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The main problem in damage assessment is the determination of how to ascertain the presence, location, and severity of structural
damage given the structure’s dynamic characteristics. The most successful applications of vibration-based damage assessment are
model updating methods based on global optimization algorithms. However, these algorithms run quite slowly, and the damage
assessment process is achieved via a costly and time-consuming inverse process, which presents an obstacle for real-time health
monitoring applications. Artificial neural networks (ANN) have recently been introduced as an alternative to model updating
methods. Once a neural network has been properly trained, it can potentially detect, locate, and quantify structural damage in a
short period of time and can therefore be applied for real-time damage assessment.The primary contribution of this research is the
development of a real-time damage assessment algorithm using ANN and antiresonant frequencies. Antiresonant frequencies can
be identified more easily and more accurately than mode shapes, and they provide the same information. This research addresses
the setup of the neural network parameters and provides guidelines for the selection of these parameters in similar damage
assessment problems. Two experimental cases validate this approach: an 8-DOF mass-spring system and a beam with multiple
damage scenarios.

1. Introduction

Damage assessment must detect and characterize damage
at the earliest possible stage and estimate how much time
remains before maintenance is required, the structure under-
goes failure, or the structure is no longer usable. Damage
assessment offers tremendous potential for life and safety
and/or economic benefits because it reduces themaintenance
cost and increases the safety and reliability of the structure.
Damage assessment is a subject of great importance for
several industry sectors as well as for the safety of citizens
and can be applied to civil engineering structures (such as
buildings or bridges), transport vehicles (such as airplanes,
helicopters, trains, ships, or cars), and industrial equipment
(such as mills, turbines, pumps, and boilers, among others).

The main problem of damage assessment is to ascertain
the presence, location, and severity of structural damage
given the structure’s dynamic characteristics. The most

successful applications of vibration-based damage assess-
ment are model updatingmethods based on global optimiza-
tion algorithms [1–5]. Model updating is an inverse method
that identifies the uncertain parameters in a numerical model
and is commonly formulated as an inverse optimization
problem. In inverse damage detection, the algorithm uses
the differences between the models of the structure that are
updated before and after the presence of damage to localize
and determine the extent of damage. The basic assumption
is that the damage can be directly related to a decrease
of stiffness in the structure. Nevertheless, these algorithms
are exceedingly slow, and the damage assessment process is
achieved via a costly and time-consuming inverse process,
which presents an obstacle for real time health monitoring
applications. Recent studies have introduced artificial neural
networks (ANN) as an alternative to model updating in
damage assessment [6–8]. A trained neural network can
potentially detect, locate, and quantify structural damage
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in a short period, and, hence, it can be used for real time
damage assessment. Damage detection by ANN has the
advantage that it is a general approach. Unlike many other
damage detection methods that are often developed for
specific quantities [9–11], in principle, ANN can be applied
to any correlation coefficient that is sensitive to damage.
Additionally, ANN can be used with structures that exhibit
a nonlinear response [12].

One of the main challenges in structural damage assess-
ment is the selection of an appropriate measure of the system
response that is sufficiently sensitive to small damage. The
fact thatmanymeasures have been studied over the past years
(and continue to be investigated) with no consensus as to the
optimumchoice is a testament to the difficulty of the problem.
This measure can be constructed in the time, frequency, or
modal domains, and the latter two are the most broadly
used.

The idea of directly using the frequency response func-
tions (FRFs) to train the neural networks has attracted many
researchers. Among all of the dynamic responses, the FRF
is one of the easiest to obtain in real time because the in
situ measurement is straightforward. However, the number
of spatial response locations and spectral lines is overly large
for neural network applications. The direct use of FRFs will
lead to networks with a large number of input variables
and connections, thus rendering them impractical. Hence, it
becomes necessary to extract features from the FRFs and use
these features as inputs to the neural networks. Castellini and
Revel [13] presented an algorithm to detect and locate struc-
tural damage based on laser vibrometry measurements and a
neural network for data processing. Using features extracted
from the frequency response functions as inputs to the neural
network, the authors were able to use the same network
to detect and locate damage in three different experimental
structures. To reduce the number of input variables, Zang and
Imregun [14] applied a principal component analysis (PCA)
technique to the measured FRFs. The output of the neural
network gives the actual state of the structure: undamaged or
damaged. The algorithm was able to distinguish between the
undamaged and damaged cases with satisfactory accuracy.
Fang et al. [15] selected key spectral points near the resonance
frequencies in the FRF data. These selected points were used
as the inputs of a neural network, and the outputs were
the stiffness reduction factors. The algorithm showed high
accuracy in identifying damage to a simulated cantilever
beam under different damage scenarios.

