Outlining of high quality coking coal by concentration–volume fractal model and turning bands simulation in East-Parvadeh coal deposit, Central Iran

Peyman Afzal a,b,⁎, Seyed Hosein Alhoseinib, Behzad Tokhmechic, Dariush Kaveh Ahangaran a,b, Amir Bijan Yasrebia, Nasser Madanid, and Andrew Wethereltd

a Camborne School of Mines, University of Exeter, Penryn, UK
b Department of Mining Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
c School of Mining, Petroleum and Geophysics Engineering, Shahrood University, Shahrood, Iran
d Department of Mining Engineering, University of Chile, Santiago, Chile

⁎ Corresponding author at: Department of Mining Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
E-mail addresses: P. Afzal@azad.ac.ir, p.afzal@exeter.ac.uk (P. Afzal).

A R T I C L E I N F O

Article history:
Received 31 December 2013
Received in revised form 7 March 2014
Accepted 8 March 2014
Available online 25 March 2014

Keywords:
Concentration–volume (C–V) fractal model
Turning bands simulation
Logratio matrix
Sulfur
Ash
East-Parvadeh

A B S T R A C T

This study aims at identifying the proper parts of C1 and B2 coking coal seams in the North block of East-Parvadeh coal deposit (Central Iran) using the concentration–volume (C–V) fractal modeling according to sulfur and ash values which were calculated by turning bands conditional simulation. The C–V log–log plots were generated based on results of 100 realizations derived via turning bands simulation which show seven different geochemical populations for both sulfur and ash data in B2 seam which has a relatively good quality for coking coal with sulfur and ash values lower than 1.548% and 6.39% respectively. Additionally, C–V log–log plots indicate that there are seven and six for sulfur and ash geochemical populations in C1 seam containing a proper coal quality with respect to sulfur and ash values less than 1.41% and 6.92% respectively. High quality populations are located in the northern and western parts of the studied area which correlated with USGS standard. The logratio matrix was used for the correlation between results obtained by the C–V fractal modeling and geological particulars consisting of pyritic veins and ash coals. Based on the logratio matrix for sulfur values higher than 3.55% and 3.39% for C1 and B2, respectively, low quality parts of the seams have good correlation with pyritic veins in the eastern and central parts of the area. Moreover, there are high values of overall accuracy (OA) for correlation between parts of the seams with high values of ash which are 47.86% and 39.81% for C1 and B2, respectively, and ash coals obtained by geological data.

1. Introduction

Recognition of coking coal parts in the bituminous coal seams is necessary for mine planning and equipment selection used for mining these seams. Ash and sulfur values are important for determination of proper coal quality for coke production regarding environmental control of coal mining (Younger, 2004). Conventional methods for modeling of various parts of coking coal are based on petrographical, physical, technological and geochemical studies especially measuring of sulfur and ash variations in the coal seams considering Russian standards and USGS system (Ahangaran et al., 2011; Brownfield et al., 2001; Wood and Kehn, 1976). The classifications based on all physical, mechanical, chemical, and technological characteristics of organic fraction of coal have been utilized in Iran since 1960s.

Geostatistical simulation has been widely used in geology and mining engineering to assess the uncertainty at un-sampled locations and to develop model the continuous variables (Emery and Lantuéjoul, 2006). Conditional simulation is designed initially to overcome the smoothing effect of kriging estimator especially when mapping sharp or extreme spatial discontinuities is looked for (Deutsch and Journel, 1998; Leuangthong et al., 2004; Soltani et al., 2014).

The simulation algorithms take into account both the spatial variation of actual data at sampled locations and the variation of estimates at un-sampled locations which means that simulation reproduces the sample statistics (histogram and semi-variogram model) and honors sample data at their original locations. Therefore, a simulation map represents the spatial distribution of the particular more realistic than a kriged map (Asghari and Madani Esfahani, 2013; Soltani et al., 2014). The geostatistical simulation is an alternative to the
conventional approaches of estimation which is independent of over and under estimation. This benefit is an important issue in order to apply for the fractal model and could reproduce better results.

