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Abstract Lake Villarrica, located in south central Chile, has a maximum depth of 167 m and
a maximum fetch of about 20 km. The lake is monomictic, with a seasonal thermocline located
at a depth of approximately 20 m. Field data show the presence of basin-scale internal waves
that are forced by daily winds and affected by Coriolis acceleration. A modal linear and non-
linear analysis of internal waves has been used, assuming a two-layer system. The numerical
simulations show good agreement with the internal wave field observations. The obtained
modes were used to study the energy dissipation within the system, which is necessary to
control the amplitude growth. Field data and numerical simulations identify (1) the occurrence
of a horizontal mode 1 Kelvin wave, with a period of about a day that coincides with the
frequency of daily winds, suggesting that this mode of the Kelvin waves is in a resonant state
(subject to damping and controlled by frictional effects in the field) and (2) the presence of
higher-frequency internal waves, which are excited by non-linear interactions between basin-
scale internal waves. The non-linear simulation indicates that only 10 % of the dissipation
rate of the Kelvin wave is because of bottom friction, while the rest 90 % represents the
energy that is radiated from the Kelvin wave to other modes. Also, this study shows that
modes with periods between 5 and 8 h are excited by non-linear interactions between the
fundamental Kelvin wave and horizontal Poincaré-type waves. A laboratory study of the
resonant interaction between a periodic forcing and the internal wave field response has also
been performed, confirming the resonance for the horizontal mode 1 Kelvin wave.
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1 Introduction

The interaction between the wind and the internal waves in lakes and reservoirs can be
analysed in terms of a forced harmonic oscillator, in which the wind provides energy to the
lake, moving the thermocline from its equilibrium position and generating internal waves [22,
34]. When the wind stops, the excited waves propagate around the basin until damping mech-
anisms, such as bottom and wall friction, dissipate their energy [28,29]. Nevertheless, wind
forcing of lakes is typically periodic and so the interaction between the wind and the internal
waves can be seen as a forced oscillatory system that admits a resonance response [2,20].

As a harmonic oscillator, resonance arises when the forcing frequency matches the fun-
damental frequency of the system. Antenucci and Imberger [2] have studied the seasonal
evolution of the natural frequencies of Lake Kinneret and identified a resonant interaction
between the wind and the dominant radial, azimuthal and vertical mode 1 Kelvin wave, both
with periods close to 24 h. According to these authors, when the natural frequency of the
Kelvin wave gets closer to the wind frequency (period of 24 h), the amplitude of the internal
waves is larger than those observed when the natural frequency of the Kelvin wave moves
away from the forcing frequency. Resonance can amplify the response of internal wave modes
that are not energized by the surface winds, such as the second vertical mode [23]. Evidence
of the resonant interaction is also shown in the experiments performed by Wake et al. [38]
for the non-rotating case, in which it is seen that resonance can excite harmonics of the
fundamental frequency. In the same sense, non-rotating experiments performed by Boegman
and Ivey [3] show that resonance increases the nonlinear steepening of basin-scale internal
seiches, enhancing the energy flux to progressive non-linear internal waves [3]. In practical
terms, amplitudes of basin-scale internal waves cannot grow unbounded and so damping
mechanisms act in order to dissipate the energy that periodically enters to the basin-scale
waves. Such mechanisms include wave breaking and shoaling [4,5,9,27], bottom friction
[16,26], spin-down and wave-canceling [29,30], diapycnal mixing due to Kelvin-Helmholtz
instabilities [3], shear-induced instabilities and critical wave reflection [40].

The aim of this article is to characterize and quantify the resonance between Kelvin wave
and the periodic wind. This aim is achieved by studying, first, the clear resonance between the
periodic wind and the basin-scale waves that was observed in Lake Villarrica, located in south
central Chile The lake is a monomictic temperate lake, with a seasonal thermocline located at
about 20 m deep. Field measurements that reveal the resonant interaction are analysed based
on a modal analysis [28,31] that allows for quantifying the energy fluxes involved on this
phenomenon, focusing on the evolution of internal waves affected by Coriolis acceleration
and on their resonant interaction with periodic winds. Second, laboratory experiments were
conducted to study in detail the features that characterize the resonant interaction between
basin-scale waves and the wind forcing in a rotating table. This paper is structured as follows:
(i) the field study, the two-layer definition and the numerical scheme applied are described;
(ii), field, numerical and experimental results are presented; (iii) finally, results are discussed
in terms of the observed wind-wave resonance and its implications.

2 Methods

2.1 Field study

Lake Villarrica is a monomictic lake located in south central Chile (39.25◦S, 72.10◦W),
with a rectangular-like shape of 20 km × 10 km, oriented along the east-west direction. The
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Fig. 1 Lake Villarrica bathymetry and location of thermistor chains (TC1 and TC2) and meteorological station
(Met. Stat.). Depth contours every 50 m, and grey area denotes the basin interface area located at 18.5 m depth

surface area of the lake is of about 176 km2, a maximum depth of 167 m and a maximum
fetch of about 20 km. The average depth is 120 m and the dimensions of the lake indicate that
the Earth’s rotation is important for the internal wave dynamics during summer time [19].
Two thermistor chains were deployed in the lake between 8 and 20 February 2009 (days
39–51 of 2009), corresponding to the austral summer time when Lake Villarrica shows a
strong thermal stratification. As shown in Fig. 1, one of the thermistor chains (TC1) was
located at the east end of the lake and the other at the center of the lake (TC2). Each chain
was 80 m long, formed by 17 HOBO underwater temperature loggers sampling every 30
s, vertically distributed with maximum resolution of 2 m in the thermocline region at 20
m depth [19]. Figure 2b, c show water temperature measurements, where horizontal white
lines in the right-hand vertical axis indicate location of temperature data loggers. Finally, one
meteorological station was installed in the lake vicinity (see Fig. 1) to record wind direction
and magnitude, averaged every 10 min. Figure 2a shows measured time series of wind speed
and direction. Lake Villarrica is surrounded by mountains in its northern and southern shore,
so the wind over the lake blows in the east-west direction as it was recorded in the meteoro-
logical station. Then, homogeneous wind over the lake is a reasonable approximation to the
problem.

