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Abstract During the unit event of material iteraction in grind-
ing three phenomena are involved, namely: rubbing,
ploughing and cutting. Where ploughing and rubbing essen-
tially mean the energy is being applied less efficiently in terms
of material removal. Such phenomena usually occurs before
or after cutting. Based on this distinction, it is important to
identify the effects of these different phenomena experienced
during grinding. Acoustic emission (AE) of the material grit
interaction is considered the most sensitive monitoring pro-
cess to investigate such miniscule material change. For this
reason, two AE sensors were used to pick up energy informa-
tion (one verifying the other) correlated to material measure-
ments of the horizontal scratch groove profiles. Such material
measurements would display both the material plastic defor-
mation and material removal mechanisms. Accurate material
surface profile measurements of the cut groove were made
using the Fogale Photomap Profiler which enables the com-
parison between the corresponding AE signal scratch data. By
using short-time Fourier transforms (STFT) and filtration, the
salient features for identifying and classifying the phenomena
were more distinct between the three different levels of single-
grit (SG) phenomena. Given such close data segregation
between the phenomenon data sets, fuzzy clustering/genetic
algorithm (GA) classification techniques were used to classify
and verify the demarcation of SG phenomena. After the
cutting, ploughing and rubbing gave a high confidence in

terms of classification accuracy, the results from the
unit/micro-event to the multi/macro-event, both 1-μm and
0.1-mm grinding test data, were applied to the named classi-
fier for classification. Interesting output results correlated for
the classifier signifying a distinction that there is more cutting
utilisation than both ploughing and rubbing as the interaction
between grit and workpiece become more involved (mea-
sured depth of cut increases). With the said classifier tech-
nique it is possible to get a percentage utilisation of the grit
and material interaction phenomena. In addition, optimised
fuzzy clustering was verified against a classification and
regression tree (CART) rule-based system giving transparent
rule classification. Such findings were then realised into a
Simulink model as a potential control system for a micro-
grinding simulation or, for real-time industrial control
purposes.
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T210/T212 Test 210/test 212
WPT Wavelet packet transforms

J. Griffin (*)
University of Chile, Pizo 4, Torre Central, Beauchef 850,
Santiago, Chile
e-mail: jgriffin@ing.uchile.cl

X. Chen
Liverpool John Moores University, Room 5, GERI Building,
Byrom Street, Liverpool L3 3AF, UK
e-mail: X.Chen@ljmu.ac.uk

Int J Adv Manuf Technol (2014) 74:481–502
DOI 10.1007/s00170-014-5959-4



1 Introduction

Material particle displacements can be observed from the
emitted elastic waves that propagate through material media
[1, 2] when an object is subjected to an external force in terms
of an initiated material stress. The released energy is primarily
in the form of an acoustic emission (AE). From various
stresses, there are material particle displacements, which are
associated with AE and released in the form of material elastic
energy. These elastic AE waves mimic the mechanical vibra-
tion of material and grit interaction and are extracted by AE
sensors. Different AE characteristic signals are analogous to
different external forces that act on the same material or the
same force exerted on different materials [3, 4]. Elastic waves
can therefore be used for monitoring many machining pro-
cesses and/or material non-destructive tests [5–9].

AE monitoring may be a difficult task; however, with
correct data, it is possible to monitor grinding phenomena
features of interest. For example, such phenomena could be
the level of burn or machine chatter marks or, more impor-
tantly, the efficiency of the grinding cut. The latter is of
particular importance to this research in that single-grit (SG)
scratch experiments are important to the understanding of the
micro-aspects endured during the grinding of workpiece ma-
terials. Previous research by Griffin and Chen and Chen et al.
[3, 4] looked at CMSX4 (heat-resistive aerospace materials,
see Table 1) and other aerospace alloys with rotating radial
scratch indented on two equally spaced workpieces (180°
apart). With horizontal scratches, the comparison between
grinding wheel and SG scratch are more accurate, as it is easier
to control the depth of cut (DOC) on a flat plain whereas this is
not the case with the rotating scratch tests. In this paper, there is
a focus on identifying the different levels of cutting phenome-
non in grinding. It can be said that varying levels of SG
interaction is an easier phenomenon to observe when compared
with that of grinding. This is in terms of the distinguishing
features between cutting, ploughing and rubbing and the irreg-
ular distribution of grains when interacting with the material
workpiece. Once the observations and associated data has been
achieved to distinguish between different features, it can then be
used to look at different levels of cutting, ploughing and rub-
bing experienced in grinding. There has been a lot of work on
SG analysis previous to this work where the material removal
mechanisms were investigated from microscopic analysis and
acquired force signals [10–12].

The AE wave is described as a non-stationary stochastic
signal. AE extraction has been used in many machining pro-
cesses from milling, drilling to grinding where AE signals
extracted from the material tests would traditionally use root-
mean-squared (RMS) level detection, event count, energy
distributions, amplitude and the powers of dominate frequen-
cy bands [4]. These techniques were broadly used and applied
to general non-destructive condition monitoring tests based on

events that were recorded in days instead of seconds. With SG
scratch tests, the different grinding phenomena are produced
by both short-high- and long-low-frequency components. To
that end, there is a need to use continuous recorded AE data
and capture all the information present. The raw AE peak-to-
peak data is used for SG tests as RMS AE data can again miss
out important information where high-frequency information
is usually contained within the raw-extracted AE data. To
date, little work has looked at the energy relationships expe-
rienced during SG scratch tests in grinding. However, this has
been looked at in other areas of research such as the charac-
teristics of AE during single diamond scratching of granite
[13], where the RMS AE is extracted for different materials
and different processes of rock cutting where the major mech-
anisms are microchipping, crack propagation and sliding fric-
tion, which are similar to cutting, ploughing and rubbing.

For all the scratch tests carried out in this paper, the AE
waveforms were normalised to 1-μm cut (significant to cutting
DOC) depths to compare like with like signals (where signals
were compared on frequency feature matching and not just
DOC). SG scratching segregating different physical phenome-
non throughAEwaveforms is a novel approach especially when
applied to aerospace materials. Signal normalisation is required
for application into expert rules with non-conflicting cases (nor-
malisation mainly applies to just cutting and ploughing, as these
were the most difficult phenomena to segregate, rubbing how-
ever was mainly extracted during the previous pass to the actual
scratch with marked plastic deformation).

