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Avenida Vicuña Mackenna 4860, Santiago, Chile
bInstituto de F́ısica, Pontificia Universidad Católica de Chile,
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1 Introduction

Although the spontaneous breaking of time translation invariance is pervasive to a large

number of physical contexts —including particle physics, cosmology, and condensed matter

physics— attempts to systematically address its general properties are rather recent [1–

4]. This has to do, in part, with the notorious difficulty of handling time dependent
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backgrounds inducing interactions that violate conservation of energy. There are certain

relevant situations, however, where time translation invariance is broken by spatially ho-

mogeneous field configurations that evolve along flat directions implied by the existence

of exact (or nearly exact) internal symmetries. In these configurations, the breaking of

time translation symmetry may induce the breaking of Lorentz invariance without the

appearance of time-dependent couplings, or with a time-dependence following a well de-

fined scaling property, therefore allowing for a tractable analysis of the behavior of both

classical and quantum fluctuations. In this article, we wish to discuss this latter type

of configurations.

A relevant example of this restricted class of systems is provided by cosmic inflation [5],

where the universe undergoes a period of dramatic accelerated expansion driven by the

homogeneous evolution of a background scalar field, breaking time translation invariance by

rolling down the slope of a flat potential [6, 7]. Such models only make sense if they appear

embedded in a more fundamental theory endowed with an internal shift symmetry weakly

broken at the scales relevant for inflation [8, 9]. Another example is found within the context

of condensed matter physics, in the recently proposed idea of time crystals [10, 11]. These

are hypothetical systems for which a periodic motion constitutes the lowest energy state,

therefore providing a time analog of spatially ordered crystals. Here, again, the breaking of

time translation invariance is achieved by the motion of a state along a flat direction allowed

by an internal symmetry characterizing the system. In both of these examples, the loss of

Lorentz invariance through the existence of additional internal symmetries play a crucial

role in determining various physical properties of these systems, including observables such

as n-point correlation functions, and scattering amplitudes involving low energy quanta.

In the quantum field theory context, one may parametrize any system with broken

time translation invariance through the introduction of a Goldstone field π(x, t), defined

as the fluctuation along the broken symmetry, by means of a local time re-parametrization

of the background of the form t→ t′(x, t) ≡ t+π(x, t). One of the advantages of adopting

this particular parametrization is that the Goldstone boson field π(x, t) keeps track of time

translations as an exact symmetry of the original theory. To be more precise, the action

for the Goldstone boson fluctuation π(x, t) must be such that it remains invariant under

the simultaneous transformations:

t→ t+ ξ0, π(x, t)→ π(x, t)− ξ0. (1.1)

The restricted class of systems we wish to study here is characterized by an additional

symmetry of the background under the transformation t→ t+∆t alone, without a comple-

mentary transformation of the π(x, t) field. These correspond to systems where the time

dependent background appear as a consequence of fields evolving homogeneously along

their internal symmetries. On the one hand, such configurations would require coupling

constants for the π-action to remain time-independent, therefore simplifying enormously

the analysis of time dependent backgrounds. On the other, because the full action must be

invariant under (1.1), the action for the π-fluctuations must remain invariant under shifts

π(x, t) → π(x, t) − ξ0 alone, revealing the existence of an internal symmetry broken by a

time dependent background.
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The introduction of the Goldstone boson field π(x, t) to parametrize the breaking of

time translation invariance has invigorated our understanding of cosmic inflation from the

effective field theory (EFT) point of view [12, 13]. In particular, it has led to a reliable

model independent description of the generation of primordial curvature perturbations,

without the need of a detailed knowledge of the ultraviolet physics (UV) taking place at

very short distances (or sub-horizon scales). In this scheme, curvature perturbations are

intimately related to the Goldstone boson field, whose action appears highly constrained by

the symmetries of the original ultraviolet UV-complete action. In particular, the unknown

UV-physics is parametrized by self-interactions of the Goldstone boson that non-linearly

relate field operators at different orders in perturbation theory. This framework has of-

fered a powerful approach to analyze the large variety of infrared observables predicted by

inflation, including the prediction of non-trivial signals in the primordial power spectrum

and bispectrum [8, 14–25].

Because π(x, t) is defined as the perturbation along the broken symmetry, in general,

its self-interactions and its interactions with other fields are found to be non-trivial, offering

potentially large departures from those expected in Lorentz invariant backgrounds. In the

particular case of interest, where couplings remain constant, a few general properties worth

emphasizing are:

I. The spectrum of the theory contains at least one massless Goldstone boson, the one

associated to the broken time translation invariance. More generally, there exist as

many Goldstone bosons as broken symmetries, however some of them may be massive

(gapped Goldstone bosons), with their masses determined by the details in which the

symmetries are broken [2, 26]. These Goldstone bosons may interact between them

and other quanta present in the spectrum [22, 27].

II. At linear order in the fields, the Goldstone boson fluctuation π(x, t) depends on a

mixture of particle states of different frequencies. In other words, there is no one-

to-one relation between particle states and fields, but instead, a mixing between the

field content and the particle spectrum of the theory [27]. As a consequence, the

two point correlation function between π(x, t) and the fields that interact with it is

non-vanishing.

III. The gap between the massless Goldstone boson quanta and the massive quanta (that

interact with Goldstone boson quanta), increases as the breaking of time transla-

tion symmetry increases. This in turn implies that, at sufficiently long wavelengths,

the dynamics of the system should be dominated only by gapless Goldstone boson

quanta [22, 28].

These properties have been particularly useful to study the interaction of the Goldstone

boson π(x, t) with other “heavy” fields in the context of inflation [22, 27–29], and have

allowed for a systematic analysis on how ultraviolet degrees of freedom affect the low

energy dynamics of curvature perturbations.1 However, there are still a variety of open

1We should keep in mind that, in the context of inflation, the global symmetry should be understood
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issues surrounding these properties that have not been fully addressed yet, and that are

pertinent to the study of broken time translation invariance in general. For instance, there

has been an active and fruitful debate regarding the procedure that should be followed

to integrate fields and quanta in time-dependent backgrounds, and the validity of the

resulting EFT, particularly within the context of cosmic inflation [23, 28, 30–38]. In the

present discussion, we feel particularly compelled to address the following three questions:

A. In a general field theoretical system where time translation invariance is broken we

typically expect the appearance Lorentz violating couplings which may or may not

depend on time. Thus. What are the generic properties shared by this class of systems

solely due to the loss of Lorentz invariance —and not to the time-dependence— of

these couplings?

B. Given that the interactions between the Goldstone boson field π(x, t) and other fields

involve non-trivial space-time operators explicitly breaking Lorentz invariance, what

is the set of couplings defining the correct perturbative expansion of the interact-

ing theory?

C. Given that fluctuations and particle states are not in a one to one relation (as high-

lighted by our point II), what is the correct procedure to integrate fields and quanta

around the ground state of the system? In other words, is the integration of fields

(by integrating them at the Lagrangian level) equivalent to the integration of quanta

(by integrating them at the Hamiltonian level)?

The aim of this work is to answer these questions in the context of a simple and well

defined quantum field theory setup which is easily extended to other more general systems.

In particular, question A is answered by examining the perturbative interactions between

the particle states of the system, and studying the allowed reactions that exist due to

the breaking of Lorentz invariance (which otherwise would be precluded). On the other

hand, question B is answered by explicit construction, whereas question C is resolved by

demonstrating that both the Lagrangian and Hamiltonian approaches to integrate fields

and quanta give consistent results.

To be more precise, we will study in full detail the breaking of time translation invari-

ance in a canonical two-scalar field model endowed with an SO(2) symmetry, and analyze

the quantization of fluctuations around background solutions of homogeneous fields evolv-

ing along the symmetric direction of the theory. We will identify a field parametrization of

these fluctuations that allows for a transparent perturbative analysis of the interactions,

and derive the complete set of Feynman rules of the theory. In addition, we will analyze

the derivation of the low energy effective field theory for the Goldstone boson quanta,

by discussing the integration of heavy quanta in two different approaches. First, we will

consider the derivation of a low energy effective field theory by integrating —with the

as an effective symmetry broken from the very beginning at the model building level. The amount of this

breaking is parametrized by the usual slow-roll parameter ε which, at the same time, dictates the coupling

of gravity to the fields driving inflation. Since this coupling is small, one does not expect quantum gravity

effects to spoil the aforementioned symmetry [13].
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help of the equations of motion— the heavy field representing fluctuations orthogonal to

the symmetry. This will allow us to derive a low energy EFT up to quartic order in the

Goldstone boson field. To assess the validity of this procedure on the light of question

B, we pursue a second alternative method to integrate heavy quanta, by directly dealing

with the spectrum of the theory at the level of the S-matrix. We will show that both

procedures give the same EFT to quartic order, and argue that the equivalence between

the two schemes should stay valid to all orders in the fields as long as we are interested in

tree level processes.

Since we will restrict our analysis to Minkowski backgrounds, our results will show to

be particularly useful for the study of time crystals. As we shall see, time crystals exhibit

some general properties similar to conventional crystals, such as the existence of modes

analogous to acoustic and optical phonons, resulting from the interaction of the Goldstone

boson field with the heavy fluctuations orthogonal to the symmetry. We will argue that the

gapped modes are generally expected to decay into Goldstone modes and that Goldstone

modes are also expected to decay into Goldstone modes of longer wavelengths, with a decay

rate suppressed by the energy of the decaying mode. This should constitute a simple but

generic prediction for time crystals, and could contribute to the discussion and possible

experimental realizations of such systems [39–41].

This work is organized as follows. In section 2 we present a simple two scalar field model

that encapsulates the main properties that we wish to study. The consequences of choosing

a time-dependent background are studied from the perspective of conserved charges and

the appropriate form of the Hamiltonian for the fluctuations is derived. In section 3 we

study the quantum field theory of such a system. We present a field parametrization which

will show to be particularly transparent to discuss the quantization the system, and derive

the Feynman rules for our theory. Next, in section 4 we study the derivation of the low

energy effective theory for the Goldstone boson quanta in full detail. There, we examine

the difference between the Lagrangian and Hamiltonian approaches to integrate the heavy

quanta, to show that they are equivalent. Finally, in section 5 we discuss the importance

of our results and provide some concluding remarks.

2 Setting the stage: the model

We would like to study a field theoretical setup allowing for time-dependent backgrounds,

but simple enough to carry out a detailed analysis of the interaction between different states

of the system. In particular we wish to study theories where background fields are allowed

to evolve homogeneously along flat directions appearing as a consequence of an internal

symmetry group. To this extent, we consider the simple case of a two-field canonical system

endowed with a global SO(2) symmetry described by the following Lagrangian

L = −1

2

[
∂µΦ†∂µΦ + 2V (|Φ|)

]
, (2.1)

where V (|Φ|) is a scalar field potential that only depends on the absolute value of the SO(2)

doublet Φ = φ1 + iφ2. The model is invariant under global shifts Φ→ eiαΦ with constant

– 5 –
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α (the construction of more elaborated setups may be studied through straightforward

generalizations). By writing Φ = ρeiθ, this Lagrangian may be rewritten in terms of the

real fields ρ and θ, giving:

L = −1

2

[
ρ2(∂θ)2 + (∂ρ)2 + 2V (ρ)

]
. (2.2)

The SO(2) symmetry is now reflected upon the invariance of L under shifts of the axial

field θ → θ + ∆θ, for a constant ∆θ. The system is governed by two equations of motion

given by

∂µ
[
ρ2∂µθ

]
= 0 , (2.3)

2ρ− ρ(∂θ)2 = Vρ , (2.4)

where Vρ ≡ ∂ρV . With this choice of fields, the canonical momenta are given by Πθ = ρ2θ̇

and Πρ = ρ̇ and the Hamiltonian of the system is found to be:

H =
1

2

∫
d3x

{
Π2
θ/ρ

2 + ρ2(∇θ)2 + Π2
ρ + (∇ρ)2 + 2V (ρ)

}
. (2.5)

We may now quantize the theory by imposing the standard equal time commutation re-

lations [θ(t,x),Πθ(t,y)] = iδ(x − y) and [ρ(t,x) ,Πρ(t,y)] = iδ(x − y) (where we have

adopted units whereby ~ = 1). A direct consequence of the symmetry θ → θ + ∆θ is

the existence of the conserved current jµ = −ρ2∂µθ. The conservation equation ∂µj
µ = 0

is equivalent to the equation of motion (2.3) for the field θ, and the associated charge is

therefore given by

Q ≡
∫
d3x j0 =

∫
d3xΠθ . (2.6)

It follows immediately that Q is the generator of shifts along the θ direction.