The input data can be further reduced if modal analysis
is performed first. Thus, the input variables are the modal
parameters of the structure. The natural frequencies and
mode shapes are themost frequently used parameters; a large
body of literature on the use of natural frequencies in damage
detection is available [16]. However, the natural frequencies
do not always provide the spatial information necessary to
locate the damage, and thus additional information is also
necessary, such as the mode shapes. In general, the natural
frequencies detect and quantify the presence of damage,
whereas the mode shapes provide the location [17]. Zapico
et al. [18] presented an algorithm designed to identify the
damage to an experimental two-floor structure; they used

the natural frequencies as the input variables and trained
a neural network with data from a numerical model. The
neural network contained two outputs representing the level
of damage of each floor.The proposed methodology was able
to predict the damage with an error of less than 8.6%. Yun et
al. [19] used the natural frequencies andmode shapes as input
data for a neural network used to detect damage in the joints
of framed structures. The neural network was trained using
a noise-injection learning algorithm to reduce the effects of
experimental noise. The authors found that the algorithm
could estimate damage with reasonable accuracy, but the
performance strongly depended on the level of experimental
noise. A disadvantage of using mode shape displacements
is that the mode shape identification requires many mea-
surement locations. Furthermore, mode shape sensitivity to
damage is not significant [3]. The mode shape curvatures
are more sensitive to small structural modifications than
the mode shape displacements [20]. Sahin and Shenoi [21]
studied the effectiveness of different combinations of global
(natural frequencies) and local (mode shape curvatures)
vibration data as inputs for an artificial neural network. They
concluded that the best performance was obtained when the
natural frequencies were used as the inputs to a first network
used to predict the severity of the damage and themode shape
curvatures were used as the inputs to a second network to
predict the damage location.

Recently, researchers have proposed the use of anti-
resonant frequencies as an alternative to mode shapes [22].
Anti-resonant frequencies correspond to the zeros (dips) of
the FRFs and offer an attractive alternative because they
can be determined more easily and with less error than
the mode shapes while still providing the same informa-
tion. The antiresonances can be derived from the point
frequency response functions (FRFs), in which the response
coordinate is the same as the excitation coordinate, or
from transfer FRFs in which the response coordinate differs
from the excitation coordinate. Point FRFs are preferred
because matching problems arise when the antiresonances
from transfer FRFs are used. Moreover, the distribution of
the transfer antiresonances can be significantly modified
with small structural changes [22]. However, the procedure
used to obtain point FRFs differs from common modal
testing; that is; the excitation degree of freedom (DOF)
is shifted together with the response DOF, which may
become impractical or expensive. Williams and Messina [23]
introduced antiresonances from point FRFs to the Multiple
Damage Location Assurance Criterion (MDLAC) algorithm.
They concluded that the incorporation of anti-resonant data
improves the accuracy of the damage predictions. Dilena
and Morassi [24] studied the problem of crack detection in
beams using resonant and anti-resonant frequencies. They
found that the use of antiresonances aids in avoiding the
nonuniqueness of the damage location that occurs when
only natural frequencies are used. However, they also found
that the experimental noise and modeling errors are usually
amplified when antiresonances are included. Bamnios et al.
[25] proposed a scheme for crack location in beams using the
shift in the first anti-resonant frequency versus themeasuring
position to detect and locate a crack. They stated that this
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method could be used to roughly locate the crack, and,
subsequently, other methods can be applied to determine
the crack characteristics more precisely. The changes in
the resonant and anti-resonant frequencies were used by
Inada et al. [26] to locate and quantify the delamination
of a composite beam. This group implemented a two-step
procedure: first, the delamination domain is identified from
the anti-resonant changes, and, next, the location and size
are defined using natural frequency changes. This method
was effective in identifying the delamination locations and
sizes. Wang and Zhu [27] suggested a method for identifying
cracks in beams, which makes use of the natural frequencies
and antiresonances from the point FRFs.Themethodology is
similar to that proposed by Bamnios et al. [25] in that the shift
in the first anti-resonant frequency versus the driving point
location is used to locate damage. They validated the method
with a numerical example of a simply supported beam with
three cracks. Their method was able to accurately predict the
locations and qualitatively estimate the crack size. Meruane
and Heylen [28] showed that antiresonances are a good
alternative to mode shapes in damage assessment. However,
they stated that further research is required for identification
of the experimental antiresonances and for the matching of
experimental and numerical antiresonances. Thus, antires-
onances present an attractive alternative to mode shapes as
the input values of neural networks for the following reasons:
they require a lower number of inputs, are less contaminated
by noise and provide the same information. Nevertheless,
methods that use antiresonances are still under development,
and the application of antiresonances to structural damage
detection has not been fully investigated, primarily because
the inverse optimization problem used with antiresonances is
particularly challenging and robust optimization algorithms
are needed. However, these limitations should not present a
problem for methods based on neural networks.

1.1. Artificial Neural Networks. An ANN is a data processing
algorithm that attempts to emulate the processing scheme of
the human brain [29]. An ANN is formed by “neurons” that
are interconnected to build a complex network. Knowledge is
acquired by a learning process and stored in the interneuron
connections known as the “synaptic weights.”

Different types of network architectures exist, and among
them, themultilayer perceptron (MLP) is themost frequently
used. An MLP network consists of an array of input neurons
known as the input layer, an array of output neurons known as
the output layer, and a number of hidden layers. Each neuron
receives a weighted sum from the neurons in the preceding
layer and provides an input to every neuron of the next layer.
The activation of each neuron is governed by a function
known as the transfer function. Typical selections for the
transfer function are linear, log-sigmoid, and hyperbolic
tangent-sigmoid, as shown in Figure 1.