Fractal/multifractal modeling, established by Mandelbrot (1983) has been widely used in geosciences specifically for interpretation of geochemical data spatial distribution and delineation of mineralized zones from barren host rocks since 1980s (Afzal et al., 2011, 2013; Agterberg...
et al., 1993, 1996; Cheng, 2007; Cheng et al., 1994; Costa, 1997; Costa and Dimitrakopoulos, 1998; Daneshvar Saein et al., 2012; Li et al., 2003; Turcotte, 1997; Yasrebi et al., 2013; Zuo et al., 2009; 2012, 2013).

Cheng et al. (1994) and Cheng (1995) proposed concentration–area (C–A) and concentration–perimeter (C–P) fractal models for separation of geochemical anomalies from background and calculation of elemental

Fig. 2. Isometric view of drill hole locations (a) and a 3D geological model for the East-Parvadeh deposit with a vertical exaggeration equal to 30 (b).
threshold values for different geochemical data. Moreover, other fractal models were developed and applied in geochemical exploration such as number–size (N–S) by Mandelbrot (1983), power spectrum–area (S–A) by Cheng et al. (1999), concentration–distance (C–D) by Li et al. (2003), concentration–volume (C–V) by Afzal et al. (2011) and concentration–number (C–N) by Afzal and Hassanpour (2013).

In this paper, the turning bands simulation and C–V fractal model were applied to outline sulfur and ash populations for separation of high quality coking coals based on drillcore data from the C1 and B2 seams of the North block of East-Parvadeh coal deposit located in the Central Iran. Moreover, the results obtained by the fractal modeling were compared with USGS system (Wood and Kehn, 1976) and geological particulars by logratio matrix proposed by Carranza (2011).

2. C–V fractal model

The application of fractal models for analysis of mineralized zones was based on relationships between ore grades and volumes or tonnages (Afzal et al., 2013; Agerberg et al., 1993; Sadeghi et al., 2012; Sim et al., 1999; Yasrebi et al., 2013). Afzal et al. (2011) proposed the C–V fractal model for delineating different porphyry-Cu mineralized zones from barren host rocks. This model is as follows:

\[
V(p \leq \upsilon) \propto \rho^{-a_1}, \quad V(p \geq \upsilon) \propto \rho^{-a_2}
\]

where \(V(p \leq \upsilon)\) and \(V(p \geq \upsilon)\) indicate two volumes with concentration values less than or equal to and greater than or equal to the contour value \(\rho\); \(\upsilon, a_1\) and \(a_2\) represent the threshold value of a zone and fractal dimensions respectively. Threshold values in this model represent boundaries between different mineralized zones and barren host rocks of different ore deposits. To calculate \(V(p \leq \upsilon)\) and \(V(p \geq \upsilon)\), that are the volumes enclosed by a contour level \(\rho\) in a 3D model, the borehole data of ore element concentrations were calculated using turning bands simulation (Emery and Lantuéjoul, 2006).

3. Turning bands simulation

The most applicable and widespread approximate algorithm is the sequential Gaussian (Deutsch and Journel, 1992) and continuous spectral methods (Shinozuka and Jan, 1972). These two approaches have some limitations and drawbacks (Chilès and Delフィner, 2012; Dehdari and Deutsch, 2012; Emery, 2004; Lantuéjoul, 2002). Another alternative is the turning bands method, which was first introduced by Chentsov (1957) in a special case of Brownian random functions but has been extended to the simulation of stationary and intrinsic random functions by Matheron (1973). This method aims at simplifying the simulation problem in multidimensional spaces, using simulations in one dimension and spreading them to the 2D or 3D space. This method is extremely fast with parallelizable computations and one can simulate as many locations as desired. The simulation also exactly reproduces the desired covariance. Actually, this method can be incorporated in both cases of stationary and intrinsic random function of order \(k\) (Emery and Lantuéjoul, 2006; Chilès and Delフィner, 2012). The proposed simulation algorithm in this study is based on a former code published by Lantuéjoul (1994), which has been completed by Emery and Lantuéjoul (2006) to include the following features:

![Fig. 3. Reproduced variograms for 100 realizations of: a) ash in B2; b) sulfur in B2; c) ash in C1 and d) sulfur in B2 (green line: experimental variogram for each realization; red line: mean of experimental variogram over 100 realizations; blue line: theoretical variogram of normal score transformed variables).](image)
- To handle isotropic covariance models,
- To simulate gridded locations on large domains,
- Accurate reproduction of the desired covariance model (without approximation),
- Availability of the most commonly used covariance models,
- Conditioning to a set of existing data,
- Definition of either a unique or a moving,
- Neighborhood for conditioning kriging,
- Back-transformation from normal values to original units.

4. Geological setting

Iranian coking coal resources and reserves are estimated to be about 7–10 Gt that is mainly located in two major basins in Northern and Central Iran, namely Alborz and the Central basins respectively (Solaymani and Taghipour, 2012). The Tabas coalfield provides most of Iran’s coking coal for metallurgical applications, as its reserve is estimated to be 3–4 Gt (Afzal et al., 2008; Ahangaran et al., 2011; Moore and Esmaeili, 2012; Yazdi and Esmaeilnia, 2004).

Fig. 4. E-types for a) ash in B2; b) sulfur in B2; c) ash in C1 and d) sulfur in C1; realization # 20 for e) ash in B2; f) sulfur in B2; g) ash in C1 and h) sulfur in C1; and realization # 100 for i) ash in B2; j) sulfur in B2; k) ash in C1 and l) sulfur in C1.
The East-Parvadeh coal deposit is located about 80 km south of the Tabas region, Central Iran (Fig. 1). The Tabas coalfield district is a part of Central Iran’s structural zone that is divided into different sub-zones namely Parvadeh, Nayband, and Mazinu. The Parvadeh area includes six parts divided by major faults and the East-Parvadeh is depicted in Fig. 1. The East-Parvadeh coal deposit is divided by Zenoughan fault to the North and South blocks. According to dip, depth and structural effects, the North block has better quality coal seams than the South block. The coal bearing strata of the Tabas coalfield consist mainly of sediments of Upper Triassic, Middle Jurassic age especially for the Nayband formation and Ghadir member. Their rock units include siltstone, sandstone, shale, sandy siltstone and small amounts of limestone and ash coal which is coal with high values of ash. Coal seams in the Parvadeh region are named A, B, C, D, E and F; worth noting that B and C coal seams are minable based on their quality and quantity, specially C1 and B2 seams which have better quality (Fig. 2).

A geological 3D model of the coal seams was generated by utilizing RockWorks™ v. 15 software and surface/subsurface data collected from surface outcrops and drillcores. The data used include collar coordinates of drill holes, azimuth and dip (orientation), stratigraphy and sulfur and ash values for the coal seam cores. Additionally, other surface data consist of topographical data, faults, outcrops of coal seams and other geological features which are relevant to constructing of the 3D geological model. Coal seams were delineated in all drillcores with respect to geological logging consisting of petrographic and mineralogical studies. The Triangulation algorithm was used for seam modeling and after 3D modeling of coal seams showing coal seams are deeper in the SW part of the area (Fig. 2).

5. Simulation of ash and sulfur values based on turning bands

For this study, 87 and 54 samples were collected from 87 drillcores from the C1 and B2 coking coal seams respectively and also chemical analysis for evaluation of sulfur and ash content in these samples was carried out. The area study comprises 14,500 m, 5500 m and 520 m along X, Y and Z respectively considering the deposit geometric properties. Subsequently, block size was determined based on grid drilling dimensions of 250 m × 250 m × 0.2 m for X, Y and Z respectively (David, 1970). The 3D models consisting of sulfur and ash distribution in the C1 and B2 seams were created using turning bands conditional simulation.