2.1 Time dependent backgrounds

Since the theory is symmetric under shifts θ → θ+∆θ, there exists a spatially homogeneous

time-dependent background evolving along the flat θ-direction, given by

θ0(t) = θ̇0t, ρ(t) = ρ0, (2.7)

where both θ̇0 and ρ0 are integration constants related by the equation of motion (2.4)

to satisfy:

ρ0θ̇
2
0 = Vρ(ρ0). (2.8)

Notice that, unless θ̇0 = 0, the radial field ρ is unable to sit exactly at the minimum of

the potential Vρ = 0. This means that the background trajectory is being pushed away

from the minimum against the outer wall of the potential, as a result of the centrifugal

force implied by the non-vanishing angular momentum of the movement. The background

solution (2.7) breaks both, time translation invariance t → t′ = t + ∆t and the shift

symmetry θ → θ′ = θ + ∆θ. This may be verified by noticing that axial fluctuations

δθ = θ − θ0 receive inhomogeneous contributions under the action of both H and Q:

[δθ(t), H] = iθ̇0 + iδ̇θ , [δθ(t), Q] = i . (2.9)
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However, fluctuations around the background remain invariant under a simultaneous com-

bination of time translations ∆t and axial shifts ∆θ satisfying the following constraint:

δθ − θ̇0δt = 0 . (2.10)

This combination leaves the background solution invariant in the sense that θ(t)→ θ′(t′) =

θ(t). This restricted class of transformations is generated by the following combination of

H and Q defined in (2.5) and (2.6) respectively:

H = H − θ̇0Q . (2.11)

Notice that the term −θ̇0Q cancels the contribution appearing in H that generates shifts

on the fluctuation δθ. Now instead, one has

[δθ,H] = iδ̇θ , (2.12)

implying that H is the generator of time translations about the moving background (for a

more general discussion on this point see [2]). Explicitly, this operator is given by:

H =
1

2

∫
d3x

{
Π2
θ/ρ

2 − 2θ̇0Πθ + ρ2(∇θ)2 + Π2
ρ + (∇ρ)2 + 2V (ρ)

}
. (2.13)

This “shifted” Hamiltonian provides the correct generator of time translations on fluc-

tuations defined about the evolving background, as it may be directly inferred from the

geometrical interpretation emerging from (2.11). It is useful to write the Hamiltonian H
in terms of the velocities θ̇ and ρ̇:

H =
1

2

∫
d3x

{
ρ2
[
(θ̇ − θ̇0)2 + (∇θ)2

]
+ ρ̇2 + (∇ρ)2 + 2Veff(ρ)

}
. (2.14)

From this expression one can see that, indeed, the Hamiltonian H is positive definite in

terms of relative velocity θ̇ − θ̇0. In addition, it is possible to read off the appearance of

the effective potential:

Veff(ρ) = V (ρ)− 1

2
ρ2θ̇2

0 . (2.15)

The appearance of ρ2θ̇2
0 may be interpreted as the centrifugal barrier due to the angular

movement. By using eq. (2.8), it is possible to verify that Veff(ρ) is quadratic about the

configuration ρ = ρ0, thus, in order to have a positive definite spectrum, we require the

additional condition ∂2
ρVeff > 0 at the minimum of this potential. To finish, we observe

that the canonical rapidity with which the vacuum expectation values of the field move

along the symmetry direction is:

φ̇0 ≡ ρ0θ̇0. (2.16)

Notice that we may take the limit θ̇0 → 0 by keeping φ̇0 constant, which would correspond

to the case of a straight trajectory in field space. We shall use the quantity φ̇0 to simplify

several expressions during the next sections.
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Figure 1. A plot of the mexican-hat potential V (ρ) illustrating the motion of the vacuum

expectation value of the background fields along the symmetry direction.

2.2 Introducing the Goldstone boson

We have seen that time translation invariance is broken by the evolving background (2.7).

We may therefore introduce the Goldstone boson field π(x, t) as the perturbation along

the broken symmetry, in such a way that it parametrizes fluctuations away from the ho-

mogeneous background by entering it through the combination t′ = t + π(x, t). In other

words, we may write the fields θ(x, t) and ρ(x, t) in terms of the background θ0(t) = θ̇0t

and ρ(t) = ρ0 by introducing the perturbations π(x, t) and σ(x, t) as

θ(x, t) = θ0(t+ π(x, t)) = θ̇0t+ θ̇0π(x, t), (2.17)

ρ(x, t) = ρ0 + σ(x, t). (2.18)

Here, σ(x, t) corresponds to fluctuations orthogonal to the broken symmetry, and therefore

perpendicular to the path defined by the evolving background in field space. It is now

possible to rewrite the Lagrangian (2.2) in terms of the perturbed fields π(x, t) and σ(x, t).

We find

L =
1

2

{
θ̇2

0(ρ0 + σ)2
[
π̇2 − (∇π)2

]
+ 2θ̇2

0(2ρ0 + σ)σπ̇ + σ̇2 − (∇σ)2 −M2σ2 − 2C(σ)
}
,

(2.19)

where we have dropped terms which are proportional to a total time derivative. The

quantity M2 is the first coefficient from the Taylor expansion of the effective potential (2.15)

and is given by:

M2 = Vρρ(ρ0)− θ̇2
0. (2.20)

While it is tempting to say that M is the mass of σ(x, t), as we shall see, it is rather

premature to make this identification without having examined the particle spectrum of

– 8 –



J
H
E
P
0
5
(
2
0
1
4
)
1
1
1

the theory. On the other hand, the quantity C(σ) contains the rest of the Taylor expansion,

and is given by:

C(σ) = V (ρ0 + σ)− V (ρ0)− Vρ(ρ0)σ − 1

2
Vρρ(ρ0)σ2. (2.21)

Notice that the lowest order term in C(σ) is cubic in the field σ. Thus we see that the

Lagrangian (2.19) describes the dynamics of a Goldstone boson interacting with a field σ

with a self-interaction determined by C(σ).

Because the Lagrangian (2.19) describes fluctuations about the evolving back-

ground (2.7) one would expect that the Hamiltonian deduced out with it coincides to

the shifted version H of eq. (2.11), which generates time translations about the evolving

state, as opposed to H of eq. (2.5) which generates time translations on the complete

system. To verify this, we first compute the canonical momenta for the fields π(x, t) and

σ(x, t), which are found to be given by:

Ππ = θ̇2
0(ρ0 + σ)2(1 + π̇)− θ̇2

0ρ
2
0, (2.22)

Πσ = σ̇. (2.23)

Then, by defining the Hamiltonian of the fluctuations as H =
∫
d2x
[
π̇Ππ + σ̇Πσ − L

]
,

we find

H =
1

2

∫
d3x

{[
Ππ − θ̇2

0(2ρ0 + σ)σ
]2

θ̇2
0(ρ0 + σ)2

+ θ̇2
0(ρ0 + σ)2(∇π)2

+Π2
σ + (∇σ)2 +M2σ2 + C(σ)

}
, (2.24)

which indeed coincides with the expression found in eq. (2.11) after plugging back eqs. (2.17)

and (2.18). Writing it in terms of the velocities, one then sees that:

H =
1

2

∫
d3x

{
θ̇2

0(ρ0 + σ)2
[
π̇2 + (∇π)2

]
+ σ̇2 + (∇σ)2 +M2σ2 + 2C(σ)

}
. (2.25)

It is important to recognize that the Hamiltonian is positive definite unless the function

C(σ) conspires against it. Notice that C(σ) parametrizes the shape of the potential away

from the path along which the background evolves. To simplify our discussion, in what

follows we disregard the presence of C(σ), and keep in mind that including it back to the

formalism may be done at any stage of the discussion without difficulties.

3 Quantum theory

We now consider the quantization of the theory. As we shall see, the fact that the evolving

background makes π(x, t) and σ(x, t) interact through couplings that break Lorentz invari-

ance has some remarkable implications for the quantization of the theory. To start with,

the quantum version of the theory may be obtained by imposing the following commuta-

tion relations between the pair of fields π(x, t) and σ(x, t) and their respective canonical

– 9 –
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momenta

[π(x, t),Ππ(y, t)] = iδ(x− y), (3.1)

[σ(x, t),Πσ(y, t)] = iδ(x− y), (3.2)

with every other commutation relation vanishing. Notice that these relations imply that the

Hamiltonian H for the full theory, defined in (2.5), generates the following transformation

on the Goldstone boson field:

[π,H] = i+ iπ̇. (3.3)

This is consistent with the role of the Goldstone boson π(x, t) as a field introduced to

keep track of time reparametrizations of the form t → t + ξ0, which imply the non-linear

transformation π → π − ξ0. On the other hand, one can see that the commutator of the

charge operator Q defined in (2.6) with π(x, t) gives:

[π,Q] = i/θ̇0. (3.4)

Again, this is consistent with the fact that the background is evolving homogeneously

along the flat direction offered by the global continuous symmetry under transformations

θ → θ + ∆θ. Then, it is direct to verify that the Hamiltonian H defined in eq. (2.11)

generates time translations about the evolving background, as it should:

[π,H] = iπ̇. (3.5)

In what follows we proceed to analyze the interactions of this theory perturbatively by

splitting the Hamiltonian H into the free quadratic part and the interaction part, which

contain terms of cubic order, or higher, in the fields.

3.1 Interaction eigenstates

Before quantizing the theory, let us introduce a field reparametrization which will greatly

simplify our analysis. Let us write the pair of fields π and σ in terms of a new set of fields

ϕ and ψ as follows:

π =
1

θ̇0

arctan

(
ϕ

ρ0 + ψ

)
, (3.6)

σ =
√
ϕ2 + (ρ0 + ψ)2 − ρ0. (3.7)

This non-linear field reparametrization maps the Lagrangian (2.19) into an equivalent La-

grangian given by:

L =
1

2

{
ϕ̇2 − (∇ϕ)2 + 4θ̇0ψϕ̇+ ψ̇2 − (∇ψ)2 − 2V (ϕ,ψ)

}
, (3.8)

where we have identified the potential:

V (ϕ,ψ) ≡ M2

2

[√
ϕ2 + (ρ0 + ψ)2 − ρ0

]2
. (3.9)

– 10 –
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Notice that the interaction terms do not contain space-time derivatives acting on the fields.