Other relevant research investigates AE related to the pro-
posed research within this paper. One that is particularly
interesting is the application of wavelet transforms with a
fuzzy neural network used to determine the wear states from
correlated AE during drilling 40Cr steel [14]. By using fuzzy
neural networks, it is possible to quantify overlapping wear
states through AE signals, which is fundamental to the work
here. More recently, investigations look further at wear mech-
anisms experienced in micro-milling which again quantifies
howAE can be used to distinguish such microscopic phenom-
ena [15]. Ren et al. also looks into other precision machining
where fuzzy identification using extended subtractive cluster
analysis and least squares gives an adaptive filter capability
that when tuned can accurately measure material removal
mechanisms, giving the process more accuracy against un-
wanted noise [16]. The research discussed in this paper utilises
such ideas in indentifyingmore microscopic features achieved
during event-driven AE signals of SG grinding scratch tests.
Moreover, the precision of AE technologies applied to wear
can be directly related to material removal mechanisms
achieved during SG scratch tests.

The main investigation objectives of this paper are:

& Characterise cutting, ploughing and rubbing phenom-
ena in horizontal SG scratch tests using material
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profile measurement techniques correlated to AE
signal events.

& Analyse cutting, ploughing and rubbing of both normal-
ised and non-normalised signals for SG interaction of
CMSX4 aerospace material (see Table 1).

& Compare cutting, ploughing and rubbing with non-
normalised signal for SG interaction of Titanium 64 (see
Table 1)

& Classify cutting, ploughing and rubbing in grinding with
1-μm and 0.1-mm cutting depths.

& Classification using fuzzy clustering with GA optimisa-
tion classifying the level of percentage utilisation for
cutting, ploughing and rubbing.

& Verified classification using the CART transparent rules
signifying the frequency bands of interest.

& Produce a cutting, ploughing and rubbing simulation with
the perspective of real-time application.

The investigations of SG horizontal scratch work in
extracting AE waveforms to identify the energy footprints of
cutting, ploughing and rubbing during conventional grinding
is both novel or provides a different focus in obtaining effi-
cient cutting conditions especially when applied to a simula-
tion for real-time realisation or higher fidelity models. The rest
of the paper is organised into the following sections: Sect. 2,
signal processing for AE; Sect. 3, experimental setup; Sect 4,
AE and SG tests; Sect. 5, optimised fuzzy-clustering classifier;
Sect. 6, optimised fuzzy clustering classification results for
cutting, ploughing and rubbing; Sect. 7, CART classification
results for cutting, ploughing and rubbing; Sect. 8, SG simu-
lation; and Sect. 9, conclusions.

2 Signal processing for acoustic emission

Using just the raw extracted time signal only gives the user
one perspective of the AE properties. With fast Fourier trans-
forms (FFT) however, it is possible to get the frequency band
components. The FFT estimates the frequency components as
well as their associated amplitudes based on the trigonometric
family functions. FFTs have been used for condition monitor-
ing in the past albeit they do not give any time information of
when the event occurred [9].

With this weakness in mind, there is a need for FFT to be
represented in the time domain and this paved the way for short-
time Fourier transforms (STFT). A similar function to FFTalbeit
the FFT is calculated over equally spaced time slots correlated
against the raw extracted time signal. There is a trade-off be-
tween frequency and time resolution, which is needed for accu-
rately distinguishing SG features in a noisy environment. That
said, and with the extra-dimension of time, the STFT still offers
a good solution when required to characterise an AE signal for
SG scratches amongst other grinding phenomena.

Where Eq. 1 introduces the STFT [17]:

STFT x
ωð Þ t0; fð Þ ¼

Z ∞

−∞
x tð Þ � w � t−t0ð Þ½ � � e−jπftdt ð1Þ

as with Eq. (1), x(t) is the time domain signal under transform,
w(t) is the main difference from FFT and is known as the
window function and * is the complex conjugate. Based on
the increment value of t′, this will determine the resolution
between the frequency and time domains.

The present investigation is motivated by the expectation
that AE features of SG cuts can be extracted clearly by using
STFT. Investigation and classification of such waveforms
provides a profound initial step in understanding and
distinguishing the very fundamentals of grinding interaction,
which can ultimately increase the effectiveness of grinding
monitoring. Once the raw extracted AE has been transformed
into the time-frequency domain, it can then be presented to the
classifier. Here, the work looks at the SG scratch classification
of cutting, rubbing and ploughing using the classifier: fuzzy
clustering with genetic algorithm (GA) optimisation.
Moreover, it was found that the STFT results of AE analysis
can represent different characteristics of cutting, ploughing
and rubbing in grinding, which may be used as input param-
eters for the classification. The classification of the three
phenomena is of particular importance to the fundamental
understanding of grinding mechanics. Not just classifications
are given, percentage utilisation and the transparency of
generalistic verified rules relating to frequency bands of inter-
est are also given.

Table 1 Displays aerospace material properties used in this work [22]

Property CMSX4 Titanium-64

Composition (wt.%) Mo, 0.6; Cr, 7;
Ti, 1; Al, 5.6;
Co, 10; Ni, 67;
Re, 3; and W, 6

C, 0.08; Al,
5.5–6.75; Fe,
0.30; and H,
0.010

Density (kg/m3) 8,690 4,650

Hardness 520 HV 349 HV

Tensile strength (MPa) 1,090 950

Yield strength (Mpa=N/mm2) 990 880

Elastic modulus (GPa) 18.5 109.6

Elongation (%) 10–12 14

Melting point (°C) 1,395 847

Passion’s ratio 0.273 0.34

Thermal conductivity (W/mk) 12~63 6.70

Special heat capacity (K/kgK) 381~544 450

Thermal diffusivity (×10−6 m2/s) 2.54~21 16
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3 Experimental setup of horizontal SG scratch tests

The AE associated with grinding chip formation may be
investigated by a scratch simulation of grinding. The experi-
ment of SG scratch test was carried out on a specially designed
rig fixed within a Makino A55 Machine Centre as shown in
Fig. 1. The aerospace alloys CMSX 4 and Titanium 64 were
chosen for the SG tests and all samples used were polished to a
very high quality (Ra=0.01 μm), which give the tests further
confidence with respect to measurements. Such materials
were chosen to give different material characteristics when
exerted with a source of initiated stress.

A SG was glued into a microscopic drilled hole of the
specially designed steel plate. The steel plate would then be
fixed to the spindle and rotated at commercial grinding speeds.
The SG was fixed to the plate in a protruding fashion which
would ensure the SG was the 1st object to make contact with
the workpiece when controlled within a micron of accuracy.