The ash and sulfur data have been transformed by using a normal score transformation and the statistics of transformed data check the correctness of the transformation, and also, the experimental semi-variogram and a spherical model fitted to the raw and normal transformed data. Turning bands simulation and visualizations were carried out with a MATLAB code which proposed by Emery and Lantuéjoul (2006) and SGeMS software. The histogram and semi-variogram model reproduced over a number of realizations should be, on average, equal to the sample statistics (Emery and Gonzalez, 2007) that reproduced variograms were represented in Fig. 3. Based on the simulation, 100 realizations of ash and sulfur spatial distributions are generated in the C1 and B2 seams. Horizontal plan of two randomly selected realizations consisting of realizations of 20 and 100 within E-type (average of all realizations) is displayed in Fig. 4. For the simulation

<table>
<thead>
<tr>
<th>Category</th>
<th>Very low</th>
<th>Low</th>
<th>Moderate</th>
<th>Relatively high</th>
<th>High</th>
<th>Very high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash</td>
<td><6.92</td>
<td>6.92-10.96</td>
<td>10.96-15.85</td>
<td>15.85-27.54</td>
<td>27.54-47.86</td>
<td>>47.86</td>
</tr>
</tbody>
</table>

Table 1
Different geochemical populations for sulfur in C1 seam based on C–V fractal modeling.

<table>
<thead>
<tr>
<th>Category</th>
<th>Very low</th>
<th>Low</th>
<th>Moderate</th>
<th>Relatively high</th>
<th>High</th>
<th>Very high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur</td>
<td><1.41</td>
<td>1.41-2.09</td>
<td>2.09-3.55</td>
<td>3.55-3.89</td>
<td>3.89-5.01</td>
<td>>5.01</td>
</tr>
</tbody>
</table>

Table 2
Different geochemical populations for ash in C1 seam based on C–V fractal modeling.
process, in order to fasten the convergence to the multiGaussian distri-
bution, the equi-distributed directions are considered as 1000 bands. As
can be seen from Fig. 3, the experimental variogram of realizations and
its mean could reproduce exactly the theoretical variogram of the
normal score transformed variables. The histograms also reproduced
the experimental histogram of normal score transformed variables,
but they are not presented here to save the spaces. In Fig. 4, some real-
izations of C1 seams are not structured properly because of the theoret-
ical variogram fitted to the experimental variogram of the normal score
transformed variables. This issue can be due to the low number of
samples, not having a good structure for the ash content and sulfur from
the geological standpoint. This ambiguity can be resolved in the
further steps of core drilling and obtaining new representative samples
from the C1 seam.

6. Application of C–V fractal modeling

The C–V log–log plots were built up for sulfur and ash data in the C1
and B2 seams based on realization # 20 because all realizations have a
similar range with an equal amount for maximum and minimum data
and one of them could be used randomly (Fig. 5). Their breakpoints be-
tween straight-line segments in the log–log plots represent threshold
values for separating of various sulfur and ash populations in the both
seams. The straight fitted lines were resulted based on least-square
regression in the log–log plots (Agterberg et al., 1996; Spalla et al.,
2010). Based on the C–V log–log plots for C1 seam, there are seven
and six different geochemical populations for sulfur and ash respective-
ly (Tables 1 and 2). C1 seam with sulfur values lower than 1.41% can be
categorized as good and relatively good populations for coking coal via
USGS system (Wood and Kehn, 1976). These populations are located
in the northern and western parts of the seam (Fig. 6). Populations
with lowest quality for coking coal which have sulfur values higher
than 3.89% were determined as undesirable populations and also sulfur
values higher than 3.89% can show pyritic veins in the coal seam. Proper
populations for ash in the C1 seam have ash value lower than 6.92% that
presents good populations for coking coal due to USGS system. These
populations are located mostly in the western parts of the seam
(Fig. 6). Populations with lowest quality for coking coal have ash values
higher than 15.85% and last population with ash higher than 47.86% can
indicate ash coals. Based on the C–V log–log plots for B2 seam, there are
seven different geochemical populations for sulfur and ash data
(Tables 3 and 4). Suitable populations for sulfur in B2 seam have sulfur
values lower than 1.55% which reveal high quality population for coking
coals according to USGS system (Table 5). This population (with sulfur
lower than 1.55%) is situated mostly in the western, central and north-
er parts of the seam (Fig. 7). Populations with low quality for coking
coal have sulfur values higher than 3.98% which can be correlated
with pyritic veins. Proper populations for ash in B2 seam are less than
6.39% which is in the western, northern and central parts of the seam
(Fig. 7). Populations with low quality for coking coal contain ash higher
than 39.81%.