On the other hand, the free field part of the theory has the same form as the one appearing

in (2.19), with the non-trivial coupling between ϕ and ψ involving a time derivative. The

interested reader may consult appendix A for an alternative field reparametrization where

the quadratic part of the Lagrangian is diagonal in the fields. Now, the canonical momenta

are simply given by

Πϕ = ϕ̇+ 2θ̇0ψ, Πψ = ψ̇, (3.10)

and the commutation conditions become

[ϕ(x, t),Πϕ(y, t)] = [ψ(x, t),Πψ(y, t)] = iδ(x− y), (3.11)

with every other commutation relation vanishing. We parenthetically notice that these

commutation relations imply [ψ̇(x, t), ϕ̇(y, t)] = 2iθ̇0δ(x− y). To analyze the interactions

of this theory we expand the potential up to quartic order in the fields

V (ϕ,ψ) =
M2

2
ψ2 + Vint , (3.12)

Vint =
θ̇0M

2

2φ̇0

ϕ2

[
ψ +

θ̇0

4φ̇0

(ϕ2 − 4ψ2)

]
+ · · · , (3.13)

where φ̇0 = ρ0θ̇0. After this, the Hamiltonian may be split as

H = H0 +Hint, (3.14)

where, H0 corresponds to the quadratic Hamiltonian describing the free sector of the

theory, and is given by (if expressed in terms of the velocities ϕ̇ and ψ̇ instead of the

canonical momenta)

H0 =
1

2

∫
d3x

{
ϕ̇2 + (∇ϕ)2 + ψ̇2 + (∇ψ)2 +M2ψ2

}
. (3.15)

On the other hand, Hint represents the interaction part of the Hamiltonian, which sim-

ply reads

Hint =

∫
d3xVint(ϕ,ψ). (3.16)

Notice that the interaction Lagrangian is found to be proportional to M2 to all orders in ϕ

and ψ (unless, of course, we include the interaction term C(σ) back into the analysis). This

is because the field redefinition is designed to remove space-time derivatives acting on terms

of order higher than quadratic in the fields. As a consequence, M2σ2 in (2.19) is the only

term that can produce higher order interactions. This, in turn, implies that the non-linear

interactions vanish altogether in the limit θ̇2
0 → Vρρ as revealed by eq. (2.20), meaning that

the theory becomes weakly coupled for large values of θ̇0. In addition, from eq. (3.13) it is

possible to read that the dimensionless parameter controlling the perturbative expansion

of the theory is given by:

λ ≡ θ̇2
0M

2

φ̇2
0

=
Vρρ − θ̇2

0

ρ2
. (3.17)
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Thus, the present field redefinition has allowed us to obtain a theory for which large values

of θ̇ imply a non-trivial free field theory at quadratic order, but with a set of suppressed

interactions. On the other hand, if we were to include the omitted interaction term C(σ)

of eq. (2.19) back into our analysis, we would find further interactions between ϕ and ψ

with coefficients independent of M2, with the lowest order contribution being cubic in

the field ψ.

3.2 Quantization of the free field theory

We now proceed with the quantization of the free field quadratic theory. Let us first recall

that in terms of ϕ and ψ, the quadratic Lagrangian has the form:

Lfree =
1

2

{
ϕ̇2 − (∇ϕ)2 + ψ̇2 − (∇ψ)2 + 4θ̇0ϕ̇ψ −M2ψ2

}
. (3.18)

Then, the linear equations of motion are given by:

ϕ̈−∇2ϕ = −2θ̇0ψ̇, (3.19)

ψ̈ −∇2ψ −M2ψ = 2θ̇0ϕ̇. (3.20)

Of course, the fields ϕ and ψ are non-trivially coupled by θ̇0, implying that their expansion

in terms of modes will inevitably have a mixing. Thus, we solve these equations by the

following ansatz

ϕ(x, t) =
∑
α

ϕα(x, t), ψ(x, t) =
∑
α

ψα(x, t), (3.21)

with

ϕα(x, t) =

∫
d3p

(2π)3/2

{
ϕα(p)e−i(ωαt−p·x)aα(p) + ϕ∗α(p)e+i(ωαt−p·x)a†α(p)

}
, (3.22)

ψα(x, t) =

∫
d3p

(2π)3/2

{
ψα(p)e−i(ωαt−p·x)aα(p) + ψ∗α(p)e+i(ωαt−p·x)a†α(p)

}
, (3.23)

where α labels the two scalar modes of the theory to be specified in a few moments. In

addition, a†α and aα represent creation and annihilation operators of these modes, satisfying

the following standard commutation relations[
aα(p), a†β(p′)

]
= δ(3)(p− k′)δαβ, (3.24)

with every other commutation relation vanishing. Plugging these relations back into the

equations of motion (3.19) and (3.20), it is straightforward to deduce the following eigen-

value problem valid for both modes(
p2 − ω2

α −2θ̇0iωα

2θ̇0iωα p2 +M2 − ω2
α

)(
ϕα

ψα

)
= 0, (3.25)

which has a non-trivial solution only if the determinant of the matrix is zero. This leads

to the following equation for ωα:

(p2 +M2 − ω2
α)(p2 − ω2

α)− 4ω2
αθ̇

2
0 = 0. (3.26)
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This equation has two solutions for ω2
α given by [27]:

ω2
G(p) =

1

2

(
M2 + 2p2 + 4θ̇2

0 −
√

(M2 + 2p2 + 4θ̇2
0)2 − 4p2(M2 + p2)

)
, (3.27)

ω2
Λ(p) =

1

2

(
M2 + 2p2 + 4θ̇2

0 +

√
(M2 + 2p2 + 4θ̇2

0)2 − 4p2(M2 + p2)

)
. (3.28)

We have introduced the labels G and Λ to distinguish between the two scalar modes of the

theory. Notice that ω2
G → c2

sp
2 as p→ 0, where c2

s is given by

1

c2
s

= 1 +
4θ̇

M2
. (3.29)

Thus, we see that G labels the massless Goldstone boson mode, which at long wavelengths

propagate at a speed given by cs (the speed of sound). On the other hand, ω2
Λ →M2 + 4θ̇2

as p → 0, therefore implying a massive mode, even for the case M2 = 0. We therefore

label the mass of this mode as:

Λ2 = M2 + 4θ̇2. (3.30)

Notice that for a fixed wavenumber p, one always has ω2
G ≤ ω2

Λ. Having found the so-

lutions (3.27) and (3.28) we can now look for the amplitudes ϕG(p), ϕΛ(p), ψG(p) and

ψΛ(p). Up to a harmless phase, the Goldstone boson mode has amplitudes:

ϕG(p) =

√
(ω2

Λ − p2)ωG

2p2(ω2
Λ − ω2

G)
, ψG(p) = −i

√
(ω2

Λ −M2 − p2)ωG

2(M2 + p2)(ω2
Λ − ω2

G)
, (3.31)

whereas the massive mode is characterized by the amplitudes:

ϕΛ(p) = i

√
(p2 − ω2

G)ωΛ

2p2(ω2
Λ − ω2

G)
, ψΛ(p) =

√
(M2 + p2 − ω2

G)ωΛ

2(M2 + p2)(ω2
Λ − ω2

G)
. (3.32)

It is relevant to notice that ϕΛ(p) → 0 and ψG(p) → 0 as p2 → 0. This means that

ϕ(x, t) is related to G and ψ(x, t) is related to Λ at long wavelengths, from where we find

justification to call ϕ the light field, and ψ the heavy field.

We can now proceed to compute various relevant quantities of the theory. For instance,

a straightforward computation shows that the free Hamiltonian of the system is given by

H0 =

∫
d3p

{
ωΛa

†
ΛaΛ + ωGa

†
GaG

}
, (3.33)

where we have omitted the c-number term coming from the normal ordering of creation

and annihilation operators.

3.3 Interacting theory

We now consider the quantization of the interaction theory. We proceed by introducing

the interaction picture available in the standard canonical quantization scheme (see for
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instance [42]). This amounts to write the fields ϕ(t,x) and ψ(t,x) of the full theory in

terms of the interaction picture fields ϕI(t,x) and ψI(t,x) as

ϕ(t,x) = U †(t)ϕI(t,x)U(t), ψ(t,x) = U †(t)ψI(t,x)U(t), (3.34)

where the interaction fields are given by the same expressions provided in eqs. (3.21), (3.22)

and (3.23). On the other hand, U(t) corresponds to the interaction picture propagator,

which is given by

U(t) = T exp

{
−i
∫ t

0
dt′HI(t′)

}
, (3.35)

where t = 0 denotes an arbitrary reference time, and T is the usual time ordering operator.

In addition, HI(t) is the Hamiltonian in the interaction picture, given by

HI(ϕI , ψI) =

∫
d3x

θ̇0M
2

2φ̇0

ϕ2
I

[
ψI +

θ̇0

4φ̇0

(ϕ2
I − 4ψ2

I )

]
+ · · · . (3.36)

In order to deduce the Feynman rules of the theory, it is useful to introduce a more concise

notation by grouping the fields ϕ and ψ into a two component vector ξa such that:

ξ1(x) = ϕI(x), ξ2(x) = ψI(x). (3.37)

With this definition we can write the interaction Hamiltonian in terms of ξa as

HI =
θ̇0M

2

3!φ̇0

fabcξ
aξbξc +

θ̇2
0M

2

4!φ̇2
0

gabcdξ
aξbξcξd, (3.38)

where summation over repeated indices is implied, and where we have defined the couplings

fabc and gabcd as:

fabc =

{
1 permutations of abc = 112

0 otherwise
, (3.39)

gabcd =


3 abcd = 1111

−2 permutations of abcd = 1122

0 otherwise

. (3.40)

Then, given that both fields ϕI and ψI consist of a mixing of modes G and Λ, we are forced

to consider a propagator matrix with non-vanishing non-diagonal terms. Considering the

new notation involving ξ, the propagator is defined as:

Dab(x− y) = ξa(x)ξb(y) ≡ 〈0|T ξa(x)ξb(y)|0〉. (3.41)

With this definition, it is straightforward to find the following space-time representation

of the propagator matrix Dab(x− y) (see appendix B for an explicit derivation):

Dab(x− y) =

∫
d4p

(2π)4

eip(x−y)(
(p0)2 − ω2

G + iε
) (

(p0)2 − ω2
Λ + iε

) ( i(p2 +M2) 2θ̇0p
0

−2θ̇0p
0 ip2

)
.

(3.42)

We notice that the limit θ̇0 → 0 is consistent with two independent scalar fields, one massive

(with mass Λ = M) and one massless.
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3.4 Feynman rules

The results of the previous subsection allow us to deduce the Feynman rules of the theory,

which we do in position space for definiteness. First, notice that we may represent the

internal propagators by a single solid line representing the mixed propagation of the two

particles states G and Λ:

�x
a

y
b

= Dab(x−y)

The cubic interaction leads to the following three legged vertex:

�
a

b

c

z =

(
−iM

2θ̇0

φ̇0

)
fabc

∫
d4z ,

where the integration in z is performed after joining this vertex with internal propagators.

Analogously, the four legged vertex is given by

�a
b

c

d

z =

(
−iM

2θ̇2
0

φ̇2
0

)
gabcd

∫
d4z.

Finally, the external legs may be derived by considering contractions between the fields ξa

with asymptotic particle states of definite momenta forming part of the in- and out-states.

