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Abstract
We report on the experimental observation and characterization of the bifurca-
tion diagram, dynamical properties and fluctuations of spatially modulated kinks
in a shallow one-dimensional fluidized granular layer subjected to a periodic air
flow. We show the appearance of these solutions as the layer undergoes a
parametric instability. Due to the inherent fluctuations of the granular layer, the
kink profile exhibits an effective wavelength, termed the precursor, which
modulates spatially the homogeneous states and drastically modifies the kink
dynamics. We characterize the average and fluctuating properties of this solu-
tion. The long-term evolution of these kinks is dominated by a hopping
dynamics, related directly to the underlying spatial structure and inherent fluc-
tuation. The properties of this motion can be described by a Brownian particle in
a symmetric periodic potential. Both the noise intensity of the Brownian fluc-
tuations and the amplitude and periodicity of the potential arise from the
underlying precursor structure.
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1. Introduction

In recent years, granular matter has become an inspiring source of new ideas, concepts and
phenomena [1, 2]. It can display both coherent structures and fluctuations [3], and the
coexistence of different states or phases [4–6] depending on the interplay between the injection
and dissipation of energy, particles or momenta. The different domains of phases or states are
separated by interfaces which have fluctuating and complex dynamics, and whose properties
describe the state of the granular system over long times. These interfaces or spatial connections
are known as fronts [5]. The description of these interfaces follows a particle-type evolution, as
they can be characterized by a discrete set of continuous parameters such as the position, width
or speed [7], to name a few. When these fronts spatially connect two symmetric states they are
called kinks. From the early stages of classical and quantum field theory, kinks have played a
key role in understanding the dynamics of several physical phenomena [8].

A way to generate symmetric states that coexist is through the parametrical amplification
of nonlinear systems through instabilities [6], where the symmetric states are out of phase in
half the period of the system [9]. Kinks have been observed naturally in two-dimensional
vertically oscillated fluid layers [10] and also in two-dimensional vertically vibrofluidized
granular layers [11]. Although several studies have been performed in two-dimensional
fluidized granular layers, only a handful of studies on one-dimensional fluidized granular layers
where kinks connect homogeneous states have been reported experimentally [12, 13] and
numerically [14, 15]. To our knowledge, there is no observation of kink solutions connecting
spatially modulated states [16].

A first attempt to study the formation of spatially modulated kinks was performed in [17],
where such structures were first observed in a quasi-one-dimensional granular layer fluidized
via a periodic air flow. In [17], the appearance of these kinks through a parametric instability of
the granular layer is shown experimentally, and some of the properties of these structures, such
as the width and height of the granular kink, were characterized. Nevertheless, an appropriated
description of the dynamical features of spatially modulated kinks was lacking. As a special
case, we can mention the necessity of a model capable of predicting, for instance, the long-time
dynamics displayed by spatially modulated kinks, taking into account the spatiotemporal
features of these structures.

In this paper, we focus on the experimental observation and characterization of the
bifurcation diagram, dynamical properties and fluctuations of kinks appearing in a shallow one-
dimensional fluidized granular layer subjected to a periodic air flow, similar to the ones
observed in [17]. We show that the appearance of these solutions (as well as stationary patterns
for stronger periodic air flow) is mediated by a parametric instability of the fluidized granular
layer. A granular kink separates regions in which areal densities are the same but that are out of
phase. This effect comes from the nature of the parametric instability of the oscillating granular
layer. The structure of the fluctuating kink profile exhibits an effective wavelength that
modulates spatially the homogeneous states and drastically modifies the kink dynamics. The
long-term evolution of these kinks is dominated by a hopping dynamics, related directly to the
underlying spatial structure, which can be described using a simple model of a Brownian
particle (describing the position of the core of the kink) in a symmetric periodic potential. This
interpretation presents a way to understand the generation of an effective potential from the
underlying fluctuating structure around the core of the kink.
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This manuscript is organized as follows. In section 2, we present the experimental setup
and measuring techniques used in this work. In section 3, the experimental results are shown,
describing mainly the bifurcation and phase diagram of the parametrically excited granular
layer, the structure of the kink solution, its dynamical properties and long-term evolution.
Finally, in section 4, we present a simple model to describe the observed long-term dynamics of
the kink and contrast it with the acquired data, and provide our conclusions.

