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Abstract
We study nonequilibrium quantum phase transitions in the XY spin 1/2 chain
using the *C algebra. We show that the well-known quantum phase transition at
a magnetic field of h = 1 also persists in the nonequilibrium setting as long as
one of the reservoirs is set to absolute zero temperature. In addition, we find
nonequilibrium phase transitions associated with an imaginary part of the cor-
relation matrix for any two different reservoir temperatures at h = 1 and

γ= ≡ −h h 1c
2 , where γ is the anisotropy and h the magnetic field strength. In

particular, two nonequilibrium quantum phase transitions coexist at h = 1. In
addition, we study the quantum mutual information in all regimes and find a
logarithmic correction of the area law in the nonequilibrium steady state inde-
pendent of the system parameters. We use these nonequilibrium phase transi-
tions to test the utility of two models of a reduced density operator, namely the
Lindblad mesoreservoir and the modified Redfield equation. We show that the
nonequilibrium quantum phase transition at h = 1, related to the divergence of
magnetic susceptibility, is recovered in the mesoreservoir approach, whereas it is
not recovered using the Redfield master equation formalism. However, none of
the reduced density operator approaches could recover all the transitions
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observed by the *C algebra. We also study the thermalization properties of the
mesoreservoir approach.

Keywords: nonequilibrium quantum phase transition, XY model, quantum spin
chain, exact solution

1. Introduction

Equilibrium phase transitions are determined as non-analyticities of free energy and can appear
only in the thermodynamic limit [1]. At finite temperatures, phase transitions are driven by
thermal noise, and states of systems are minima of the free energy; in other words, systems tend
to show large entropy for higher temperatures. On the other hand, quantum phase transitions are
driven by quantum fluctuations and appear at absolute zero temperature [2]. While the entropy
contribution to the free energy in equilibrium systems prohibits the equilibrium phase transition
in one-dimensional systems with short-range interactions [3, 4], a nonequilibrium phase
transition in one dimension is possible. Nonequilibrium phase transitions are usually considered
as qualitative changes of the steady state. In classical cases, nonequilibrium phase transitions
are well studied and appear, for example, in driven diffusive models [5]. The Yang–Lee
description of equilibrium phase transition in terms of the zeros of the partition function [1] has
been applied to a classical nonequilibrium setting [6].

On the other hand, nonequilibrium quantum phase transitions (NQPT) are much less
known. In that respect, some interesting numerical results [7, 8] show an NQPT in one-
dimensional boundary-driven nonequilibrium spin systems. Moreover, approaches to deal with
the nonequilibrium quantum systems usually involve different approximations, and their
validity near an NQPT has not been carefully discussed. Thus, it is important to analyze the
differences among several approaches to nonequilibrium quantum systems in a simple
pedagogic model undergoing an NQPT.

Nonequilibrium steady states (NESS) of quantum systems are generally studied using two
approaches.

• One approach is to decompose the total, composite system into a finite system and
reservoir parts and derive, by tracing out the latter, an effective master equation for the
density operator of the former; i.e., we obtain an effective master equation for the reduced
density operator of the finite system. It is possible to derive an exact master equation for
the reduced density operator of the system, however, this is usually as difficult to solve as
the original problem. Therefore, various approximation schemes have been developed to
suitably describe the different regimes. In the simplest case, we obtain a completely
positive Markovian master equation, namely the Lindblad master equation [9, 10], and the
NESS is obtained as a projection of the initial density operator onto the null-space of the

generator of the dynamics, the Liouvillian ̂. Markovian master equations have mostly
been used in quantum optics [11], quantum information, and quantum computation as a
simple model of noisy channels. However, recently they have also been applied in the
context of condensed matter to study the high-temperature transport properties of simple
one-dimensional systems [12–15] and to discuss special nonequilibrium states of matter
[16]. In this paper, we shall employ two models, which have been developed to study
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transport of open quantum systems, namely the modified Redfield master equation
approach [8] and the mesoreservoir approach [17].

• The other is the *C algebra approach, which was first introduced with the purpose of
rigorously formulating equilibrium statistical mechanics [18]. It has been applied to
infinitely extended systems [19]. Starting from Ruelleʼs work [20, 21] on scattering-
theoretical characterizations of NESS, the *C algebra method has been extensively
developed (see, for instance, references of [22]) and also applied in the context of phase
transitions [23, 24]. Contrary to the reduced density operator method, the *C algebra deals
with infinite systems which evolve unitarily. It was shown that if a system is connected to
two separated subsystems initially in thermal states, a finite part of the total system
approaches a unique NESS under some mathematical conditions [20]. In that case, the
constructed NESS does not depend on the initial decomposition, i.e., the size of the central
(finite) system, or the initial density operator of the central system. Although the *C
algebra provides mathematically rigorous results, the applications are quite limited.
Accordingly, it is beneficial to use the *C algebra approach to test other approaches for
their validity.

In this paper we use the *C algebra approach, the Lindblad formalism with mesoreservoirs,
and the modified Redfield master equation to study the XY spin 1/2 chain—a paradigmatic
model exhibiting quantum phase transitions (QPTs) [25–27]. The Hamiltonian of the
transverse-field XY spin 1/2 chain is

∑ ∑γ σ σ γ σ σ σ= − + + − −
=

−

+ +
=

⎜ ⎟⎛
⎝

⎞
⎠H

h1

4

1

4 2
, (1)

m

n

m m m m
m

n

mXY
1

1
x

1
x y

1
y

1

z

where γ denotes the anisotropy, h denotes the magnetic field, and σm
x,y,z are the Pauli spin

operators at the mth site. To begin with, let us summarize the phase transitions of the XY spin
1/2 chain discussed previously. At h = 1, there is a second order QPT characterized by the order
parameter σ σ〈 〉α α

l m (α = x for γ > 0 and α = y for γ < 0), which separates the ferromagnetic
ordered phase ( <h 1) and the paramagnetic disordered phase ( >h 1). The equilibrium average
of σ〈 〉α

m for α = x, y is always zero, and it cannot be used as an order parameter. Magnetization
in the z direction is always finite, but susceptibility is divergent at absolute zero temperature and
h = 1. In addition, at γ = 0 and | | <h 1 there is a quantum phase transition between the ordered
phase in the x direction (γ > 0) and the y direction (γ < 0). In case of the open XY spin 1/2
chain coupled to local Lindblad reservoirs [7] and Redfield reservoirs [8], indications of NQPT
were reported. Numerically, it was observed that γ= −h 1c

2 is a critical magnetic field which
separates phases showing different scaling of the quantum mutual information (QMI), spectral
gap, and far-from-diagonal spin–spin correlations σ σ〈 〉l m

z z − ≫l m( 1). This transition was
recently described by an information-geometric approach using a fidelity distance measure [28].

We shall complement the already-obtained phase diagram of the XY chain by using the *C
algebra method. We focus on the NQPT and reveal new quantum phase transitions, which do
not exist in equilibrium, and show the existence of an NQPT at h = 1 for arbitrary temperatures
of reservoirs, which is associated with a discontinuity of the third derivative of the off-diagonal
elements of the correlation matrix. We also demonstrate a discontinuity of the first derivative of
the correlation matrix elements at =h hc. In addition, we show that QPT at h = 1 persists in the
nonequilibrium case if the temperature of at least one reservoir is set to be zero. A phase
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diagram showing equilibrium and nonequilibrium quantum phase transitions of the XY spin 1/2
chain is presented in figure 1.