Such states are defined as:

|p,G〉 = (2π)3/2
√

2ωG(p)â†G(p)|0〉, (3.43)

|p,Λ〉 = (2π)3/2
√

2ωΛ(p)â†Λ(p)|0〉, (3.44)

from where we deduce the following Feynman rules for the external legs

�
a

p
G x = e−ipGxGa(p),

�
a

p
Λ x = e−ipΛxΛa(p),

where pαx ≡ −ωα(p)t + p · x, and Ga(p) and Λa(p) are the amplitudes given by the

following expressions:

Ga(p) =

{√
2ωG(p)ϕG(p) a = 1√
2ωG(p)ψG(p) a = 2

, Λa(p) =

{√
2ωΛ(p)ϕΛ(p) a = 1√
2ωΛ(p)ψΛ(p) a = 2

. (3.45)
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With these rules, it is straightforward to compute amplitude for decays and scattering

processes. For instance, the decay of a Λ mode of wavenumber p into two G modes of

wavenumbers k and q is characterized by the following M-matrix elements:

M(Λ→ GG) = Λa(p)†
(
−i θ̇0M

2

φ̇0

)
fabcG

b(k)Gc(q) . (3.46)

This result may be used to compute, for instance, the decay rate ΓΛ→GG for such a process.

4 Low energy effective field theory

Our system contains two interacting modes of frequencies ωG and ωΛ, both given in

eqs. (3.27) and (3.28). As shown in appendix C, in the long wavelength regime p2 � Λ2

these frequencies satisfy the hierarchy ω2
G � ω2

Λ. Therefore, if the system is populated by

quanta with long wavelengths p2 � Λ2, we expect to find it quickly dominated by particle

states of low frequencies as a result of the inevitable decay of high frequency Λ-modes

into low frequency G-modes.2 It is therefore sensible to expect a low energy effective field

theory describing low frequency G-modes alone, obtained from the full two-field theory by

integrating out the high frequency Λ-modes. In this section we deduce such a low energy

effective field theory in two different approaches, and examine the role of high frequency

modes in the low energy dynamics of low frequency modes.

4.1 Effective field theory at linear order

To identify the correct general strategy to integrate out the high frequency Λ-modes, let us

first examine their integration at the free field theory level. This will pave the way to later

include interactions into the analysis to any desired order. To start with, the equations of

motion are:

2ϕ− 2θ̇0ψ̇ = 0, (4.1)[
2−M2

]
ψ + 2θ̇0ϕ̇ = 0. (4.2)

Recall that the two modes are necessarily decoupled even though the fields appear to be

coupled. In Fourier space, the solutions to these equations may be written as

ϕp(t) = ϕG(p)e−iωGt + ϕΛ(p)e−iωΛt, (4.3)

ψp(t) = ψG(p)e−iωGt + ψΛ(p)e−iωΛt, (4.4)

where the amplitudes ϕG(p), ψG(p), ϕΛ(p), and ψΛ(p) give us the field dependency on

each frequency mode. They are mutually algebraically related by the equations of motion,

through eq. (3.25), implying that once the pair of amplitudes ϕG(p) and ϕΛ(p) are known,

the second pair ψG(p) and ψΛ(p) are fixed uniquely. This means that we may adopt the

2In fact, as we shall argue later, even if the system is initially dominated by short wavelength G-quanta,

these will go through a chain of successive decays down into long wavelengths G-quanta, leading to a state

dominated only by long-wavelength modes.
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perspective by which all the relevant information about the full solution is contained in

ϕp(t) alone, provided that relation (3.25) is supplemented. For instance, one may think of

imposing initial conditions only on ϕp(t), and then use (3.25) to deduce ψp(t). This would

require imposing initial conditions by including second and third time derivatives of ϕp(t)

into the usual analysis. In other words, we may reduce the entire two field system to a

single field system still describing two scalar degrees of freedom by writing the field ψ in

terms of ϕ as:

ψ =
2θ̇0

M2 −2
ϕ̇. (4.5)

This single relation gives us (4.4) out of (4.3) without loss of information. Of course, this

procedure breaks down for θ̇0 = 0. Plugging (4.5) back into the Lagrangian (3.18) we then

obtain the following single field Lagrangian:

L =
1

2

{
ϕ̇

(
1 +

4θ̇2
0

M2 −2

)
ϕ̇− (∇ϕ)2

}
. (4.6)

Even though this Lagrangian is written in terms of a single field, it continues to describe

the full original system with two degrees of freedom. Indeed, after examining the spectrum

of the theory (4.6) one finds two decoupled degrees of freedom with frequencies ωG and ωΛ

determined by (3.27) and (3.28).

We may now obtain a low energy effective action out of (4.6) only describing G-particle

states. As discussed in appendix C, the low energy condition ω2
G � ω2

Λ is equivalent to

ω2
G �M2 + p2. Then, if only low frequency modes are excited, we may take ϕΛ = ψΛ = 0

and the operator 1/(M2 − 2) appearing in (4.6) may be expanded in powers of time

derivatives, as:

1

M2 −2
=

1

M2 + ∂2
t −∇2

=
1

M2 −∇2
− ∂2

t

(M2 −∇2)2
+ · · · , (4.7)

which in Fourier space corresponds to an expansion in powers of ω2
G/(M

2 + k2), which

remains suppressed by assumption. The resulting theory in this case reads

L =
1

2

{
ϕ̇

(
1 +

(1− c2
s)Λ

2

Λ2c2
s −∇2

)
ϕ̇+ ϕ̈

4θ̇2
0

(Λ2c2
s −∇2)2

ϕ̈− (∇ϕ)2

}
, (4.8)

where we have used the identities 4θ̇2
0 = (1− c2

s)Λ
2 and M2 = Λ2c2

s. In addition, we have

truncated the derivative expansion up to quartic order in ∂t. Of course, the second term

containing ϕ̈ will only be relevant when the expansion (4.7) breaks down, which happens

away from the low energy regime where the theory describes only one degree of freedom.

However, since we have truncated the expansion (4.7), the theory (4.8) contains ghosts.

In order to obtain a well defined low energy effective field theory for one scalar degree of

freedom, we may reduce the number of time derivatives by performing the following linear

field redefinition:

ϕ = χ+
1

2

(1− c2
s)

(Λ2c2
s −∇2)

(
1 +
∇2

Λ2

)
∂2
t χ+

1

8

(1− c2
s)

2

(Λ2c2
s −∇2)2

∂4
t χ+ · · · . (4.9)
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This field redefinition is perturbative with respect to powers of ∂2
t /(Λ

2c2
s−∇2) and ∇2/Λ2,

which remain suppressed in the low energy regime where the expansion (4.7) is valid.

After plugging this field redefinition back into Lagrangian (4.8), and dropping total time

derivatives, one finds:

L =
1

2

{
χ̇

(
1 +

(1− c2
s)Λ

2

Λ2c2
s −∇2

− (1− c2
s)Λ

2

(Λ2c2
s −∇2)

∇2

Λ2

)
χ̇− (∇χ)2

}
. (4.10)

This new version of the Lagrangian has a well defined time derivative structure (e.g. it does

not contain ghosts) and therefore may be used consistently to study the low energy limit

by using the Hamiltonian formalism. In addition, it may be verified that the dispersion

relation resulting from (4.10) is given by

ω2 = p2c2
s + (1− c2

s)
2 p4

Λ2
+O(p6/Λ2). (4.11)

This result coincides with the form for ω2
G(p) deduced in appendix C valid at the low energy

regime p2 � Λ2. Thus, we see that the action (4.10) constitutes an accurate effective field

theory of the entire system at linear level.

4.2 Classical integration of heavy modes

We now move to study the integration of high frequency modes by including interactions

into the analysis. Our first approach will consist on studying the dynamics of the system

from the pure classical point of view, integrating out the high frequency modes with the

help of the equations of motion at the Lagrangian level. This corresponds to employing

the path integral formalism to integrate out the high frequency Λ-mode at tree-level. Our

starting point is to consider the two field Lagrangian up to quartic order in the fields ϕ

and ψ:

L =
1

2

{
ϕ̇2 − (∇ϕ)2 + 4θ̇0ψϕ̇+ ψ̇2 − (∇ψ)2 −M2ψ2 − M2

ρ
ϕ2

[
ψ +

ϕ2 − 4ψ2

4ρ

]}
. (4.12)

This Lagrangian implies that, up to cubic order in the fields, the two coupled equations of

motion are given by:

2ϕ− 2θ̇0ψ̇ −
M2

ρ
ϕ

[
ψ +

1

2ρ
ϕ2 − 1

ρ
ψ2

]
= 0, (4.13)

[
2−M2(1− ϕ2/ρ2)

]
ψ + 2θ̇0ϕ̇−

M2

2ρ
ϕ2 = 0. (4.14)

We may now repeat the same procedure employed in the previous subsection to express ψ

in terms of ϕ. This is achieved by inverting the operator 2−M2(1− ϕ2/ρ2) acting on ψ

in the second equation of motion (4.14):

ψ =
1

M2(1− ϕ2/ρ2)−2

{
2θ̇0ϕ̇−

M2

2ρ
ϕ2

}
. (4.15)
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Inserting this expression back into the original action (4.12), we find:

L =
1

2

{
ϕ̇2 − (∇ϕ)2 − M2

4ρ2
ϕ4+

[
ϕ̇− M2

4φ̇0

ϕ2

]
4θ̇2

0

M2(1− ϕ2/ρ2)−2

[
ϕ̇− M2

4φ̇0

ϕ2

]}
. (4.16)

Up to this point we have performed the same steps followed in our previous analysis of

the theory at linear order. Accordingly, the resulting action (4.16) consists of a single field

theory that describes two interacting degrees of freedom. We may now attempt to obtain

a low energy effective field theory that describes a self interacting single degree of freedom

valid in the regime ω2
G � ω2

Λ. To maintain the following discussion simple and tractable,

we keep the number of space-time derivatives limited to the same order in fields in each

term of the Lagrangian.3 With this restriction in mind, expanding (4.16) up to quartic

order in the fields leads to

L =
1

2

{
1

c2
s

ϕ̇2 − (∇ϕ)2 +
1

2φ̇0

(c−2
s − 1)ϕ̇

[
ϕ̇2 − (∇ϕ)2

]
+
θ̇2

0

φ̇2
0

ϕ2

[
1

c2
s

ϕ̇2 − (∇ϕ)2

]
+

1

16φ̇2
0

(
c−2
s − 1

)
ϕ222ϕ2 +

1

2φ̇2
0

(
c−2
s − 1

)2
ϕ2ϕ̇2ϕ̇

}
, (4.17)

where we have used eq. (3.29) to identify the speed of sound cs. Of course, just as in the case

of the free field theory examined in the previous subsection, the truncation of space-time

derivatives inevitably makes the interactions of the theory ill-defined. However, since this

action is valid only at low energies, we may get rid of these higher order time-derivatives

by performing the following field redefinition consistent with the low energy expansion of

space-time operators:4

ϕ = χ− 1− c2
s

2φ̇0

χχ̇+
1− c2

s

8φ̇2
0

χ

[(
2

c2
s

− c2
s

)
χχ̈+

(
4

c2
s

+ 6− 8c2
s

)
χ̇2 − 2(∇χ)2 − 2χ∇2χ

]
.