The scratch test was carried out by feeding a rotating Al2O3

grit towards a flat horizontally placed workpiece as illustrated
in Fig. 2. With a micron incremental grit stroke, a scratch
groove can be formed on the surface of the flat sample. The
average scratch depth is about 1 μm, which is a typical value
of grinding chip in high efficiency grinding. The scratching
wheel rotational speed is 4,000 RPM with a feedrate of
4,000 mm/min under down-grinding condition.

During a single scratch action, the AE feature frequency
bands/intensities change with respect to time. In short, the
mechanical AE propagation should be considered in both time
and frequency features where the prominent AE feature fre-
quencies of the scratches are in the range 100~550 kHz, which
are similar to the AE feature frequencies in grinding tests
experienced in previous work [4].

An AE data acquisition system where two physical acous-
tics WD AE sensors were used both identical and with a
frequency response range at 80 kHz to 1 MHz. The two
sensors were set up equal distances apart (see Fig. 1 for setup
configuration). The sampling rate was set to 5 MHz to ensure
no aliasing occurred when the signal was filtered and recon-
structed using the Matlab DSP Toolbox, and all the short burst
high-frequency information was obtained.

4 Acoustic emission in SG scratch tests

When the process of grit to workpiece interaction occurs, the
AE is emitted as a material stress-release process. This emitted
AE during the scratch may come from elastic or plastic shear
stress due to material removal or material deformation mech-
anisms. The process of identification between various me-
chanics of grinding (cutting, ploughing and rubbing) can be

Number 1 AE Sensor 

housing and sensor

Number 2 AE Sensor 

housing and sensor

Force sensor

workpiece

SG and steel plate

Fig. 1 Makino A55 grinding
centre machine setup for
horizontal SG scratch test

Fig. 2 Sketch of horizontal SG scratch test rig
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found in Refs. [3, 18]. Figure 3 shows the AE signals of a SG
scratch test (T212) from two PACWB AE sensors. Both hit 2
normalised (top right) and hit 2 non-normalised (bottom) are
displayed. With reference to the phenomena displayed from
the STFT representations of AE T212 hit 2 in Fig. 4 (top); the
measured cut length was 401 μm. T212 refers to test 212
where many sequential scratches were found as the grit
interacted more with the workpiece. Hit 2 refers to the second
profile grit scratch groove where the length tends to increase
due to more interaction between both grit and workpice. T210
and T211 are reference to the tests carried out previously
(every test the grit increments 1 μm closer to the workpiece

material) where AE from slight elastic touching thus signify-
ing the onset of rubbing phenomenon.

Looking at both top and bottom of Fig. 4, it is possible to see
that the normalised STFT of Hit 2 is similar to the normalised
signal of hit 17 where hit 17 required less normalisation as DOC
was recorded near 1 μm. Looking between the two STFTs, there
is more information in terms of frequency bands for hit 17;
however, the general patterns for the material removal mecha-
nisms are essentially the same and with such normalisation can
be used in a generalised AE control system/high fidelity model.

From actual DOC and SG analysis without normalisation,
there is a relationships from the DOC and registered
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amplitude; however, for different materials, there are different
dominate frequency bands; this is due to signals being able to
oscillate more freely in less damped material due to lower
levels of hardness and more dense materials for example (see
Table 1). For introduction to the classifier, there is a need to
only supply the normalised data as non-normalised data gives
problems with overlapping contradictory data. That said, such
classifiers can strip off absolute measurements where the non-
normalised is used for various material interactions (absolute
measurements sent to another part of the classifier where the
DOC is distinguished separately) and normalised measure-
ments are used to compare like against like in terms of the
emitted material stress signatures.

Pencil break tests [19, 20] also displayed a large response
time to what can only be described as a microsecond fracture;
Griffin et al. [3] display this calibration phenomenon with a

synchronised downward force signal (Fz). In this work, it can
be seen that the AE-extracted pencil fracture is represented by
a recorded 50 N force; however, the 50-N force is captured
over a much longer time period, which is representative of the
applied force and not the actual fracture [3]. This method of
AE sensor calibration has been used in grinding technologies
before [21]. Important points to take here is we can calibrate
the AE energy to force and on a daily basis get a normalised
level amount for trial comparisons taken at different times/
environmental conditions. Figure 4 top displays the full nor-
malised STFT for hit 2 and below the full normalised STFT
for hit 17, all taken from scratch Test 212 (Fig. 5). Figure 5
shows the 3D scratch profile created by SG4 Test 212 Hit 17.

Figure 6 (top) represents the FFT slices obtained from the
STFT (reference to Fig. 4, bottom) relating to the horizontal
cross-sectional cut profiles (taken from Fig. 5), which signify
whether the signal is cutting, ploughing or rubbing based on
the material equation [3]. All phenomena occupy the same
peak frequency bands; however, the higher amplitudes are for
cutting, then next, ploughing and lastly, in between the ma-
chine noise with a magnitude between 0.3 and 0.8 is the
rubbing phenomenon.

From those patterns, ploughing occupied between 80 and
300 kHz of the major frequency band peaks with normalised
magnitudes between 1 and 2 and sidebands between 0.7 and
1.4. Cutting also had similar major frequency band peaks
between 80 and 300 kHz. The normalised magnitude for the
major band peak was between 2.4 and 4 with side bands the
same or slightly less than that of the ploughing side band
magnitudes. Both ploughing and cutting have slight frequency
band peaks around the 500-kHz range, and cutting has slightly
larger peaks when compared with rubbing and ploughing at
the 750-kHz range. Rubbing has major frequency bands be-
tween 80 and 500 kHz with the major peaks ranging from 0.3
to 0.8 magnitudes.

With the different energy signatures occurring from the SG
interacting within the workpiece, STFT provides a good so-
lution for separating the cutting, ploughing and rubbing phe-
nomena. Ploughing and cutting are somewhat similar in that
the material is push/slided to one side or material removed,
respectively, as these predominately cause material plastic
deformation. The energy is consumed from surface deforma-
tion. From taking the major frequency band intensities, this is
significant to the first harmonic, which is significant to 97 %
of the emitted AE energy. In the rubbing case, however, there
is surface friction [22], which suggests therefore, that different
AE signatures should be apparent between the two different
phenomena. Rubbing does not remove or slide any material
away, instead, it touches the surface with no visible markings,
which signifies elastic material characteristics in that the ma-
terial deforms and returns back to its original state after a SG
pass has occurred. In short, the boundaries are much closer in
terms of AE distinguishing features of ploughing and cutting.
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Fig. 4 Top, SG4 test 212 hit 2 displays the normalised STFT; bottom,
SG4 test 212 hit 17 displays the normalised STFT
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Ploughing and cutting are perhaps the most difficult phenom-
enon to separate based on this assumption which further
signifies the need for an accurate classifying technique. Not
just an accurate technique but also a technique that provides
the grinding phenomena in terms of percentage utilisation. In
addition, another desirable feature of a classifier is to provide

meaningful transparent rules to directly relate to frequency
bands of interest.

