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We give the first fully compressed representation of a set of m points on an n×n grid, taking

H + o(H) bits of space, where H = lg
(n2

m

)
is the entropy of the set. This representation

supports range counting, range reporting, and point selection queries, with complexities
that go from O(1) to O(lg2 n/ lg lg n) per answer as the entropy of the grid decreases.
Operating within entropy-bounded space, as well as relating time complexity with entropy,
opens a new line of research on an otherwise well-studied area.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A point grid is a basic structure underlying the representation of two-dimensional point sets, graphics, spatial databases,
geographic data, binary relations, graphs, images, and so on. It has been intensively studied from a computational geometry
viewpoint, where most of the focus has been on two basic primitives: (orthogonal) range counting (how many points are
there in this rectangle?), and (orthogonal) range reporting (list the points falling within this rectangle). More sophisticated
setups include more complex queries like finding dominant points, querying shapes more general than rectangles, comput-
ing aggregates on values associated to points, etc. [1]. In most cases these more complex queries build on the two basic
primitives mentioned, plus a third one we call point selection (which is the kth point in this range?).

Consider an n × n grid containing m points, and the RAM computation model with word size w = Θ(lg n). Currently
the best results related to the focus of this paper are as follows. Range counting can be done in time O(

lg m
lg lg m ) and linear

space, that is, O(m) words [23]. That counting time cannot be improved within O(m polylog(m)) words space [28]. Range
reporting can be done in time O(lg lg m + k), where k is the number of points reported, using O(m lgε m) words for any
constant ε > 0 [2]. This time, again, is optimal within O(m polylog(m)) words space [7]. It rises to O((k + 1) lg lg m) if
the space is reduced to O(m lg lg m) words, and it reaches O((k + 1) lgε m) if the space is O(m) words [7]. There are also
some bounds that may be relevant when many points are to be reported, as the cost per reported point decreases with k:
O(lg m + k lg lg(4m/k)) time using O(m lg lg m) words, and O(lg m + k lgε(2m/k)) time using O(m) words [9]. Some of these
results have been matched even in the dynamic scenario [25].

Many of the application areas for this problem handle huge volumes of information, and in those cases superlinear-space
structures are impractical. Even the linear-space structures (i.e., O(m) words, or O(m lg n) bits) might be excessively large.
On top of the coordinates of the points, they add several auxiliary structures that add to the constant factor multiplying

✩ An early version of this article appeared in Proc. ISAAC 2010 (Farzan et al., 2010) [13].
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Table 1
Space and time complexities of entropy-compressed grid representations. The “or” case depends on using row-
major or column-major order to traverse the points. The times for report are to be multiplied by k + 1 in order
to retrieve k points. General select times refer to our perpendicular band queries, which can simulate any other,
whereas the next column refers to the queries that are simulated with perpendicular 1-sided queries. The time

complexities of Theorem 2 are simplified for the case m = O( n2

lg1/5 n
), where it achieves H + o(H) bits of space.

Source Space rank time report time

Lem. 3 + [6] H + o(H) +O(m + lgn) lgm/ lg lgm lgm/ lg lgm
Lem. 4 + [3] H + o(H) +O(m + lgn) lgm/ lg lgm lgm/ lg lgm

Thm. 1 H +O(
n2 lg lg n
lg1/4 n

) 1 1

Thm. 2 H + o(H) +O(m lg lg lgm) lg n2

m / lg lgn lg n2

m / lg lgn

Thm. 3 H + o(H) lgn/ lg lgn lg2 n/ lg lgn

Source select time

General 1-sided or parallel

Lem. 3 + [6] lg2 m/ lg lgm lg2 m/ lg lg m

Lem. 4 + [3] lgm or lg2 m/ lg lg m lgm or lg2 m/ lg lgm

Thm. 1 lgn lg lgn

Thm. 2 lgn or lgn + lg2 n2

m / lg lgn lg n2

m or lg2 n2

m / lg lgn

Thm. 3 lg2 n/ lg lgn lg2 n/ lg lgn

the O(m lg n) term. When space is a concern, one can aim not only at using linear space, but at succinctness, that is, using
m lg n(1 + o(1)) bits of space.