Figure 2 illustrates the principle of a damage assessment
algorithm using ANN. The vibration characteristics of the
structure act as the inputs to the neural network, and the
outputs are the damage indices of each element in the
structure.

The outputs of a three-layer MLP are given by

𝑦
𝑖
= 𝑓 (

NH
∑

𝑗=1

(𝑤
𝑖𝑗
𝑓 (

NI
∑

𝑘=1

V
𝑗𝑘

𝑥
𝑘

+ 𝑏V𝑘) + 𝑏
𝑤𝑖

)) , (1)

where 𝑥 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} and 𝑦 = {𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
} are the

input and output vectors, 𝑤
𝑖𝑗
and V
𝑗𝑘
are the interconnection

weights, 𝑏 represents the bias (or threshold) terms, 𝑓(⋅) is the
transfer function, and NI and NH are the number of input
and hidden nodes, respectively.

The values of the weights are updated by training the
neural network with data from the structure. The training
problem consists of finding theweights that willminimize the
mean square error 𝐸

𝑠
:

𝐸
𝑠

=
1

NO

NO
∑

𝑘=1

(𝑦
𝑘

− 𝑜
𝑘
)
2
, (2)

where 𝑜
𝑘
is the desired output at the 𝑘th output node, and

NO is the number of output nodes. Many optimization
techniques are able to address the network-training problem.
The simplest method is gradient descent, also known as the
steepest descent. This algorithm begins with an initial weight
vector and iteratively updates it by moving in the direction of
the greatest error decrease. The gradient descent rule can be
written as
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where Δ𝑤
𝜏

𝑖
is the change for the 𝑖th weight at step 𝜏. The

backpropagation algorithm calculates the gradient at each
step. The convergence of this algorithm strongly depends
on the learning rate 𝜂. If 𝜂 is too large, the algorithm may
overshoot, leading to divergent oscillations. However, if 𝜂 is
too small, the search might proceed quite slowly. Fang et
al. [15] showed that an adaptive learning rate significantly
improves the training performance. Another improvement
to the gradient descent algorithm involves ensuring that
each search direction is conjugate to all previous directions,
thus avoiding unnecessary loops in the search process. The
scale-conjugated gradient algorithm proposed byMøller [30]
combines this concept and variable steps. Many additional
optimization algorithms have been proposed to train neural
networks, but the Levenberg-Marquant algorithm has been
the most efficient [31]. This method is a gradient-based
algorithm specifically designed to minimize the sum-of-
squares error [32].

A disadvantage of ANN is the need for large training
sets. It is highly difficult and time-consuming to produce
sufficiently large training data sets from experiments. An
alternative to generating training samples is to use a numer-
ical model of the structure. Castellini and Revel [13] showed
that it is possible to produce correct damage predictions in
an experimental structure using a neural network that was
trained with samples generated by a finite element model.
Nevertheless, this approach is highly dependent on the
accuracy of the numerical model. There are two approaches
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Figure 1: Transfer functions: (a) hyperbolic tangent sigmoid, (b) logarithm sigmoid, (c) linear, (d) saturating linear, and (e) symmetric
saturating linear.
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to overcome this problem. The first is to update the numer-
ical model using experimental data from the undamaged
structure. However, even after updating, differences will still
remain between the numerical and experimental models.
The second alternative is to define an input parameter that
considers the initial errors in the numerical model, thus
avoiding the need for an accurate numerical model.This goal
is achieved using the changes in the data instead of their
absolute values. The main assumption is that any change
in the structural properties is caused by damage. Thus, any
error in the undamaged model of the structure that is also
present in the damaged model will be removed [33]. Lee
et al. [34] showed that natural frequency changes because
structural damage in a system without modeling errors is
approximated the same as those in a system with modeling
error. Hence, changes in the natural frequencies are less
sensitive to modeling errors than the natural frequencies
themselves. This group demonstrated the applicability of
a neural network trained with mode shape changes. The
damage locations were estimated with reasonable accuracy,
although false alarms were detected at several locations.

Simulated data derived from a numerical model are
noise-free, whereas actual measurements are never free from
experimental noise. Noise in themeasurements will cause the
network to estimate parameters that are different from the
actual properties of the structure. A solution is to introduce
artificial noise into the numerical data used to train the
network. This process is known as data perturbation scheme
[35]. Yun et al. [19] used a noise-injection learning algorithm
and a data perturbation scheme.They implemented a neural-
network-based damage assessment algorithm to detect the
damage in structural joints. The joints are modeled as
semirigid connections using rotational springs, and accurate
results are obtained in the cases of moderated noise. Sahin
and Shenoi [21] trained a neural network with artificially
added noise to detect single damage in beam-like composite
laminates. The network contains two outputs: the location
and the amount of damage. They studied different combina-
tions of features extracted from the resonant frequencies and
mode shape curvatures as inputs to the neural network, and
their results show that feature selection plays a crucial role
in the predictions accuracy. Zang and Imregun [14] proposed
a different approach to address experimental noise and used
principal component projection of the FRF data as an input
to a neural network with two outputs of healthy or damaged.
The authors stated that reconstructing the response using the
highest principal components should not only achieve data
compression but also remove a proportion of the noise. The
PCA compression acts as a noise filter, which can be useful in
modal analysis as well.