2.2 Two-layers definition

Measurements shown in Fig. 2 indicate that the thermal structure of the lake can be modeled
conceptually as a two-layer system, with the corresponding thermocline being located at the
depth at which the maximum of the time-averaged vertical profiles of the buoyancy frequency,
N , occurs (18.5 m depth, see Fig. 3) [10]. Figure 3 was constructed by the isopycnal averaging
[25], where large values of buoyancy frequency near the surface are attributed to diurnal heat
exchanges with the atmosphere. Here N (z) = √−g/ρ (∂ρ/∂z) of Fig. 3b was computed
with the vertical density profile of Fig. 3a. In this equation, g is the acceleration due to
gravity, ρ is the density and z is the vertical axis pointing upwards. For each thermistor
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Fig. 2 a Wind direction (dots) and wind speed (line). b and c temperature distribution at TC1 and TC2, and
estimated density interface (dark line). Horizontal white lines in the right-hand vertical axis indicate location
of temperature data loggers

chain, the layer-averaged water densities are summarized in Table 1. The time series of the
thermocline displacements, for both thermistor chains, were defined empirically in terms
of the isotherm that, in average, is located at a depth of 18.5 m. The time-histories of the
thermocline displacements so-defined are shown as thick lines in Fig. 2 for stations TC1 and
TC2. The grey area in Fig. 1 indicates the basin density interface area at 18.5 m depth, shown
here to cover almost the entire surface area.

2.3 Modal analysis

This section summarizes the general aspects of modal analysis required to understand the
methodology used in this article. However, given length restriction of the article, some details
are not provided and it is left to the reader to visit the article [31] for the basic concepts on
modal analysis, [28] for bulk energy dissipation and bottom friction, and [9] for non-linear
interactions among internal waves.
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Fig. 3 a, b Average vertical
profiles of density and buoyancy
frequency for TC1 and TC2. The
thin line corresponds to two-layer
system average densities and the
dashed line indicates the location
of the thermocline

998 999 1000
−80

−70

−60

−50

−40

−30

−20

−10

0

ρ [kg m−3]

z 
[m

]

A

0 0.01 0.02 0.03 0.04

N [rad s−1]

B

TC1
TC2

Table 1 Average water densities
of the two-layer model for both
thermistor chains and mean
values for numerical simulation

Parameter (kg m−3) TC1 TC2 Mean

ρ1 998.31 998.34 998.331

ρ2 999.81 999.82 999.82

�ρ 1.50 1.48 1.49

2.3.1 General overview

The modal analysis first proposed by Shimizu et al. [31] was followed to simulate the response
to the wind of the two-layer stratified system. This pseudo-spectral approach solves the
eigenvalue problem that arises from searching for periodic waves solutions to the linearized
homogeneous two-layer equations. Then, after assuming that any unknown variable is rep-
resented by the linear combination of the basin-scale waves described by the eigenvectors,
the problem is reduced to compute the modal amplitudes of that linear combination [31].
Following this methodology, the two-dimensional, two-layer problem is simplified to a set
of R ordinary differential equations, each one representing the evolution of each one of the
R basin-scale waves. For the linear inviscid case, these equations are written as:

dãr

dt
= iωr ãr + f̃r (1)

where ãr (t) denotes the complex amplitude of the r th basin-scale wave, ωr the corresponding
natural frequency of oscillation (the eigenvalues of the problem), i = √−1 is the imaginary
unit and f̃r is a function that describes the momentum exchanges between each basin-scale
wave and the wind field. The energy contained on the r th mode is computed as:

Er = er
ãr ã∗

r

2
(2)
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where er is a normalizing factor and superscript ∗ denotes the complex conjugate.

2.3.2 Bulk energy dissipation of the Kelvin wave

Shimizu and Imberger [28] showed that energy dissipation may be included in the modal
analysis by introducing bulk linear dissipation rate coefficients, γr , thus modifying Eq. 1 as:

dãr

dt
= (i�r − γr ) ãr + f̃r (3)

where �r is the modal frequency of the r th basin-scale wave (assumed to be slightly dif-
ferent from ωr because of several factors including friction [28] and nonlinear interactions
between waves [9,13]) and γr is a real positive constant. Following Shimizu and Imberger
[28], non-dissipative modes of the eigenvalue problem can be used for fitting the interface
displacements simulated with the modal analysis to the observed values obtained from the
thermistor chains. The free parameters of this problem are the energy damping coefficients,
γr , modal frequencies modified by friction, �r and initial complex amplitudes ãro . These
free parameters were estimated using an optimization process that aims to minimize the dif-
ference between time series of the interface displacements observed at each thermistor chain
and those computed on the basis of the complex amplitudes. The fitted angular frequency
was restricted to the range 0.5ωr ≤ �r ≤ 1.5ωr , the damping timescales, Tdr = 2πγ −1

r
were restricted to be between 1 and 80 days and no restrictions were imposed on the initial
complex amplitude.