A few succinct data structures exist. Bose et al. [6] presented a structure using m lg m + o(m lg m) bits to store m = n
points in an n × n grid, answering range counting queries in time O(

lg m
lg lg m ) and reporting in time O((k + 1)

lg m
lg lg m ). Another

proposal approaching succinctness is by Barbay et al. [3], which uses m lg n+o(m) lg n+O(m + n) bits. Within this space they
solve many interesting range queries including counting, reporting, and point selection, in O(lg n) and even O(lg n/ lg lg n)

time per answer.
Even a succinct space like m lg n bits is not the best possible for all values of m and n. A (worst-case) lower bound on

the number of bits needed to represent a grid is the logarithm of the number of possible grids, called the “entropy”:

H = lg

(
n2

m

)

= m lg
n2

m
+ (

n2 − m
)

lg
n2

n2 − m
+O(lgn)

= m lg
n2

m
+ (

n2 − m
)

lg

(
1 + m

n2 − m

)
+O(lg n)

= m lg
n2

m
+O(m + lg n). (1)

In this paper we push further in the direction of storing the grid data within its entropy bound. Most notably, we achieve
a fully compressed representation taking H + o(H) bits of space. While the worst-case time we achieve for the operations
is O(lg2 n/ lg lg n), we obtain for most values of m and n time complexities of the form O(lg n2

m / lg lgn), which improves
as the grid becomes denser (i.e., as the entropy increases), reaching even constant time when m = Ω(n2/polylog(n)). See
Table 1 for the precise details. We are not aware of previous works relating the entropy with the time complexities of the
operations, only between the space and the time in terms of m.

The paper is organized as follows. Section 2 gives basic concepts on bitmaps and point grids, defines the problems we
address, proves some technical results needed later and summarizes the results we achieve. Section 3 gives two simple
solutions obtained by plugging in existing results. While they get close to reaching entropy space, H + O(m) bits, their
times are insensitive to the entropy, typically O(lg m/ lg lg m). Section 4 describes a representation taking H +o(n2) bits and
achieving constant time for range counting and reporting. Such a redundancy is o(H) when the matrix is dense enough (but
not extremely dense). Section 5 achieves H + o(H) + O(m lg lg lg m) bits, in exchange for higher query times, namely the
entropy-sensitive O(lg n2

m / lg lg n). This redundancy is o(H) when the matrix is sparse enough. Finally, Section 6 combines
the previous results to finally reach the H + o(H) bits in all cases, yet the times become entropy-insensitive for extremely
dense matrices, O(lg2 n/ lg lgn). In Section 7 we extend the result using H + o(n2) bits to d dimensions. Section 8 concludes
and gives further research directions.
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2. Basic concepts

2.1. The one-dimensional case

The one-dimensional variant of the problem has long been studied. It can be modeled as a bitmap B[1,n] with m 1s,
corresponding to the positions of the points. The entropy of this bitmap is H = lg

(n
m

) = m lg n
m +O(m + lgn). All the range

counting, range reporting, and point selection queries can be solved in terms of two primitives: rank(B, i) is the number of
1s in B[1, i], and select(B, j) is the position in B of the jth 1. For some applications it is also interesting to count and locate
the 0s in the bitmap, so operations rank0, rank1, select0 and select1 are defined (assuming rank = rank1 and select = select1
by default). While rank0(B, i) = i − rank1(B, i) is trivial, query select0(B, j) needs to be solved independently of select1.

Clark [11] and Munro [24] showed that all the rank and select queries can be solved in constant time using n + o(n) bits
of space, that is, B itself plus sublinear space. The structure using that o(n) extra space is called an index, which operates by
accessing a constant number of chunks of B . Golynski [15] showed that, in the model where the accesses to B are restricted
to a black-box that returns any Θ(w) = Θ(lg n) consecutive bits in constant time, the index must use Ω(

n lg lg n
lg n ) bits in

order to achieve constant query time. He also designed an index that matched this lower bound.
Pagh [27] (see also Raman et al. [32]) provided a compressed representation of B that retrieves any Θ(lg n) consecutive

bits in constant time and requires H +O(
n lg lg n

lg n ) = m lg n
m +O(m + n lg lg n

lg n ) bits. Combined with the index of Golynski [15],
constant-time rank and select are supported within the same asymptotic space, H + o(n) bits.