7. Local uncertainty for results of C–V modeling

It is intuitive that the values of the data close to a location modify the
prior probability distribution: the probability to exceed a cut-off is
greater in high-value areas than in low-value areas. However, the un-
certainty associated with the unknown value at that location decreases

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Different geochemical populations for sulfur in B2 seam based on C–V fractal modeling.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Very low</td>
</tr>
<tr>
<td>Sulfur</td>
<td><1.55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Different geochemical populations for ash in B2 seam based on C–V fractal modeling.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Very low</td>
</tr>
</tbody>
</table>
when data exist near that location. To take into account the information brought by the data, one uses the concept of "conditional" (or "posterior") cumulative distribution function (ccdf). Now, the probability to exceed a threshold \(z \) depends on that location under consideration (hence the name of local uncertainty model), through the values of the data close to this location and the positions of these data.

The local uncertainty models allow taking decision in the presence of uncertainty and calculating the risks of taking an incorrect decision (Chilès and Delﬁner, 2012). The simulations provide a set of plausible scenarios and allow assessing the local uncertainty in the spatial distribution of the continuous variables within the deposit. In particular, one can characterize these domains by mapping their probabilities of occurrence at each location of the deposit (in practice, their frequencies of occurrence over the simulations: Emery and Gonzalez, 2007). The probability maps were obtained to account for the drill hole information and for the thresholds obtained from the C–V fractal modeling can be depicted in Fig. 8. As can be seen, these probability maps are quantified for the limitation less than the first threshold obtained by the C–V fractal modeling. The calculated values for local uncertainty are lower than 0.34 associated with low values of ash and sulfur in the coal seams, as depicted in Fig. 8. For example, in the West-North part of the B2 seam map, the probability of ash content less than 6.92% is high (approximately between 60% and 100%). Therefore, the productive areas have been assessed by these local uncertainty maps associated with the fractal model in the underlying coal seam.

8. Correlation between C–V fractal modeling and geological particulars

The multifractal nature of C–V log–log plots can be illustrated in different stages for coalification. First stage could exist in coals with ash values higher than 47.86% and 39.81% for C1 and B2, respectively. The stage could be revealed with ash coals and pyritic veins in the area (Fig. 9). In this stage, values of sulfur are high in the coals which are higher than 3% based on C–V fractal modeling for both coal seams. Main stage of coalification based on the C–V modeling for both ash and sulfur content is lower than 7% and 1.6%.

Carranza (2011) proposed an analysis for calculation of overlaps or spatial correlations between two binary models e.g., geological and mathematical models such as fractal or geostatistical modeling. As a result, a model with four overlap conditions was achieved to obtain numbers of voxels (performance of binary geochemical distribution modeling) corresponding to each of the four classes of overlap zones. Voxel’s numbers of overlap conditions between two binary models are utilized to determine overall accuracy (OA), and types I & II errors (TEI and TEII). OA, TEI and TEII relate to the ability of the analysis to mineralized zones (Table 6).