2.3.3 Nonlinear interaction

Finally, de la Fuente et al. [9] included non-linear interactions among basin-scale waves to the
modal analysis, which provides that the complex amplitude of the r th mode is described by:

dãr

dt
= (iωr − γr ) ãr + i

+∞∑

s=−∞

+∞∑

q=−∞
ñ(r,q,s)ãq ãs + f̃r (4)

where ñ(r,q,s) is a coefficient that quantifies the magnitude of the changes in the complex
amplitudes of the r th mode, due to the non-linear interaction among the r th, qth and sth
modes [9]. Contrary to Eq. 3, the energy damping coefficients, γr , in Eq. 4 should only
account for energy dissipation due to bottom friction. Considering this, the energy damping
coefficient were computed following Shimizu and Imberger [28], linearizing the bottom
shear stress in such a way that the eigenvalues of the problem are now complex numbers,
whose imaginary part are equal to γr . The linearization of the bottom shear stress requires
writing it as τ b = ρC ′

du, where C ′
d = Cdũ is the modified bottom drag coefficient, being

Cd = 2–3 times 10−3 the bottom drag coefficient according to [28] and the references therein.
Cd = 2.5×10−3 was used here and ũ is the velocity scale of the lower layer that was obtained
based on the inviscid simulation. Finally, f̃r and ωr in Eq. 4 are the same values required for
the linear inviscid problem of Eq. 3. Non-linear interactions among basin-scale waves were
studied based on preserving the energy cascade feature of the flow [9] so 47 gravitation internal
waves were required to simulate the dynamics of the nine largest modes. As a consequence
of the energy cascade behaviour the energy is concentrated in the smaller waves, which
impose a restriction on the length of the simulation to one week. Opposite to Eq. 3, only the
initial complex amplitudes are the free parameters of the problem. This initial condition was
estimated by using the linear inviscid equation (Eq. 1), and the optimization process that aims

123



Environ Fluid Mech (2014) 14:849–871 855

A

B

C

D

Fig. 4 a Wind direction (dots) and wind speed (line). b Wedderburn 2D number for Lake Villarrica. c, d
Observed interface displacements (thick gray line) and predicted interface displacements using W2D (thin
line) at TC1 and TC2.

to minimize the difference between time series of the interface displacements observed at
each thermistor chain and those computed on the basis of the linear problem. The first 3 days
of measurements were used for fitting the initial amplitude and, given this initial condition,
the non-linear problem was directly solved based on Eq. 4.

3 Results

3.1 Field measurements

Figure 4 displays wind data (magnitude and direction), the Wedderburn 2D number, W2D

[32] and the vertical displacements of the thermocline observed at TC1 and TC2, filtered
with a band-pass filter that cuts terms in the Fourier transform out of the range between
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5 h and 3 days. In Fig. 4a it is observed that wind blows with daily frequency from the
west and the maximum speed is less than 5 m/s. Furthermore, internal wave activity is
evident in the records (Fig. 4c, d), with a larger amplitude observed at TC1 rather than
TC2, because TC1 is located near the perimeter of the lake where isotherm displacements
are usually large due to the presence of internal Kelvin waves in Coriolis-affected lakes
[2,14,39].

Wind is the most important momentum source for the water body dynamics, induc-
ing surface currents and basin-scales internal waves [16]. To explore the order of mag-
nitude of wind-induced isotherm displacements, the Wedderburn 2D number (W2D) for
a two-layer stratification was computed following Shintani et al. [32], with the observed
wind shear stress. W2D is an extension of the standard Wedderburn number [17,33] for
irregular basins with vertical walls as is the case of Lake Villarrica (Fig. 1), and is
defined as:

W2D = h1

2η2 max
= gh2

1

2xgu2∗
(5)

where η2 max is the maximum interface displacement in the upwind end of the basin inter-
face area, u∗ denotes the wind shear velocity, and xg is the distance between the upwind
end and centroid of the basin interface area. Figure 4b shows the time series of W2D , in
which small values of W2D imply large interface displacements, with W2D = 0.5 being
the condition for strong upwelling in the linear case [32]. Assuming a linearly-tilted ther-
mocline, the wind-induced interface displacements, η2(�x), at TC1 and TC2 locations were
estimated as:

η2(�x) = h1

W2D

d(�x)

xg
(6)

where d(�x) is the distance along the wind direction between the centroid of the basin inter-
face area and the place (�x) where isotherm displacements is being calculated and h1 is the
upper layer height (18.5 m). By using of W2D to estimate the thermocline response to the
wind, we were able to define whether the displacements are expected to be either negative
or positive, depending on if the thermistor chain is located up- or down-wind the geometric
centre of the lake [32]. In the particular case of Lake Villarrica, maximum wind magnitudes
are associated to wind blowing from the West (see Fig. 4a), so that thermocline displace-
ments in TC1 are expected to be negative for these winds. Figure 4c, d shows the comparison
between observed isotherm displacements and wind-induced interface displacements, esti-
mated with Eq. 6 at TC1 and TC2, respectively. The computed Wedderburn numbers are
larger than 20 (Fig. 4b), so the expected interface displacements at the perimeter of the lake
are less than about 50 cm (Fig. 4c, d), which has no correlation with the measurements
that shows internal wave amplitudes of about 2–3 m. It is important to remind that this
analysis only explores the order of magnitude of interface displacements expected for the
measured wind shear velocity. Based on this preliminary estimation, it is possible to see that
wind shear stress is not strong enough to generate the observed interface amplitudes. The
hypothesis discussed in the rest of this article is that this extra energy is provided by reso-
nant interactions between the periodic wind and some of the basin-scale internal waves in
the lake.