The first part of the section looks at the SG tests for use in
classifier technologies, which requires normalisation; howev-
er, a discussion is required in terms of its mechanical and
electrical outputs. The next part of this section discusses two
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SG tests in terms of non-normalised signals and that of the
actual SG phenomenon’s, namely cutting, ploughing and rub-
bing. For the non-normalised tests, two different aerospace
materials are used to provide discussion in terms of compar-
isons when generalising SG models (see Table 1 for informa-
tion of the two investigated materials).

Figure 7 displays the non-normalised STFT of the rubbing
phenomenon, which was obtained as the first hit or AE pickup
for Test 210, where no mark was present on the CMSX4
workpiece surface, which is indicative of rubbing.

Figure 8 displays the non-normalised AE STFT which
allows the distinction of cutting and ploughing when higher
material removal mechanisms are measured tending towards a
max of 1.5 μm. The higher material removal indicative of
cutting is based at the beginning of AE just after the initial
rubbing and ploughing tending towards the max DOC (nega-
tive apex of the grit and material). After this phenomenon as
the amplitudes and the DOC decreases this is then significant
of the ploughing phenomenon.

Looking at Fig. 12 (top for CMSX4), the power spectrum
density (PSD) can be seen for all phenomena where PSD is at
its greatest for cutting, then ploughing and significantly less
for rubbing. Such signal analysis can be used for
distinguishing general features such as DOC and general
energy bands of different materials.

From recent work investigated by Opoz [23], such SG
results investigate a more focused view in terms of the me-
chanics behind cutting, ploughing and rubbing. Such findings
made in Opoz and Chen’s work [23] further reinforce the
findings made here. For example, Opoz et al. [23] talks about
material moving starting just after the initial touch and the first
initial low depths of cut, which is significant to initial
ploughing. The work carried out in this paper uses the material
removal mechanisms given by Griffin and Chen [3] for

determining cutting, ploughing and rubbing, and such
cutting-correlated signals were only found in the initial part
of the scratch tending towards the maximum DOC (from low
initial DOC to the centre of the scratch). Looking at the non-
normalised STFTof Scratch number 6 it can be seen the initial
levels of ploughing from low DOC are then immediately
replaced with cutting phenomena where higher AE intensities
are experienced as the grit with material approachesmaximum
DOC. The signal intensities either side of this phenomenon
were indicative of ploughing which again correlates with the
work carried out by Opoz et al. [23]. Looking again at Fig. 8
just after cutting, there are large amounts of the ploughing
phenomenon, which is consistent with the findings made
by Opoz et al. [23]. This paper and previous related work
focuses more on energies emitted in the form of AE events
where Opoz et al. focuses more on material removal mech-
anisms where both bolsters work in SG modelling to the
grinding community at large. Finally, the rubbing phenom-
enon which was found from AE signal pickup correlated to
a none-representative mark, was assumed to be elastic in
nature. Such rubbing phenomenon was found in the previ-
ous test; Test 210 where no marks were recorded on the
workpiece and intensities consistent with AE scratch num-
ber 1 (Fig. 3, top left) where again such AE signal event
was recorded although with no physical mark located on
the surface (It was on the next test when scratches were
formed along the surface, T212). The work in this paper
concentrates on similar investigations made by Opoz et al.
[23]; however, with the addition of an AE sensor, it was
possible to see such miniscule grit and material interactions
with a view of changing intensities that supports such
technology when used in a real-time manner (see Sect. 8
for example system).

The following part of this section discusses signals obtain-
ed from SG trial number 5 using the aerospace material,
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Titanium 64. In contrast with the last part of the SG trial
number 4, the signals in this part are non-normalised and so
the intensities can be compared with the last part of SG4 using
CMSX4 material where different materials emit different fre-
quencies when interacted with a rotating SG Al2O3 material.
Only the normalised levels of the material CMSX4 were used
for classification and simulation results. That said, equally the
Titanium 64 AE signals can be easily normalised and used
alongside CMSX4 data due to the different frequency bands
for the different phenomena.

Figure 9 is somewhat different to Fig. 6 as this figure relates
to a non-normalised AE event and Fig. 6 AE event is normal-
ised to 1 μm, which signifies the difference between the
dominant amplitudes, which is correlated with DOC.
Titanium 64 is discussed in terms of different material removal
mechanisms correlated to the measured AE event.

In comparing the non-normalised signals of Figs. 7 and 8,
it can be seen that the rubbing phenomenon of Titanium 64
is similar to that seen with CMSX4, with reference to Fig. 3
and previous results investigated by Griffin et al. [3]. This is
certainly true in terms of intensities; however, the emitted
spectrum of the recorded AE-emitted signal have much
higher frequency components when compared with that of
CMSX 4; this can be attributed to two factors: Titanium 64
is a much more combustible material, and with less hard-
ness/material density than CMSX4, the emitted AE can
vibrate more with less material damping. Such assumptions
are further amplified when looking at Figs. 10 and 11, where
greater intensities are found due to cutting and ploughing
material removal mechanisms recording slightly higher

DOC (same setup for both material trials using a A55
machine centre with 1 μm increments). The intensities how-
ever correlate with the CMSX4 non-normalised AE of
Fig. 8. For example, when comparing the sliced STFT with
material phenomena of Fig. 9 with that of Fig. 6, Fig. 9 is
non-normalised to 1.5 μm DOC where Fig. 6 is normalised
to 1 μm.

Therefore, it is expected that Fig. 9 has higher intensities
due to the measured higher DOC, however when comparing
Fig. 8 with Fig. 11, the two non-normalised STFT give similar
intensities. The time series signal of Fig. 11 (top) is similar in
amplitude to that of the normalised signal of Fig. 3 (top right).
With similar setups, the time signals give good correlation to
similar emitted AE signals for both materials.

Such considerations need to be taken into consideration
when realising a general model for SG. With such findings, it
is necessary to have focused material SG models that are
normalised to give accurate output. From the normalised AE
SG signals, the different intensities can be handled with the
addition of another expert classifier giving correlation to
DOC.

