In such a case, the algorithm stops. Assuming
that the support of the TI is convex, this may happen when x does not belong to the
convex hull of S0 ∪ S1.

4.2 Conditional Algorithm

Exactly as for an infinite TI, Algorithms 2 and 3 can be made conditional by pre-
scribing the conditions Tc = (C0,C1) to be satisfied at the initial step. However, the
conditioning data may be incompatible with the TI, i.e ηI

Tc
= ø, even if they are com-

patible with the SERF model (i.e., Prob{Z(C0) = 0,Z(C1) = 1} > 0). Moreover, the
difficulties encountered in the nonconditional case remain. In particular, the number
of possible outcomes may be extremely limited, as they should correspond to pieces
of the TI that fit the conditioning data.

4.3 Reducing Templates

As mentioned above, step (iii) of Algorithms 2 and 3 fail if none of the templates T0
and T1 is found in the TI. To bypass this problem, one solution is to reduce these
templates, by discarding the points of S0 and S1 that lie outside a neighborhood
of the current point x or that contain less information (Strebelle 2002; Liu 2005;
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Eskandaridalvand and Srinivasan 2010). This amounts to replacing the conditional
distribution Prob{Z(x) = 1|Z(S0) = 0,Z(S1) = 1} by a distribution conditioned to
reduced sets Prob{Z(x) = 1|Z(S′

0) = 0,Z(S′
1) = 1}, where S′

0 ⊂ S0 and S′
1 ⊂ S1.

Putting S′′
0 = S0\S′

0 and S′′
1 = S1\S′

1, this implicitly entails the introduction of a con-
ditional independence relationship between Z(x) and Z(S′′

0 ∪ S′′
1 ) given Z(S′

0 ∪ S′
1).

One consequence is that the multivariate distribution of the outcome, Z(D), is likely
to differ from the distribution of the underlying SERF. A simple but illustrative ex-
ample is given by Holden (2006), who considers a one-dimensional training image
I such that the width of the level sets S0(I ) and S1(I ) is always strictly greater than
one unit. By using a restricted neighborhood in the simulation algorithm, he points
out a situation in which the outcomes exhibit level sets with a unit width, thus in
disagreement with the statistical features of the TI. Another example is provided by
Arpat (2005), who shows that the template reduction is likely to produce large-scale
artifacts in the final outcomes. The artifacts may be not negligible because each sim-
ulated data point is subsequently used as conditioning data for simulating the points
of D that have not been processed yet, so that the error made in the conditional distri-
bution at each point propagates to the next ones. Other solutions have been proposed
to circumvent these problems, such as accepting the simulation of templates that are
similar to those of the training image (according to a given similarity measure) or
resimulating points that provoke inconsistencies with the training image (Arpat 2005;
Strebelle and Remy 2005; Mariethoz et al. 2010). In the next sections, we will not
dwell on these ideas and rather turn to the following question: What is the area re-
quired for the TI to avoid, with a given confidence level, blockings in Algorithms 2
and 3?

5 TI Representativeness

To summarize the previous two sections, the sequential algorithm gives satisfactory
outcomes whenever applied to a TI that is an entire realization of a SERF and may fail
otherwise. This conclusion is a bit schematic because one can surmise that the larger
the TI, the more satisfactory the outcomes. The problem of course is to understand
what does one mean by “large.”

5.1 Integral Range

Let Z be a binary SERF on Z
2. For each template T = (K0,K1), an indicator random

field ZT can be defined as

ZT (x) = 1x∈ηZ
T
.

It is not difficult to show that ZT is also a binary SERF on Z
2. Its mean, variance,

and correlation function are respectively denoted by μT , σ 2
T and ρT . Let also V be a

finite subset of Z2, and ZT (V ) the average of ZT (x) when x scours V

ZT (V ) = 1

#V

∑

x∈V

ZT (x).