The successful application of a neural network depends
on the representation and the learning algorithms. Never-
theless, their selection is problem-dependent and is usually
determined by trial and error [36]. Sahoo and Maity [7]
used a Genetic Algorithm (GA) to automate the trial-and-
error process. The network parameters (number of neurons,
learning rate, etc.) are set as variables in an optimization
problem handled by a GA. They used an MLP network with
two hidden layers trained by a backpropagation algorithm.

Structure

Vibration characteristics

Artificial neural networks

Input layer

Hidden layers

Output layer

Stiffness reduction factors

Figure 2: Damage assessment with artificial neural networks.

The inputs are the natural frequencies and strains in certain
locations of the structure. Fang et al. [15] explored the use of
a tunable steepest descent (TSD) algorithm that dynamically
adjusts the learning speed during the training process. They
showed that this methodology significantly increases the
training speed while maintaining the learning stability.These
authors used FRF data measured at key spectral points
around the resonant frequencies.

The primary contribution of this research is the devel-
opment of a real time damage assessment algorithm using
ANN and anti-resonant frequencies. In literature, similarly
to mode shapes, anti-resonant frequencies are used as com-
plementary information to natural frequencies. Nevertheless,
Motthershead [37] demonstrated that the sensitivity of anti-
resonant frequencies can be expressed as a combination of the
sensitivities of mode shapes and natural frequencies. Hence,
anti-resonant frequencies contain the same information as
natural frequencies and mode shapes together, which is the
hypothesis of the present study.This study is restricted to anti-
resonant frequencies obtained from point FRFs. Although
measurement of the point FRFs is time-consuming because
the excitation point is moved together with the response
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location, this method offers several advantages for damage
assessment as follows.

(i) All antiresonances contain independent information
because they correspond to the resonant frequencies
of the system grounded at different degrees of free-
dom.

(ii) For a given FRF, the number of anti-resonant frequen-
cies does not change from one damage scenario to
the next; this is a valuable property if we require these
frequencies to act as inputs to a neural network.

(iii) An anti-resonant frequency always lies between
two resonant frequencies. Hence, there is no doubt
whether a dip in an FRF is an anti-resonant frequency
or a minimum.

This study addresses the setup of the neural network
parameters and provides guidelines for their selection in
similar damage detection problems. The proposed method-
ology is evaluated with two experimental structures: an 8-
DOF mass-spring system and a beam with multiple damage
scenarios.

2. Neural Network for Damage Assessment

This study intends to train a neural network using anti-
resonant frequencies and to determine its feasibility in assess-
ing experimental damage. Hence, this study works with the
simplest neural network that has been able to detect, locate,
and quantify structural damage, the multilayer perceptron
(MLP) with three layers (input, hidden, and output) as
presented by Fang et al. [15]. The outputs of the network
correspond to the damage indices of each element, whereas
the inputs are the changes in anti-resonant frequencies. The
number of hidden nodes is defined after a sensitivity analysis
for each application case.

2.1. Inputs. As proposed by Lee et al. [34], the inputs to
the neural network are defined as the changes in the modal
parameters rather than their absolute values. With this
approach, the network is less sensitive to errors in the baseline
FE model.

Therefore, the inputs correspond to the experimental
change in the anti-resonant frequencies with respect to the
intact case:

𝑥
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=
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The superscripts 𝐷 and 𝑈 denote undamaged and damaged
respectively, and𝜔

𝑟,𝑖,𝑛
is the 𝑖th anti-resonant frequency of the

𝑛th FRF.
To reduce the effects of experimental noise, the simulated

data are polluted with random noise. As proposed by Hjelm-
stad and Shin [35], each set of perturbed data is created by
adding uniformly distributed random noise to the numerical
data:

𝜔
𝑟,𝑖,𝑛

= 𝜔
𝑟,𝑖,𝑛 (1 + 𝜉) , (5)

where 𝜉 is a uniform random number with a specified
amplitude.The variance of the perturbing noise should be the
same as the variance of the measurement noise.

2.2. Outputs. The damage indices are represented by the
elemental stiffness reduction factors 𝛽

𝑖
defined as the ratios

between the stiffness reduction and the initial stiffness:

𝑦
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The stiffnessmatrix of the damaged structureK
𝑑
. is expressed

as a sum of element matrices multiplied by reduction factors,

K
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The value 𝛽
𝑖
= 0 indicates that the element is undamaged,

whereas 0 < 𝛽
𝑖
≤ 1 implies partial or complete damage.

2.3. Training and Validation Patterns. The distribution of
the training patterns plays a crucial role in the success of a
neural network. The relationship between the anti-resonant
frequencies and the different damage levels is not linear,
and, as a consequence, the network might be unable to
interpolate. Fang et al. [15] recommend the use of training
patterns with evenly distributed damaged levels. Combining
simultaneous damages into the training increases the number
of training patterns, and a large number of training patterns
could overwhelm the training procedure. In this study, the
training patterns were generated by considering up to two
simultaneous damage incidences with nine damage levels
evenly distributed between 0% and 80%. Hence, the total
number of training patterns depends on the number of
elements 𝑁 as

number of training patterns = 9
2

× 𝐶 (𝑁, 2) , (8)

where 𝐶(𝑁, 2) is the number of combinations of 𝑁 elements
taken two at a time.