We shall compare NQPTs obtained using the *C algebra method with those obtained by
simulations of the reduced density operator approaches, namely the mesoreservoir method [17]
and the modified Redfield master equation [8]. We also discuss the thermalization properties of
the mesoreservoir approach.

The rest of the paper is structured as follows. In section 2 we apply the *C algebra
approach and analytically show the four different nonequilibrium quantum phase transitions of
the XY model. In section 3 we discuss the master equation approaches. In subsection 3.1, we
first present the results of the Lindblad mesoreservoir approach and discuss its equilibrium and
nonequilibrium properties. Next, in subsection 3.2, we study the modified Redfield model. We
discuss the results and conclude in section 4.

2. NQPT in the XY spin 1/2 model: the C� algebra approach

In this section we study the NQPTs of the XY spin 1/2 chain using the results of the *C algebra
approach. We shall show the coexistence of two NQPTs at h = 1 and γ ≠ 0 (the critical XY line)

and an NQPT at the critical magnetic field γ= ≡ −h h 1c
2. We also discuss the phase

transition at the critical point γ = 0 and h = 1. These results are contrasted with two reduced
density operator approaches, which will be discussed in section 3.
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Figure 1. Phase diagram of the equilibrium and nonequilibrium XY spin 1/2 model.
Quantum phase transitions: at γ = | | <h0, 1 (critical XX) there is a transition from the
ordered phase in the x direction for γ > 0 and the ordered phase in the y direction for
γ < 0. At h = 1 (critical XY) the system has divergent magnetic susceptibility in the z
direction. Nonequilibrium quantum phase transitions: at the nonequilibrium critical line
there is a jump in ∂ 〈 〉†Im f fh l m . At the critical XY line there is a jump in ∂ 〈 〉†Im f fh l m

3 , and

a logarithmic divergence of ∂ 〈 〉†Re f fh l m with respect to | − |h 1 and TL,R. At the junction

of all three critical lines, γ =h( , ) (0, 1), the discontinuities of ∂ 〈 〉†f fh l m
and ∂ 〈 〉†f fh l m

3

disappear and the logarithmic divergence becomes algebraic (see main text). The gray
and white regions represent the short-range and long-range correlation phases obtained
by the modified Redfield approach as well as the boundary-driven Lindblad approach.
The Lindblad mesoreservoir approach gives the long-range correlation independent of
model parameters. We remark that independent of model parameters, the *C algebra
approach gives exponential and power law decay of correlations in equilibrium and
nonequilibrium [29], respectively.



TheXY spin 1/2 model has been extensively studied with the aid of the *C algebra; however,
the nonequilibrium quantum phase transitions have not been discussed so far. We briefly explain
the terminology of the *C algebra method in appendix B. In [29, 30] the NESS of the model was
rigorously constructed using the scattering theory proposedbyRuelle [20]. Long-range correlation
[29] and non-negativity of entropy production [21] have been discussed for this NESS. Those
works are highly mathematically oriented. In contrast, we provide a simpler and more direct
calculation, and focus on the nonequilibrium phase transitions. We start with an infinite chain,
which is separated into the left semi-infinite part (L), the central finite part (S), and the right semi-
infinite part (R). The infinite chain is initially in the product state ρ ρ ρ ρ= ⊗ ⊗

tot L S R
, where ρ

S
is

an arbitrary state and ρ
L,R

is the density operator of the canonical ensembles with temperatureTL,R

(ρ ∼ −e H T/L,R L,R). One can prove that a unique NESS of the chain exists and that the diagonal modes
with positive (negative) velocities are distributed according to the canonical ensemble of the left
(right) reservoir, and satisfyWickʼs theorem,which is explicitly expressed as equations (5) and (6).

Let us first diagonalize the XY spin 1/2 model. With the aid of the Araki–Jordan–Wigner
transformation (see appendix B), the Hamiltonian is mapped to a chain with fermions

∑

γ

=

= + + −
∈

+ +
† †

H H

H f f f f h.c. hf f

1
2

,

( ( )) 2 , (2)
m

m

m m m m m m m

Z

1 1

where f
m
satisfies canonical anti-commutation relations:

δ= =
≡ +

†f f f f

A B AB BA

{ , } 0, { , } ,

{ , } .
l m l m l m,

Next we apply the Fourier transformation

∑
π

ˆ =
=−∞

∞
−a e f

1

2
k

m

ikm

m

and rewrite the Hamiltonian in the momentum basis as

∫ γ
γ

= ˆ ˆ
−

− − −
ˆ
ˆ
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†
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a
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cos sin
sin (cos )

d . (3)k k
k
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The Hamiltonian (3) can easily be diagonalized

∫ ϵ
ϵ

= −
π

†
−

−
†

⎛
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⎞
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⎛
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⎞
⎠⎟H k c c

c
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0
0

, (4)k k
k

k

k

k0

where the eigenmode annihilation operators ck and the energy ϵk are defined by

ϵ
ϵ ϵ

ϵ
ϵ ϵ γ

ϵ γ

ˆ = + − − − + >

ˆ = − − + + + − >

= − +

−
†

−
†

−
†

{ }

{ }

a k hc i k hc k

a i k hc k hc k

k h k

1

2
cos cos , ( 0)

1

2
cos cos sgn ( ), ( 0)

(cos ) sin .
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k

k k k k

k
k

k k k k

k
2 2 2
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The NESS of this model uniquely exists and is fully characterized by [29, 30]

δ θ ϵ θ ϵ〈 〉 = − ′ + − >†
′ { }c c k k v f v f k( ) ( ) ( ) ( ) ( ) , 0 (5)k k k k k kL R

δ θ ϵ θ ϵ〈 〉 = − ′ − − + − >− − ′
† { }c c k k v f v f k( ) ( ) ( ) ( ) ( ) , 0 (6)k k k k k kL R

and Wickʼs theorem [20], where 〈 · 〉 represents a NESS average, ϵ = +ν
ϵ −νf e( ) ( 1)T/ 1 are Fermi

distributions with temperatures νT , θ x( ) is a step function, and vk is a velocity ≡ ϵvk
d

dk
k . To be

more precise, modes with positive and negative velocity follow different KMS conditions. (See
equation (27) of [31] for the XY chain. See also equation (54) in [30] for the XX chain, where a
more explicit expression in terms of the Fermi distribution is provided in equation (65).)