2. Experimental setup

The experimental setup is displayed in figure 1. The experimental cell is 200 mm wide, 200 mm
tall and 3.5 mm in depth. It is composed of two parts, the top and the bottom, separated by a
thick band-like porous sponge (2 mm thick, 45 mm wide and 20 mm tall Tesa sponge 55604-
00007), which is placed horizontally, i.e., gravity is perpendicular to the sponge. On top of it,
approximately 25000 monodisperse brass spheres, of diameter μ=d 350 m, are deposited. The
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Figure 1. (a) Scheme of the experimental setup. The experimental cell (center frame)
holding a shallow granular layer is excited via a periodic air flow. (b) Images of the
homogeneous layer, a granular kink and a stationary pattern, and their respective surface
interface computed (continuous line).



sponge is hard enough to sustain the entire granular layer without bending or moving. Its typical
pore size is of the order of μ100 m, thus grains cannot go through it. The height of horizontal
layer made by the deposited grains is about 1.7 mm. Thus, the granular bed is about d570 wide,
d6 in depth and d5 tall. Here, the sponge floor serves as a porous material for an air flow which,
as it traverses the porous material, goes through an homogenization process before exciting with
the granular layer.

The excitation of the layer is performed by means of a periodic air flow, which is generated
by an air compressor (Mdent model Vicdent 1.1 HP) and is regulated by an electromechanical
proportional valve (Teknocraft 203319) via a precision control regulator (Controlair 100) and
an air lung. The response time of the valve is less than 4 ms. Its aperture is set by a variable
voltage signal controlled by the first output of a two-channel function generator (RIGOL
DG1022) through a power amplifier (NF model HFA4011). The proportional valve remains
closed for an applied voltage lower than 4 V, and its maximum aperture is obtained at 27 V. The
response of the valve possesses a very small hysteresis (less than 10% when an alternating
voltage is delivered). The pressure oscillations induced by the variable air flow are measured
before the flow enters the cell with a dynamic pressure sensor (PCB 106B) and a signal
conditioner (PCB 480C02). Data is acquired using an acquisition card (NI-USB 6008) via
Labview and is stored in a desktop computer for post-treatment. The proportional valve is
connected to the dynamic pressure sensor through ten plastic hoses, sufficiently close to the
experimental cell (∼50 cm) such that the pressure drop between the measurement point and the
actual cell air inlets is negligible (<1%). These inlets are located at the bottom of the cell, each
separated from the others by 2 cm. The distance from the inlets to the lower part of the sponge is
30 cm, which is large enough to equalize spatially the local pressure fluctuations.

The alternating voltage applied to the proportional valve is a symmetrical triangular signal
with a positive offset oscillating at a control frequency f

o
, to generate a time-modulated

reproducible pressure signal (as is shown in figure 2). The outgoing periodic air flow is far from
a sinusoidal shape, as the one used in [18]: it serves the purpose of studying the response of a
shallow granular bed to a non-harmonic periodic forcing. It can be noticed from the temporal
trace of the pressure fluctuations that the granular layer is always excited by the periodic flow,
and only during the large excursions occurring over a very short period of time where the layer
is lifted from the sponge. In this sense, this situation is not different to the case of vibrofluidized
granular systems, where the layer is effectively excited for very short periods of time in the
cycle. Thus, we can think of our periodic excitation as a tapping type of forcing. As a control
parameter of the experimental system, we compute the peak pressure amplitude Po, which is the
Fourier component of the pressure temporal trace related to the forcing frequency f

o
, which is

the most dominant component of the pressure oscillations. The measured Po, as a function of the
applied peak–peak voltage Vpp of the triangular signal, is shown in figure 2(b), and is roughly

linear in all of the pressure range for any given frequency. A low level of hysteresis is observed
within the range reported by the fabricator of the proportional valve. Thus, for our experimental
setup, the control parameters are the forcing frequency f

o
and the peak amplitude Po of the

pressure fluctuations at f
o
. The extra pressure drop due to the motion and fluidization of the

granular layer is negligible with respect to the one measured on the unloaded cell, thus making
systematic calibration of the pressure fluctuations unnecessary.
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Images of the granular bed motion are acquired with a CCD camera (Pixelink PL-B741)
over a 100 s time window in a 1200 × 200 px spatial window (with a −0.19 mm px 1 sensitivity

in the horizontal direction and a −0.18 mm px 1 sensitivity in the vertical direction). White light
from two high-power halogen lamps is sent through a diffusing screen from behind the granular
layer as images are taken from the front. For each experimental configuration, two image
sequences are taken. The first one, acquired at a high frame rate (100 fps), is used to study the
typical oscillation frequencies of the granular layer, i.e., its fast dynamics. The second one, set
at the subharmonic frequency f 2

o
using the second output of the function generator as a

trigger, is used as a TTL signal to ensure a stroboscopic view of the oscillating layer in order to
study its slow dynamics. For each acquired video, its sequence of images and the corresponding
pressure signal are processed and analyzed with a desktop computer using MATLAB. The
granular interface ( )y x t, is calculated for every point in space x at each time step t by an image
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Figure 2. (a) A typical temporal trace of air flow pressure oscillations, which shows the
tapping-like forcing. On the lower point of the pressure fluctuations, the layer resting on
the sponge starts to dilate, and at the lowest maximum lifts itself from the sponge, to
attain its maximum height half a foxing period later. In this state, the layer is completely
dilated, showing the appearance of large density fluctuations (not shown here). In this
case, the peak-to-peak voltage is =V 5 Vpp and =f 14 Hz

o
. (b) The peak pressure

amplitude Po versus Vpp obtained for increasing ▵( ) and decreasing ▿( ) voltage ramps.