With dedicated normalised classifiers, it is possible to use
SG tests as an intelligent material footprint to calibrate the
control of automated grindingmachine centres. To amplify the
robustness levels in segregating two materials in terms of
cutting, ploughing and rubbing (Fig. 12), PSD energy curves
are similar for both materials; however, a change in sharpness
is recorded between Titanium 64 and CMSX 4. Such patterns
can be used in addition with STFT and time series to give
more accurate classifications.

Fig. 9 FFT slices (top) and
profiles relating to cutting,
ploughing and rubbing
phenomenon for titanium 64
material (bottom)
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Lastly, it was noticed from recorded AE signal phenomena
that if a single piece of grit is used to make the scratch
compared with a piece of grit with multiple edges, then there
is more cutting phenomena found with the single piece of grit.
This is indicative of a sharp non-worn piece of grit compared
with a blunt fractured worn piece of grit. With further grit to
material interaction the multiple piece of grit will breakdown
to a single piece of grit significant of the self-sharpening
grinding phenomenon.

5 Clustering method for classification of cutting,
ploughing and rubbing in grinding

The primary pattern recognition technique used for classification
is fuzzy-c clustering [9, 18, 24]. Pattern recognition can select
features of interest when faced with many different features. The
technique of fuzzy clustering provides rules in the form of
distance measurements that segregate the different cluster sets
from each other, in this case, the cutting, ploughing and rubbing.

Clustering techniques have emerged from work carried out
in statistical probability [25, 26]. When looking at real world
phenomena most cases are not finite and instead possess a lot
of in-between values such as that seen in fuzzy sets.

Essentially, clustering techniques use a distance measure to
segregate like data from other presented data into classes or
sets (clusters).

Figure 13 displays a block diagram of the fuzzy clustering/
GA, which is based on work carried out by Griffin and Chen
[18] clustering: cutting, ploughing and rubbing phenomenon’s
during SG tests. The first step in this process is to convert the
STFT vectors into a fuzzy similarity matrix defining relations
of similarity. The next process is to then define the fuzzy
variable similarity matrix which evaluates each coefficientserij degree of membership between elements i and j. The
cluster centres are then determined, where the centres segre-
gate and categorise one cluster from another.

The centre cluster is the representing function of a partic-
ular cluster set. Input test data that has a membership close to a
particular centre compared with other centres signifies that the
applied input data belongs to that centre.

Let X={X1,X2,…,Xm},X⊂V, where X1 to Xm are feature
vectors which make up the total feature matrix set and
Xi=(Xi1,Xi2,…,Xin)∈V is a feature vector (element of total
feature matrix set V); Xij is the jth feature of individual Xi;
the feature matrix is made up from 1 to n feature vectors. To
ensure there is normalisation across the feature matrix, Eq. (2)
is applied which calculates the normalisedmean for each input
value divided by the variance.
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The normalised feature matrix is then represented by the
feature matrix below in Eq. (3).

X m� nð Þ ¼

x″11 ; x″12 ;…; x″1 j;…; x″1n
x″21 ; x″12 ;…; x″2 j ;…; x″2n
⋮ ⋮
x″il ; x″i2 ;…; x″ij ;…; x″in
⋮ ⋮
x″m1; x

″
m2;…; x″mj;…; x″mn

26666664

37777775 ð3Þ

The fuzzy similarity matrix is the next calculation required
for the fuzzy clustering of the input data set. The similarity

matrix uses a distance measure to show similarities within the
matrix set. There are many distance functions available; how-
ever fuzzy clustering uses Eq. (4). The index of similarity is
based on the minimum distance that equates to the maximum
similarity.
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By using the correlation coefficient Eq. (4), the normalised
feature matrix is converted into a fuzzy proximity matrix M:

M ¼

m11; m12; …;m1j;… ;m1n

m21; m22; …; m2 j;…; m2n

⋮ ⋮
mi1; mi2; …; mij; …;min

⋮ ⋮
mm1; mm2;…;mm j;…;mmn

26666664

37777775 ð5Þ
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Fig. 12 Top, SG4 test 210 and
212 displaying the PSD of
cutting, ploughing and rubbing
using material CMSX4. Bottom,
SG5 test 52 and 54 displaying the
PSD of cutting, ploughing and
rubbing using material titanium
64
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The fuzzy proximity matrix M is then converted into a
fuzzy similarity matrixMK as the proximity relationship does
not have enough similarities for fuzzy clustering to be carried
out. From using the fuzzy algorithm such as transitive closure,
the fuzzy matrixM can be converted into the fuzzy similarity
matrix MK.

MK ¼

em11 ; em12;…; em1j;…; em1n

em21; em22;…; em2 j;…; em2n

⋮ ⋮emi1; emi2;…; emi j;…; emin

⋮ ⋮emm1; emm2;…; emmj;…; emmn

2666666666664

3777777777775
ð6Þ

min Jm ¼
X
j¼1

m X
i¼1

n

μ j xið Þ�� ��b xi−c j
�� ��2( )

ð7Þ

Looking at Eq. (6), emij in the matrix Mk is the similarity
between features i and j. The maximum value of similarity is
when i=j and the feature itself equates to 1. After ranking the
features in order of similarity values, it is then possible to

segregate such features using the closest cluster distance
membership function and distinguish the AE STFT data in
terms of cutting, ploughing and rubbing phenomena. The
closest distance membership function of fuzzy clustering is

Fig. 14 CART example of classification rules [28]

Fig. 13 Block diagram of the C, P and R classifications
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based on the squared loss-cost function (see Eq. 7) for each
point. For Eq. 7, xi is the samples (i=1, 2, …, n), m is the
number of known clusters, cj is the cluster centre point where
(j=1, 2,…, m), μj(xi) is the fuzzy membership of sample xi to
cluster j. If the b term equals to 1, it tends to leanmore towards
k-means clustering, similar to city-block distance statistical
measure, and if b tends towards ∞, it becomes completely
fuzzy, which is similar to Chebyshev maximum distance
clustering. If, however, the term b takes the value of 2, it is
similar to the Euclidean distance technique, which was used in
this work. The fuzzy algorithm iterates through Eq. 7 until it
can no longer best fit the separation of one cluster from
another. This methodwas optimised by a GAwhere the cluster
centres and number of iterations was optimised through the
associated fuzzy-c clustering fitness coverage metric. Such
ideas for optimised fuzzy clustering were inspired by previ-
ously presented work presented by Griffin and Chen [18].