This o(n)-bit redundancy may dominate the entropy when m is much smaller than n. It was later shown that, by not
separating the bitmap from the index, Golynski’s lower bound can be broken, and H + O( n

polylog(n)
) bits can be achieved

[17,29,31], but this is still too large if m is significantly smaller than n, e.g. m = O(nα) for a constant 0 < α < 1. Gupta
et al. [22] removed this near-linear redundancy at the expense of non-constant query times. Their representation uses
m lg n

m + O(m lg n
m / lg m + m lg lg n

m ) = m lg n
m + o(m lg n

m ) + O(m + lgn) bits and answers rank and select queries in time
O(lg lg m).

We prove now a technical lemma we will need later, related to an index having even more restricted access to the
bitmap B . From now on, for simplicity, we will omit floors and ceilings in our formulas.

Lemma 1. Let 0 < α � 1 be a constant and b = Θ(lgα n). Let bitmap B[1,n] be stored in such a way that we can read chunks of the
form B[b · (i − 1) + 1,b · i] in constant time, for any i. Then we can perform rank and select in constant time using O(

n lg lg n
b ) bits of

extra space, and this is optimal in general.

Proof. We prove it only for α < 1, as for α = 1 the result is well known. We take any data structure achieving constant
time and O(

n lg lg n
lg n ) extra bits, say Golynski’s [15], and adapt it to read aligned chunks of length b. The data structure uses

several indexes and accesses B a constant number of times. Each such time, it reads a word of w = Θ(lg n) consecutive bits
of B , in order to either (a) count the number of 1s in a part of the word or (b) find the position of the kth 1 or 0 in a part
of the word, using “universal tables” (i.e., small precomputed tables that do not depend on the content of B , only on b, and
sum up to o(n) bits of size).

We introduce an indirection when accessing such universal tables. Each word is covered by w/b chunks. For each chunk,
we store the summary number of 1s in the chunk. This requires lg(b + 1) bits, so the total space is O(

n lg b
b ) = O(

n lg lg n
b ).

Moreover, in a RAM machine with word size w we can read all the summary numbers of the chunks covering any word
in O(1) accesses, as they add up to w lg b

b = o(lg n) bits. With these summary numbers we can index a universal table of
O(2o(lg n) polylog(n)) = o(n) bits, telling (a) the number of bits set up to any given chunk of the word, and (b) the chunk
where the kth 0/1 of the word occurs. A final access to one b-bit chunk, with another universal table of O(2b polylog(n)) =
o(n) bits, completes the query in constant time.

The lower bound comes directly from Golynski [15], who states that if one probes t bits and answers rank/select in
constant time, then the index must be of size Ω(

m lg t
t ). In the worst case m = Θ(n) and the query algorithms can access at

most t =O(b) bits in constant time, so the index must use Ω(
n lg lg n

b ) bits in general (i.e., for any value of m). �
2.2. Two dimensions

We will consider rectangular query ranges of the form [i1, i2] × [ j1, j2] = {(i, j), i1 � i � i2, j1 � j � j2}, where i1 and i2
are rows and j1 and j2 are columns in the grid. Over those ranges we define the queries

• rank(i1, i2, j1, j2) counts the number of points in the range; and
• select(i1, i2, j1, j2,k1,k2) gives the k1th to the k2th points in the range, in column-major or row-major order (this

generalizes range reporting and point selection queries).

The general case is called a 4-sided query. A particular case, a 3-sided query, arises when one of the coordinates is
always 1 or n. A 2-sided (also called dominance) query arises when two of the coordinates, one of row and one of column,
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is always 1 or n. A band query has 1 and n for either the row or the column coordinates. Finally, a 1-sided query has only
one coordinate different from 1 or n.