For an increasing ramp, the calibration constant is −2082 Pa V 1, and for a decreasing
ramp it is −1971 Pa V 1. In this case =f 14 Hz

o
, the power amplifier gain is 20 and the

voltage offset is 350 mV.



processing method where the granular layer surface profile is obtained for each image using a
simple threshold intensity algorithm on a previously smoothed image, as is described in [18].

3. Experimental results

In this section, we describe the experimental observations of the shallow granular layer that was
parametrically excited by a periodic air flow, performed on our experimental setup as we
change f

o
and Po.

3.1. Granular parametric instability

We conducted experiments in the parameter space of Po ranging from 100 Pa to 10 kPa and f
o

ranging from 5 to 20 Hz. We concentrated our studies in the frequency range ∈ ⎡⎣ ⎤⎦f 12, 15
o

Hz,

as the phenomenology is quite reproducible and less input pressure is needed. We will first
focus on the homogeneous layer dynamics. In [18], a reduced cell was used to study solely the
homogeneous state, as difficulties were found in creating it without any other structures
interacting with it. This difficulty was overcome by increasing the offset voltage of the
proportional valve by 75%, which created fewer kinks, making it possible to observe the
homogeneous state without any kinks unless they were desired . Thus, larger peak pressures are
needed to excite the granular layer. For a fixed value of f

o
, increasing Po induces small local

displacements of the grains in the layer (of less than a diameter), which are seen as density
fluctuations in the bulk of the granular layer. At the surface of the layer, larger fluctuations are
observed as fewer collisions between grains occur. This motion is enhanced as Po increases,
lifting the complete layer over each period of the pressure oscillations, and increasing the local
density fluctuations of the granular layer. For a critical value of =P Po o

c dependent on f
o
, the flat

oscillating layer becomes unstable to small perturbations through a parametric instability,
displaying subharmonic oscillations at f 2

o
[19].

With this critical value, the bifurcation parameter ɛ = −( )P P P/o o
c

o
c is defined for the

analysis above. In this setup, the granular layer presents an effective parametric resonance as a
consequence of the forcing: the periodic air flow is responsible for inducing the oscillatory
behavior of the layer and its respective parametric resonance [20]. This subharmonic response
can be understood by measuring the spatially averaged motion of the granular interface ( )y x t,
as a function of time t:

∫¯ =( ) ( )y t
L

y x t dx
1

, ,
L

0

where L is the width of the acquired image of the experimental cell. For ɛ < 0 the power
spectral density (PSD) of ¯ ( )y t displays a peak on f

o
showing the harmonic character of the

oscillation (cf figure 3, lower inset). As ɛ goes from negative to positive values, a subharmonic
oscillation appears. For each excitation frequency there is a transition from harmonic to
subharmonic dominant oscillations of the flat layer as Po surpasses a critical value Po

c (ɛ > 0),
which is displayed by the continuous line in figure 3. This transition is found to be smooth and
supercritical in nature for all frequencies in the observed experimental range. The value of Po

New J. Phys. 16 (2014) 043032 J E Macías and C Falcón

6



where the flat interface displays the parametric instability roughly decreases with f
o
. Here, in

what follows, f
o
will be fixed at 14 Hz.

To describe this smooth transition from harmonic to subharmonic oscillations, we have
chosen as the order parameter the amplitude of the subharmonic response of the layer. The
temporal evolution of the amplitude is computed as follows. From each image, the spatial
average of the surface profile curve ¯ ( )y t is computed following the above prescription. The
spectral content of this temporal trace is studied via its power spectrum density (PSD), which
shows a mean peak at f

o
(the forcing frequency) and the appearance of a secondary one at f 2

o
,

as the transition is surpassed (cf figure 3). Filtering the temporal signal around f 2
o

within a
1 Hz bandwidth, the global subharmonic oscillation of the layer is studied. The amplitude of
this oscillation A, due to the intrinsic noisy character of this fluidized granular system, is a
temporally fluctuating quantity that will be studied statistically.
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Figure 3. Parametric instability curves. The continuous line with circles (○) shows the
experimentally computed phase line Po

c as a function of f
o
for the first parametric

instability of the homogeneous layer. For <P Po o
c, only harmonic oscillations of the flat

layer are present. For >P Po o
c, subharmonic oscillations are dominant, arising from a

parametric instability. Above this line, the continuous line with squares (□) shows the
experimentally computed phase line Po

s as a function of f
o
for the secondary parametric

instability of the homogeneous layer. For < <P P Po
c

o o
s, subharmonic oscillations

dominate the oscillating layer, showing kinks as a result. For >P Po o
s, a stationary

pattern oscillating at f 4
o

is dominant, arising from a secondary parametric instability of
the oscillating layer. For each type of behavior, a temporal power spectral sensity (PSD)
of the dominant oscillations of the layer excited at =f 14

o
Hz is shown.