Strictly speaking, in lakes substantially wider than the Rossby radius of deformation [1],
upwelling occurs in the form of Ekman-driven upwelling along the coasts that are parallel
to the wind due to Coriolis force [7,12], and not on the upwind end of the lake as assumed
in the derivation of Eq. 6. Nevertheless, in this case the Wedderburn 2D number represents
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Fig. 5 a Power spectral density of wind time series. b Power spectral density of the interface displacements
at TC1 (black thin line) and TC2 (grey thick line). Periods in b (1) 24 h, (2) 12 h and (3) 6 h. Letters a–i refer
to the modes shown in Fig. 6

a first approach in order to quantify the order of magnitude of the wind-induced interface
displacements, before rotation starts to affect the basin-scale internal waves generated from
wind-generated seiches. Winds blowing over Coriolis affected lakes generate Ekman layers
and upwelling occurring in the coasts takes the form of internal Kelvin waves in the stratified
case [7].

A spectral analysis of time series of the wind speed and interface displacements is shown in
Fig. 5a and b, respectively. Figure 5a shows that the dominant periods in the wind time-series
are 24 and 12 h, although the energy contained in the 12 h peak is one order of magnitude
smaller that the energy contained in the 24 h peak. Furthermore, Fig. 5b demonstrates three
dominant periods marked with numbers in the upper horizontal axis, namely: periods (1)
and (2) of about 24 and 12 h, respectively, associated with maximum values in both TC1
and TC2, and period (3) of about 6 h, which presents maximum values in the middle of
the lake (TC2) rather than in the perimeter (TC1). All of these peaks can be associated
with different modes of the internal oscillations (marked by dashed lines in Fig. 5) and
are further analysed in the next section using numerical simulations of basin-scale internal
waves. The grey area defined in Fig. 5b shows the range of frequencies studied in this
article that contains all of the energetic frequencies in both the wind speed and the interface
displacement.

123



858 Environ Fluid Mech (2014) 14:849–871

A 22.60 [hr] B 12.57 [hr] C 10.00 [hr]

D 8.67 [hr] E 8.18 [hr] F 6.48 [hr]

G 6.32 [hr] H 5.44 [hr] I 5.32 [hr]

η
2
/η

2max

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Fig. 6 Spatial shape of nine computed gravitational basin-scale waves of Lake Villarrica

3.2 Basin-scale waves in Lake Villarrica

The numerical solution of the modal analysis was carried out following [31] in a rectangular,
staggered mesh of square elements of side 250 m. This computation was conducted with layer
thickness h1 = 18.5 m, h2 depending on the bathymetry and �ρ = 1.49 kg/m3 (Table 1).
Figure 6 shows the horizontal shape of interface displacements and the upper layer flow
velocity of the nine largest gravitational internal waves with natural periods larger than
5 h used for this research. These waves were identified as gravitational waves because the
potential wave energy is of the same order as the kinetic energy [31]. Further detail is provided
in Table 2. The use of these nine internal gravitational waves for the analysis responds to the
fact that most of the observed energy in both the wind speed and interface displacements is
concentrated in periods larger than 5 h (see grey area of Fig. 5b). The main spectral peak in
both thermistor chains has a period of about 1 day and is associated with the fundamental
Kelvin wave, whose natural period calculated by the modal analysis is 22.60 h. Figure 6b
shows the Kelvin wave horizontal mode (K2) with a natural period of 12.47 h. Moreover,
modal analysis also identifies Poincaré-type waves: horizontal mode 3 wave with period of
10.00 h (Fig. 6c), horizontal mode 4 wave with period 6.48 h (Fig. 6f) and two horizontal
mode 5 waves with periods of 6.32 and 5.44 h (Fig. 6g and H, respectively). In the context
of this article, horizontal mode 4 has four peaks and four valleys in the interface, as shown in
Fig. 6. Finally, horizontal modes identified in Fig. 6 rotate according to Coriolis acceleration.
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Table 2 Adjusted parameters for fitted modes in the optimization process.

Mode Panel Classification 2πω−1
r (h) 2π�−1

r (h) Difference (%) 2πγ −1∗
r

(days)
2πγ −1∗∗

r
(days)

1 a K1 22.6 23.3 −3.1 30.2 419

2 b K2 12.5 18.7 −50.0 1.1 309

3 c P3.1 10.0 10.3 −3.1 80.0 232

4 d P3.2 8.7 13.0 −50.0 80.0 371

5 e P4.1 8.2 12.3 −50.0 1.0 244

6 f P4.2 6.5 7.6 −18.0 80.0 206

7 g P5.1 6.3 9.1 −44.2 20.1 254

8 h P5.2 5.4 8.2 −50.0 1.0 145

9 i P6.1 5.3 8.0 −50.0 1.0 163

Column labeled with 2πω−1
r corresponds to period computed with eigenvalue problem, column 2π�−1

r
shows modified periods based on fitting technique. Column “Difference” indicates percentage of difference
between 2π�−1

r and 2πω−1
r . Last two columns show the energy damping timescale (2πγ −1

r ) computed with

fitting Eq. 5 (2πγ −1∗
r ) or as the imaginary part of the eigenvalue computed with the modified drag coefficient

C ′
d = 7.2 × 10−5 m s−1(2πγ −1∗∗

r )

Particularly, interface displacements of all of nine modes rotates in the clockwise direction;
however, the differentiation between Kelvin and Poincaré-type waves is given, depending on
the rotation pattern the upper layer flow velocity exhibits: while the upper layer rotates in the
clockwise direction for K1 and K2, the upper layer flow velocity rotates in the anti-clockwise
direction for the other seven modes shown in Fig. 6c–i.

3.3 Bulk energy dissipation of the Kelvin wave

The modal amplitude of each wave was computed considering the measured wind time series,
starting on day 39 of 2009 and finishing on day 52 of 2009. For simplicity, the initial conditions
were initially set as zero amplitude (i.e., ãi = 0), thereby giving a persistent problem with
the phase of the internal waves with respect to the measurements; the simulated waves being
faster than those measured (not shown). This aspect is discussed in detail considering the
results of the non-linear simulation that are described in the following section.