Math Geosci (2014) 46:133–147 139

Clearly, the expected value of ZT (V ) is μT , which is the probability of occurrence of
template T . Its variance can be written as (Matheron 1971; Chilès and Delfiner 2012)

Var
{
ZT (V )

} = σ 2
T

(#V )2

∑

h∈Z2

ρT (h) κV (h),

where κV (h) = #(V ∩ τhV ) is the geometric covariogram of V . Now, if the range of
ρT is small compared to the size of V , then one heuristically has κV (h) ≈ κV (o) =
#V wherever ρT (h) �≈ 0, which leads to

Var
{
ZT (V )

} ≈ σ 2
T

#V

∑

h∈Z2

ρT (h)

when #V is large. The quantity aT = ∑
h∈Z2 ρT (h) is called the integral range of

ρT (Matheron 1989). It is nonnegative (but possibly infinite) and depends on both the
template T and the spatial distribution of Z. For instance, if T = (ø,o), then ZT (x) =
Z(x) and aT exclusively depends on the correlation function of Z: it decreases when
its nugget effect increases or when its range decreases, that is, when Z has a poor
spatial structure. If 0 < aT < ∞, then it can be shown (Lantuéjoul 1991) that

Var
{
ZT (V )

} ≈ σ 2
T aT

#V
#V � aT .

As #V is large, the central limit theorem is applicable and states that the distribution
of ZT (V ) is approximatively normal with mean μT and variance σ 2

T aT /#V . From
this, one can assess, up to a prespecified precision, how large should V be to contain
at least n copies of template T . Starting from ZT (V ) ≈ μT + σT

√
aT /#V Y where Y

is a standard normal variable, one has

Prob
{
#V ZT (V ) ≥ n

} ≥ 1 − α iff Prob

{
Y ≥ n − #V μT

σT

√
#V aT

}
≥ 1 − α.

Denoting by yα the quantile of order α of Y , the latter condition will be satisfied as
soon as

n − #V μT

σT

√
#V aT

≤ yα,

that is

√
#V ≥

−σT
√

aT yα +
√

σ 2
T aT y2

α + 4μT n

2μT

.

Because σ 2
T = μT (1 − μT ) and yα < 0 in the standard case when α is less than 0.5,

this formula simplifies into

√
#V ≥

√
(1 − μT )aT y2

α + √
(1 − μT )aT y2

α + 4n

2
√

μT

. (2)
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This equation shows that the area required for the TI to ensure the occurrence of
a given template at least n times increases when the template becomes scarce (μT

small) or when the integral range associated with the template becomes extended (aT

large).

5.2 Example: The Stationary Boolean Model

This example has been chosen because of its conceptual simplicity and its mathe-
matical tractability. Intuitively speaking, the Boolean model is an aggregate of in-
dependent and possibly overlapping objects. This model was extensively studied by
Matheron (1975) in the continuous case. In the present paper, a discrete version is
proposed, which is more appropriate to our objectives. The construction of a discrete
stationary Boolean model rests on the following ingredients. Independent Poisson
random variables with parameter θ , (N(u),u ∈ Z

2), are attached to the points of
Z

2, along with independent copies (Au,n, u ∈ Z
2, n ≤ N(u)) of some random finite

reference set A of Z2. The indicator function of the Boolean model is defined as

Z(x) = max
u∈Z2

1x∈τuAu ,

where Au = ⋃
n≤N(u) Au,n if N(u) > 0 and ø otherwise. The statistical properties

of the Boolean model are completely specified by the Poisson parameter θ and the
distribution of the reference set A. The standard statistics of the Boolean model are its
mean μ = 1 − e−θκA(o), its variance σ 2 = e−θκA(o)[1 − e−θκA(o)] and its correlation
function ρ(h) = eθκA(h)−1

eθκA(o)−1
. Besides the Poisson parameter, all three involve nothing

but the geometric covariogram κA(h) of the reference set A. Now formulae become
more complicated when the template cardinality exceeds two points. For instance,
the probability that a subset K0 avoids all objects of the Boolean model is

Prob
{
Z(K0) = 0

} = exp
(−θ E{#δK0A}), (3)

where δK0A is the dilation of A by K0. More generally, for T = (K0,K1), the
inclusion-exclusion formula gives

μT = Prob
{
Z(K0) = 0,Z(K1) = 1

} =
∑

L⊂K1

(−1)#L exp
(−θ E{#δK0∪LA}). (4)