From the temporal trace of the filtered subharmonic oscillation π( )A f tcos
o

, we compute

its temporal average (mean value) A and its standard deviation σ ≡ −A AA
2 2 ,

respectively. Figure 4 shows the typical bifurcation diagram for A as a function of Po. The
symbols stand for A and error bars for σ A( ). The amplitude of the subharmonic pattern grows
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Figure 4. Main: Bifurcation diagrams for A and B as a function of Po for =f
o

14 Hz.
Here A is the amplitude of the subharmonic oscillations of the granular layer, and B is
the amplitude of the stationary patterns oscillating at f 4

o
. The full symbols correspond

to A for increasing ▹( ) and decreasing ◃( ) values of Po. The open symbols correspond

to B for increasing ▵( ) and decreasing ▿( ) values of Po. Error bars for both data sets
correspond to σ A( ) and σ B( ), respectively. For the A data set, the dashed line

corresponds to the theoretical supercritical fit α= −( )A P PA o o
c 1/2

, with

α = ±7.9 0.2 cm kPaA
1/2 and = ±P 5050 160 Pao

c for increasing Po, and

α = ±8.1 0.3 cm kPaA
1/2 (dark line) and = ±P 5140 170 Pao

c for decreasing Po (gray
line). The continuous line corresponds to the theoretical fit [21]

α η= − + − +⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟( )( ) ( )A P P P P 2 2A o o

c
o o

c
A

2 1/2
1/2

, where η = ±14592 560 Pa
A

2

for increasing Po (dark line) and ±18349 700 Pa2 for decreasing Po (gray line) stands
for the noise intensity of the fluctuating granular layer. For the B data set, the dashed

line corresponds to the theoretical supercritical fit α= −( )B P PB o o
s 1/2

, with

α = ±3.1 0.2 cm kPaB
1/2 and = ±P 8640 205 Pao

s for increasing Po, and

α = ±3.0 0.2 cm kPaB
1/2 (dark line) and = ±P 8783 145 Pao

s for decreasing Po

(gray line). The continuous line corresponds to the theoretical fit similar to the one in

[21] α η= − + − + +⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟( )( ) ( )B P P P P B2 2B o o

c
o o

c
B o

2 1/2
1/2

where η = ±20459
B

600 Pa2 and = ±B 0.038 0.005 cmo FOR increasing Po (dark line), and ±19050 804 Pa2

and = ±B 0.033 0.007 cmo for decreasing Po (gray line). Here Bo stands for acorrective
root-mean-squared base level coming from the computation of B from the spatial PSD
of ( )y x t, .



smoothly from almost zero, which is related to the minimal discretization of the pattern. No
abrupt change is evident, so no critical value of Po is found for this transition. No discernible
hysteresis loop is observed between the increasing and decreasing Po ramps. Thus, the inherent
noise present in the fluidized granular bed changes the qualitative form of the supercritical
bifurcation diagram [21].

The experimental data can be fitted following a simple model that takes into account the
noisy character of the supercritical bifurcation of A [21]. The model predicts the most
probable value as a function of the bifurcation point of the deterministic system, related to Po

c,
and the noise intensity, related to the inherent granular fluctuations of the layer [17, 18, 22].
These parameters do not change drastically between increasing and decreasing Po ramps
(increasing values for Po lie within the confidence interval of the increasing value of Po, and
vice versa). Figure 4 shows the theoretical fits with (continuous line) and without (dashed line)
noise. The dashed lines correspond to the deterministic bifurcation diagram obtained from a

theoretical prediction without noise: α ɛ= ( )A PA o
c 1/2 1/2, where αA is a calibration factor and

ɛ = −[ ]( )P P P/o o
c

o
c is the reduced control parameter calculated using the adjusted parameters

with the theoretical prediction with noise. These curves fit our data quite well close to the
bifurcation point Po

c for increasing and decreasing Po. The fitting parameters are summarized in
table 1. For every f

o
in our experiments, all bifurcation curves follow the above expression. The

spatial structure of the granular layer was also studied to characterize the stationary states as the
layer oscillates. For <P Po o

c (ɛ < 0), the harmonically oscillating flat layer displays no typical
spatial scale.