(4.18)

Using this field redefinition back into eq. (4.17) and dropping total space-time derivatives,

we find the following low energy effective Lagrangian for the field χ:

L =
1

2

{
1

c2
s

χ̇2 − (∇χ)2 − (1− c2
s)

2

2φ̇0c2
s

χ2∇2χ̇+
(1− c2

s)Λ
2

4φ̇2
0

χ2

[
1

c2
s

χ̇2 − (∇χ)2

]
+

(1− c2
s)

2

2φ̇2
0

[
1

2c2
s

− 1− c2
s

]
χ2(∇2χ)2 +

(1− c2
s)

2

2φ̇2
0c

4
s

[
1− 3c2

s

2
− c4

s

]
χ2χ̇∇2χ̇

+
(1− c2

s)

4φ̇2
0

(c2
s − 3)χ̇2(∇χ)2 +

(1− c2
s)

2

2φ̇2
0c

2
s

(
1− 2c2

s

)
(∇χ)2χ∇2χ

+
(1− c2

s)(2− c2
s)

4φ̇2
0c

2
s

χ̇4 +
(1− c2

s)

4φ̇2
0c

2
s

(∇χ)4 +
(1− c2

s)
2

2φ̇2
0

χ̇2χ∇2χ

}
. (4.19)

3That is, we keep at most two space-time derivatives at the second order terms, three space-time deriva-

tives at cubic order terms and four space-time derivatives at quartic order terms.
4To derive this field redefinition, we used the fact that shifts of the form ϕ = χ + f(χ) have the effect

of generating terms in the Lagrangian that are proportional to f(χ) multiplied by the classical equations

of motion. Then, it is enough to choose f(χ) appropriately to get rid of the higher order time-derivatives

appearing in the χ-Lagrangian. For a systematic discussion of this method, see for instance [43].
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This version of the Lagrangian is free of second order time derivatives, and therefore may

be used to treat the system with the help of the conventional Hamiltonian formalism for

a single degree of freedom. Before moving on to consider an alternative way of deducing

the same effective field theory (4.19), let us emphasize that the integration procedure rep-

resented by eq. (4.15) constitutes a big departure from that involved in eq. (4.5) relating

ψ with ϕ. While the latter corresponds to a linear relation valid for each frequency mode

separately, the former inevitably mixes frequency modes due to the non-linear couplings at

the right hand side. We are forced to conclude that the Lagrangian (4.19) contains infor-

mation that pertains the dynamics of high frequency modes. In the following subsection

we shall implement an alternative, more rigorous, way of deducing the low energy effective

field theory for low frequency modes, which will allow us to asses the role of high frequency

modes in the low energy dynamics.

4.3 Quantum integration of heavy quanta

We now discuss the integration of high frequency modes by examining the system from the

point of view of its canonical quantization. This procedure will allow us to keep track of the

role of the particle spectrum of the theory at each step of the integration. As we shall see,

the effective field theory resulting from this analysis coincides with the one deduced in the

previous subsection, at tree level. Our starting point is to consider a state populated only

by low frequency G-quanta. With this in mind, we write the vacuum state of the system

as the product |Ω〉 = |0G〉 ⊗ |0Λ〉, where |0G〉 and |0Λ〉 represent the vacuum states for the

high- and low-frequency modes respectively, satisfying aG(p)|0G〉 = 0 and aΛ(p)|0Λ〉 = 0.

Then, if the state |Ψ〉 of the system under study only consists of low frequency quanta, we

may write

|Ψ〉 = |ΨG〉 ⊗ |0Λ〉, (4.20)

where |ΨG〉 is obtained by allowing the action of creation operators a†(p) on the vacuum

|0G〉. Our strategy to deduce the low energy EFT will first consist in deducing the general

form of the S-matrix that relates in- and out-states of only low-frequency G-modes at

long-wavelengths p2 � Λ2. This will then allow us to deduce the effective Hamiltonian of

the system, and subsequently the effective Lagrangian. The effective S-matrix relating in

and out low-frequency states is defined as:

SG ≡ 〈0Λ|S|0Λ〉. (4.21)

This operator should be related to an effective Hamiltonian Heft,I , expressed in the inter-

action picture, appearing in the following perturbative expansion of the effective S-matrix

SG = T exp

{
−i
∫ ∞
−∞
dtHeft,I

}
, (4.22)

where T represents the time ordering operator. Here Heft,I is expressed in terms of a field

χI (to be defined in a moment) also in the interaction picture. Knowing the form of Heft,I

in the interaction picture will then allow us to deduce the complete Hamiltonian Heft. We
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will find that Heft is given by:

Heft =

∫
d3x

{
1

2

[
c2
sΠ

2
χ + (∇χ)2

]
+

1

4φ̇0

(1− c2
s)

2χ2∇2Πχ −
(1− c2

s)Λ
2

8φ̇2
0

χ2
[
c2
sΠ

2
χ − (∇χ)2

]
+

(1− c2
s)

4

32φ̇2
0c

2
s

(∇2χ2)2 − (1− c2
s)

8φ̇2
0c

2
s

[
c4
sΠ

2
χ − (∇χ)2 − (1− c2

s)χ∇2χ
]2

−c
2
s(1− c2

s)
2

8φ̇2
0

[
c2
sΠ

2
χ + χ∇2χ

]2 − c2
s(1− c2

s)
2(2− c2

s)

8φ̇2
0

χ2(∇Πχ)2

−c
4
s(1− c2

s)
2

8φ̇2
0

Π2
χχ∇2χ+

(1− c2
s)

2

8φ̇2
0

(1 + 3c2
s)χ

2(∇2χ)2

+
(1− c2

s)
2

2φ̇2
0

(∇χ)2χ∇2χ− (1− c2
s)

2

8φ̇2
0

(1 + c2
s)(2− 3c2

s)χ
2Πχ∇2Πχ

}
. (4.23)

where Πχ is the canonical momentum associated to χ. It turns out that this Hamiltonian

is precisely of the form that one would obtain directly from the Lagrangian (4.19). In the

rest of this section we commit ourselves to prove eq. (4.23).

4.3.1 Free field EFT Hamiltonian

Before proceeding with the explicit computation of (4.22) and the derivation of (4.23), let

us pause for a moment to identify the free part of the EFT Hamiltonian. This will allow

us to anticipate the correct field content in terms of which the full EFT Hamiltonian must

be expressed, in order to perform perturbation theory. First, notice that eq. (3.33) tells us

that the low energy free field Hamiltonian is simply given by

H(2)
eft = 〈0Λ|H(2)|0Λ〉 =

∫
d3pωG(p) a†G(p)aG(p), (4.24)

(modulo a c-term) where ωG(p) corresponds to the low frequency dispersion relation. We

wish to define a field χ from where (4.24) is derived by employing the standard procedures

of canonical quantization. The specific form of the free part of the Lagrangian may be

chosen at discretion, as long as one is careful enough to correctly normalize the interaction

part of the theory (consistent with this choice). Thus, to be able to compare the results

of this section with the ones derived in subsection 4.2, let us choose the following free

field Lagrangian:

L = −1

2
χ̇
∇2

Ω2
G(∇)

χ̇− 1

2
(∇χ)2, (4.25)

where Ω2(∇) is defined as the coordinate space representation of the dispersion relation

ω2
G(p) as follows:

Ω2
G(∇) = ω2

G(p)

∣∣∣∣
p→−i∇

. (4.26)

By quantizing the theory of Lagrangian (4.25) one obtains back the free field Hamilto-

nian (4.24). Moreover, the introduction of interactions implies that the field operator χ in

the interaction picture is given by

χI(x, t) =
1

(2π)3/2

∫
d3p

{
χ(p)aG(p)e−i(ωGt−p·x) + h.c.

}
, (4.27)
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where the amplitude χ(p) is fixed by the quantization scheme. In fact, it is straightforward

to verify that χ(p) is related to ϕG(p) found in eq. (3.31) through the following identity:

χ(p) ≡

√
ω2

Λ − ω2
G

ω2
Λ − p2

ϕG(p) =

√
ωG
2p2

. (4.28)

We will use this result in the following subsection. To finish this discussion, it may be seen

that, by expanding Ω2
G(∇) in powers of ∇2, we obtain the following Lagrangian:

L =
1

2c2
s

χ̇

(
1 +

(1− c2
s)

2

c2
s

∇2

Λ2
+

(1− c2
s)

2

c4
s

∇4

Λ4

)
χ̇− 1

2
(∇χ)2. (4.29)

This form of the Lagrangian coincides with (4.10) after its kinetic term is also expanded

in powers of ∇2.

4.3.2 Computation of the effective S-matrix

We now proceed to prove that the effective Hamiltonian of the system is indeed given

by (4.23). To start this computation, we recall that up to quadratic order in the interaction

Hamiltonian, the S-matrix may be written as

S = 1 + (−i)
∫
dtHI(t) +

(−i)2

2!
T
∫
dtHI(t)

∫
dt′HI(t′) + · · · . (4.30)

By recalling that HI = −
∫
d3xLI , we may split the interacting Hamiltonian between its

cubic and quartic contributions by writing HI = H(3)
I +H(4)

I , where

H(3)
I =

θ̇0M
2

2φ̇0

∫
d3xϕ2

IψI , (4.31)

H(4)
I =

θ̇2
0M

2

8φ̇2
0

∫
d3xϕ2

I(ϕ
2
I − 4ψ2

I ). (4.32)

This means that the low energy effective S-matrix of eq. (4.21) may be expanded as

S− = 1 + (−i)
∫
dt
[
〈0Λ|H(3)

I (t)|0Λ〉+ 〈0Λ|H(4)
I (t)|0Λ〉

]
+

(−i)2

2!
T
∫
dt

∫
dt′〈0Λ|H(3)

I (t)H(3)
I (t′)|0Λ〉+ · · · . (4.33)

Notice that the term of the second line in (4.33) necessarily include diagrams which rep-

resent off-shell propagation of high-frequency Λ-modes between two cubic vertices. These

diagrams will contribute effective four-legged vertices for the Goldstone boson modes:

�Λ

G

G

G

G

−→ �
G

G

G

G

(4.34)
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In order to compute (4.33), let us first recall that we may split the interaction picture fields

into high- and low-frequency contributions as ϕI = ϕG +ϕΛ and ψI = ψG +ψΛ (where ϕα
and ψα with α = G,Λ are given in eqs. (3.22) and (3.23)). In fact, we may simply write

the field contributions ϕG, ϕΛ, ψG and ψΛ as:

ϕG = 〈0Λ|ϕI |0Λ〉, ϕΛ = 〈0G|ϕI |0G〉, ψG = 〈0Λ|ψI |0Λ〉, ψΛ = 〈0G|ψI |0G〉. (4.35)

Then, while ϕI and ψI commute, ϕG and ψG do not. This suggests that before computing

vacuum expectation values with |0Λ〉 it is convenient to symmetrize any operator written

in terms of ϕI and ψI . For instance, to compute 〈0Λ|ϕ2
IψI |0Λ〉 we may proceed as follows:

〈0Λ|ϕ2
IψI |0Λ〉 =

1

3
〈0Λ|

[
ϕ2
IψI + ψIϕ

2
I + ϕIψIϕI

]
|0Λ〉 (4.36)

=
1

3

[
ϕ2
GψG + ψGϕ

2
G + ϕGψGϕG

]
+ 1-loop term. (4.37)