To include energy dissipation in the linear model, the fitting method proposed by Shimizu
& Imberger [28] was conducted, considering as free parameters the damping coefficients, the
modal frequencies affected by friction and the initial amplitudes of the first 9 modes. These
coefficients were calculated by minimizing the least square error of the simulated temporal
evolution of the internal waves with respect to the observed interface displacements, in both
TC1 and TC2. The fitted coefficients are shown in Table 2 and final results are shown in
Fig. 7a, c, for TC1 and TC2, respectively. Figures 7b, d shows the direct comparison between
observed (η2obs) and simulated interface (η2sim) displacements at TC1 and TC2, respectively.
The error in the simulations is defined as:

error =
√√√√ 1

n

n∑

i=1

(η2obs − η2sim)2 (7)

is shown as dashed lines in Fig. 7b, d and calculated as 0.94 and 0.56 m for TC1 and TC2,
respectively.

123



860 Environ Fluid Mech (2014) 14:849–871

39 40 41 42 43 44 45 46 47 48 49 50 51
−5

−4

−3

−2

−1

0

1

2

3

4

5
η 2 T

C
1 

[m
]

−4 −2 0 2 4
−4

−2

0

2

4

η
2obs

 TC1 [m]

η 2s
im

 T
C

1 
[m

]

BA

C

39 40 41 42 43 44 45 46 47 48 49 50 51
−3

−2

−1

0

1

2

3

Day 2009

η 2 T
C

2 
[m

]

−4 −2 0 2 4
−4

−2

0

2

4

η
2obs

 TC2 [m]
η 2s

im
 T

C
2 

[m
]

D

Fig. 7 Linear simulation. a, c Comparison between simulated (black thin line) and measured (grey thick
line) interface displacements at TC1 and TC2, respectively. b, d comparison between measured and simulated
interface displacements at TC1 and TC2, respectively. Solid line denotes perfect fit and dashed lines are
±error defined in Eq. (8).

Fig. 8 Simulated modal energy based on the linear solution. Colors denote the energy associated to each of
the nine modes. Shaded area denotes the period of time when the solution is unrealistically influenced by the
fitted initial condition

Figure 8 shows the simulated energy partitioning among the 9 modes considered, from
which it is observed that the Kelvin wave contains the largest portion of the total energy
in the flow, while the energy contained in the other modes was initially high and then it
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decayed down to about zero energy accordingly to the fitted damping rate. The optimization
process fitted high energy on the beginning of the simulations to modes different than K1,
and this is due to the influence of the initial condition that minimized the error on early times
of the simulation. This period of time, when the solution is unrealistically influenced by the
fitted initial condition, is approximately one day and is marked with a shaded region in Fig. 8.
Despite of this fitting artifact, it is important to remark that the energy on modes different than
K1 monotonically decays according to the fitted damping rate, which revealed that the wind
does not provide sufficient energy to waves different than the Kelvin wave. This indicates
that further mechanisms are required to explain the observed oscillation in TC2: non-linear
interaction between Kelvin and Poincare waves is a reasonable hypothesis as it is shown as
follows.

3.4 Non-linear interaction between Kelvin and Poincaré waves

Non-linear interactions among internal waves were computed considering 7 days of measured
wind time series, starting on day 39 of 2009. This non-linear simulation required, first, to
compute the energy damping coefficient based on the modified drag coefficient C ′

d = Cdũ =
7.2 × 10−5 m s−1, with Cd = 2.5 × 10−3 [28] and ũ = 2.9 cm s−1, where this velocity scale
of the lower layer was estimated based on the linear solution. The obtained energy damping
coefficients are shown in the last column of Table 2. Based on these damping coefficients
and after fitting the initial amplitude of the internal waves, the final results for this non-linear
simulation are shown in Fig. 9a, c, for TC1 and TC2, respectively. Figure 9b, d shows the
direct comparison between observed (η2obs) and simulated interface (η2sim) displacements
at TC1 and TC2, respectively. The error in the simulations was calculated as 1.04 m and 0.56
m for TC1 and TC2, respectively.
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Fig. 9 Non-linear simulation. a, c Comparison between simulated (black thin line) and measured (grey thick
line) interface displacements at TC1 and TC2, respectively. b, d comparison between measured and simulated
interface displacements at TC1 and TC2, respectively. Solid line denotes perfect fit and dashed lines are
±error defined in Eq. (8)
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A

B

C

D

Fig. 10 Non-linear simulation. a Simulated modal energy. Colors denote the energy associated to each of the
nine modes and dashed line indicates total energy in K1 simulated with linear model of Fig. 8. b Cumulated
wind-provided energy (red line), cumulated energy dissipated by bottom friction (green area), cumulated
energy radiated to other modes due to non-linear interaction (blue area) and total energy in the Kelvin wave
(black thick line). c Signed energy fluxes related to wind-provided energy (red), bottom friction (green) and
non-linear interaction (blue) as function of natural frequency. d Absolute value of energy fluxes related to
wind-provided energy (red), bottom friction (green) and non-linear interaction (blue), as function of natural
frequency in log-scale