The algorithm trains the network using the early stopping
technique [37]. In this technique, two sets of data are used
during training: a training set and a validation set. The
training set is used for updating the network weights and
biases. As defined in (2), the mean square error evaluated on
the validation set ismonitored during training.When the val-
idation error increases for six iterations, the algorithm stops
the training. The weights of the network at the minimum
validation error become the final weights.

The validation set is a group of patterns that must be
different from the training patterns. To ensure this condition,
the validation patterns were created with nine damage levels
evenly distributed between 5% and 85% and considered up to
two simultaneous damage incidences. Note that the number
of training patterns is equal to the number of validation
patterns. This set of validation patterns is also used to check
the network performance after training.

2.4. Measures of Network Performance. The performance of
the network is measured by three indicators: the mean sizing
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error, the damage missing error, and the false alarm error as
defined by Yun et al. [19]. The mean sizing error (MSE) is the
average quantification error:

MSE =
1
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𝑖, respectively, and NO is the number of output nodes.
The damage missing error (DME) is given by
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of true damage locations. If DME = 0, all damage locations
are correctly detected. The value of 𝜀
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It is assumed that an element is detected as damaged if the
estimated damage 𝑦

𝑖
is greater than a prescribed critical value

𝛼
𝑐
. The critical damage level 𝛼

𝑐
is defined as being equal to

the average MSE.This value is the minimum damage that the
network can reasonably assess.

The false alarm error (FAE) is defined as
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actual damage locations. The value of 𝜀
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3. Identification and Matching of
Antiresonant Frequencies

3.1. Experimental Antiresonances. The experimental antires-
onances are identified from experimental point FRFs by
“dip-picking” [22]. In this technique, the antiresonances are
selected by picking the dips from the magnitude plot of
a given FRF that have an associated change of +180∘ in
the phase plot. This method is similar to the “peak pick-
ing” technique for resonant frequencies. Figure 3 shows an
example of the anti-resonant picking procedure. When using
this technique, the errors in the estimated antiresonances
originate primarily from the frequency resolution of the
FRFs. If the dips in the FRFs are difficult to determine, the
antiresonances can be identified by a curve-fitting technique
based on the rational fraction polynomial representation of
the FRFs [38].

3.2. Numerical Antiresonances. For a lightly damped struc-
ture, the anti-resonant frequencies are nearly unaffected by
damping, and, therefore, they can be obtained from the
undamped system using only the stiffness andmass matrices.

By definition, the FRFmatrix is the inverse of the dynamic
stiffness matrix:

H (𝜔) = (K − 𝜔
2M)
−1

=
adj (K − 𝜔

2M)

det (K − 𝜔2M)
. (14)

The operators adj(⋅) and det(⋅) indicate the adjoint
and determinant, respectively. The anti-resonant frequencies
correspond to the zeros of the FRFs. The zeros of the 𝑖,
𝑘th FRF are the values of 𝜔 for which the numerator of
𝐻
𝑖𝑘

(𝜔)vanishes. The numerator of 𝐻
𝑖𝑘

(𝜔) is the 𝑖, 𝑘th term
of adj(K− 𝜔

2M), which is given by (−1)
𝑖+𝑘 det(K

𝑖,𝑘
− 𝜔
2M
𝑖,𝑘

).
The subscripts 𝑖 and 𝑘 denote that the 𝑖th row and 𝑘th column
have been deleted. As a consequence, the antiresonances of
the 𝑖, 𝑘th FRF are the frequency values that satisfy

det (K
𝑖,𝑘

− 𝜔
2M
𝑖,𝑘

) = 0, (15)

which is equivalent to solving the eigenvalue problem:

(K
𝑖,𝑘

− 𝜔
2M
𝑖,𝑘

) u = 0. (16)

If 𝑖 = 𝑘, (16) represents a physical system obtained by
grounding the 𝑖th degree of freedom. Therefore, the anti-
resonant frequencies obtained from point FRFs (𝑖 = 𝑘) are
equivalent to the resonant frequencies of the structure with
the 𝑖th degree of freedom grounded.

Because we are working with point FRFs, matching the
experimental and numerical anti-resonant frequencies is an
easy task because each anti-resonant frequency lies between
two resonant frequencies.

4. Eight-DOF Spring-Mass System

The structure shown in Figure 4 consists of an 8-DOF spring-
mass system. The Los Alamos National Laboratory (LANL)
designed and constructed this system to study the effec-
tiveness of various vibration-based damage identification
techniques [39].