For >P Po o
c (ɛ > 0), fluctuations of the flat layer display a characteristic wavelength and

frequency sporadically (see figure 1), disappearing randomly with a typical lifetime of the order
of the forcing period, which is known as a precursor [23]. The development of a precursor on
the surface of the granular layer is a consequence of internal fluctuations coming from the
energy input of the air flow, which excites the slowest decaying spatial mode of the uniform
steady state of the layer interface. Thus, fluctuations can create locally a random amplitude
perturbation with a given wavelength that will decay. The process is repeated constantly at the
surface. This type of supercritical noisy bifurcation has also been observed in vibrofluidized
granular layers, although the analysis of the transition was performed via the spectral properties
of the fluctuations [24]. In our experimental setup, the typical wavelength λ of the precursor is
typically ∼2 cm. No discernible change is observed for our experimental control parameters.
We have checked that λ is independent of the periodicity or the position of the air inlets. It must
be noted that although no discernible inhomogeneities have been observed on the granular layer
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Table 1. Fitting parameters for the average values of A and B following the fitting
scheme proposed in [21].

X (cm) α β, (cm kPa−1/2) P P,( ) ( )
o

c
o

s (kPa) η ×−( )10 kPa3 2 A B,o o (mm)

A for ↗Po ±7.9 0.2 ±5.05 0.16 ±14.59 0.56 —

A for ↘Po ±8.1 0.3 ±5.14 0.17 ±18.35 0.70 —

B for ↗Po ±3.1 0.2 ±8.64 0.21 ±20.46 0.60 ±0.38 0.05
B for ↘Po ±3.0 0.2 ±8.78 0.15 ±19.05 0.80 ±0.33 0.07



dynamics, the existence of such non-uniformities either on the air flow or in the sponge, and
thus on the precursor structure, cannot be discarded through our measurements.

3.2. Granular kinks

Now, we will concern ourselves with kinks appearing through the above-described transition in
the extended cell. Increasing ɛ > 0, the subharmonic motion described above allows the system
to exhibit bistability between two homogeneous states that are out of phase. This means that the
subharmonic motion permits the oscillation of the layer either in phase or out of phase with
respect with the forcing. This bistability can be used to create a spatial connection between
them. More precisely, there is a height jump as we go from one side of the cell to the other
through a finite region of the layer where this shift occurs. This means that, at any given instant,
on one side of the region the granular layer is moving upwards and on the other side it is
moving downwards. The connection between both homogeneous phases is termed kink. A kink
appears spontaneously at any point of the experimental cell. By choosing the phase mismatch
between the triggering signal and the layer oscillation, the kink can be imaged when the
separation between the in-phase and out-of-phase parts of the granular oscillating layer is at its
maximum. This triggering signal comes from the second output of the two-channel frequency
generator as a TTL voltage. For each ϵ, a set of 1000 images is used to average all the computed
interfaces in an image sequence. The averaged front interface, its height d and its width Δ for
different Po are shown in figure 5. Here, 2d corresponds to the distance between the in-phase and
out-of-phase states, measured at its maximum separation. Δ is computed as the average width of
the spatial derivative of the kink solution. In our experimental runs, d grows linearly with ɛ, and
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Figure 5. Top: typical image of a granular kink at = ±P 8038 20o Pa (ɛ = ±0.59 0.01).
The dashed line is the numerical interface detection. Middle: granular kink averaged
over 1000 frames. Here, d stands for the granular kink height with respect to the middle
plane, Δ stands for the typical core size of the kink and λ is the average wavelength
of the homogeneous state. Inset: granular kink height d (×) and typical core size Δ (○)
as a function of ɛ. The error bars stand for the standard deviation for d and Δ for each
value of ɛ.



Δ is independent of ɛ as already shown in [17]. These scaling laws have not been found in
other experimental or theoretical studies. For instance, they are not the same ones calculated
from the simple supercritical model for parametrically excited kinks presented in [5, 6, 16],
which predict that ɛ∼d 1/2 and Δ ɛ∼ −1/2. Note that both the in-phase and out-of-phase states
present a spatial modulation on the homogeneous phases, which is the same one discussed
above. The typical wavelength of the kink is again λ (cf figure 5). Increasing further the number
of images used in the average values of d from 1000 to 10000, Δ and λ do not affect their
computed values.

Fluctuations are always present in the dynamics of the granular layer affecting the
morphology of the kink. Indeed, the inherent noise of the layer determines both the appearance
of a precursor on the homogeneous states and the spatiotemporal fluctuations of the kink profile.
These fluctuations dictate the long-term dynamics of the spatially modulated kink. A typical
image sequence of the kink motion acquired over long time periods (∼104 periods of
oscillation) is depicted in figure 6(a), where the complete structure shifts its position in the
experimental cell through discrete jumps. This motion is tracked in time by following the kink
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Figure 6. (a) An image sequence of 10 minutes of = ±P 5720 20 Pao (ɛ = ±0.13 0.01).