Although in this computation we are only interested in retaining tree-level contributions, it

may be verified that the 1-loop term (which corresponds to a tadpole contribution) vanishes

after being integrated over time. To keep our notation simple, we will not bother making

this symmetrization explicit, and simply write

〈0Λ|ϕ2
IψI |0Λ〉 = ϕ2

GψG, (4.38)

allowing ourselves to interchange the order of ϕG and ψG (however, the reader should keep

in mind that every term is symmetrized). In addition, since we are interested in deducing

an effective field theory by expanding operators in powers of space-time derivatives, we

may write:

ψG =
2θ̇0

M2 + ∂2
t −∇2

ϕ̇G

' 2θ̇0

M2
ϕ̇G −

2θ̇0

M4

(
∂2
t −∇2

)
ϕ̇G. (4.39)

After these simple considerations, it is straightforward to compute the terms 〈0Λ|H3
I(t)|0Λ〉

and 〈0Λ|H4
I(t)|0Λ〉, appearing in (4.33) at tree level. These are found to be given by:

〈0Λ|H3
I(t)|0Λ〉 =

θ̇2
0

φ̇0

∫
d3x

(
1

3

d

dt
ϕ3
G +

1

M2
ϕ2
G∂

2ϕ̇G

)
, (4.40)

〈0Λ|H4
I(t)|0Λ〉 =

M2θ̇2
0

8φ̇2
0

∫
d3xϕ4

G −
2θ̇4

0

φ̇2
0M

2

∫
d3xϕ2

G

(
ϕ̇G +

1

M2
∂2ϕ̇G

)2

. (4.41)

Furthermore, since these quantities are integrated over the entire space-time volume, we

may drop total time derivatives5 and rearrange space-time operators by performing partial

5This is justified as such terms vanish by the on-shell conservation of total energy respected by any

process described by the S-matrix.
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integrations. After straightforward manipulations, we find:

∫
dt 〈0Λ|H3

I(t)|0Λ〉 =
(1− c2

s)

4φ̇0c2
s

∫
d4x (∂ϕG)2ϕ̇G, (4.42)∫

dt 〈0Λ|H4
I(t)|0Λ〉 =

Λ4c2
s(1− c2

s)

32φ̇2
0

∫
d4xϕ4

G −
Λ2(1− c2

s)
2

8φ̇2
0c

2
s

∫
d4xϕ2

Gϕ̇
2
G

−(1− c2
s)

3

4φ̇2
0c

4
s

∫
d4xϕ2

Gϕ̇G∇2ϕ̇G. (4.43)

Let us now turn to the second order term of the perturbative expansion of the SG-matrix.

The relevant part is given by:

T
∫
dtdt′〈0Λ|H3

I(t)H3
I(t
′)|0Λ〉 =

M4

4ρ2
T
∫
d4xd4y〈0Λ|ϕ2

I(x)ψI(x)ϕ2
I(y)ψI(y)|0Λ〉. (4.44)

To compute this contribution, we need to take care of the time ordered product by com-

puting the appropriate contractions. This may be done systematically by considering again

the splitting ϕI = ϕG + ϕΛ and ψI = ψG + ψΛ, which allows us to write eq. (4.44) as

T
∫
dtdt′〈0Λ|H3

I(t)H3
I(t
′)|0Λ〉 = IG + IΛ, (4.45)

where IG is the contribution involving every possible tree-level contraction between the low

frequency fields ϕG and ψG, and is given by

IG =
M4

4ρ2

∫
d4x d4y

[
ϕ2
G(x)ϕ2

G(y)ψG(x)ψG(y) + 2ϕG(x)ψG(x)ϕ2
G(y)ϕG(x)ψG(y)

+ 2ϕ2
G(x)ψG(x)ϕG(y)ψG(x)ϕG(y) + 4ϕG(x)ψG(x)ϕG(y)ψG(y)ϕG(x)ϕG(y)

]
,

(4.46)

whereas IΛ is the part containing every possible tree-level contraction between the high

frequency fields ϕΛ and ψΛ:

IΛ =
M4

4ρ2

∫
d4x d4y

[
ϕ2
G(x)ϕ2

G(y)ψΛ(x)ψΛ(y) + 2ϕG(x)ψG(x)ϕ2
G(y)ϕΛ(x)ψΛ(y)

+ 2ϕ2
G(x)ψG(x)ϕG(y)ψΛ(x)ϕΛ(y) + 4ϕG(x)ψG(x)ϕG(y)ψG(y)ϕΛ(x)ϕΛ(y)

]
.

(4.47)

To compute IG we need to use the explicit expressions (D.9)–(D.11) for low frequency

contractions deduced in appendix D. In addition, we recall that ψG may be expressed in

terms of ϕG according to equation (4.39). With these considerations in mind, it is possible
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to show that IG reduces to6

IG = T
∫
dt dt′H(3)

eft,I(t)H
(3)
eft,I(t

′)− iΛ
4c2
s

16φ̇2
0

(1− c2
s)

2

∫
d4xϕ4

G

+i
Λ2

4φ̇2
0

(1 + 2c2
s)(1− c2

s)
3

∫
d4xϕ2

G(∇ϕG)2

−i(1− c
2
s)

2

16φ̇2
0

(3− 9c4
s + 6c6

s)

∫
d4xϕ2

G∇4ϕ2
G, (4.48)

where we have defined

H(3)
eft,I =

(1− c2
s)

2

4φ̇0c2
s

∫
d3xϕ2

G∇2ϕ̇G. (4.49)

Next, we proceed to compute IΛ which represents the off-shell propagation of a high-

frequency mode between two cubic vertices as in the diagrams shown in (4.34). Here

we need to consider the set of contractions provided in eqs. (D.12)–(D.14). However,

because we are interested in phenomena involving low frequencies, these contractions may

be expanded in powers of space-time derivatives suppressed by the cutoff scale Λ as follows

ψΛ(x)ψΛ(y) = − i

Λ2

[
1 +

2(1− c2
s)

Λ2
∇2 +

∂2

Λ2
+

3(1− c2
s)

Λ4
∂2∇2

+
6(1− c2

s)
2

Λ4
∇4 +

∂4

Λ4
+ · · ·

]
δ(4)(x− y), (4.50)

ψΛ(x)ϕΛ(y) = −2iθ̇2
0

Λ4

[
1 +

3(1− c2
s)

Λ2
∇2 +

∂2

Λ2
+ · · ·

]
∂

∂y0
δ(4)(x− y), (4.51)

ϕΛ(x)ψΛ(y) = −2iθ̇2
0

Λ4

[
1 +

3(1− c2
s)

Λ2
∇2 +

∂2

Λ2
+ · · ·

]
∂

∂x0
δ(4)(x− y), (4.52)

ϕΛ(x)ϕΛ(y) = −4iθ̇2
0

Λ4

[
1 +

3(1− c2
s)

Λ2
∇2 +

1

Λ2

∂

∂x0

∂

∂y0
+ · · ·

]
δ(4)(x− y) . (4.53)

Plugging these expressions back into (4.47) we obtain:

IΛ = − i
c4
s(1− c2

s)Λ
4

16φ̇2
0

∫
ϕ4
G + i

c2
s(1− c2

s)Λ
2

4φ̇2
0

∫
ϕ2
G(∂ϕG)2 + i

c4
s(1− c2

s)
2Λ2

2φ̇2
0

∫
ϕ2
G(∇ϕG)2

− i
(1 + c2

s)(1− c2
s)

2Λ2

4φ̇2
0

∫
ϕ2
Gϕ̇

2
G − i

3(1− c2
s)

2

16φ̇2
0

∫
ϕ2
G∇2∂2ϕ2

G

− i
c4
s(1− c2

s)

16φ̇2
0

∫
ϕ2
G

(
∂2
t

c2
s

−∇2

)2

ϕ2
G − i

(1− c2
s)

2

2c2
sφ̇

2
0

∫
ϕ2
Gϕ̇G∂

2ϕ̇G

+ i
3(1− c2

s)
2(1− 3c4

s + 2c6
s)

16φ̇2
0

∫
ϕ2
G∇4ϕ2

G , (4.54)

6Notice the appearance of several contact terms resulting from the contraction of low-frequency states.

These are a consequence of the Dirac-δ appearing in eq. (D.11).
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where
∫

stands for
∫
d4x. Now, putting (4.48) and (4.54) together back into eq. (4.45), we

derive that the effective S-matrix of (4.33) has the form:

SG = 1 + (−i)
∫
dt
[
H(3)

eft,I(t) +H(4)
eft,I(t)

]
+

(−i)2

2!
T
∫
dt

∫
dt′H(3)

eft,I(t)H
(3)
eft,I(t

′) · · · ,
(4.55)

where the effective interaction picture Hamiltonians H(3)
eft,I and H(4)

eft,I are found to be

given by:

H(3)
eft,I =

(1− c2
s)

2

4φ̇0c2
s

∫
d3xχ2

I∇2χ̇I , (4.56)

H(4)
eft,I = −1− c2

s

4φ̇2
0

∫
d3x

{
Λ2

2
χ2

[
1

c2
s

χ̇2
I − (∇χ)2

]
+

(1− c2
s)

2(1 + c2
s)

c4
s

χ2
I χ̇I∇2χ̇I

+
1

8
χ2
I

[
∂2
t − c2

s∇2
]2
χ2
I −

3(1− c2
s)

8
χ2
I

[
∂2
t −∇2

]
∇2χ2

I

}
. (4.57)

Notice that we have expressed these contributions in terms of the field χI defined in sec-

tion 4.3.1, instead of ϕG employed so far. While we have determined the form of the EFT

Hamiltonian in the interaction picture in terms of the field χI , our objective is to obtain

the complete EFT Hamiltonian including the free field contribution. The final step consists

of identifying the canonical momenta Πχ as the following quantity

Πχ =
1

c2
s

U †eftχ̇IUeft, (4.58)

where Ueft is the interaction picture propagator using Heft,I = H(3)
eft,I +H(4)

eft,I to generate

time translations on interacting picture fields. After this identification, one deduces (4.23),

which is the promised result.

5 Conclusions

We have studied and discussed a class of field theoretical systems admitting time-dependent

spatially-homogeneous backgrounds in which the vacuum expectation values of the fields

are able to probe the internal symmetries of the theory. Such solutions generically imply

the spontaneous breaking of the original Lorentz symmetry, thus inducing the appearance

of non-trivial interactions coupling together the fields parametrizing fluctuations about the

evolving background. In particular, these interactions introduce a mixing between the field

content and the particle content of the theory, implying some marked departures from

standard relativistic quantum field theories that may be relevant to the study of distantly

related systems such as cosmic inflation and time crystals.

To simplify the present discussion, we have focussed our study on a simple toy model

consisting of a canonical complex scalar field endowed with a global U(1) shift symmetry,

and considered for it a scalar potential of the mexican-hat-type. This model was simple

enough to permit us a complete analysis of its interactions (which we did by quantizing

the theory within the canonical approach) and yet intricate enough to contain all of the
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essential features related to the study of homogeneous time dependent backgrounds that

we wished to address. In particular, it offered us a well defined framework to study effective

field theories in time dependent backgrounds by analyzing in full detail the integration of

heavy degrees of freedom.

Before moving on to discuss a few interesting properties shared by this class of sys-

tems, let us briefly summarize and highlight the main steps followed in the analysis of the

previous sections:

1. We considered a canonical complex scalar field endowed with a global U(1) shift

symmetry, with a scalar potential of the mexican-hat-type. By using radial and

angular field coordinates ρ and θ, we were able to find homogeneous background

solutions of the form ρ0 = constant and θ0(t) = θ̇0 ·t, as shown in eqs. (2.7) and (2.8),

where θ̇0 is a constant representing the angular velocity of the background trajectory.