Figure 10a shows the simulated energy partitioning among the 9 modes considered, where
the dashed line corresponds to the energy on the Kelvin wave simulated with the linear model
(Fig. 8a). Once again it is observed that the Kelvin wave contains the largest portion of the
total energy in the flow; however, contrary to the linear simulation shown in Fig. 8a, the
energy contained in the other modes stayed high during the entire simulation, and in some
cases it increases due to non-linear interactions (see orange and green areas, corresponding
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to mode P5.1 and P4.1, Fig. 6g and e, respectively). The role of non-linear interactions
in energy redistribution among basin-scale waves is shown in Fig. 10b–d, where Fig. 10b
shows the time series of the energy that enters to the Kelvin wave due to the wind (red
line), the cumulated energy in the Kelvin wave that is dissipated by bottom friction (green
area), and the cumulated energy that radiates to other modes (blue area). The solid black
line corresponds to the simulated energy in the Kelvin wave. Furthermore, Fig. 10c and D
shows the temporal average energy fluxes related to the wind input energy (red areas), bottom
friction (green areas), and non-linear interaction (blue areas) for each mode. Figure 10c shows
signed temporal average of the energy fluxes, being positive if the energy flux increases the
energy of the corresponding mode, while Fig. 10d shows the absolute value of the temporal
average energy fluxes. The results shown in Fig. 10 are summarized as follows: the Kelvin
wave is the dominant wave that is excited by a wind/Kelvin wave resonance, as it is discussed
in the following section. After 7 days, approximately 2/3 of this wind-provided energy flux
is either radiated to other basin-scale waves or dissipated by bottom friction. Because of non-
linear interactions 90 % of this energy flux radiates energy from the Kelvin wave to other
basin-scale waves, and only the 10 % is locally dissipated by bottom friction. In this way,
the role of non-linear interaction is to distribute the wind-provided energy to other modes,
where bottom friction can act to dissipate the total energy in the flow.

The analysis to determine the bulk energy dissipation of the Kelvin wave of Fig. 8 showed
that the linear natural period was modified to match with the observations. The simplest
explanation for this difference is the fact that non-linearities and friction were neglected in
that analysis. To verify this explanation, the phase of the complex amplitude of the Kelvin
wave was used to compute the actual angular frequency at which the Kelvin wave rotates (see
[31] and [8] for further detail). This computation provided an effective period of the Kelvin
wave of 23.24 h, thus explaining the fitted period of the Kelvin 23.3 h.

Figure 5 showed the excitation of a wave with period of about 6 h labelled as point
(3), which presents maximum values near the middle of the lake (TC2) rather than in the
perimeter (TC1). According to de la Fuente et al. [8] these waves may be related to non-
linear interactions between the Kelvin and the Poincaré wave. For the case of Lake Villarrica,
non-linear interaction between a fundamental Kelvin wave (with natural period of 22.60 h,
Fig. 6a) and the horizontal mode 3 Poincaré-type wave (with natural period of 10.00 h,
Fig. 6c) can excite a basin-scale wave with natural period of approximately 6.7 h (ωK +ωP ).
This triad interaction was observed in the nonlinear simulation, which showed that non-linear
interaction energized the basin-scale wave identified as P5.1 (orange area in Fig. 10a), with
natural period of 6.47 h (Fig. 6d). Similarly, non-linear interaction between the Kelvin wave
and the horizontal mode 2 Kelvin wave (with natural period of 12.57 h, Fig. 6b) can excite
a basin-scale wave with natural period of approximately 8.07 h (ωK + ωK 2), that can be
attributed to basin-scale wave identified as P4.1 (green area in Fig. 10a) with a natural period
of 8.18 h.

3.5 Wind/Kelvin wave resonance

Numerical simulations and field analysis evidence a resonant dynamics between the Kelvin
wave and the periodic wind over the lake, such as that reported by Antenucci and Imberger [2]
for Lake Kinneret. Figure 10b plots time series of the energy of the Kelvin wave (thick black
line) and the cumulated energy imparted by the wind (red line). The difference between both
curves corresponds to the energy dissipated by bottom friction or non-linear energy transfers
onto other modes. To further characterize this resonant interaction two analyses were carried
out, namely a theoretical solution for modal amplitude equation and an experimental analysis.
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3.6 Analytical solution for modal amplitudes equation

Eq. 3 has an analytic solution for constant coefficients and a periodic wind forcing. This
solution can be written as:

ãr (t) = ωr

[
exp (−γr t)

ω f exp (iωr t)

ω2
f − ω2

r − 2iωrγr + γ 2
r

− exp(iω f t)

2
(
ω f − ωr − iγr

)

− exp
(−iω f t

)

2
(
ω f + ωr + iγr

)
]

(8)

where ω f denotes the wind frequency, and ãr (t) is written in dimensionless form with respect
to the wind magnitude. It is observed that the system reaches a forced equilibrium for t → ∞,
where friction counteracts the wind, thus reaching equilibrium between the resonant wind-
given energy and dissipation [2]. Furthermore, in the limit t → ∞, the oscillating component
in Eq. 8 that depends on ωr vanishes and the flow oscillates in phase with the wind forcing.
The amplitude is proportional to ((ω f −ωr )

2 +γ 2
r )−1. Notice that accordingly to the results

presented in Fig. 10, the bulk damping rate γr in Eq. 8 should include both bottom friction
and non-linear energy radiation to other modes.