Correlation between the C–V fractal modeling and pyritic veins and ash coals for the coking coal seams (Fig. 9) was achieved by logratio matrix. Undesirable populations for sulfur and ash (variables) in the C1 and B2 seams based on the turning bands simulation and C–V fractal modeling correlated with pyritic veins and ash coals which derived via geological modeling respectively. Four overlap parameters namely A, B, C and D for two variables in two seams were defined. Finally, the logratio matrix was generated by placing the four parameters and also calculation of TEI, TEII and OA was performed (Tables 7–10). Comparison between OAs for high values of sulfur in C1 and B2 seams and pyritic veins shows that there is a good correlation between both of them which is 0.84 (Tables 7 and 9). Moreover, there are high values of OAs between ash coals and high ash populations derived via C–V fractal modeling which illustrate a proper correlation between C–V fractal and geological modeling. These high ash populations which are

Table 5: Coking coal categorization based on the USGS system (Wood and Kehn, 1976).

<table>
<thead>
<tr>
<th>Category</th>
<th>Low ash</th>
<th>Medium ash</th>
<th>High ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash (%)</td>
<td><8%</td>
<td>8%–15%</td>
<td>>15%</td>
</tr>
<tr>
<td>Sulfur (%)</td>
<td><1.5%</td>
<td>1.5%–3%</td>
<td>>3%</td>
</tr>
</tbody>
</table>

Fig 7. Proper populations for ash (<6.39%: a) and sulfur (<1.55%: b) populations for ash in B2 seam based on C–V fractal modeling in the North block of the East-Parvadeh coal deposit.
47.86% and 39.81% for C1 and B2, respectively, can be shown in the first stage of coalification with low quality.

9. Conclusion

In this study, the turning bands simulation and C–V fractal modeling were utilized to outline different qualities for the C1 and B2 coal seams in terms of sulfur and ash values in the North block of East-Parvadeh coking coal deposit, Central Iran. Investigation of the deposit reveals that results obtained by the geostatistical simulation can be used for the outlining of high quality coking coal by fractal modeling. The highest quality for coking coal in C1 seam considering the less sulfur and ash corresponds to the populations lower than 1.41% and 6.92% respectively. The desirable populations considering obtained breakpoints based on C–V log–log plot for B2 seam with proper quality are lower than 1.55% and 6.39% sulfur and ash respectively. Desirable populations for both seams are located mostly in the central, northern and western parts of the studied area. The uncertainty maps for the populations indicate that there are low values of uncertainty that resulted high quality of coking coals. Furthermore, the obtained results support the coal categorization by USGS system. Correlation between results and pyritic veins and ash coals obtained by geological modeling
Table 6
Matrix for comparing performance of fractal modeling results with Russian model.

<table>
<thead>
<tr>
<th>Fractal model</th>
<th>Geological model</th>
<th>Inside zone</th>
<th>Outside zone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>True positive (A)</td>
<td>False positive (B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>False negative (C)</td>
<td>True negative (D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type I error = C / (A + C)</td>
<td>Type II error = B / (B + D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overall accuracy = (A + D) / (A + B + C + D)</td>
<td></td>
</tr>
</tbody>
</table>

A, B, C and D represent numbers of voxels in overlaps between classes in the binary model results of fractal and geological models (Carranza, 2011).
shows that there are good correlation between low quality coal parts derived via fractal modeling. Moreover, OAs between fractal and geological modeling are high values especially for ash coals. As a result, the combination of fractal model and geostatistical simulation as an alternative to the conventional method of estimation such as kriging or Inverse Distance could reproduce more reliable results and one can have a better interpretation on the productive areas in coal seams to make a proper decision.

Acknowledgments

The authors would like to thank Mr. Masoud Hoseini and Ms Zahra Ebrahimi from Iran Minerals Production & Supply Co. (IMPASCO) for authorizing the access to the East-Parvadeh drillcores and dataset.

References