2. In order to study the fluctuations about the evolving background, we defined the

Goldstone boson field π(x, t) as the fluctuation along the broken symmetry by writ-

ing the field angular coordinate as θ(x, t) = θ0(t + π(x, t)), where θ0(t) is the cor-

responding background solution. We also defined a second field σ(x, t) as the fluc-

tuation orthogonal to the trajectory followed by the background. The Lagrangian

for these two fluctuations was found to be given by eq. (2.19), which may be seen to

contain non-trivial interactions involving space-time derivatives, with their strength

controlled by the background angular velocity θ̇0.

3. We were able to find a new set of fields ϕ(x, t) and ψ(x, t) defined in terms of π(x, t)

and σ(x, t), by means of the field re-parametrization given in eqs. (3.6) and (3.7).

This field re-parametrization removed all of the non-trivial space-time interactions

except for those appearing at the quadratic level of the theory, leading to a simple

set of Feynman rules, listed in section 3.4.

4. By studying the spectrum of the theory, we found that there are two particle modes

with Lorentz invariance violating dispersion relations, one of them corresponding to

the massless Goldstone boson mode G, the other corresponding to a massive boson

Λ. One particularly interesting behavior of the theory is that, as the value of the

background angular velocity θ̇0 increases, the gap between the massless Goldstone

boson and the heavy particle becomes larger. On the other hand, the strength of

the interactions between these fields decreases. The fields were found to consist of

a mixture of the two particle states, with ϕ(x, t) related to the massless Goldstone

mode, and ψ(x, t) related to the massive field in the long wavelength limit p→ 0, as

noted in the analysis of eqs. (3.31) and (3.32).

5. Given that the spectrum of the theory contains massless and massive particles, it

makes sense to study the low energy effective field theory dictating the dynamics of

the massless sector. To this extent, we first considered the integration of the massive

mode by performing the on-shell integration of the field ψ(x, t) at the action level

(that is, we simply used the equations of motion to eliminate ψ(x, t) from the action).
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This allowed us to deduce an effective field theory for ϕ(x, t) containing multiple time

derivatives (Lagrangian of eq. (4.17)), but that were found to be ill-defined due to

the presence of ghosts. Nevertheless, a new field redefinition allowed us to remove

the multiple time derivatives in favor of spatial derivatives, leading to the now well-

defined EFT of eq. (4.19).

6. To discern the validity and/or accuracy of the on-shell derivation of the EFT, we

studied the integration of the heavy degree of freedom at the level of the S-matrix.

This was done by directly computing the general form of the S-matrix elements only

involving massless particle states as external legs, but including the propagation of

heavy states as internal mediator states. This allowed us to deduce the EFT Hamil-

tonian in charge of propagating low energy Goldstone bosons, which coincided with

the one obtained by the on-shell integration of the field ψ(x, t) discussed previously.

Thus we have shown that, even in the presence of the mixing between the field content and

the particle content of the theory, in this class of models the integration of heavy fields and

heavy quanta are equivalent (at least up to quartic order in the fields). This result is by no

means trivial: given that the field ψ is not uniquely identified with the heavy particle state,

there were good reasons to suspect that by naively integrating ψ through its equations of

motion one could have lost information about the light degree of freedom.

5.1 The new physics window

Equation (4.11) gives the dispersion relation for Goldstone bosons valid within the low

energy regime p2 � Λ2, or equivalently ω2
G � Λ2 (see the discussion of appendix C).

The first two terms in this equation compete between each other, defining different scaling

properties of the dispersion relation. We may divide the scaling of the dispersion relation

into two regions by defining the new physics energy scale Λnew as:

Λnew = Λc2
s = Mcs. (5.1)

Then, for wavelengths such that p2 < M2, or equivalently ω2
G < Λ2

new, the dispersion

relation is dominated by a linear scaling in terms of the momentum: ωG(p) = cs|p|.
Otherwise, for wavelengths such that p2 > M2, or equivalently ω2

G > Λ2
new, the dispersion

relation is dominated by a quadratic scaling in terms of the momentum: ωG(p) = 1−c2s
Λ p2.

This quadratic regime was called the new physics regime in ref. [8] in the context of UV

completions of inflationary models within effective field theory, and further studied in

ref. [23].

The effective field theory of eq. (4.10) deduced in section 4.1 for the free field Goldstone

boson, is valid for the entire low energy regime up to the cutoff scale ω2
G ∼ Λ2, which

includes the new physics window Λ2
new < ω2

G < Λ2. On the other hand, the effective field

theory of eq. (4.19) deduced in section 4.2, which included interactions, is only valid for the

linear regime ω2
G < Λ2

new. Obtaining an improved version of the effective field theory taking

into account interactions and including the kinematic effects of the new physics window,

should be laborious but straightforward. This issue was analyzed in ref. [23] within the
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context of inflation, taking the approach of on-shell integration of a heavy field. However,

undertaking a more detailed analysis of the integration of heavy quanta within the new

physics window would be desirable. We leave this task as an open challenge.

5.2 The fate of a time crystal

Our results may be used to discuss systems with homogenous time dependent backgrounds

on more general terms. A first interesting aspect that comes to mind is the general behavior

of a system containing massless Goldstone bosons and massive particles coupled together

through Lorentz violating interactions as the ones encountered in the present work. In

the particular case of our toy model, it is direct to see that the massive Λ-particle is

allowed to decay into a pair of Goldstone bosons G. Moreover, it is possible to see that

a single Goldstone boson G is also unstable, and may decay into two Goldstone bosons

G characterized by longer wavelengths, which is possible because of their non-relativistic

dispersion relations (resulting from the breaking of Lorentz invariance). The decay rate of

the latter process is suppressed by the energy carried by the decaying Goldstone boson,

so its mean life time will increase as the wavelength becomes larger. Thus we see that G

and Λ are analogues of acoustic and optic phonons respectively, encountered in the study

of conventional crystals.

We can foresee a rather interesting prediction pertaining time crystals: if the initial

state of a time crystal consists of several excitations representing gapless (G) and gapped

(Λ) modes, these will inevitably decay into gapless modes, each time of longer and longer

wavelengths (and therefore of less energy). Because the process is suppressed by the energy

carried by the gapless modes, these decays will become less common with time. The end

result is that the state of the system will asymptote to a state inhabited only by gapless

modes of very long wavelengths. Moreover, due to conservation of energy, at scales smaller

than these long wavelengths, the time crystal should appear as having an angular speed

larger than the initial value θ̇0. In other words, if a time crystal contains excitations, these

will decay to become part of the background, and the angular speed of the time crystal

will increase.

5.3 Beyond shift symmetries

Our results concerning the integration of heavy quanta may be extended to more general

systems for which no shift symmetries are present to allow the homogeneous evolution of the

fields. In these type of systems, one may still define the Goldstone boson in the same way

as we have done, and even define fluctuations orthogonal to the trajectory, with the only

difference that now the background parameters defining the couplings for the fluctuations

are found to be time dependent [22]. One may now ask whether one can proceed with

the integration of the massive modes in the same way. We foresee that the answer to this

question should be positive: indeed, it should be possible to use exactly the same strategy

to integrate out heavy fields, and the low energy effective field theory should remain valid

as long as the following adiabaticity condition is satisfied for the heavy modes frequency:

|ω̇Λ|
ω2

Λ

� 1. (5.2)
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This condition would ensure that heavy excitations are not produced by the background

sudden changes due to the absence of a shift symmetry. This issue was studied in the

context of the on-shell integration of fields (as we did in section 4.2) in refs. [22, 28]. It

would be interesting however to count with a more complete analysis where the integration

is also performed at the level of particle states, as we have done in the present work.

5.4 Beyond the tree level picture

As a final comment, we should recall that our analysis has been restricted to tree-level

processes. It would be interesting now to consider the effects of loops on the parameters

of the theory. For instance, it should be clear that loop contributions will modify the

dependence of the mass of the heavy particle mΛ on the background parameters of the

theory m2
Λ = M2 +4θ̇2

0. Such a modification would constitute a prediction of the theory. In

addition, it should be possible to carry out the integration of heavy states by incorporating

loops into the analysis. In this respect, it should be possible to compare the integration of

the heavy field ψ(x, t) after deducing the 1-loop effective action for the fluctuations, with

the integration of the heavy quanta Λ taking into account single loops.
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A Propagation eigenstates

In section 3.1 we introduced a field redefinition in order to simplify the interactions of our

theory. In this representation the interactions do not depend on field derivatives but only

on the fields themselves. We called this frame “interaction eigenstates” basis. However, in

this frame the nontrivial quadratic coupling ∝ ϕ̇ψ persists, linking the equations of motion

for both fields, leading to the mixing of particle states in each field. In other words, the

propagator of the theory is non-diagonal. In this appendix we construct a different basis

that simplifies the free field theory. We define a set of “propagation eigenstates” A and B,

that have decoupled equations of motion (i.e. diagonal propagators) and whose dispersion

relations coincide with the ones derived for the particle states of the interaction eigenstates.

Properly defined propagation eigenstates are decoupled and canonically normalized fields
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of the form

A(x, t) =
1

(2π)3/2

∫
d3p

1√
2ωG(p)

{
aG(p)eipGx + a†G(p)e−ipGx

}
, (A.1)

B(x, t) =
1

(2π)3/2

∫
d3p

1√
2ωΛ(p)

{
aΛ(p)eipΛx + a†Λ(p)e−ipΛx

}
, (A.2)

that, by construction, satisfy the following equations of motion:

Ä+ Ω2
G(∇)A = 0, B̈ + Ω2

Λ(∇)B = 0, (A.3)

where Ω2
G(∇) and Ω2

Λ(∇) are defined as the coordinate representations of the

dispersion relations:

Ω2
G(∇) = ω2

G(p)
∣∣
p→−i∇ , (A.4)

Ω2
Λ(∇) = ω2

Λ(p)
∣∣
p→−i∇ . (A.5)

From these equations one can recover the dispersion relations (3.27) and (3.28). Further-

more, from the expansions (A.1) and (A.2) we can construct the interaction eigenstates.

For example the G- and Λ-dependent parts of ϕ are related to A and B by the following

respective relations:

√
ΣG(∇)A(x) =

∫
d3p

(2π)3/2

(
ϕG(p)aG(p)eipGx + h.c.

)
, (A.6)

−

√
ΣΛ(∇)

Ω2
Λ(∇)

Ḃ(x) =

∫
d3p

(2π)3/2

(
ϕΛ(p)aΛ(p)eipΛx + h.c.