6 Treeviewer rule-based method for classification
of cutting, ploughing and rubbing in grinding verifying
fuzzy clustering with GA optimisation

The treeviewer classifier uses the CARTalgorithm to carry out
classification; CART is particularly useful in segregating n-
dimensional data sets and produces transparent, easily read-
able set of classification rules. There are other techniques
which are similar to optimised fuzzy clustering such as genetic
programming (GP) as seen in a work discussed by Griffin and
Chen [24]; however, when faced with n-dimensional data with
no pre-processing reduction, other techniques are more
favourable. Moreover, GP with n-dimensional reduction tech-
niques affords a very powerful classification system; however,

with n-dimensions, a different technique needs to be pursued.
CART however is a method of classification similar to fuzzy
clustering with the added facet of producing more transparent
rules, which is why it has been used here to verify the output
classifications of fuzzy clustering and easily transportable to
real-time simulation. As mentioned before, CART is also
suitable for n-dimensional datasets, which is what is presented
here and by using pre-processing techniques in real time are
unsuitable based on the increase in computational complexity
which impacts on real-time processing.

CART builds classification and regression trees for
predicting continuous dependent variables (regression) and
categorical predictor variables (classification) [27]. It achieves
its functionality by recursively splitting the feature space into
sets of non-overlapping regions (rectangles in the case of
continuous features; subsets of values, in the case of categor-
ical features), and finally by predicting the most likely value of
the dependent variable within each region. By generating a
binary tree through recursive partitioning, it splits the data into
sub-nodes based on the minimisation of a heterogeneity crite-
rion computed at the resulting sub-nodes. With the CART
algorithm, the tree is forwardly propagated (using forward
stepwise regression) for best purity of node split. The best
node split becomes the chosen value of partition (see Eq. 8).

A good splitting criteria is the following:

PRE ¼ K s; tð Þ
Misclassificationerror : Qm ¼ 1

Nm
Σ

xiεRm
yi≠k mð Þð Þ ¼ 1−P̂mk mð Þ

ð8Þ

Table 2 CART left and right branch values for different grit gains

Gain L/right1 L/right 2 L/right3 L/right4 L/right5 L/right6 L/right7 L/right8

0.4 0.030926 0.393144 0.199154 0.0019177 0.548911 0.0016878 0.003711

0.6 0.046389 0.589716 0.298732 0.0028766 0.823367 0.0025317 0.005566 0.009278

0.8 0.061852 0.786288 0.398309 0.0038355 1.09782 0.0033756 0.007422

1.0 0.077315 0.98286 0.497886 0.0047944 1.37228 0.0042195 0.009278

Table 3 CART rule output for different grit gains

Gain O/P cutting level O/P ploughing level O/P rubbing level

0.4 1.4 2.4 3.4

0.6 1.3 2.3 3.3

0.8 1.2 2.2 3.2

1.0 1 2 3

Decision tree for classification for SG gain of 0.4:

1  if x73<left1 then node 2 elseif x73>=right1 then node 3 else 3.4

2  if x23<left2 then node 4 elseif x23>=right2 then node 5 else 3.4

3  if x38<left3 then node 6 elseif x38>=right3 then node 7 else 2.4

4  if x118<left4 then node 8 elseif x118>=right4 then node 9 else 3.4

5  class = O/P Ploughing Level

6  if x34<left5 then node 10 elseif x34>=right51 then node 11 else 2.4

7  if x3<left6 then node 12 elseif x3>=right6 then node 13 else 1.4

8  class = O/P Ploughing Level

9  class = O/P Rubbing Level

10  if x174<left7 then node 14 elseif x174>=right7 then node 15 else 2.4

11  class = O/P Cutting Level 

12  class = O/P Ploughing Level

13  class = O/P Cutting Level

14  class = O/P Rubbing Level

15  class = O/P Ploughing Level

Fig. 15 CART rules for gains 0.4 to 1 of the C, P and R classifications
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Where yi is the output of the individual under test and
k (m) is the class category under test. PRE is the mini-
mum production reduction in error, s is the spilt at any t
node. The best purity measure looks at the best unique
class classification where less impure looks at more
multiclass representation. For the CART algorithm, the
percentage accuracy of classifications is used as the best
purity measure.

This method of classification is not only chosen to verify
fuzzy clustering and rule transparency but also because the
tree fitting methods are actually closely related to cluster

analysis [26]. This is where each node can be thought of as
a cluster of objects, or cases, which are split by further
branches in the tree. Note that the top node covers the whole
sample amount and each remaining node contains a sub-
amount of the original sample and so on as the split levels
increase.

In the example shown in Fig. 14, the total data set can
be seen from species at the top node of the tree classifier.
The condition of Petal len is the first variable and if
species is less than 3.00, then the data class category will
tend towards the right-hand side split (example, displaying

Table 4 Fuzzy clustering
results for 1 μm cuts and
0.1 mm cut

Test set Fuzzy GA
cutting (C)

Fuzzy GA
ploughing (P)

Fuzzy GA
rubbing (R)

Classification
accuracy %

Test SG4 61/62 43/47 81/97 90 % (185/206)

Hit 3 T211 (rubbing) 53/55 51/66 84/85 91 % (188/206)

Hit 2 T212 52/55 60/66 84/85 95 % (196/206)

Hit 4* (*1 μm cut) 69/69 41/50 71/87 88 % (181/206)

Hit14* 42/48 58/59 68/99 82 % (167/206)

Hit15* 46/46 72/96 55/64 84 % (173/206)

Hit 20 (0.1 mm cut) 39/44 82/85 77/77 96 % (198/206)
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the red line class). If, however, the Petal len is greater or
equal to 3.00, then the left-hand branch is taken, splitting
the remaining part of the total data set. Lastly, the last
branch has a second condition for a second parameter
providing both further splits right and left. If Petal wid
is less than 1.30 then the left-hand branch is taken other-
wise, the right-hand branch. This is a simple example of
flower stork length classification but displays the function-
ality behind the CART classification algorithm.

A classification tree represents a set of nested logical
if–then conditions (similar to a rule-based system) on the
values of the feature variables that allows the prediction
of the value for the dependent categorical variable based
on the observed values of the feature variables. A regres-
sion tree also represents a set of nested logical if–then
conditions on the feature variables, but these are used
instead to predict the value of a continuous response
variable.

CART can handle missing values by imputing such values
in obtaining the mean over the complete observations. The
model can be tested on a separately specified test set.
Additionally, the model can be saved and used subsequently
on additional test sets.

Some points for discussion on best tree representations are
as follows:

& A very large tree may overfit the data.
& A small tree might not capture the important structure

Therefore, there is trade-off consideration for the best tree
when thinking of the overall size:

& The optimal tree size should be adaptively chosen from
the data provided.