Equations (3) and (4) can be established by analogy with the continuous case (Lan-
tuéjoul 2002); a formal proof is given in Appendix B. To fix ideas, a Boolean model
of squares with fixed side length a = 11 is considered next (Fig. 2). The Poisson pa-
rameter is chosen to yield a 50 % proportion of zeros (explicitly θ = 0.0057). In a first
instance, templates supported by the four vertices of a square of side d (x1 = (0,0),
x2 = (d,0), x3 = (d, d) and x4 = (0, d)) are examined. Among the 24 = 16 possible
templates, only 6 are retained using symmetry arguments, namely (Fig. 3)

T1 = (
(x1,x2,x3,x4),ø

)
T2 = (

(x1,x2,x3),x4
)

T3 = (
(x1,x2), (x3,x4)

)

T4 = (
(x1,x3), (x2,x4)

)
T5 = (

x1, (x2,x3,x4)
)

T6 = (
ø, (x1,x2,x3,x4)

)

(5)
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Fig. 2 An example of Boolean
realization with a square
reference set

Fig. 3 Four-point templates T1
to T6. Black circles indicate zero
values, white circles one values

Fig. 4 Probabilities of
occurrence of the four-point
templates T1 to T6

Figure 4 shows their probabilities of occurrence {μTi
, i = 1, . . . ,6} when the intern-

ode distance d ranges from 0 to 20. For d = 0, the only possible templates are T1
and T6 that contain only zeros or ones, and μT1 = μT6 = 0.5. When d increases, the
chance that the four points belong to the same level set decreases. As all probabilities
are related by the formula μT1 + 4μT2 + 4μT3 + 2μT4 + 4μT5 + μT6 = 1, the other
probabilities increase. Note, however, that the growths are rather differentiated. For
instance, μT4 increases more slowly than μT3 . Although both T3 and T4 have two
points with a value of 1, those of T3 may belong to the same object whereas those
of T4 must belong to different objects, which is not so likely owing to the Boolean
parameters. When d exceeds the side length of the objects (i.e., d ≥ 11), the points
of all templates take independent values. As a result, the six templates have the same
probability of occurrence (0.54 = 0.0625).

Now, Fig. 4 says little about the spatial arrangements of a template T = (K0,K1)

in a Boolean realization. This issue is investigated by considering the SERF ZT as
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Fig. 5 Integral ranges
associated with the four-point
templates T1 to T6

in Sect. 5.1. Its mean μT is given by Eq. (4) and its variance σ 2
T is equal to μT (1 −

μT ) since ZT is a binary random field. Its correlation function satisfies σ 2
T ρT (h) =

μT (h) − μ2
T where T (h) is the template (K0 ∪ τhK0,K1 ∪ τhK1). Because ρT (h)

vanishes when h /∈ Sq(a + d), the integral range of ZT can be written

aT =
∑

h∈Sq(a+d)

ρT (h).

Figure 5 shows the integral ranges of the six templates T1, . . . , T6 as the internode
distance d varies from 0 to 20. It appears that the curves associated with T1 and T6
substantially differ, although their probability curves are similar. To explain what hap-
pens, put K = {x1,x2,x3,x4}. It is not difficult to establish that S1(ZT6) = εKS1(Z).
If the internode distance is small compared to the object size, then each connected
component of S1(Z) (that is a union of objects) remains nonempty by erosion
and produces a cluster of T6 templates. On the other hand, one can also establish
S1(ZT1) = εKS0(Z). Yet, there is no minimal size for the connected components of
S0(Z). They may vanish by erosion even at small distances. Accordingly, the T1-
templates are not arranged in clusters. They are more scattered than the T6-templates,
which results in a larger integral range. At large distances, all eroded connected com-
ponents may be empty and the clustering effect does not hold any longer: ZT1 and
ZT6 have the same correlation function ρ4(h), hence the same integral range.