)
, (A.7)

where we have defined:

ΣG(∇) = 2|ϕG(p)|2ωG(p)
∣∣
p→−i∇ , (A.8)

ΣΛ(∇) = 2|ψΛ(p)|2ωΛ(p)
∣∣
p→−i∇ . (A.9)

Notice that the time derivative in (A.7) accounts for the sign difference produced by the

conjugation of the imaginary amplitude ϕΛ. Putting together these two results we obtain

the following relation for ϕ in terms of A and B:

ϕ(x) =
√

ΣG(∇)A(x)−

√
ΣΛ(∇)

Ω2
Λ(∇)

Ḃ(x). (A.10)

Analogously we can obtain ψ in terms of A and B as:

ψ = −

√
ΣG(∇)

Ω2
G(∇)

Ȧ+
√

ΣΛ(∇)B. (A.11)

In a more compact notation, this transformation can be rewritten as

ξa =Ma
bAb, (A.12)
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where

ξa =

(
ϕ

ψ

)
, Aa =

(
A

B

)
, and Ma

b =

 √
ΣG(∇) −

√
ΣΛ(∇)
Ω2

Λ(∇)
∂t

−
√

ΣG(∇)
Ω2
G(∇)

∂t ΣΛ(∇)

 , (A.13)

are used to write the interaction eigenstates in terms of the propagation eigenstates. Then,

the free Lagrangian in terms of the interaction eigenstates is:

L = −1

2
ξaLabξ

b, where Lab =

(
∂tt −∇2 2θ̇0∂t
−2θ̇0∂t ∂tt −∇2 +M2

)
. (A.14)

On the other hand, the free Lagrangian in terms of propagation eigenstates is

L = −1

2
AaL′abAb, where L′ =MTLM. (A.15)

The equations of motion derived from this diagonal Lagrangian imply that the A and B

modes have dispersion relations ωG and ωΛ respectively.

B Field propagator

In this appendix we derive the propagators for the theory analyzed in section 3. To proceed,

let us consider the first entry of the propagation matrix introduced in (3.2), defined as

defined as D11(x − y) = 〈0|T ϕ(x)ϕ(y)|0〉. It is direct to see that its explicit form in

momentum space is given by:

D11(x− y) = θ(x0 − y0)

∫
d3p

(2π)3/2

{
|ϕΛ|2eipΛ(x−y) + |ϕG|2eipG(x−y)

}
+θ(y0 − x0)

∫
d3p

(2π)3/2

{
|ϕΛ|2e−ipΛ(x−y) + |ϕG|2e−ipG(x−y)

}
, (B.1)

where θ(x0 − y0) is the usual step function. We would like to write the propagators as an

integral in d4p. The usual step connecting these two results is a complex integration in

p0. This step may be simplified significantly if we use the transformation described in the

appendix A (
ϕ

ψ

)
=

(
M11 M12

M21 M22

)(
A

B

)
, (B.2)

where A and B are of the canonical form:

A(x, t) =
1

(2π)3/2

∫
d3p

1√
2ωG(p)

{
aG(p)eipGx + a†G(p)e−ipGx

}
, (B.3)

B(x, t) =
1

(2π)3/2

∫
d3p

1√
2ωΛ(p)

{
aΛ(p)eipΛx + a†Λ(p)e−ipΛx

}
. (B.4)

The form of the transformationM was derived in appendix A. Because A and B are scalar

fields with dispersion relations ωG and ωΛ respectively, their propagators are:

〈0|T A(x)A(y)|0〉 =

∫
d4p

(2π)4

i

(p0)2 − ω2
G + iε

eip(x−y), (B.5)

〈0|T B(x)B(y)|0〉 =

∫
d4p

(2π)4

i

(p0)2 − ω2
Λ + iε

eip(x−y). (B.6)
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Using eqs. (A.10) and (A.11) we may then write the propagator of eq. (B.12) as:

D11(x− y) =

∫
eip(x−y)

ω2
Λ − ω2

G

i

p2

{
(ω2

Λ − p2)ω2
G

(p0)2 − ω2
G

+
(p2 − ω2

G + iε)ω2
Λ

(p0)2 − ω2
Λ + iε

}
. (B.7)

Finally the last expression can be simplified further to obtain:

D11(x− y) =

∫
d4p

(2π)4

i(p2 +M2)eip(x−y)(
(p0)2 − ω2

G + iε
) (

(p0)2 − ω2
Λ + iε

) . (B.8)

To verify that this is indeed the propagator (B.12), we may first notice the following identity∫
dp0

2πi

(
i(p2 +M2)(

(p0)2 − ω2
G

) (
(p0)2 − ω2

Λ

)) e−ip0(x0−y0) =
∑
p0
i

Res
(
f(p0), p0

i

)
, (B.9)

where f(p0) is the expression in parenthesis in the previous line. The poles of this function

are: p0 = ωΛ, −ωΛ, ωG and −ωG. And their residues are of the form:

Res(f(p0), ωΛ) = lim
p0→ωΛ

i(p0 − ωΛ) i(p2 +M2)

(p0 − ωΛ)(p0 + ωΛ)
(
(p0)2 − ω2

G

)e−ip0(x0−y0) (B.10)

= −
−ω2

Λ + p2 +M2

2ωΛ(ω2
Λ − ω2

G)
e−iωΛ(x0−y0) = |ϕΛ|2e−iωΛ(x0−y0). (B.11)

Gathering the four residues, the integral then becomes

θ(x0 − y0)

∫
d3p

(2π)3/2

{
|ϕΛ|2eipΛ(x−y) + |ϕG|2eipG(x−y)

}
+θ(y0 − x0)

∫
d3p

(2π)3/2

{
|ϕΛ|2e−ipΛ(x−y) + |ϕG|2e−ipG(x−y)

}
, (B.12)

that is exactly the propagator (B.12), deduced with the fields ϕ and ψ directly. Using the

same method, and introducing the Feynman prescription for the integration contour, the

other propagators can be calculated and condensed into a propagation matrix:

Dab(x− y) =

∫
d4p

(2π)4

eip(x−y)(
(p0)2 − ω2

G + iε
) (

(p0)2 − ω2
Λ + iε

) ( i(p2 +M2) 2θ̇0p
0

−2θ̇0p
0 ip2

)
.

(B.13)

C Useful relations involving the dispersion relations

In this appendix we provide some identities valid for the dispersion relations (3.27)

and (3.28) for low- and high-frequency quanta respectively. These identities will be partic-

ularly useful for the discussion of section 4. Let us start by noticing that (3.27) and (3.28)

may be rewritten in terms of the mass of the heavy mode Λ and the speed of sound cs
introduced in eq. (3.29) as:

ω2
G(p) =

1

2

(
Λ2 + 2p2 −

√
(Λ2 + 2p2)2 − 4p2(Λ2c2

s + p2)
)
, (C.1)

ω2
Λ(p) =

1

2

(
Λ2 + 2p2 +

√
(Λ2 + 2p2)2 − 4p2(Λ2c2

s + p2)
)
. (C.2)
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We would like to know under which conditions it is possible to have the low-frequency ωG
much lower than the high-frequency ωΛ. Namely:

ω2
G � ω2

Λ. (C.3)

To have a handle on the dependence of ωG and ωΛ on the momentum p when (C.3) is

satisfied, let us notice that we may rewrite such a relation as:

2ω2
Λω

2
G � (ω2

G + ω2
Λ)2. (C.4)

Then, by replacing the expressions for ω2
G and ωΛ provided in eqs. (C.1) and (C.2)

into (C.4), we obtain the following expression:

2
[
p2 + Λ2c2

s

]
p2 �

[
Λ2 + 2p2

]2
. (C.5)

Because c2
s ≤ 1, the previous relation is satisfied if and only if:

p2 � Λ2. (C.6)

Equation (C.6) informs us at which range of the momenta the hierarchy of (C.3) is satisfied.

We can now verify that within this regime, the two frequencies acquire the forms:

ω2
G = p2c2

s + (1− c2
s)

2 p4

Λ2
+O(p6/Λ4), (C.7)

ω2
Λ = Λ2 +O(p2). (C.8)

It may be verified in eq. (C.7) that the term O(p6/Λ4) is always subleading with respect

to the first two terms. One additional useful relation that may be verified in the regime

ω2
G � ω2

Λ is that

ω2
G � p2 +M2, (C.9)

(recall that Λ2 = M2c2
s) which is a useful expression to derive the low energy EFT for

low-frequency modes.

D Some additional useful expressions

Here we provide the set of contractions needed to compute the effective field theory. Let us

start by recalling that a contraction between two arbitrary fields ξa and ξb (not necessarily

ϕ and ψ) is defined as

Dab(x− y) = ξa(x)ξb(y) ≡ 〈0|T ξa(x)ξb(y)|0〉. (D.1)
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In addition, recall that one may write the interaction picture fields as ϕI = ϕG + ϕΛ and

ψI = ψG + ψΛ with

ψG(x, t) ≡ 1

(2π)3/2

∫
d3p

{
ψG(k)e−i(ωGt−p·x)aG(p) + h.c.

}
, (D.2)

ϕG(x, t) ≡ 1

(2π)3/2

∫
d3p

{
ϕG(k)e−i(ωGt−p·x)aG(p) + h.c.

}
, (D.3)

ψΛ(x, t) ≡ 1

(2π)3/2

∫
d3p

{
ψΛ(k)e−i(ωΛt−p·x)aΛ(p) + h.c.

}
, (D.4)

ϕΛ(x, t) ≡ 1

(2π)3/2

∫
d3p

{
ϕΛ(k)e−i(ωΛt−p·x)aΛ(p) + h.c.

}
, (D.5)

where ϕG(p), ϕΛ(p), ψG(p) and ψΛ(p) are the amplitudes provided in eqs. (3.31)

and (3.32). Then, it is possible to split the propagators involving the fields ϕI and ψI
into propagators involving ϕG, ϕΛ, ψG, ϕΛ in the following way

Dϕϕ = DΛ
ϕϕ +DG

ϕϕ, (D.6)

Dϕψ = DΛ
ϕψ +DG

ϕψ, (D.7)

Dψψ = DΛ
ψψ +DG

ψψ, (D.8)

with Dψϕ = −Dϕψ. Notice that the label G distinguishes the propagation of Goldstone

boson quanta whereas Λ labels the propagation of the massive mode. Putting all of the

previous ingredients together, we find that the contributions coming from the propagation

of the Goldstone mode G are given by

DG
ϕϕ(x−y) =

∫
d4k

(2π)4
2|ϕG(p)|2ωG(p)

ieik·(x−y)

(k0)2 − ω2
G(p) + iε

, (D.9)

DG
ϕψ(x−y) =

2θ̇0

M2 − Ω2
G(∇)−∇2

∂

∂y0
DG
ϕϕ(x− y), (D.10)

DG
ψψ(x−y) =

4θ̇2
0[

M2 − Ω2
G(∇)−∇2

]2 [ ∂

∂x0

∂

∂y0
DG
ϕϕ(x−y)− iSG(∇)δ(4)(x−y)

]
, (D.11)

whereas the contributions coming from the propagation of the massive mode Λ are given by

DΛ
ψψ(x− y) =

∫
d4k

(2π)4
2|ψΛ(k)|2ωΛ(k)

ieik·(x−y)

(k0)2 − ω2
Λ(k) + iε

, (D.12)

DΛ
ψϕ(x− y) =

2θ̇0

Ω2
Λ(∇) +∇2

∂

∂y0
DΛ
ψψ(x− y), (D.13)

DΛ
ϕϕ(x− y) =

4θ̇2
0[

Ω2
Λ(∇) +∇2

]2 [ ∂

∂x0

∂

∂y0
DΛ
ψψ(x− y)− iSΛ(∇)δ(4)(x− y)

]
. (D.14)
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To write down these expressions we have defined

Ω2
G(∇) = ω2

G(p)
∣∣
p→−i∇ , (D.15)

Ω2
Λ(∇) = ω2

Λ(p)
∣∣
p→−i∇ , (D.16)

ΣG(∇) = 2|ϕG(p)|2ωG(p)
∣∣
p→−i∇ , (D.17)

ΣΛ(∇) = 2|ψΛ(p)|2ωΛ(p)
∣∣
p→−i∇ , (D.18)

which correspond to the coordinate representation of scale dependent functions already

defined.
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