3.7 Experimental facilities and results

Motivated by the above field observations and the accompanying analytical modeling study, a
set of laboratory experiments was carried out to determine the response to intermittent surface
forcing of a two-layer, stably-stratified, rotating fluid within an idealized rectangular box-
like container. The experimental facility consisted of a rectangular, bottomless, transparent,
acrylic tank with a rigid lid and dimensions 1.840 m long, 0.364 m wide and 0.293 m high.
This tank was fixed within a larger rectangular, acrylic container of dimensions 2.140 m long,
0.470 m wide and 0.308 m high, with the (vertical) walls of the inner tank being positioned to
leave a small (∼1 mm) gap above the base of the outer tank to permit an endless, taut belt to be
traversed horizontally along the base of the tank to simulate the wind shear stress (see Moni-
smith [21]). A geared, externally-mounted, continuously-variable-speed motor controlled the
velocity of the belt. The whole system was mounted on a rotating table (see Fig 11) having
a prescribed and variable rotation rate. For convenience, the two-layer density stratification
inside the tank was established by salinity variations, the magnitudes of which were chosen
to satisfy dynamical similarity with the thermally-stratified lake conditions. The stratification
was achieved by firstly adding fresh water to the tank until filling to the desired epilimnion
height. Saline water of prescribed density was then added very slowly at the base of the tank
(to avoid mixing between layers) until the tank was filled completely. In all experiments,
the Lake Villarrica aspect ratio h1/H = 0.15 was considered. In order to capture the evo-
lution of the internal waves, four micro-conductivity probes (e.g. Munro and Davies [24])
were mounted on a transverse section (see Fig. 11) at 77 cm from the upwind end and with
the sensors at a fixed vertical location 4.5 cm (the prescribed mid-level of the undisturbed
pycnocline) from the bottom of the tank. When the filling process was completed, the tank
was rotated slowly from rest until the pre-set rotation rate was achieved, in order to minimize
interfacial mixing between the two fluid layers. The system was then left for a period of
10–15 h to spin up and achieve solid body rotation [18,37]. All of the forcing experiments
with the moving belt commenced after the spin up period had elapsed.

Nine experiments were carried out, forcing the system with a square wave of constant
magnitude and period of T f = 2πω−1

f , generated by turning on the belt during a time equal
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Fig. 11 a Side view of main components of the rotating table. b Top view and location of the conductivity
probes

to 0.5 T f and then turning off the belt for another 0.5 T f . The belt speed was kept very
low in order to avoid mixing inside the tank. Each run lasted approximately 30 min, with a
sampling rate of 15Hz for the micro-conductivity probes. The design parameters of each run
are shown in Table 3, and these different runs were defined considering the following criteria:
(1) variation of the forcing frequency (runs 1–3, Fig. 12a; 4 and 5, Fig. 12b; 6 and 7, Fig. 12c)
to approach the fundamental Kelvin wave frequency, in order to study the influence of the
ratio ωK /ω f , where ωK denotes the frequency of the Kelvin wave computed by solving the
eigenvalue problem; (2) variation of the angular velocity of the rotating table (runs 2, 4 and
6, Fig. 12d; 3, 5 and 7, Fig. 12e) to study the effect of the ambient rotation for different
forcing periods close to the resonant condition; and (3) variation of the stratification (runs
7–9, Fig. 12f) in order to determine the existence of resonance for different periods of the
Kelvin wave defined by the density step between layers.

The Wedderburn number is defined here as [15,32]:

W = g′h2

u2∗L
= h

2ηo
(9)
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Table 3 Characteristic parameters of the laboratory experiments

Set Run h1 (cm) h2 (cm) ρ1 (kg m−3) ρ2 (kg m−3) W S TK (s) ωK /ω f

1 1 24.8 4.5 999 1,020 156.4 0.47 33.87 0.8

2 24.8 4.5 999 1,020 156.4 0.47 33.87 0.9

3 24.8 4.5 999 1,020 156.4 0.47 33.87 1.0

2 4 24.8 4.5 999 1,020 156.4 0.40 34.04 0.9

5 24.8 4.5 999 1,020 156.4 0.41 34.04 1.0

3 6 24.8 4.5 999 1,020 156.4 0.30 34.42 0.9

7 24.8 4.5 999 1,020 156.4 0.30 34.42 1.0

4 8 24.8 4.5 999 1,016 160.2 0.30 38.23 1.0

9 24.8 4.5 999 1,012 160.1 0.30 43.61 1.0

See text for the symbols definition
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where g’ is the reduced gravity, h is the epilimnion height equal to h2 (since the belt is
in the bottom of the tank), u∗ is the friction velocity of the belt and L is the length of the
rectangular basin. Notice that Eq. 9 is equivalent to Eq. 5, as for rectangular basins L = 2xg
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(see also Shintani et al. [32]). The Burger number S, originally formulated as a measure of
the importance of background rotation for density driven exchange flows in a closed basin
[11,36], is defined conventionally here as:

S′ = R0

B
(10)

where R0 = c/ f is the appropriate internal Rossby radius of deformation and B is the
transverse width of the rectangular basin (0.364 m).

According to Eq. 8, the forced response of a two-layer system is strongly controlled by
the forcing frequency. This is observed in Fig. 12, that shows the average power spectrum
that are obtained by group of runs, divided by η2

o (Eq. 9) in order to minimize a possible
influence on the Wedderburn number, versus the frequency made dimensionless by the forcing
frequency. Figure 12 shows that in all the cases, the spectrum has a local maximum around
unity, and in multiples of one (2ω f , 3ω f ), confirming the behavior predicted by the theory.
This is clearer by comparing the dimensionless frequency, f ∗, at which the maximum of
the spectrum occurs versus the ratio of the Kelvin wave frequency to the wind frequency
ωK /ω f (Fig. 13a), where it is observed that all of these maximum occur at ωK /ω f ≈ 1,
although some minor influence of ωK /ω f on f ∗ can be observed; particularly, f ∗ = 1.05
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for ωK /ω f = 0.8, while f ∗ = 1 for ωK /ω f = 1.0. Figure 13b compares the maximum of
the PSD as function of ωK /ω f , in which it is shown that the spectral maximum increases
with ωK /ω f with respect to the influence of rotation. Figure 13c compares the maximum
of the PSD as function of S′, where it is noted that the spectral maximum increases as the
Earth’s rotation became more important. Finally, with respect to the influence of the period
of the Kelvin wave, Fig. 13d compare the maximum in PSD as a function of the period of the
Kelvin wave using runs 7–9, where it is observed that there variables are positively related
each other, accordingly to Eq. 8.