The system consists of eight translatingmasses connected
by springs, and each mass consists of a disc of aluminum
with a diameter of 76.2mm and a thickness of 25.4mm. The
masses slide on a highly polished steel rod and are fastened
together with coil springs. The spring and mass locations
are designated sequentially with the first located the closest
to the shaker attachment. In the undamaged configuration,
all springs are identical and have linear stiffness coefficients.
Damage is simulated by replacing the fifth spring with a
different spring with a lower stiffness (55% stiffness reduc-
tion).The acceleration is measured horizontally at eachmass,
giving a total of eightmeasuredDOFs.The structure is excited
randomly by an electrodynamic shaker. The responses are
measured in the eight DOFs in the undamaged and damaged
cases.

Seven anti-resonant frequencies are identified from the
FRF corresponding to the first mass, which corresponds to



8 Shock and Vibration

M
ag

ni
tu

de
 (a

bs
)

102

100

104

10−2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency (Hz)

285
598.8

1026
1549

81.25

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency (Hz)

Ph
as

e (
de

g)

50

0

−50

−100

−150

−200

(b)

Figure 3: Identification of experimental anti-resonant frequencies.
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Figure 4: Experimental system with eight degrees of freedom.

a point FRF. Given that the anti-resonant frequencies are
independent, seven antiresonances should be sufficient to
assess the stiffness of each of the seven springs.

Table 1 lists the anti-resonant frequencies identified in
the undamaged and damaged cases. The second and fourth
antiresonances provide the larger variation due to the exper-
imental damage.

The numerical model is built in Matlab with springs and
concentrated masses, and the initial parameters are set as
follows:

(i) mass 1: 559.3 g (this mass is greater than the others
because of the hardware required to attach the shaker)

(ii) masses 2 to 8: 419.4 g,
(iii) spring constants: 56.7 kNm−1.

Table 2 shows the numerical and experimental anti-
resonant frequencies. The maximum difference between the
experimental and numerical antiresonances is 0.7%. As a
consequence, the numerical model provides a faithful repre-
sentation of the experimental structure and can be used to
train the neural network.

4.1. Construction of the Neural Network. The network con-
tains seven inputs and seven outputs.The best parameters for
the neural network are defined after performing a sensitivity

Table 1: Experimental antiresonances.

Antiresonant frequencies (Hz) Variation (%)
Undamaged Damaged
12.31 11.66 −5.28
36.94 32.44 −12.18
59.61 59.8 0.32
79.96 71.74 −10.28
96.12 93.02 −3.23
109.44 106.86 −2.36
115.72 112.67 −2.64

Table 2: Experimental and numerical antiresonances.

Antiresonant frequencies (Hz) Difference (%)
Experimental Numerical
12.3 12.3 0.43
36.9 36.7 0.54
59.6 59.2 0.70
80.0 79.5 0.55
96.1 95.6 0.52
109.4 109.0 0.40
115.7 115.5 0.19

analysis. The network is trained under different configura-
tions, and the selected configuration is the one that provides
the lowest validation error.

First, the effects of five different transfer functions used
for the output layer are studied, and these transfer functions
are formulated as follows: (a) hyperbolic tangent sigmoid,
(b) logarithm sigmoid, (c) linear, (d) saturating linear, and
(e) symmetric saturating linear. Figure 2 illustrates these
functions. During the experimental runs, the remaining
parameters of the network are characterized as follows: the
hidden transfer function is a logarithm sigmoid, the number
of hidden neurons is 30, the training data are polluted with
2% random noise, and the Levenberg-Marquardt algorithm
is used to train the network. The network is trained 10
times with each of the output transfer functions. Table 3
summarizes the average validation performance obtained
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Table 3: Network validation performance with different transfer functions.

Output transfer function 𝐸
𝑠

Hidden transfer function 𝐸
𝑠

Hyperbolic tangent sigmoid 0.0067 Hyperbolic tangent sigmoid 0.0045
Logarithm sigmoid 0.0134 Logarithm sigmoid 0.0044
Linear 0.0060 Linear 0.0130
Saturating linear 0.0127 Saturating linear 0.0050
Symmetric saturating linear 0.0046 Symmetric saturating linear 0.0047

Table 4: Network validation performance with different training
algorithms.

Training algorithms Time (s) 𝐸
𝑠

Gradient descent 237 0.0467
Gradient descent with adaptive learning 9 0.0289
Scaled conjugate gradient 12 0.0158
Levenberg-Marquardt 15 0.0046

for each function. The symmetric saturating linear function
provides the best performance.

Second, the performance of each of these five transfer
functions in the hidden layer is investigated. The remaining
network parameters are the symmetric saturating linear
output transfer function, 30 hidden neurons, 2% noise, and
the Levenberg-Marquardt training algorithm.The network is
trained 10 times with each of these output transfer functions;
Table 3 summarizes the average validation performance. The
logarithm sigmoid function provides the best performance.

Next, the performance of four training algorithms is
studied. Table 4 summarizes the average results for 10 runs.
The gradient descent algorithm provides the worst perfor-
mance in terms of training time and validation mean square
error. An adaptive learning rate substantially improves the
results; the training time is 26 times lower and the mean
error is reduced by a factor of 1.6. The scale conjugate-
gradient reaches a lower mean square error with a slightly
higher training time. Nevertheless, the Levenberg-Marquardt
algorithm provides the lowest mean square validation error
by far, and its training time is nearly the same as that with the
scale conjugate gradient algorithm.