& Different stopping criteria’s can give different results such
as an impurity threshold is reached and the branching and
splitting is halted or a specified minimum of branch level
is achieved and so branching and splitting is halted at this
point.

& Think of a pruning strategy that does not impact on the
overall tree classification accuracy.

6.1 Limitations of trees

One important consideration is based on the high variance of
output based on its hierarchical nature to classify. A small
change in data may result in different splits, thus making such
interpretations precautious. Errors are made from the top node
filter down to the lower nodes. All tests carried out using this
technique were verified against test and verification unseen
data sets. With high classifications, confidence in this method
is achieved.

Tables 2 and 3, used in conjunction with Fig. 15, display
the input and output values for the different gain CART rules.

With a test set classification of 54/60 which signifies a
90 % classification accuracy verifies CART against the fuzzy
clustering technique, and with both classifiers, it is possible to
give a robust overall controller. Such classification predictions
were formed for all different gain level rules (see Fig. 15;
Tables 2 and 3). The 23rd parameter (X23) was used to trigger
which specific gain rule would be fired based on a detected
level.

7 Classification of cutting, ploughing and rubbing

The section presents the classifications for fuzzy clustering
and CART classifications.

7.1 Fuzzy clustering classifications

Figure 16 displays the first two principle component outputs
based on the two principle components with the highest
evaluated data cluster centre membership.

It would appear that the fuzzy-clustering/GA technique has
given similar results to previous work [18], and therefore the
findings in this paper are conclusive of the cutting, ploughing
and rubbing phenomena distinguished by the energy released
from the workpiece and grit interaction in the form of an AE
signal.

Table 4 displays the known classification accuracy of fuzzy
clustering. Here, the correct/incorrect clusters were checked
against the known phenomenon, and a percentage of

Table 5 The fuzzy cluster
clustering for the percentage
of C, P and R phenomenon

Test set C% P% R% Iterations and clusters Fitness

Test SG4 33 % (20/60) 23 % (19/60) 44 % (21/60) 78/4 0.7245

Hit 3 T211 (rubbing) 0 % (0/21) 0 % (0/21) 100 % (21/21) 190/6 0.822

Hit 2 T212 32 % (12/38) 61 % (23/38) 8 % (3/38) 153/5 0.1305

Hit 4 (1 μm cut) 19 % (9/47) 26 % (12/47) 55 % (26/47) 135/6 1.659

Hit 14 (1 μm cut) 52 % (30/58) 23 % (13/58) 21 % (12/58) 81/4 0.8862

Hit 15 (1 μm cut) 58 % (36/62) 24 % (15/62) 18 % (11/62) 165/6 1.85

Hit 20 (0.1 mm cut) 76 % (48/60) 22 % (13/60) 2 % (1/60) 120/5 0.968
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classification was determined. Table 5 displays the percentage
of cutting, ploughing and rubbing phenomenon for hits 4, 14
and 15 (0.1 μm DOCs) and hit 20 (0.1 mm DOC).

From looking at Table 5, it is possible to see more
utilisation of cutting, then ploughing and rubbing when the
DOC increases towards the centre of the workpiece leading to
more interaction between grit and workpiece.

7.2 CART classifications

Table 6 displays the known classification accuracy of CART
classifications. Table 7 displays the percentage of cutting,
ploughing and rubbing phenomenon for hits 4, 14 and 15
(0.1 μm DOCs) and hit 20 (0.1 mm DOC).

Again from looking at Table 7, it is possible to see more
utilisation of cutting, then ploughing and rubbing when the
DOC increases towards the centre of the workpiece leading to
more interaction between grit and workpiece. This is consis-
tent with the results tabulated in Table 5. Both classifications
have dis/advantages to classifying data, and when used as a
dual-classification system, more robustability is achieved
(Fig. 24).

8 Single-grit simulation

Simulations are very important for both real-time controllers
and high fidelity models. Figure 17 displays a flow chart for
the internal workings of the SG simulation.

From the identification and classification of the AE signal
analysis against measured material phenomenon, it is possible
to realise such findings in a simulation for real-time
application/modelling. Such micro-grinding simulation
models can act as more informed mechanics when scaled up
to the macro-grinding models as opposed to using a random
distribution of possible grit interaction seen in work [29].

Figures 18, 19 and 20 display all the main sub-systems
that make up the functionality of real-time simulation.
Figure 18 displays the top-level view of the simulation,

with the neuro-fuzzy clustering SOM coloured in blue. The
green parts are various CART rule-based systems depend-
ing on the identified level of X23 (23rd element of data
from STFT). The rest displays from the left, the random
firing of signals (time to STFT). After both blue and green
classifier parts, there is the combiner for robust classifier
output (Fig. 18, middle). Figures 19 and 20 display the
neuro-fuzzy clustering SOM into three layers, where
Fig. 19 is the top layer of the SOM network, and Fig. 20
the input layer significant of 256 inputs representative of
the STFT input signal(s) (hidden and output layers follow a
similar pattern).

The simulation displayed in Fig. 18 shows different time-
frequency FFT samples tested against a neuro-fuzzy cluster-
ing SOM (closest method to fuzzy clustering with GA opti-
misation). Using a decreased gain classifier input signifying
material phenomenon’s tending towards a ploughing or rub-
bing grit action, the classifier gives output for necessary
sharpening phenomena such as dressing to take place.
Figure 21 displays the SOM simulation output for different
gains, signifying different levels of grit action with increasing
tendency towards blunting phenomenon (when red = 1). The
blue output gives the classification of signals inputs in terms
of cutting, ploughing and rubbing.

Figure 22 gives the SOM classifier output in terms of
percentage utilisation of the phenomena: cutting, ploughing

Table 7 The CART classification for the percentage of C, P and R
phenomenon

Test set C% P% R%

Test SG4 31.6 % (19/60) 35 % (21/60) 33.3 % (20/60)

Hit 3 T211 (rubbing) 0 % (0/21) 0 % (0/21) 100 % (21/21)

Hit 2 T212 6 % (2/38) 76 % (29/38) 18 % (7/38)

Hit 4 (1 μm cut) 8 % (4/47) 49 % (23/47) 43 % (20/47)

Hit 14 (1 μm cut) 52 % (30/58) 19 % (11/58) 29 % (17/58)

Hit 15 (1 μm cut) 63 % (39/62) 29 % (18/62) 8 % (5/62)

Hit 20 (0.1 mm cut) 92 % (55/60) 8 % (5/60) 0 % (0/60)

Table 6 CART results for 1 μm
cuts and 0.1 mm cut Test Set FuzzyGA

cutting (C)
FuzzyGA
ploughing (P)