Let us briefly discuss the intuitive idea behind equations (5) and (6), which is implemented
rigorously with the *C algebra approach. Note that in the diagonal form (4) the Hamiltonian can

be interpreted as a sum of Hamiltonians ∫ ϵ=
π †h dk c ck k k1 0

and ∫ ε=
π †h dk e ek k k2 0

of two

noninteracting systems, where ε ϵ= −k k and = −
†e ck k. Consider a free system such as one

described by h1. At t = 0 it is split into three parts: a left semi-infinite chain, a central finite
chain, and a right semi-infinite chain. The left (right) semi-infinite chain is in a thermal state
with temperature TL (TR). At = +t 0 the three pieces are connected and the particles (or quantum
waves described by the diagonal modes) that were confined to the left can now propagate to the
right without any scattering; the same holds true for the particles at the right. In that way, every
right-going mode in the system ( >v 0k ) comes from the left and is populated accordingly with

ϵf ( )kL
, and every left-going mode in the system ( <v 0k ) comes from the right and is populated

by ϵf ( )kR
. This is the content of equation (5). Equation (6) is the same except for the system

described by h2, i.e., =†
− − ′

†e e c ck k k k and the energies and velocities replaced according to
ε ϵ= −k k.

Using (5), (6) and changing variables back to the f
m
, we compute the two-point correlation

functions in the NESS,

∫

∫

∫

∑

∑

π
γ

ϵ
ϵ

δ
π ϵ

ϵ

π
θ θ ϵ ϵ

〈 〉 = − −

〈 〉 = + − − −

+ − − − −

ν

π

ν

ν

π

ν

π

=

†

=

{ }
{ }

{ }{ }

f f dk
k k m l

f

f f dk k m l
k h

f

i
dk k m l v v f f

1
2

sin sin ( ) 1
2

( ) ,

2
1

2
cos ( )

cos
( )

1
2

2
sin ( ) ( ) ( ) ( ) ( ) . (7)

l m
L R k

k

l m

l m

L R k
k

k k k k

, 0

,

, 0

0
L R

From the above equations (7), it is clear that the real parts of nonequilibrium correlations 〈 〉f f
l m

and 〈 〉†f f
l m

are simply the averages of equilibrium correlations at the temperatures of the left and

right reservoirs. On the other hand, the imaginary parts of 〈 〉f f
l m

are zero, whereas the imaginary

parts of 〈 〉†f f
l m

are non-zero only in nonequilibrium and hence possess purely nonequilibrium
features of the steady state, e.g. information about the heat current.

Let us first discuss the magnetization that indicates a second-order quantum phase
transition (for instance, see the proof of theorem 2.3. in [29])
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∫

∫

∫

∫
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k
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, 0

2
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2
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, 0
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2

where χ ≡ σ〈 〉T T( , )L R h

d

d
m
z

is the susceptibility in NESS. We shall now show that this transition
also persists in the nonequilibrium setting where one of the reservoirs is initiated at finite non-
zero temperature.

From equation (8), one can see that the magnetization σ〈 〉m
z does not depend on the spatial

variable m, and both the magnetization and susceptibility are simply the average of those in
equilibrium. Due to ϵ γ= +

=
k O k( )k h 1

2 , the susceptibility diverges if and only if at least one of

the reservoirs has absolute zero temperature. The divergence with respect to temperature νT and
the difference of the magnetic field from one | − |h1 is logarithmic. Therefore, at h = 1 we have
a quantum phase transition and an NQPT associated with the divergence of the susceptibility.

The mechanism of the NQPT associated with the logarithmic divergence of the magnetic
susceptibility is the same as in the equilibrium case, since the NESS average of the
magnetization is a sum of terms coming from the left and right reservoirs in equilibrium. Since
all real parts of the correlation matrix have this property, a genuine NQPT should be discussed
through 〈 〉†f fIm

l m
, which vanishes for the equilibrium state (the kernel is proportional to the

difference in Fermi distributions calculated with the initial temperatures of the left and right
semi-infinite parts). The first derivative of 〈 〉†f fIm

l m
reads

∫π
θ θ

ϵ ϵ
ϵ ϵ

θ
π

ϵ ϵ

∂
∂

〈 〉 = − − − − −

+ −
−

−

≡

π
†

⎛
⎝⎜

⎞
⎠⎟

{ }

{ }

{ }
h

f f dk k m l v v
h k

f f

h h
k m l

h k
f f

k
h

h

Im
1

2
sin ( ) ( ) ( )

cos d
d

( ) ( ) ,

( )
sin ( )

sin
( ) ( ) ,

arccos . (9)

l m k k
k k

k k

c
c

k k

c

0
L R

0

0
L R

0

The presence of the step function θ v( )k in (9) produces a discontinuity at =h hc. Physically it can
be explained by a change in the direction (sign of velocity) of the diagonalmodesck as a function of
themagnetic field h. In the equilibrium case, diagonal modes ck follow the same Fermi distribution
independent of the direction (velocity) of the modes. On the other hand, in NESS, diagonal modes
ck with positive and negative velocities follow different Fermi distributions. Therefore, changing
the direction of the modes alters their nature only in nonequilibrium and this is the origin of the
NQPT at =h hc, which is consequently a genuine nonequilibrium phenomenon.
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Interestingly, there is also a discontinuity in the third derivative at h = 1. The third
derivative for >h hc reads

∫

∫

∫

π ϵ
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h
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2

sin ( )
cos d
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2 2
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2
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From equation (10), one can evaluate the jump of the third derivative at h = 1:

πγ
∂
∂

〈 〉 − ∂
∂

〈 〉 = − −
ε

ε ε
→+

†

= +

†

= −

− −
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟h

f f
h

f f
m l

T Tlim Im Im
2

( ). (11)
l m

h

l m

h
0

3

3

1

3

3

1

2 L
1

R
1

Since this transition is not related to the change in the direction of the modes, its origin is
different from the transition discussed for =h hc.

The behavior of derivatives (9) and (10) is depicted in figure 2. It is interesting that the
non-continuities of the derivatives are also present in the case of non-zero temperatures of the
initial states of reservoirs ≠ >T T 0L R , while the transition of a real part such as magnetization
is possible if at least one of the reservoirs is set to absolute zero temperature. Thus, the behavior
of the imaginary part is quite different from the real part, which is also the reason we believe
that 〈 〉†f fIm

l m
determines genuine nonequilibrium properties. We recall that imaginary parts are

related to currents of conserved quantities, e.g. the energy current and the spin current (the latter
is well-defined only in the isotropic case). At γ = 0 and = =h h 1c we find a square root
divergence of magnetic susceptibility with the temperature TL,R and the difference of

magnetic field from one | − |h1 , namely χ γ = = ∝ − −h T h( 0, , 0) 1 ,L/R
1/2

χ γ = = ∝ −h T T( 0, 1, ) .L/R L/R
1/2 In this case γ = =h( 0, 1), the finite temperature non-

equilibrium transitions associated with discontinuities in the derivatives of the imaginary parts
of the correlation functions disappear. An equilibrium and nonequilibrium phase diagram of the
XY spin 1/2 model is depicted in figure 1.