Figure 5 shows the average validation error for different
numbers of hidden nodes. Seventy nodes in the hidden layer
give the lower validation error 𝐸

𝑠
. Less than 70 neurons are

not sufficient to fit the data, whereas greater than 70 neurons
overfit the neural network.

The last parameter corresponds to the level of noise in
the training data. The selection of this parameter is related
to the level of experimental noise. Hence, this parameter
was defined by studying the performance of the trained
network with the experimental data and different levels of
perturbation noise. Figure 6 shows the mean sizing error
(MSE) obtained when the network is tested with experimen-
tal data.This case corresponds to a 55% stiffness reduction in
element 5. The MSE is the difference between the predicted
damage level on each element and the actual damage level, as
defined in (9). A data perturbation noise of 1.5% provides the
minimum error in the predicted damage.

20 40 60 80 100 120 140
3.6
3.8

4
4.2
4.4
4.6
4.8

5

Number of hidden nodes

E
s

×10−3

Figure 5: Network validation performance as a function of the
number of hidden nodes.
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Figure 6: Experimental mean sizing error for different levels of
injected noise.

4.2. Network Validation. The selected network parameters
are

(i) network: three layers of multilayer perceptron,
(ii) number of input nodes: 7,
(iii) number of hidden nodes: 70,
(iv) number of output nodes: 7,
(v) transfer function in the hidden layer: Logarithm

sigmoid,
(vi) transfer function in the output layer: Symmetric

saturating linear,
(vii) training method: Levenberg-Marquardt.

The validation patterns verify the performance of the net-
work, and these patterns are polluted with 1.5% noise. The
resulting mean sizing error is MSE = 3.37%, and thus the
network quantification accuracy is 97%. Figure 7 shows the
damage missing error (DME) and false alarm error (FAE)
divided by the damage levels.The results of the DME indicate
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Figure 7: Damage missing error (DME) and false alarm error (FAE) for different damage levels.
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Figure 8: Assessment of experimental damage (55% stiffness reduc-
tion in element 5).

that the detection of damage with low severities is poor. In
fact, 80% of the damage with severities lower than 10% and
40%of the damagewith severities of 10–20% are not detected.
The algorithm can detect damage with severities larger than
30%with confidence; it correctly detects 99.6% of the damage
with severities over 30%.The false alarm results indicate that
most of the damage detected with levels lower than 10%
are false damage (near 75%). The amount of false damage
detection is drastically reduced with an increment in the level
of damage. In fact, 99.24% of the damage detected with levels
over 30% is true damage.

Figure 8 shows the results of the damage detected using
the experimental case. The damaged element is correctly
assessed, the location is correct, and the quantification error
is 5%.

5. Experimental Beam

The structure consists of a steel beam with a rectangular
cross-section. The dimensions of the beam are length = 1m
and section = 25 × 10mm2. As shown in Figure 9, soft springs
suspend the structure to simulate a “free-free” boundary
condition.

A hammer excites the beam at four points distributed
along the beam, and an accelerometer measures the response
at each excitation location. Both the excitation force and the
measured responses lie in the horizontal direction. In this
direction, the anti-resonant frequencies are more sensitive to

Table 5: Experimental and numerical antiresonances.

Antiresonant frequencies (Hz) Difference (%)
Experimental Numerical

FRF1

90.3 89 1.10
293.4 289 1.35
606.3 604 0.40
1032.8 1033 0.00
1552.8 1576 1.51

FRF2

128.8 128 0.69
260.9 258 1.00
583.1 586 0.56
1112.8 1127 1.26
1621.9 1650 1.70

FRF3

128.8 128 0.69
260 258 0.66
584.4 586 0.34
1113.8 1127 1.17
1617.5 1650 1.98

FRF4

90.3 89 1.10
292.9 289 1.35
606.1 604 0.40
1032.8 1033 0.00
1553.4 1576 1.51

Figure 9: Experimental beam.

the experimental damage. Five anti-resonant frequencies are
identified at each of the four experimental FRFs.

The numerical model is built in Matlab with 2D beam
elements. The model contains 20 beam elements and 40
degrees of freedom, as shown in Figure 10. The shadowed
elements indicate possible locations of damage. Table 5 shows
the experimental and numerical frequencies and their differ-
ences, and the maximum difference is 1.98%.

The structure is subjected to four different damage
scenarios containing single and double cracks. Cracks are
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Table 6: Damage cases introduced to the beam.

Case Distance from the
left end (mm)

Element
number

Saw cut
length (mm)

Distance from the
left end (mm)

Element
number

Saw cut
length (mm)

1 315 7 5 — — —
2 635 13 10 — — —
3 303 7 5 640 13 10
4 360 8 5 810 17 15

1 2 3 4 5 6 7 8 9 10 1211 13 14 15 16 17 18 19 20

Figure 10: Numerical model and element numbering.

C

Figure 11: Saw cut introduced to the beam.

introduced to the structure by saw cuts of length 𝑙
𝑐
, as

illustrated in Figure 11. Table 6 summarizes the different
damage scenarios and indicates the distance from the left end
to the cut, the corresponding element in the numericalmodel,
and the cut length.