(b) The temporal trace of the core of the kink ( )x to as a function of time. λ is the typical
fluctuating wavelength of the precursor of the homogeneous state and τn is nth time

lag between jumps of ( )x to . Inset: the temporal trace displaying the typical fluctuations

of ( )x to around an equilibrium. The standard deviation of ( )x to is given by σ ( )xo .



position, ( )x to , which is the position in space where the spatial derivative of the kink reaches its
maximum [25].

The typical distance between these jumps is λ (cf figure 6(b)), and they occur at random
moments in time either to the left or the right of the cell. Although the kink displays these
jumps, the temporal average of ( )x to , xo , does not change in the experimental observation

time. Hence, the dynamics of ( )x to can be understood as a random motion (where fluctuations
come from the inherent noise of the granular layer and the tortuous structure of the air flow
within the layer) within a periodical potential (arising from the spatial structure of the precursor)
[26]. It can be foreseen that in the case of the existence of a small asymmetry in the system (for
instance, tilting the cell) the dynamics can be described as a Brownian-type motor [27, 28]. We
have characterized the statistics of these jumps as a function of Po for a granular kink. To do so,

we have measured the series of time lags τ ={ }n n
N

1 between jumps of ( )x to from one equilibrium

position to another in long experimental runs of 40 minutes (cf figure 6(b)). As >P Po o
c

increases, the number of jumps per run, N, decreases rapidly. Data is presented here for ⩾N 3.
For ≃P Po o

c, it is very difficult to establish a stable kink for the whole experimental run: several
kinks appear and disappear within the strongly fluctuating granular layer. Experimentally
reproducible results are observed for ⩾P 5.5 kPao . For >P 7 kPao , the typical time lag between
jumps is larger than the experimental run time, thus no relevant data is shown here for Po larger
that 7 kPa. The mean residence time, i.e., the mean time lag between jumps, τ , is computed for
each image sequence, as shown in figure 7(a). τ grows roughly as an exponential of the
applied peak pressure. It must be noticed that the root-mean-square fluctuations of such jumps
σ τ( ) are of the same order as τ (not shown here), which means that as τ increases, so do the

typical fluctuations of each τn around τ .

Using the same front tracking algorithm, the local fluctuations of ( )x to are denoted σ ( )xo

(cf figure 6(b)). To compute σ ( )xo , the local fluctuations of ( )x to at each equilibrium state are

added up. An equilibrium state for ( )x to is a position in space where the kink rests within a
vicinity of a size smaller than λ/2. These fluctuations decrease slightly with increasing Po, as can
be shown in figure 7(b), remaining almost constant throughout the range of applied Po. The

complete statistics of τ ={ }n n
N

1 and ( )x to require longer experimental runs (∼105
–106 s), but their

first cumulants can be correctly approximated by the acquired data.

3.3. Spatial structure of the granular layer and secondary instabilities

The spatial structure of the surface granular layer fluctuations can be studied by computing its
spatial PSD for different values of ɛ above the parametric instability threshold, as is shown in
figure 8. Here, PSDs are computed when the layer reaches its maximum height and they are

normalized by the variance of the surface fluctuations of the complete image sequence σ ( )y
2
,

defined as above. We also show the dependence of the typical wavelength λ on ɛ, computed
from the PSDs. The resolution of the wavelength is highly quantized due to our optical and
physical resolution (∼0.3 cm). For peak pressure values <P 8 kPao (ɛ < 0.8), the precursor
appears over the homogeneous layer displaying a wavelength λ observed in the PSD λ ∼ 2 cm,
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which increases slightly with ɛ. From the non-dimensionalized data, a rough estimate of the
amplitude of the precursor can be given by integrating below the shallow peak of the precursor
between 0.3 and 0.6 cm−1. The area under the curve grows roughly linearly with Po (not shown

here), and thus the amplitude of the non-dimensionalized precursor grows roughly with ɛ1/2. It
must be noted that the growth of the precursor amplitude has been computed without the

normalization by σ ( )y
2
, finding the same scaling with ɛ.

For ⩾P 8 kPao (ɛ ⩾ 0.6), the homogeneous layer that was oscillating at f 2
o

(and thus the
granular kink) develops a smooth supercritical secondary instability where a highly nonlinear
pattern state appears over the entire experimental cell with a wavelength ∼3 cm. This
wavelength, which increases slightly with ɛ, is computed from the PSDs shown in figure 9, and
it is larger than the typical wavelength of the granular precursor. The PSDs in figure 9 are
computed for two distinct stages in time of the layer oscillation cycle. Figure 9(a) shows the
spatial fluctuations of the dilated layer, i.e., when the layer reaches its maximum height and,
thus, the dilation of the layer is at its maximum. Figure 9(b) shows the spatial fluctuations of the
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Figure 7. (a) Semilogarithmic plot of the mean residence time τ versus Po (○). The
continuous line shows the exponential best fit with a slope × −2.1 10 3 Pa−1. Error bars
are not shown as they are of the same order as τ (not shown here). (b) Standard
deviation of the core of the kink position σ ( )xo versus Po (○). The continuous line shows
the best fit with a slope − − −10 cm Pa4 1. Error bars for η are of the order of −0.05 cm Pa 1