Since rank(i1, i2, j1, j2) = rank(1, i2,1, j2)− rank(1, i1 − 1,1, j2)− rank(1, i2,1, j1 − 1)+ rank(1, i1 − 1,1, j1 − 1), we study
only 2-sided queries for rank, called rank(i, j) = rank(1, i,1, j). Also, for compliance with the existing literature, we pre-
fer to study the queries in terms of selecting the kth point, select(i1, i2, j1, j2,k), and reporting any k points in a range,
report(i1, i2, j1, j2,k). Our solutions, however, can actually be combined to solve the general select(i1, i2, j1, j2,k1,k2)

query: Say we consider the points in column-major order. Then we (1) find the first and last points to report, (i, j) =
select(i1, i2, j1, j2,k1) and (i′, j′) = select(i1, i2, j1, j2,k2); (2) if j = j′ the solution is simply report(i, i′, j, j,k2 − k1 + 1);
otherwise we produce the output with three calls: report(i, i2, j, j,k) with k = rank(i, i2, j, j), report(i1, i′, j′, j′,k′) with
k′ = rank(i1, i′, j′, j′), and report(i1, i2, j + 1, j′ − 1,k2 − k1 + 1 − k − k′). (This returns the points in any order, otherwise we
can simply use consecutive select(i1, i2, j1, j2,k) queries.)

Furthermore, we can focus on just band and 1-sided select queries. Assume that any select(i1, i2, j1, j2,k) query is valid,
that is, it holds k � rank(i1, i2, j1, j2) (which can be checked beforehand). Then a band query, plus rank, are sufficient
to solve a 4-sided query, select(i1, i2, j1, j2,k) = select(i1, i2,1,n,k + x) with x = rank(i1, i2,1, j1 − 1) if select delivers in
column-major order, and analogously if in row-major order. Therefore 3-sided queries can also be converted into band
queries.

Note that the resulting band query is “perpendicular”, in the sense that the band is horizontal and the points are
considered in column-major order, or vice versa. When both run in the same direction we say that the queries are “parallel”,
and they are simpler to handle. A parallel 3-sided query can be reduced to a 1-sided select query plus rank, for example
select(1, i2, j1, j2,k) = select(1, i2,1,n,k + x) with x = rank(1, i2,1, j1 − 1), if the points are considered in column-major
order. Therefore all the parallel queries can be reduced to (perpendicular) 1-sided queries (even parallel 1-sided queries can
be converted to perpendicular ones in the same way). Note that a 4-sided query is always considered perpendicular.

Finally, our sublinear-sized indexes can be computed (or the algorithms trivially modified) for several rotations and
reflections of the grid within the same asymptotic space. Therefore we can, without loss of generality, focus our study on
the following queries:

• rank(i, j) is the number of points in [1, i] × [1, j];
• select(i1, i2,k) gives the kth point in the range [i1, i2] × [1,n], in column-major order (a perpendicular horizontal band

query);
• select(i,k) gives the kth point in the range [1, i] × [1,n], in column-major order (a perpendicular horizontal 1-sided

query);
• report(i1, i2, j1, j2,k) gives any k points in the range [i1, i2] × [ j1, j2].

Just as in the one-dimensional case, we can identify a grid with a binary matrix, containing 1s at the positions of the m
points and 0s elsewhere. Barbay et al. [3] propose a number of primitives on binary matrices. By using wavelet trees [20],
they achieve the following result (we only mention the operations of interest for this paper, slightly adapting them to our
purposes).

Lemma 2. (See [3, Thm. 3].) A binary matrix of σ rows (“labels”) by n columns (“objects”) with t 1s can be represented
within t lgσ + o(t) lgσ + O(t + n) bits, so that queries rel_rnk(i1, i2, j1, j2) (number of points in [i1, i2] × [ j1, j2]), and
rel_min_obj_maj(i1, i2, j) (first point, in object-major order, in [i1, i2] × [ j,n]), are answered in time O(lgσ/ lg lg n). Fur-
thermore, query rel_acc(i1, i2, j1, j2) (giving all the k points in [i1, i2] × [ j1, j2]), is answered in time O((k + 1) lgσ/ lg lg n).
Finally, query rel_sel_lab_maj(i,k, j1, j2) (kth point, in label-major order, in [i, σ ] × [ j1, j2]) requires time O(lgσ), and
query rel_sel_obj_maj(i1, i2,k, j) (kth point, in object-major order, in [i1, i2] × [ j,n]) requires time O(lgσ lg n/ lg lg n).