One can derive the area of the TI required to contain at least n = 50 templates
with 95 % confidence, using Eq. (2) with yα = −1.64. The results are displayed
on Fig. 6. It can be seen that several templates, such as T4 with a unit internode
distance, require a very large TI (area greater than 4,500,000, corresponding to a TI
with a side length close to 200 times the range of the correlation function ρ along
the main axes) in order to be found numerous enough. Even if one decreases the
number n of template occurrences, the TI area is likely to remain large, insofar as it
mainly depends on the integral range associated with the template, as expressed by
the numerator of Eq. (2). One may argue that, in the model, template T4 with a unit
internode distance corresponds to a quite rare event (Fig. 4), as it happens only when
two objects are touching at one vertex. This event may, however, be relevant as it can
affect the connectivity of the simulated structure.
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Fig. 6 TI areas required to get
at least 50 copies of the
four-point templates T1 to T6
with 95 % confidence

To illustrate the effect of the template cardinality, let us now consider the template
T = (S0,ø), where S0 is a square grid with mesh d and with k × k points (k ≥ 1).
Figure 7 shows the probability of occurrence of T , the integral range of ρT and the
TI area required to contain at least 50 copies of T with 95 % confidence (Eq. (2)),
as a function of the grid mesh d , for k = 1,2, . . . ,12. In comparison with Fig. 6, the
TI area dramatically increases with the template cardinality and with the grid mesh.
This is mainly explained because the integral range (in the numerator of Eq. (2))
takes relatively high values (between 30 and 200), while the probability of occurrence
of the template (in the denominator of Eq. (2)) strongly decreases as the template
cardinality and the grid mesh increase.

As an example, for a 12×12 template with d = 2, the required TI area is 227,600,
corresponding to a TI with a side length of about 43 times the range of correlation of
the underlying SERF along the main axes, although the probability of occurrence of
the template is not negligible (0.002). These figures show that, even when working
with rather common templates, a quite large TI may be necessary to contain “suf-
ficiently enough” copies of these templates and to avoid the sequential simulation
algorithm to be trapped. For rare templates, the required TI area is out of practical
reach. For instance, the 12 × 12 template with d = 3 leads to an area of 18,416,000,
corresponding to a side length of almost 400 times the range of correlation along
the main axes; although quite low (0.000015), the probability of occurrence of this
template is much larger than the average probability of a 12 × 12 template (10−43).

6 Conclusions

The motivation of this paper was to determine whether or not a training image (TI)
could replace a random field model for geostatistical simulation. To this end, the
TI has been considered as a realization of an underlying random field, assumed sta-
tionary and ergodic, so that the statistics calculated over a large image should co-
incide with the model statistics. It has been shown that sequential simulation based
on multiple-point statistics successfully reproduces the model statistics when the TI
is infinitely large, but the algorithm may fail when the TI is bounded, the data tem-
plates being less and less likely to be found in the TI as their cardinality increases.
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Fig. 7 Probabilities of
occurrence, integral ranges and
TI areas required to get at least
50 copies with 95 % confidence,
for templates supported by k × k

points

To overcome this problem, two approaches can be considered. The first one consists
in reducing the templates, but the price is a loss of accuracy in the outcomes. The
second one consists in enlarging the TI, in order to get closer to the ideal case of
an infinite TI. In turn, this approach raises the question of the representativeness of
the TI: how large should it be to ensure, with a given confidence level, that a given
template T is found sufficiently enough times? The answer to that question is given
by Eq. (2) and depends on the template probability of occurrence (μT ) and on the
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spatial distribution of the random field, via the integral range (aT ) associated with
the template. Numerical experiments conducted on specific templates with a Boolean
model as the underlying random field suggest that the required TI area considerably
increases with the template cardinality and with its rareness.

Our results go against the statement of Journel and Zhang (2006), who claim that
a large TI can be seen as a statistically explicit prior random field model. Indeed,
unless an extremely large TI is considered or the templates are restricted to a few
points, the statistical properties of a random field have actually very little chance to
be retrieved starting from a bounded TI. In such a situation, practitioners should be
aware that multiple-point simulation algorithms are not really geostatistical simula-
tion algorithms, but rather stochastic computer-aided design algorithms: Although
these algorithms are successful in reproducing complex heterogeneous structures in
geosciences applications, they cannot be associated with a well-defined random field
model and their outcomes are dependent on proper implementation parameters.

Acknowledgements The authors are grateful to the editors and the three anonymous reviewers for their
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Appendix A: Proof of Algorithm 1

The proof is established by induction. Let S0 and S1 be the current level sets
of the outcome, and suppose that Prob{Z(S0) = 0,Z(S1) = 1} = β > 0. Put p =
limλ→∞ Nλ

Dλ
with

Nλ = #[ηI
T1

∩ Sq(λ)]
#Sq(λ)

Dλ = #[ηI
T0

∩ Sq(λ)] + #[ηI
T1

∩ Sq(λ)]
#Sq(λ)

.