FuzzyGA
rubbing (R)

Classification
accuracy (%)

Test SG4 61/62 45/47 95/97 98 % (201/206)

Hit 3 T211 (rubbing) 54/55 63/66 84/85 98 % (201/206)

Hit 2 T212 52/55 61/66 81/85 94 % (194/206)

Hit 4* (*1 μm cut) 66/69 46/50 81/87 96 % (193/206)

Hit 14* 45/48 58/59 91/99 94 % (194/206)

Hit 15* 43/46 92/96 61/64 96.5 % (196/206)

Hit 20 (0.1 mm cut) 39/44 80/85 77/77 96.5 % (196/206)
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and rubbing. This crisp percentage output (0–1, 0–100 %) is
given by the neuro-fuzzy clustering SOM, which is typical of
such technologies in the ability to output merged cluster sets.
This output is more accurate than that displayed in Fig. 24
(due to the CART rules translation from individual CART to
embedded simulation rules where the firing rules mechanism
can be different); however, with both the sharpening control
and percentage phenomenon utilisation, this promotes a more
informed dressing control process. CARTwas verified with a
higher accuracy than that of neuro-fuzzy clustering SOM (see
Tables 4 and 5 compared with Tables 6 and 7) and is not
displayed here in terms of percentage utilisation as this is the
negative from both Figs. 23 and 24 compared 8with Figs. 21

and 22, respectively. CART is used as a secondary classifier to
verify neuro-fuzzy clustering SOM.

Certainly, CART is more transparent and better adopted
for dealing with n-D data than neuro-fuzzy clustering SOM;
and, it can deal with n-D data and has the ability to regress
outputs giving good predictions. Combined with CART
rules, the sensitivity of the neuro-fuzzy system is slightly
desensitised giving more robust classifications. Even though
the CART algorithm gave a +90 % classification of unseen
data, there was less weighting applied in the fuzzy combi-
nation due the neuro-fuzzy clustering SOM, giving better
regression capabilities where such weightings were based
on 30 % of the CART output and 70 % of neuro-fuzzy
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Fig. 17 Flow chart of fuzzy SG
expert system
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clustering SOM output. This type of classifier can be con-
sidered as both accurate and robust and can be used for
either modelling or control purposes. One point to note here
is different rules have to be found with the CART when
faced with different data (gain changed data), whereas the
neuro-fuzzy system can regress from the original data when
faced with different gain changed data. That said, for CART
to act the same, the variables used in the node can be
replaced for probabilities and adjusted for various gain
changes, in short: a hybrid feedback CART system.

Figures 23 and 24 display the output control and output
percentage utilisation, respectively, for the neuro-fuzzy and
CART rules system. Here, it can be seen that the output spikes
at a lower rate than in Figs. 21 and 22, which is based on the
dual combination of CART and neuro-fuzzy classifications.
The dual classification system certainly gives a smoother
output albeit similar to the neuro-fuzzy system output based
on the bias of the combiner fuzzy weightings.

That said, Fig. 24 (bottom right for 0.4 gain) displays a
more accurate classification towards the end, which is given
by the dual classifier. The individual CART rules for the
simulation were based on Fig. 15 and Tables 2 and 3 (0.4 to
unit gain).

9 Conclusions

This paper has demonstrated that STFT as a useful technique
to distinguish the frequency bands occupied by cutting,
ploughing and rubbing phenomena with high classification
accuracy (+90 %) for both classifying technologies. Two
different aerospace materials CMSX4 and Titanium 64 were
compared in terms of STFT signal characteristics showing
similar consistencies with respect to DOC and intensity
amounts; however, with materials with higher hardness and
density values, there is more material damping when subject

Fig. 18 Top-level simulation for SG phenomena classifications

Fig. 19 Top level of neuro-fuzzy
clustering SOM for SG
phenomena classifications
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to an emitted AE event. Two different aerospace materials
CMSX4 and Titanium 64 were compared in terms of STFT
signal characteristics showing similar consistencies in DOC
and intensities.

Cutting and ploughing were difficult to distinguish due
to their similar plastic material energy properties. However,
from material measurements, the amount of material re-
moved against material built up edge would clarify either
cutting or ploughing phenomenon. Rubbing was difficult to
distinguish from noise as the noise levels are in-between
identified rubbing phenomenon. Rubbing is verified from
the obtained AE hit data signal correlated to no visible
mark on the workpiece or more AE signal data compared
with actual scratch length. The rubbing phenomenon is
different from both cutting and ploughing phenomena,
where it contains only elastic deformation energy properties
and ploughing/cutting has plastic deformation energy

properties. With elastic deformation, there should be no or
very little marking on the workpiece surface. The non-
normalised signal analysis was consistent with other SG
work [23]; however, for a generalised classifier of cutting,
ploughing and rubbing, such signals were normalised to
1 μm DOC. The DOC is an important feature in SG
grinding where a separate classifier can be used to convey
such information within a SG grinding model. The fuzzy
clustering method gave high classification results and was
verified by a similar fuzzy-type rule-based system: CART.
The transparent CART achieved higher accuracies than the
optimised fuzzy clustering; however, different rules are
needed to extrapolate the data accommodating different grit
gains where fuzzy clustering implemented through a SOM
NN has such abilities built into its functionality and is
therefore more versatile to change. Both technologies have
their advantages and disadvantages, and when used in a

Fig. 20 Layer 1 (input layer)
of neuro-fuzzy clustering SOM
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hybrid fashion, affords a very powerful classification
technique.

Further tests looked at AE hit data taken from macro-
grinding with 1-μm and 0.1-mm depth cuts, where the classi-
fier distinguished more percentage of cutting utilisation when
the process had more interaction between workpiece and grit

interaction (i.e. measured increased actual depth cut ending
towards the middle of the workpiece).

Finally, such classifier results were realised in a simulation
that could serve as a possible real-time controller for monitor-
ing the levels of cutting, ploughing and rubbing for SG and
small DOC grinding wheel material interactions. Considering
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the difficult segregation between cutting and ploughing, a
percentage utilisation of the phenomena is also given as output
from the simulation. Such percentage utilisation of grit to
workpiece interactions are made possible by different cluster
sets.

Investigation summaries: a more improved robust SGmod-
el is provided to give micro-mechanics of grinding from
extracting AE signals, micro-grinding control regime, im-
proved identification of cutting, ploughing and rubbing phe-
nomena during grinding, promoting efficient grinding with
more accurate grinding dressing ratios and, an intelligent
material footprint-identification system.
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