Finally, we discuss scaling of the quantum mutual information (QMI) in the NESS of the
*C algebra. The scaling of QMI has recently been discussed in the context of area laws. In [32]

it was shown that Gaussian thermal states obey the area law for QMI. On the other hand, the
steady states may violate the area law despite being Gaussian. In fact, QMI was used to
characterize the NQPT at =h hc in the XY model with Redfield reservoirs [8] (see section 3.2).
In [8] it was shown that below the critical field ( =h hc) QMI obeys the area law, whereas above
the critical field QMI scales linearly with the system size. We calculate the scaling of the QMI
in the NESS by numerically diagonalizing the two-point Majorana correlation matrix of the *C
algebra. The Von Neumann entropy of the block of size n can be expressed in terms of the
eigenvalues λk of the ×n n2 2 two-point Majorana correlation matrix (defined in (14)) as [33]
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∑ λ λ
= −

+ +

=

S n( )
1

2
log

1

2
. (12)

k

n
k k

1

2

The quantum mutual information of the block of size n2 is then given by
= −I n S n S n(2 ) 2 ( ) (2 ). In figure 3 we show that the QMI scales logarithmically with the

block size n. Interestingly, this scaling does not depend on the system parameters and therefore
does not capture the nonequilibrium phase transitions. A related analytical calculation of the
area law violation in the *C algebra NESS was recently reported in the free fermion case [34],
which is equivalent to the isotropic limit of the XY spin 1/2 chain.

3. NQPT in the XY spin 1/2 model: master equation approach

In this section we compare the obtained, exact *C algebra results with two models of open
quantum systems, namely the Lindblad mesoreservoir and the modified Redfield master
equation. In both cases, the dynamics of the system are determined by a Liouville equation

  ρ ρ ρ ρ ρ= ˆ ˆ = − + ˆ
t

i H
d
d

, [ , ] , (13)

where · ·[ , ] denotes the commutator. Although exact forms of the Hamiltonian H and the

dissipator ̂ depend on the details of the model, in this paper we focus on the quadratic
Hamiltonian and the Lindblad (coupling) operators that are linear in terms of Majorana fermions:

∑= · =
=

H w w wH wH
l m

N

l l m m
, 1

2

,

and the linear Lindblad (coupling) operators in terms of Majorana fermions:

= + = −−
† †w f f w f f, i( ).m m m m m m2 1 2
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Figure 2. Left: the first derivative of the imaginary part of the NESS expectation value
〈 〉†f f

1 2
with respect to the magnetic field. We observe a discontinuity at =h hc. Right:

the third derivative of the imaginary part of the NESS expectation value 〈 〉†f f
1 2

. We
observe a discontinuity at h = 1. As noted in the text, these transitions are purely
nonequilibrium phenomena and they are also present for finite temperatures.
Parameters: γ= = =T T0.01, 1, 0.5L R .



Therefore, as has been shown in [8, 35–37], NESS is a Gaussian state and is fully characterized
by the ×N N2 2 Majorana correlation matrix

ρ δ= −C t t ww( ) tr ( ( ) ) , (14)l m l m l m, ,

of which time evolution is determined by

= − − − = − +
t

t t t iC X C C X M X H M
d
d

( ) 2 ( ) 2 ( ) 8i , 2 2 , (15)T
i r

where Mr and M i denote real and imaginary parts of the reservoir matrix M, which represents
the influence of the environment and depends on the details of the dissipator4. The time
derivative of the correlation matrix is zero in NESS, hence the steady state correlation matrix C
is obtained as a solution of a Lyapunov equation

+ = −X C CX M4i . (16)T
i

The existence of NESS guarantees that equation (16) has a solution, which can be computed
efficiently in  N( )3 steps.

3.1. Lindblad mesoreservoir

Recently, a model to describe the NESS of the systems, including the degrees of freedom of the
finite reservoirs, was introduced [17, 38, 39]. The idea is not to trace out all the degrees of
freedom of the reservoirs but rather to keep some representative parts (mesoreservoirs), which
are physically interpreted as the contacts of the system with the reservoirs. The time evolution
of the total system (mesoreservoirs and the system of interest) is modeled with the Lindblad
master equation such that the mesoreservoirs are thermalized if the couplings between the
system and mesoreservoirs are zero. In [17, 40] it was shown that in the limit of weak coupling
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Figure 3. Scaling of the quantum mutual information with the subsystem size n in the
NESS of the *C algebra. The solid lines represent different magnetic field strengths in
different regions, namely =h 0, 0.2, 0.9, 1.2 (from bright to dark). The blue dashed
lines are calculated for critical fields γ= − =h 1 0.752 (bright blue) and h = 1 (dark
blue). In all cases we observe a logarithmic divergence of the QMI with respect to
subsystem size. Other parameters: γ= = =T T0.1, 1, 0.5L R .

4 The expression for the reservoir matrix M for the mesoreservoir case as well as the derivation of equation (15)
are given in appendix A. The derivation and the explicit form of the reservoir matrix M for the Redfield case can be
found in [8].



and large mesoreservoir size, the system is thermalized if two mesoreservoirs with the same
thermodynamic variables are attached, while the particle current follows the Landauer formula
if two reservoirs with different thermodynamic variables are attached. Therefore, one can argue
that the mesoreservoir approach gives a meaningful description of a thermal reservoir. In the
previous works, particle-conserved Hamiltonians attached to linear dispersion mesoreservoirs
have been discussed. Although the linear dispersion mesoreservoir gives the same Liouvillian
spectrum (see appendix A), their thermalization properties can be different.

To mimic the *C algebra setup discussed in the previous section, we treat parts of a chain
as mesoreservoirs. The total Hamiltonian consists of a one-dimensional XY spin 1/2 chain with
a system size = +N K n2 :

∑ ∑

∑ ∑

γ σ σ γ σ σ σ

γ σ σ γ σ σ σ

γ σ σ γ σ σ

γ σ σ γ σ σ

= + + + +

= − + + − −

= − + + − −

= − + + −

= − + + −

=− +

−

+ +
=− +

= +

+ −

+ +
= +

+

+ +

{ }

{ }

{ }

{ }

H H H H V V

H h

H h

V

V

,

1
2

(1 ) (1 ) ,

1
2

(1 ) (1 ) ,

1
2

(1 ) (1 ) ,

1
2

(1 ) (1 ) , (17)

m K
m m m m

m K
m

m n

n K

m m m m
m n

n K

m

n n n n

L XY R L R

L
1

1
x

1
x y

1
y

1

0
z

R
1

1
x

1
x y

1
y

1

z

L 0
x

1
x

0
y

1
y

R
x

1
x y

1
y

where HXY is given in (1). We interpret parts of the system − +K[ 1, 0] and + +n n K[ 1, ] as
mesoreservoirs, and the remaining part n[1, ] as a central system. Mesoreservoir parts (HL,R) are
thermalized using the Lindblad dissipator

 ∑ρ ρ ρ

Γ η Γ η
Γ Γ ϵ Γ Γ ϵ ν

ˆ = −

= =
= − = =

ν
ν ν ν ν

ν ν ν ν ν ν

ν ν ν ν

† †

†

L L L L

L L

f f

2 { , },

, ,

(1 ( )), ( ), L, R, (18)

k m
k m k m k m k m

k k k k k k

k k k k

, ,
, , , , , , , ,

, ,1 , ,1 , , ,2 , ,2 ,

, ,1 , ,2

where η
k,L

and η
k,R

are diagonal modes of HL and HR, respectively. The operators νLk, ,1 and νLk, ,2

can be interpreted as couplings between mesoreservoirs and the traced-out degrees of freedom
(super-reservoir).