(not shown here).



compacted layer when the layer is at repose. The structure of the pattern is similar to the one
displayed in [11], where localized streams of grains are ejected upwards periodically. These
streams are focalized regions of the order of 1 cm, where grains are expelled upwards following
a shape very similar to a granular jet [11] reaching a typical height of 3 cm. The streams change
position along the cell periodically with a wavelength ∼3 cm. The oscillating frequency of this
pattern is 3.5 Hz ( f 4

o
), i.e., it appears as subharmonic instability of the parametrically

amplified layer oscillating a f 2
o

. This oscillation frequency is observed from the
stroboscopically acquired image sequence at f 2

o
: two consecutive frames show that the

maxima of the pattern structure is displaced half a wavelength. The transition from the
homogeneous layer oscillating at the subharmonic frequency f 2

o
to the pattern oscillating at

f 4
o

is smooth and supercritical, in the same fashion as the one described above (cf figure 4).
Furthermore, it can be seen that this transition is coupled directly to the underlying subharmonic
oscillation, as σ A( ) decreases strongly when the stationary pattern develops. A similar transition
has been observed in two-dimensional vibrated shallow granular layers [29]. Using the same
fitting scheme, we find the critical value of the peak pressure for this instability, Po

s. The dashed
lines correspond to the deterministic bifurcation diagram obtained from a theoretical prediction

without noise, α ɛ= +( )B P BB o
s

o

1/2 1/2 , where αB is a calibration factor, ɛ = −[ ]( )P P P/o o
s

o
s is

the reduced control parameter calculated using the adjusted parameters with the theoretical
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Figure 8. (a) Normalized power spectral density of the spatial fluctuations of oscillating

layer PSD/σ ( )y
2
as a function of the inverse wavelength λ1/ for increasing ɛ from 0.36

to 0.79 for the dilated homogeneous layer. b) λ as a function of ɛ for increasing ɛ from
0.36 to 1.09 for the dilated homogeneous layer. The vertical dashed line corresponds to
the zone where the precursor is found.



prediction with noise, and Bo is a base line level. These curves fit our data quite well close to the
bifurcation point Po

s for increasing and decreasing Po. The pattern appears at = ±P 8640 205o
s

Pa for increasing Po, and at = ±P 8783 145o
s Pa for decreasing Po. For other frequencies this

transition was observed, although qualitative measurements are lacking. It is important to note
that the base level of the pattern amplitude is nonzero, mainly due to the presence of larger
surface fluctuations as larger values of Po are used.

4. Discussions and conclusions

In this section, we will discuss a theoretical description of the granular kink dynamics through
the use of a Brownian particle-type model moving in a periodic potential, and then we will draw
conclusion from these considerations.

4.1. Brownian dynamics

The dynamics of defects, interfaces and fronts have been widely studied in the literature (see [6]
and references therein). In order to understand the dynamics of the granular kink and its
evolution, we present a very simple particle-type model based on the above data. Particle-type
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Figure 9. (a) Normalized power spectral density of the spatial fluctuations of the

oscillating layer PSD/σ ( )y
2
as a function of the inverse wavelength λ1/ for increasing ɛ

from 0.36 to 1.09 for the dilated homogeneous layer. (b) The normalized power spectral

density of the spatial fluctuations of the oscillating layer PSD/σ ( )y
2
as a function of the

inverse wavelength λ1/ for increasing ɛ from 0.36 to 1.09 for the compacted
homogeneous layer. The vertical dashed lines correspond to the wavelength of the
stationary wave pattern.



models describe correctly the long-time evolution of extended systems in the presence of
defects and interfaces [4, 6]. Physical systems such as magnetic materials [8] display defects,
termed wall domains, where their reduced dynamics can be thought of as a particle-type one,
even in the presence of thermal fluctuations. In our system, we observe that the granular kink
possesses a modulation arising from the spatial structure of the inherent fluctuations displayed
by the homogeneous states—the precursor—affecting its ulterior evolution. The effective
amplitude of the precursor (cf figure 9) scales with ɛ1/2, as stated above. We also observed that
the dynamics of the core of the kink can be described by the position of its core, ( )x to , which
fluctuates around equilibria, residing close to them for times longer than 10–100 oscillation
periods. After this time has elapsed, ( )x to jumps to other equilibria through large excursions
either to the left or to the right with equal chance. From our data, we estimate the typical scale
of fluctuations around equilibria σ λ∼ ≪( )x 0.3 cmo . With this in mind, we propose a

description of the dynamics of ( )x to as a Brownian particle in a potential well [26, 30]