5.1. Network Validation. The network uses the same param-
eters selected for the first structure except for the number of
input, hidden, and output nodes. The number of input nodes
corresponds to the number of anti-resonant frequencies,
which is 20. Elements 2 to 19 were defined as possible
locations of damage, thus giving 18 output nodes (damage
indices). The number of hidden nodes was defined after
the sensitivity analysis shown in Figure 12. The minimum
validation error is obtained with 80 hidden nodes.

Hence, the network parameters are

(i) network: three layers of multilayer perceptron,
(ii) number of input nodes: 20,
(iii) number of hidden nodes: 80,
(iv) number of output nodes: 18,
(v) transfer function in the hidden layer: logarithm sig-

moid,
(vi) transfer function in the output layer: symmetric

saturating linear,
(vii) training method: Levenberg-Marquardt.

The training and validation patterns were polluted with
1.5% random noise. The mean sizing error obtained for the
validation patterns is MSE = 1.53%, and thus the network
quantification accuracy is 98%. Figure 13 shows the damage
missing error (DME) and false alarm error (FAE) separated
by damage levels. The results of the DME indicate that the
detection of damage with low severities is poor. In fact,

20 40 60 80 100 120 140 160 180 200

2.8

3

3.2

3.4

3.6

Number of hidden nodes

×10−3

E
s

Figure 12: Validation performance as a function of the number of
hidden nodes.

near 90% of the damage with severities lower than 10% and
70% of the damage with severities between 10 and 20% is
not detected. The algorithm is able to detect damage with
severities larger than 40%with confidence; it correctly detects
99.5% of the damage with severities over 40%.The false alarm
results indicate that most of the damage detected with levels
lower than 10% is false damage (near 80%). The amount of
false damage detection decreases with an increment of the
level of damage; 99% of the damage detected with levels over
40% is true damage.

Note that these results are slightly worse than the results
obtained from the 8-DOF system. This result is explained by
the fact that the anti-resonant frequencies are less sensitive
to damage in the free beam than the 8-DOF structure, thus
making it more difficult to detect small damage.

Figure 14 shows the results of the damage detected in the
four experimental scenarios. An arrow indicates the actual
damage location. In the first three cases, the damage is
correctly located although false damage appears next to the
actual locations. Nevertheless, the assumption that a crack
only affects the stiffness of the corresponding element might
not always be true. For instance, in the fourth case, the effect
of the larger cut is represented more accurately by a stiffness
reduction of two elements rather than one. In the last case, the
network does not detect the small crack in element 8 because
the effect of the larger cut hides the effect of the smaller cut.

6. Conclusions

This paper presents a new methodology designed to assess
experimental damage using neural networks and anti-
resonant frequencies. A multilayer perceptron network was
trained with data obtained from a numerical model and



12 Shock and Vibration

80

0

20

40

60

100

Damage level (%)

D
am

ag
e m

iss
in

g 
er

ro
r

<
10

>
80

10
-2
0

20
-3
0

3
0

-4
0

4
0

-5
0

5
0

-6
0

6
0

-7
0

7
0

-8
0

(a)

80

0

20

40

60

100

Fa
lse

 al
ar

m
 er

ro
r

10
–2
0

20
–3

0

3
0

–4
0

4
0

–5
0

5
0

–6
0

6
0

–7
0

Damage level (%)

7
0

–8
0

<
10

>
80

(b)

Figure 13: Damage missing error (DME) and false alarm error (FAE) for different damage levels.
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Figure 14: Experimental reduction of stiffness detected at each case.

tested with experimental data. The study addresses the setup
of the neural network parameters and provides guidelines for
their selection in similar damage assessment problems. Two
experimental cases verify the algorithm: an 8-DOF mass-
spring system and a beam with multiple damage scenarios.

In both structures, the algorithm is successful in assessing
the experimental damage. The damage detected corresponds
closely with the experimental damage in all cases. These
results show that it is possible to locate and quantify stru-
ctural damage using only the anti-resonant information
obtained from point frequency response functions. Hence,
anti-resonant frequencies are an attractive feature for use in
damage assessment.

This study shows that it is possible to assess experimental
damage in real time in two different structures, and, hence,

this work demonstrates the possibility of continuous moni-
toring of the structural condition. Nevertheless, according to
the validation results, the algorithmdisplays aminimum level
of damage that can be assessed with confidence, which is 30%
in the case of an 8-DOF system and 40% for the beam.These
results can be improved using a larger training database but
these changes imply larger training times.

It is important to note that, in this study, anti-resonant
frequencies were identified with the same precision as reso-
nant frequencies, which is true for lightly damped structures
with low levels of experimental noise. If this is not the
case, anti-resonant frequencies might be difficult to identify
and the damage identification algorithm will be affected. An
area of further research is the identification of anti-resonant
frequencies in structures with high levels of damping or high
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levels of experimental noise. Another area of further research
is the use of anti-resonant frequencies obtained from the
transfer frequency response functions, which are more sen-
sitive to structural changes but require additional attention,
especially, when pairing experimental and numerical anti-
resonant frequencies.
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