By the ergodic property (Eq. (1)), one has

lim
λ→∞Nλ = Prob

{
Z(S0) = 0,Z

(
S1 ∪ {x}) = 1

}

lim
λ→∞Dλ = Prob

{
Z

(
S0 ∪ {x}) = 0,Z(S1) = 1

} + Prob
{
Z(S0) = 0,Z

(
S1 ∪ {x}) = 1

}

= Prob
{
Z(S0) = 0,Z(S1) = 1

}
.

As limλ→∞ Dλ > 0, it follows

p = limλ→∞ Nλ

limλ→∞ Dλ

= Prob
{
Z(x) = 1 |Z(S0) = 0,Z(S1) = 1

}
.

Let S′
0 and S′

1 be the next level sets obtained once x has been allocated. Note that
p can take all values on [0,1]. If p < 1, step (iv) of Algorithm 1 shows that x
can be assigned the value 0, in which case S′

0 = S0 ∪ {x} and S′
1 = S1, and one

has Prob{Z(S′
0) = 0,Z(S′

1) = 1} = (1 − p)β > 0. Similarly, if p > 0, then x can
be assigned the value 1, in which case S′

0 = S0 and S′
1 = S1 ∪ {x}, and one has

Prob{Z(S′
0) = 0,Z(S′

1) = 1} = pβ > 0. Consequently, one has Prob{Z(S′
0) = 0,

Z(S′
1) = 1} > 0 whatever the allocation of x. The induction hypothesis is thus pre-

served, which proves the correctness of the sequential algorithm for infinite TI’s.
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Appendix B: Proof of Eqs. (3) and (4)

To calculate Prob{Z(K0) = 0}, the starting point is to express that none of the
Boolean objects hits K0

Prob
{
Z(K0) = 0

} = Prob
{∀u ∈ Z

2,∀n ≤ N(u), τuAu,n ∩ K0 = ∅
}
.

The right-hand side is now expanded using the fact that the Boolean model is made
of independent objects in independent Poisson numbers

Prob
{
Z(K0) = 0

} =
∏

u∈Z2

Prob
{∀n ≤ N(u), τuAu,n ∩ K0 = ∅

}

=
∏

u∈Z2

∞∑

n=0

exp(−θ)
θn

n!
(
Prob{τuA ∩ K0 = ∅})n

=
∏

u∈Z2

exp
(−θ + θ Prob{τuA ∩ K0 = ∅})

=
∏

u∈Z2

exp
(−θ Prob{τuA ∩ K0 �= ∅

)
.

Moreover, one has τuA ∩ K0 �= ∅ if and only if A ∩ τ−uK0 �= ∅, that is, −u ∈ δK0A.
Accordingly,

Prob
{
Z(K0) = 0

} = exp

(
−θ

∑

u∈Z2

Prob{−u ∈ δK0A}
)

= exp

(
−θ

∑

u∈Z2

E{1−u∈δK0A}
)

= exp

(
−θE

{ ∑

u∈Z2

1−u∈δK0A

})

= exp
(−θE{#δK0A})

as announced in Eq. (3).
To prove Eq. (4), rewrite the probability as the expectation of an indicator function

Prob
{
Z(K0) = 0,Z(K1) = 1

} = E

{
1Z(K0)=0

∏

x1∈K1

1Z(x1)=1

}

= E

{
1Z(K0)=0

∏

x1∈K1

(1 − 1Z(x1)=0)

}
.

By expanding, one obtains

Prob
{
Z(K0) = 0,Z(K1) = 1

} = E

{
1Z(K0)=0

∑

L⊂K1

(−1)#L1Z(L)=0

}
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=
∑

L⊂K1

(−1)#LE{1Z(K0∪L)=0}

=
∑

L⊂K1

(−1)#L Prob
{
Z(K0 ∪ L) = 0

}
.

Equation (4) is derived by replacing Prob{Z(K0 ∪ L) = 0} by its expression given in
Eq. (3).
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