In subsection 3.1.1 we first study the equilibrium properties of the model. In particular, we
will discuss the divergence of magnetic susceptibility

∑ σ χ= 〈 〉 = ∂
∂=

M T h
n

T
M T h

h
( , )

1
, ( )

( , )
,

m

n

m
1

z

at h = 1. Then, in subsection 3.1.2, we turn to the nonequilibrium quantum phase transitions
obtained by the *C algebra.

3.1.1. Equilibrium properties of the mesoreservoir approach. In this subsection we first study
magnetization and the corresponding susceptibility in the equilibrium state by the Lindblad
mesoreservoir approach. We observe a highly fluctuating magnetization profile for <h hc, and a
flat magnetization profile except at the boundaries between the system and mesoreservoirs for
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>h hc. Typical magnetization profiles for different Γ are shown in figure 4 (red dashed lines
indicate the *C algebra results). The fluctuations present for magnetic field <h hc are
suppressed by decreasing dissipator strength Γ . Moreover, the spin profiles approach the *C
results (red) by decreasing Γ (see figure 4). Because of the fluctuations with respect to a space
variable m, we define magnetization and susceptibility using a space average of σ〈 〉m

z 5. One can
see in figure 5 (left) that the magnetization is roughly reproduced. However, there are small
fluctuations for <h hc. These fluctuations are clearly observed in the susceptibility shown in
figure 5 (right). In particular, one can see a big jump in susceptibility at the critical point =h hc.
On the other hand, for >h hc, the Lindblad approach agrees very well with the *C algebra.

In figure 6(a) we show the numerically calculated correlations 〈 〉†f f
m1

in the mesoreservoir
approach and compare them with the exact analytic *C results. Near-diagonal correlations at low
temperatures ( =T 0.01L,R ) calculated with the mesoreservoir approach agree with the *C results.
On the other hand, long-range correlations saturate as a function of | − |l m (for finite Γ andK) to a
plateau in the mesoreservoir approach, while they quickly decay exponentially in the *C algebra
method. As expected, the agreement between the *C and mesoreservoir correlations is improved
for smaller coupling to the super-reservoir Γ (see figure 6(b)) and larger mesoreservoir sizeK (see
figure 7). If the temperature is high enough ⩾T( 0.1)L,R the mesoreservoirs fail to thermalize the

central system, as can be seen in figures 6(c), (d), where we show theΓ dependence of †
+f fRe ( )

m m 1

for low and high temperatures at different values of the magnetic field h. The mesoreservoir
results match with the *C algebra for low temperatures, but are notably different for high
temperatures. Fortunately, in the regime where we want to observe the QPT, the *C algebra and
the Lindblad mesoreservoir approach agree well. Nevertheless, the thermalization at h = 1 is very
subtle since the susceptibility diverges logarithmically. To discuss the divergence at h = 1, one
should take a limit Γ → 0 and → ∞K , as can be seen in figure 7, where we show the
mesoreservoir size K dependence of the susceptibilities with several coupling strengths Γ at

=T 0L,R . We see that the divergence of susceptibility for = =T h0, 1L,R is reconstructed with the
Lindblad mesoreservoir approach in the limit of Γ → 0 and → ∞K . The divergence is
logarithmic with respect to K and TL,R. Imaginary parts of the correlation matrix vanish linearly
with respect to Γ , while specific observables such as heat current vanish for arbitrary Γ .

3.1.2. NESS properties of the mesoreservoir approach. In this subsection, we shall discuss
the NESS of the mesoreservoir approach. We numerically observe that the real part of the
correlation matrix is an average of equilibrium correlation matrices. Following the discussion in
the previous subsection, the divergence of susceptibility is concluded in the mesoreservoir
approach. Because of this property, we focus on the imaginary part of the correlation matrix,
which represents a genuine nonequilibrium property. Let us first discuss the two extreme cases
(Γ ≪ 1 and Γ ≫ 1). For very small Γ the total system (system + reservoirs) is decoupled from
super-reservoirs, and the system is expected to follow an average of Fermi distributions

ϵ ϵ+( )f f( ) ( ) 2k kL R
. Thus, 〈 〉†

+f fIm
m m 1

and 〈 〉†
+f fIm

m m 2
approach zero for Γ ≪ 1. On the other

hand, taking large Γ enforces the mesoreservoirs to exactly follow the Fermi distributions. As a
result, 〈 〉†

+f fIm
m m 1

and 〈 〉†
+f fIm

m m 2
are very small for Γ ≫ 1 (having a non-zero off-diagonal
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element is related to the deviations of the reservoirs’ particle occupations from the Fermi
distributions [40]). Therefore, one should carefully choose coupling Γ to deal with the
imaginary parts of the nonequilibrium case, and in fact, Γ should be in the order of ΔE K/ to
describe coherent transport in NESS, where ΔE is the width of the mesoreservoirs’ energy
band. In figures 8(a) and (b) we show comparisons between the NESS correlations of the *C
algebra and the mesoreservoir at different magnetic fields (a) and dissipation strengths Γ (b).
We observe that the correlations of the *C algebra and the mesoreservoir in NESS quickly differ
with the distance from the diagonal elements. Despite the excellent agreement for nearly
diagonal elements, we were unable to obtain the jumps in the derivatives of the correlation
function. Moreover, we have to choose the right ratio between the coupling strength Γ and the
mesoreservoir size K, as can be seen from figures 8(c) and (d), where we show the off-diagonal
correlations for different coupling strengths and a fixed mesoreservoir size K = 1600. Since the
ratio between Γ and K is important for the nonequilibrium correlations, one sees the strong K
dependence on the correlations, contrasting with the fact that real parts of the correlations do not
drastically depend on the mesoreservoir size K. For instance, the real parts shown in figure 6 are
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Figure 4. We show the m dependence of the magnetization σ〈 〉m
z with

Γ = −0.01, 0.003, 10 5 (top to bottom), =T 0.01L,R , γ = = =K n0.5, 400, 100, and
h = 0.3 (left) and 0.9 (right). Dashed red lines are obtained by the *C algebra.

Figure 5. Comparison between the *C algebra (dashed red line) and the mesoreservoir
approach for magnetic field dependence of the NESS magnetization (left) and
susceptibility (right) in equilibrium. Gray lines represent Γ = −10 , 0.003, 0.015 from
dark to bright. Other parameters: γ= = = =K n T400, 100, 0.01, 0.5L,R .



quite robust by changing K (thus, we show only K = 400); on the other hand, figure 8 clearly
shows that imaginary parts strongly depend on K. Moreover, as discussed in [40], the Γ
dependence of 〈 〉†

+f fIm
m m 1

shows a plateau for Γ Γ Γ< <K K( ) ( )c c
1 2 , where Γ K( )c

1 is a

monotonic decreasing function of K.
In conclusion, similar to the boundary-driven Lindblad model, we also observe signatures

of the NQPT in the mesoreservoir approach at =h hc, namely a change in the sensitivity of
local observables to the system parameters. Below the critical field =h hc we see large
fluctuations, whereas above the critical field there are no fluctuations as we vary the model
parameters (see figures 4 and 5). However, these fluctuations are suppressed as Γ goes to zero.
On the other hand, we were unable to observe the scaling of the QMI and the far-from-diagonal
correlations due to the limitations of the resources, since we should take the limit of large
mesoreservoir size and small coupling to the super-reservoir. Nevertheless, the behavior of the
off-diagonal correlations shown in figure 8 suggests that the mesoreservoir approach in the limit
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Figure 6. (a) Thermalization of the off-diagonal correlations 〈 〉†f f
m1
. The red and black

symbols correspond to the *C and mesoreservoir results, respectively. The comparison
is done for h = 0.3 (circles), h = 0.75 (crosses) and h = 0.9 (dots). (b) Off-diagonal
correlations for different coupling strengths, Γ = −10 3 (circles), Γ = −10 5 (crosses) and
Γ = −10 7 (points), and h = 0.9 . In (a) and (b) we take =T 0.01L,R and K = 1600. In (c)
and (d) we show the coupling strength Γ dependence of the off-diagonal correlations