Finally, Fig. 14 shows the observed interface displacements for three runs (1–3), keeping
the Wedderburn and Burger number fixed and varying the forcing frequency to approach
the Kelvin wave natural frequency. The amplitude of the oscillation increases as the forcing
frequency approaches to the Kelvin wave natural frequency, particularly, the standard devi-
ation of Fig. 14a was 0.039 cm, for Fig. 14b was 0.057 cm, and for Fig. 14c was 0.064 cm;
thus confirming the results of Eq. 8 which indicates that the amplitude of a resonant inter-
nal wave is controlled by both the magnitude of the forcing described by the Wedderburn
number, and the ratio ωK /ω f . Boegman and Ivey [3] proposed a relationship to estimate the
maximum interface displacements considering the inviscid resonance interaction between
the Kelvin wave and the wind (Eqs. 13 and 14 of [3]). This estimation gives that, because
of the resonance, internal waves of runs shown in Fig. 14 would be amplified by a factor of
1.3, 1.7 and infinite, respectively. The amplitude of interface displacement expected based
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on the Wedderburn number (Eq. 8) are shown as a thick dashed line, while the amplitudes
estimated considering the resonance are shown with thick black lines. In general, the esti-
mated interface displacements following [3] provide good results for runs 1 and 2, but for
run 3 where ωK /ω f = 1. The reason for this inconsistency is on the inviscid assumption
of [3]. Eq. 8 shows that damping rates prevent infinite amplitudes when ωK /ω f = 1. The
Kelvin wave becomes in resonance when the forcing frequency matches the wave frequency.
It is concluded that friction is the damping mechanism that controls the unlimited amplitude
growth of the interface oscillations. Mixing, although it is not so important in the laboratory
system because the conveyor belt velocity is low, tends to change the Kelvin wave period
while the forcing frequency remains constant. Thus, the intensity of the resonance in the
system varies.

4 Discussion

Field data have been collected to study the vertical thermal structure of Lake Villarica during
the summer of 2009. Numerical modeling was conducted for a two-layer system forced by
the Earth’s rotation and the wind stress over the lake surface. The results obtained allow
the observed displacements of the density interface to be explained, specifically with regard
to the resonant excitation of internal waves due to the linear and non-dissipative equations
considered in the analysis [31].

The applied linear and non-linear modal analysis gives good results. The obtained modes
were used to study the energy dissipation within the system, which is necessary to control
the amplitude growth. The stationary state in the Kelvin wave is then achieved when the
periodic wind-provided energy is constantly dissipated by bottom friction and radiated to
other modes. The results obtained from the optimization process of the linear modal analysis
indicated that the dissipation time-scale of the Kelvin wave was 38.1 days; however, the
non-linear simulation indicates that only 10 % of this dissipation rate is actually because of
bottom friction, while the rest 90 % represents the energy that is radiated from the Kelvin
wave to other modes. Figure 10c shows that the energy flux due to non-linear interactions that
radiates energy from the Kelvin wave to the other modes is 0.52 GJ day−1, and the energy flux
due to bottom friction is 0.04 GJ day−1. This provides a bulk energy flux of 0.56 GJ day−1,
which in the context of 2.75 GJ of energy contained in the Kelvin wave, provides a bulk
damping time-scale of 31.4 days (TK elvin = 2πγ −1

K elvin), which matches with the estimated
value of 30.2 days with Eq. 5. The steepening formation time, Ts/Ti , characterizes the ratio
between the time scale of the steepening of basin-scale waves with respect to the internal
seiche time scale [6,15,35] and, for wave amplitudes of about 3 m in Lake Villarrica, this ratio
is equal to about 2, indicating that nonlinearities in the flow are not relevant. However, the
results shown in this article indicate that weak nonlinearities of the flow are indeed required
to explain the energy path that transfers from larger scales to the smallest. This mechanism,
together with the effects of bottom friction, explains the bulk dissipation rate estimated
here.

An alternative way to estimate the friction energy flux of the entire flow is by considering
it equal to ρ Cd ũ3 A where A is the area of the lake (176 km2), ρ = 1,000 kg m−3, Cd =
2.5 × 10−3 and ũ = 2.9 cm s−1, where this velocity scale of the lower layer was estimated
based on the linear solution. This estimation provides that the total energy flux due to bottom
friction is 10.45 kW. This value matches to the wind energy flux to the Kelvin wave (10
kW, Fig. 10). Consequently, there is a long term balance between the wind energy flux
that energizes K1, and friction energy flux of the entire flow. Nonlinear interaction between
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modes is required to redistribute the energy that enters to the Kelvin wave to other modes
that contribute to bottom dissipation.

Experimental results confirm the resonant interaction between the horizontal mode 1
Kelvin wave and the wind. These results could be extended in order to quantify the energy
cascade between the Kelvin wave and higher-frequency modes, until energy is dissipated by
friction and the pycnocline is eroded by turbulent mixing.

The scope of this study was related to the oscillations generated by the basin-scale internal
waves in the lake and the interaction of the upper layer velocity field with the spatially-uniform
forcing wind blowing over the lake. Characterization of the velocity field, in particular the
vertical velocity distribution, could be improved considering 3D models.

In this research a modal analysis technique and experimental analysis were used to explain
field measurements in Lake Villarrica. Based on this analysis, a fundamental Kelvin wave
was identified, being in a resonant interaction with the daily wind that blows over the lake.
Theoretical analysis, numerical simulations and laboratory experimental results confirm res-
onance. Also, this study shows that modes with periods between 5 and 8 h are excited
by non-linear interactions between fundamental Kelvin wave and horizontal Poincaré-type
waves.
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