η ζ˙ = −
∂

∂
+( ) ( ) ( )x t

U x

x
t , (1)o

o

o

where ( )U xo is an effective symmetrical potential coming from the precursor of the

homogeneous states. The spatial periodicity of ( )U xo is given by λ (the dominant wavelength
of the precursor), and its scale is proportional to ɛ (the typical amplitude of the precursor). Thus,
for simplicity, we will model the potential as κ ϕ= +( ) ( )U x U xcoso o o , with >U 0o the
potential barrier scale proportional to ɛ, κ π λ= 2 / the typical wave vector of the potential and ϕ
a phase which can be set to zero by shifting the origin of the spatial coordinate. η is the noise

intensity of the local fluctuations and ζ ( )t is a Gaussian process with zero mean, ζ =( )t 0,

and the delta autocorrelation function in time ζ ζ δ= −′ ′( ) ( )( )t t t t . Close to any equilibria

(a minimum of the potential), the local dynamics can be reduced to

κ η ζ˙ = − +( ) ( )x t Ux t , (2)o o o
2

which is the relaxation evolution of a Brownian particle [30]. Integrating directly equation (2),
which is linear in xo, we find that the root-mean-square fluctuations of xo, σ = η

κ
( )xo U2 o

2
.

On the other hand, due to the presence of fluctuations in the system, ( )x to can explore other
equilibria. This is done by using these fluctuations to overcome the potential barrier that
separates these equilibria, which in this case is Uo. The time it takes ( )x to to escape one of this
wells for the first time, τ, is a random variable, as it can be longer or shorter depending on the
realization of the noise. The average of τ, τ , is termed the mean first passage time of the
system [26, 30, 31], and it can calculated in the limit of weak noise intensity η from the Dynkin
equation [26, 30, 32, 33]. Its form is an exponential, much to the resemblance of the Arrhenius
rate in chemical kinetics [30]. In this limit

τ π= ×
″ ″

η−

( ) ( )U x U x
e , (3)( ( ) ( ))

b a

U x U x
2

/b a
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where xb and xa are consecutive maxima and minima of ( )U xo separated by λ/2, and ″( )U xo is
the second derivative of the potential evaluated at xo. The absolute value in the prefactor comes
from the fact that the second derivative of the potential at its maximum is negative. Thus, using
our simple model, the mean first passage time reads

τ π
κ

= × η

U
e . (4)

o

Uo
2

4 2
/

In this case, τ =κ
π η( )log U U

o o
4 2

2
. From σ ( )xo and τ we can deduce the type of potential

and noise intensity we need in order to model the dynamics of ( )x to . Our experimental data

gives τ ∝( ) Plog o, and σ ( )xo is slightly decreasing with Po in the experimental range.

Arranging the terms as a function of ɛ = − ≪( )P P P 1o o
c

o
c , we find η ɛ∼ +( )U 10 1o , and

σ λ ɛ π∼ − ≃( ) ( )x 1 2 80o
2 0.1 cm and decreasing slightly with ϵ within the experimental

range. Hence, equation (1) describes correctly the observed fluctuating dynamics of the core of
the spatially modulated kink as a Brownian motion in a periodic potential. In this sense, the
inherent granular fluctuations generate an effective periodic potential ( )U xo coming from the
precursor and, also, the necessary noise needed for the exploration of other equilibria of the
potential, represented by its intensity η. As the precursor increases its amplitude, so does the
amplitude of the effective potential Uo, and thus τ grows exponentially and σ ( )xo decreases

slightly. We can relate ( )U xo and η directly with the existence and properties of the precursor,
but if specific dependence of Uo and η on ɛ is desired, another relation is needed, as the
expressions found above are dependent on the ratio ηU /o .

4.2. Conclusions

The fluidized shallow granular layer presents several structures depending on the applied peak
pressure Po and frequency f

o
of the periodic air flow. We have focused our study on spatially

modulated granular kinks appearing via a parametric instability of the homogeneous state
oscillating at the forcing frequency, their structure and dynamics. The typical height of the kink
grows linearly with Po, and its width remains roughly constant in the experimental range of Po.

The kink does not remain stationary and shifts its position, characterized by its core ( )x to . The

long-time evolution of ( )x to can be described as a Brownian particle in the presence of a

random noise of intensity η in an effective periodic potential ( )U xo . The inherent fluctuations of
the Brownian motion, and the amplitude and periodicity of the effective potential, are given by
the fluctuating spatiotemporal properties of the granular layer. As a final remark, we have left
out the dynamics and evolution of other structures displayed by the layer, such as stationary
patterns oscillating at f 4

o
and their interaction with other relevant modes, as they lie outside

the scope and focus of this manuscript. Work in describing the interaction of such structures
with kinks, and their evolution, is in progress.
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