〈 〉†
+f fRe

m m 1
for different inverse temperatures =T 1, 0.1, 0.01L,R (from bright to dark)

and h = 0.6 (c), h = 0.9 (d). We show the relative values with respect to the appropriate
*C algebra result (red dashed lines). In (c), (d) we use K = 400. Other parameters:

n = 100 and γ = 0.5 for (a)−(d).



Γ → 0 and → ∞K resembles the behavior of the *C algebra, i.e. the power law decay of the
NESS correlations and the logarithmic divergence of the QMI in all regimes. We also recover
the *C algebra divergence of the magnetic susceptibility at zero temperature and h = 1 in
equilibrium and nonequilibrium situations. Other genuine nonequilibrium transitions observed
with the *C algebra could not be recovered in the mesoreservoir approach.

3.2. Modified Redfield master equation

The modified Redfield master equation was studied in [8] as a model of thermal reservoirs. The
main difference from the Lindblad reservoirs is the non-local property of the Redfield dissipator
which, when extending the integrals in the correlation function from minus infinity to infinity,
ensures that the Gibbs state is the steady state if all reservoirs have the same temperature. After
using this additional assumption, the Redfield dissipator takes the form

 ∫∑ρ τΓ τ τ ρˆ = ˜ − +
μ ν

ν μ μ ν
−∞

∞
X X h.c.d ( )[ ( ) , ] , (19)T

,
,

where Γμ ν
T
, is the reservoir correlation function, νX are the coupling operators, and the tilde •̃

denotes the interaction picture. The reservoir correlation function Γμ ν
T
, satisfies the KMS condition

Γ Γ− − =μ ν ν μt T t( i/ ) ( ). (20)T T
, ,

We follow [8] and couple the XY spin 1/2 chain to two boundary thermal reservoirs with the
coupling operators

σ φ σ φ σ φ σ φ
σ φ σ φ σ φ σ φ

= + = +
= + = +

X X

X X

( cos sin ), ( cos sin ),

( cos sin ), ( cos sin ). (21)
N N

N N

1 1
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1 1
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x
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y

3

2 1
x

2 1
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4

The left and right reservoirs are uncorrelated Γ δ Γ=μ ν μ ν μ
T T
, , and have Ohmic reservoir spectral

functions

Γ ω δ
ωΓ

ω
˜ =

−
= =μ ν μ ν

ν

μ

μ

T
T T T T( )

exp ( / ) 1
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Figure 7. Mesoreservoir system size K dependence of the susceptibility with
= =h T1, 0L,R . Other parameters: Γ = − − −10 , 10 , 10 , 0.01, 0.15 4 3 (from top to bottom),

γ = =n0.5, 100.



where Γ ω˜
μ ν

μ ( )
T

, is a Fourier transform of the correlation function Γμ ν
μ t( )T
, . This choice of

correlation functions and coupling operators represents standard reservoirs of harmonic
oscillators at two ends with possibly different temperatures. Note that due to the extension of
the lower integral bound to minus infinity in the dissipator (19), the frequency cutoff in the
spectral functions is irrelevant. In this paper we use the following parameters: φ Γ= =π , 0.01

i

i
i10

for =i 1, 2, 3, 4.
In case of equal temperatures and large system sizes6 → ∞N( ), we necessarily recover the

results of the *C algebra approach for all values of the anisotropy γ and magnetic field h (see
figure 9 (left)). However, in the nonequilibrium setting, where one temperature remains constant
and the other goes to zero, the magnetic susceptibility remains finite even for large spin chains
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Figure 8. Comparison of the correlations in the NESS of the *C algebra and the
mesoreservoir approach. (a) Absolute value of the correlations 〈 〉†f f

m1
calculated at

h = 0.3 (circles), h = 0.75 (crosses), h = 0.9 dots. The red and black symbols correspond
to the *C algebra and the mesoreservoir, respectively. (b) Off-diagonal correlations for
different coupling strengths, Γ = −10 3 (circles), Γ = −10 5 (crosses) and Γ = −10 7

(points). In (b) we show the correlations for magnetic field strength h = 0.9. In (a) and
(b) we take =T 0.01L,R and K = 1600. In (c) and (d) we show the coupling strength Γ
dependence of the off-diagonal correlations 〈 〉†

+f fRe
m m 1

(c) and 〈 〉†
+f fRe

m m 2
(d) for

different mesoreservoir sizes =K 100, 200, 400, 800, 1600 (from bright to dark) and
h = 0.3 (black), h = 0.9 (blue) and h = 1.5 (green). We show the relative value with
respect to the appropriate *C algebra result (red dashed line). Other parameters: =T 1R ,
n = 100, and γ = 0.5.

6 We do not use the mesoreservoir in this section, i.e. K = 0, therefore we have N equal to n.



and h = 1 (see figure 9 (right)). We also compare the *C algebra and Redfield NESS expectation
values of the magnetization for different values of the magnetic field, and observe disagreement
around h = 1 (see figure 10 (left)). In figure 10 (right) we show the numerically computed
susceptibility. We observe large fluctuations below the critical magnetic field =h hc. These large
fluctuations are in agreement with previously observed fluctuations of local observables and the
characterization of the long-range magnetic correlation phase with hypersensitivity of local
observables on model parameters [8, 37]. For a detailed discussion of the NQPT at =h hc in the
XY spin 1/2 chain using the master equation approach, see [7, 8, 37]. Here, we also compare the
nonequilibrium susceptibility at h = 1, which, in contrast to the *C result, remains finite even if
one temperature of the reservoirs goes to zero (see figures 9 (right) and 10 (right)). Further, we
note that the discontinuities of the first and the third derivative of 〈 〉†f fIm

l m
at =h hc and h = 1

were not reproduced using the Redfield mesoreservoir approach. Moreover, we find that the
imaginary part of the correlation matrix strongly depends on the dissipation strength Γ .

4. Conclusions and discussion

We studied nonequilibrium quantum phase transitions in the XY spin 1/2 chain analytically
using the *C algebra method. First, we showed that the QPT at h = 1 is also present in the
nonequilibrium steady state if one temperature of the reservoirs remains absolute zero. In other
words, QPT persists even with strong thermal noise coming from one of the reservoirs if the
other reservoir is at absolute zero temperature. At the critical point γ = 0 and h = 1, the
logarithmic divergence of susceptibility becomes algebraic. Second, we discovered two new
transitions which do not exist in an equilibrium state. To be precise, we found discontinuities of
the first derivative (at =h hc, γ ≠ 0) and the third derivative (at h = 1, γ ≠ 0) of the imaginary
part of the correlation matrix. The former transition appears because a part of the normal modes
changes its velocity sign when the magnetic field is smaller than hc, and thus those modes
change the information of the reservoirs they carry. On the other hand, the physical
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Figure 9. Susceptibility of NESS versus temperature for different system sizes
=N 10, 20, 40, 80, 160 (from bright to dark). Left: equilibrium susceptibility

( =T TL,R ); the dashed line corresponds to the *C algebra. Right: nonequilibrium
susceptibility with =T 0.1R and =T TL . The red dashed line denotes the *C algebra
result in nonequilibrium. Other parameters: γ = =h0.5, 1.



interpretation of the latter transition is still unclear. Moreover, at the critical point γ = 0 and
h = 1, the jumps in the derivatives disappear.

We use these transitions to test the utility of two time generators commonly used in
theories of the reduced density operator, namely the Lindblad and Redfield master equations.

• Comparison with the Lindblad mesoreservoir approach. We show that the Lindblad
mesoreservoir quantitatively reproduces the QPT in equilibrium. However, we observed
that off-diagonal elements which have small expectation values disagree, even in cases of
equilibrium. For a nonequilibrium state, we numerically observe that the real part of the
correlation is an average of equilibrium values, which agrees with the *C algebra, and does
not agree with the modified Redfield equation. For the correlation matrix, we found that the
Lindblad mesoreservoir and the *C algebra agree only for correlations near diagonal
elements, and are more accurate for small magnetic fields and low temperatures. Despite
the good agreement for nearly diagonal elements, we were not able to recover
nonequilibrium phase transitions except for the divergence of the susceptibility at h = 1,
which seems to be induced by the same mechanism as in an equilibrium case. This may be
the effect of finite mesoreservoir size K and coupling strength to environment Γ .

• Comparison with the modified Redfield master equation. The modified Redfield equation
by construction exactly describes equilibrium states, which are described by the *C algebra
in the thermodynamic limit. Nevertheless, it does not reproduce any nonequilibrium phase
transitions observed by the *C algebra. Moreover, we find that the imaginary part of the
correlation matrix strongly depends on the dissipation strength Γ .

For the reduced density operator methods (Redfield and Lindblad), the hypersensitivities to
the model parameters below hc are reported. In the mesoreservoir case, the fluctuations are
suppressed if small dissipator strength Γ and large mesoreservoir size K are taken. Thus, a drastic
change in a systemʼs properties at =h hc is a common feature of the *C algebra and the reduced
density operator methods, but they are quite different. In the previous works, the transition
obtained by a reduced density operator was characterized by the appearance of the correlation
resonances [37, 41] and different scaling of the QMI in the long- and short-range correlation
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Figure 10. Comparison of the magnetization (left) and the susceptibility (right) between
the Redfield approach and the *C algebra. The Redfield and the *C algebra results
disagree if the difference in temperatures is large. The dashed line corresponds to the *C
algebra, and the grey lines from bright to dark correspond to Redfield calculations for
different system sizes =N 10, 20, 40, 80. Other parameters: = =T T0.01, 1L R , γ = 0.5.



regimes. On the contrary, it was shown with the *C algebra that the scaling of the correlation
elements with the distance from the diagonal remains unchanged as we cross the critical magnetic
field hc, i.e. the exponential decay of correlations in the equilibrium and power law decay of
correlations in the nonequilibrium case [29]. We also numerically showed that the QMI scales
logarithmically with the subsystem size n in all regimes. Therefore, we conclude that the
transition obtained by the reduced density operator [7, 8] is a consequence of the approach itself.

Since none of the discussed reduced density operator approaches could describe all the
transitions obtained by the exact calculations ( *C algebra), the question ‘Can any reduced density
operator methods thermalize the XY spin 1/2 chain in the complete range of parameters, and at
the same time reproduce the nonequilibrium phase transitions obtained by the *C algebra?’
remains open. Further, another interesting question arises, namely ‘What kind of nonequilibrium
quantum phase transitions can we obtain by using different approaches?’. In other words, to what
extent do the nonequilibrium quantum phase transitions and the nonequilibrium properties of
systems in general depend on the reservoirs (models of open system evolution).
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Appendix A. Reservoir matrix in the mesoreservoir case

In this appendix, we give the form of the time evolution of the correlation matrix for the
Lindblad case. Then we derive the time evolution equation in the case of the XY 1/2 chain with
mesoreservoirs. The Liouvillian of our interest has the following form:

 ∑

∑

ρ ρ ρ ρ ρ= − + − −

= ⋯ ⋯
=

μ
μ μ μ μ μ μ

μ μ

† † †i H L L L L L L

H w w w w

L l w

H

[ , ] (2 )

( , , ) ( , , )

,

n n
T

j
j j

1 2 1 2

,

where wj is the Majorana operator satisfying δ=w w{ , } 2j k j k, , and H is an anti-symmetric matrix.

Following [35], we attach a Hilbert space structure on a linear 2 n2 space of operators acting on a
conventional Hilbert space, where the inner product of the Hilbert space is defined by the
Hilbert–Schmidt norm, i.e.

| = − †x y y4 tr x .n

Next, linear maps ĉ and ˆ†c over the Hilbert space are defined by

δ

δ

ˆ ⋯ = ⋯

ˆ ⋯ = ⋯

α α α
α

α α α

α α α
α

α α α†

c w w w ww w w

c w w w ww w w

,

.

j n
n

j n
n

j n
n

j n
n

1 2 2 ,1 1 2 2

1 2 2 ,0 1 2 2

j

j

1 2 2 1 2 2

1 2 2 1 2 2
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Prosen showed that the number α∑
k k is conserved for the time generation of the given

Liouvillian [35], and the unitary time evolution and dissipator for a space spanned by the basis
⋯w w n1 2 with even α∑

k k are given by

 ∑

∑

∑ ∑

ρ ρ

ρ ρ ρ ρ

ρ

− = − ˆ ˆ
ˆ = − −

= − +

≡ = ⃗ ⃗*

μ
μ μ μ μ μ μ

μ
μ μ

μ
μ μ

†

† † †

† † †

†

( )

i H i H c c

L L L L L L

M c c M M c c

M l l l l

[ , ] 4 ,

2

4 2( ) ,

.

j k j k

j k
j k j k j k j k j k

j k j k

,

,
, , ,

, , ,

Hereafter, we shall focus on the dynamics of the space with even α∑
k k so that the Liouvillian

has the following form

̂ = ˆ · − − ˆ + ˆ · ˆ
≡ − ˆ · ˆ + ˆ · ˆ

† † †

† † †

c i c ic c

c c ic c

H M M

X M

( 4 4 ) 4

2 4 ,
r i

T
i

where ˆ ˆ†c c M, , r and M i are defined by

ˆ =
ˆ
⋮
ˆ

ˆ =
ˆ
⋮
ˆ

≡ ≡

†

†

†

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜⎜

⎞

⎠
⎟
⎟⎟c

c

c
c

c

c

M M M M

,

Re , Im .

n n

1

2

1

2

r i

Using the above form, the time evolution of the correlation matrix

ρ≡ 〈 〉 =∼
C ww wwtr ( )j k j k j k, can be discussed. Thanks to ˆ =†c1 0j , the correlation matrix reads

ρ

ρ
δ ρ

=

= ˆ + ˆ ˆ + ˆ
= ˆ ˆ +

∼

† †

C w w

c c c c

c c

1

1 ( )( )

1 .

j k j k

j j k k

j k j k

,

,

Thus, the time evolution of the anti-symmetric part of the correlation matrix δ≡ −∼
C Cj k j k j k, , ,

follows


∑

ρ= ˆ ˆ

= − + −{ }

d

dt
C c c

X C X C i M

1

2 8 ( ) .

j k j k

m
m j m k m k j m i j k

,

, , , , ,

It gives the matrix form (15) presented in section 3:

= − − −
t

t t tC X C C X M
d
d

( ) 2 ( ) 2 ( ) 8i . (A.1)T
i
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Therefore NESS averages of correlation functions are given by the Lyapunov equation:

+ = −X C CX M4i .T
i

Let us write down matrices H and M of the XY spin 1/2 chain with meso-reservoirs in
terms of Majorana operators. First, matrix H is given by

σ σ= ⊗ + ⊗i
H A B

1
4 4

,y x

where matrices A and B are defined by

δ δ δ γ δ δ= + − = −+ − + −A h B
1
2

( ) ,
2

( )i j i j i j i j i j i j i j, , 1 , 1 , , , 1 , 1

Next, we give the matrix M. Let η νk,
be a diagonal mode of the mesoreservoir parts (ν = L, R)

∑η ϕ ψ= −ν
ν ν

=
−w i w

1
2

( ). (A.2)
k

i

K

k i i k i i,
1

, 2 1 , 2

Then, the matrix M reads

=
× ×

× × ×

× ×

⎛

⎝
⎜
⎜⎜

⎞

⎠
⎟
⎟⎟M

M 0 0
0 0 0
0 0 M

, (A.3)
K n K K

n K n n n K

K K K n

L

R

where matrix νM is defined as follows

∑

∑

Γ

ϕ
ψ

ϕ
ψ

ϕ ψ ϕ ψ

Γ

ϕ
ψ

ϕ
ψ

ϕ ψ ϕ ψ

γ ν

=

−
⋮

−

⋯

+ ⋮ − ⋯ −

= +

⋯
⋯

⋮ ⋮
⋯

=

ν ν

ν

ν

ν

ν

ν ν ν ν

ν

ν

ν

ν

ν

ν ν ν ν

ν ν ν

ν ν

ν ν

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

i

i

i i

i

i

i i

i

G G G

G G

G G

M

I

1
4

( , , , , )

1
4

( , , , , )

4 4
, L, R

k
k

k

k

k n

k n

k k k n k n

k
k

k

k

k n

k n

k k k n k n

n

n

n n

, ,1

,1

,1

,

,

,1 ,1 , ,

, ,2

,1

,1

,

,

,1 ,1 , ,

1,1 1,2 1,

2,1 2,

,1 1,
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where ϵ ϵ= − =ν ν
−
+

ϵ ν

ϵ νg f( ) {2 ( ) 1} e

e

1

1

T

T

/

/ and

∑ ϵ
ϕ ψ

ψ ϕ
=

−
ν

ν

ν ν

ν ν

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟G g ( )

0

0
.i j

k
k

k i k j

k i k j
,

, ,

, ,

Appendix B. Setup of the C� algebra approach and the Araki–Jordan–Wigner
transformation

Following [29, 30], we summarize the setup of the *C algebra approach and the
Araki–Jordan–Wigner transformation.

An algebra is called a *C algebra if it is together with an involution*: → and finite
norm | · |, and satisfies the following properties:

• = = ∀ ∈* * * * *A A AB B A A B( ) , ( ) , ,

• α β α β α β+ = ¯ + ¯ ∀ ∈ ∀ ∈* * *A B A B A B C( ) , , , , , where ᾱ denotes the complex
conjugate of α.

•  is complete with respect to a norm | · | < ∞.

(i) ⩽ ∀ ∈AB A B A B, ,

(ii) = ∀ ∈*A A A,

(iii) = ∀ ∈* *A A A A C, ( property)2

The norm-completion of the algebra generated by the Pauli spin matrices forms the *C
algebra S, and the infinite extension of the Hamiltonian (1) defines a *C dynamical system
whose dynamics are given by a group of strong continuous *-isomorphism, which is formally
given by τ = −A e Ae( )t itH itH. In this approach, states of the system ω ·( ) are represented by
positive functionals over the *C algebra, and the Hilbert space is introduced as a representation
of ( ω,S ). Physically speaking, a *C algebra  represents a set of observables with finite
expectation values, a group of strong continuous *-isomorphism τ t gives a time evolution over
the *C algebra, and a state ω gives a correspondence between the observables and expectation
values ω < ∞ ∈A A( ) , .

The equilibrium states with a given τt and at temperatures T are defined as the states σ ·( )
satisfying the KMS condition:

σ τ σ=A B BA( ( )) ( ).Ti/

As we explained in the main part, a system is initially decomposed into three parts (left semi-
infinite, finite system, and right semi-infinite parts). Then, the initial condition is given by

ω ω ω ω= ⊗ ⊗ ,T T T
n

T
0

,
L R

L R L R

where ων
νT are the KMS states at temperatures νT (ν = L, R) of the left and right distinct parts,

respectively. The existence of the unique NESS associated to this initial condition
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ω τ ω=
→∞ +A Alim ( ( )) ( ),

t

T T t T T
0

, ,L R L R

was proved in [29]. Moreover, Tasaki et al proved that the NESS is independent of the initial
partitions, and is stable against local perturbation [42]. The NESS average we study in the main
part is a NESS with respect to ω+.

Next, let us review the Araki–Jordan–Wigner transformation of the spin chain. LetCAR be
the *C algebra generated by f

n
, *f

n
, and 1 which satisfy

δ

= =

=

* *

*
f f f f

f f

0

1

, , ,

, .
n m n m

n m n m,

Let CAREX be the *C algebra generated by CAR and an element T satisfying

θ
= =
=

*

−

T T T
TxT x

1, ,
( ),

2

where θ− is an automorphism of CAR which satisfies

θ =
⩾

− <
= *

−
#

#

#
#

⎪

⎪⎧⎨
⎩

f
f n

f n
f f f( )

( 1)

( 1)
, , .

n

n

n

n n n

Then, S is the subalgebra of CAREX:

σ

σ

σ

= −

= +

= −

*

*

*

f f

TS f f

iTS f f

12 ,

( ),

( ),

n
z

n n

n
x n

n n

n
y n

n n

( )

( )

where

σ σ

σ σ
=

⋯ >
=

⋯ <

−
⎧
⎨⎪
⎩⎪

S

n

n
n

1
( 1)

( 1)
( 1)

.n

z
n
z

z
n
z

( )
1 1

0

This gives a fermionic Hamiltonian (2) in the main part. In the main part, we denote † for the
involution * to give a physical presentation. The Hermitian conjugate of operators acting on
Hilbert space satisfies the definition of the involution.
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