Table 1 gives in detail the complexities achieved for our operations. The first lines report the results of two simple
solutions we develop next by easily building on previous work. Then we give our main solutions. We remark that the space
of Theorem 2 is H + o(H) if m = O( n2

lg1/5 n
), where we obtain entropy-sensitive complexity, and the space of Theorem 1 is

H + o(H) whenever min(m,n2 − m) = ω( n2

lg1/5 n
), where we achieve O(1) time for counting and reporting.

When regarding the grids as binary matrices, it makes sense to consider the complementary operations, so that we
are also interested in counting, reporting and selecting 0s in a range. While this is trivial for rank queries because
rank0(i1, i2, j1, j2) = (i2 − i1 + 1)( j2 − j1 + 1) − rank1(i1, i2, j1, j2), the other operations need separate procedures. We
obtain the same (Theorems 1 and 3) or slightly worse (Theorem 2) results for those. Finally, our results adapt smoothly to
rectangular grids of size nr × nc by replacing every n by

√
nrnc in the table.

3. Two simple solutions

We develop now two simple solutions by building on previous work. Then we improve those results in the rest of the
paper.
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Assume we map the n × n grid with m points into an m × m grid with m points. This is done by removing empty
rows and columns, and duplicating rows or columns having more than one point, so that in the mapped matrix there is
exactly one point per row and per column. This duplication can be done so as to be consistent with row- and column-major
orderings for select.

Two bitmaps, R[1,n +m + 1] and C[1,n +m + 1], represent the mapping from the original matrix, for rows and columns
respectively. To build R , we traverse the original matrix in row-major order, appending a 0 each time we start a row and a
1 each time we find a point, and add a final 0. Then the original row i starts at row select0(R, i) − i + 1 and finishes at row
select0(R, i + 1) − i − 1 of the mapped matrix. The column mapping C is analogous. With these operations we can easily
map any query range to the mapped matrix.

We use Gupta et al.’s representation [22] for R and C , which solves the queries in time O(lg lg m) and requires
2m lg n+m

m + o(m lg n+m
m ) +O(m + lg n) = 2m lg n

m + o(m lg n
m ) +O(m + lgn) bits for the two bitmaps.

Now for the mapped grid we can use Bose et al.’s representation [6], which solves rank in time O(lg m/ lg lg m), report in
time O((k + 1) lg m/ lg lg m), and select in time O(lg2 m/ lg lg m) via binary searches on rank.

As for space, the structure requires m lg m + o(m lg m) bits, which added to the space for R and C gives m lg n2

m +
o(m lg n2

m ) +O(m + lg n) bits. This is H + o(H) +O(m + lg n).

Lemma 3. An n × n grid with m points can be represented within H + o(H) + O(m + lg n) bits of space, where H = lg
(n2

m

)
,

so that query rank(i, j) is computed in O(lg m/ lg lg m) time, report(i1, i2, j1, j2,k) performs in time O((k + 1) lg m/ lg lg m), and
select(i1, i2,k) and select(i,k) are supported in O(lg2 m/ lg lg m) time.

An alternative is to use Barbay et al.’s representation [3] for the mapped grid. The space of this structure is
m lg m + o(m lg m) + O(m + n), but the last term is not necessary in our simplified matrix with exactly one point per
column and per row. Then rank is solved using rel_rnk in time O(lg m/ lg lg m), report is solved using rel_acc in time
O((k + 1) lg m/ lg lg m), and both select queries are solved using either rel_sel_lab_maj or rel_sel_obj_maj, in
time O(lg m) or O(lg2 m/ lg lgm), depending on the direction of the query.

Lemma 4. An n × n grid with m points can be represented within H + o(H) + O(m + lg n) bits of space, where H = lg
(n2

m

)
, so

that query rank(i, j) is computed in O(lg m/ lg lg m) time, and report(i1, i2, j1, j2,k) performs in time O((k + 1) lg m/ lg lg m). In
one direction (that can be chosen), select(i1, i2,k) and select(i,k) queries are supported in O(lg m) time; in the other they take
O(lg2 m/ lg lg m) time.

Our next developments aim at two goals. First, we show that it is possible to obtain a fully compressed representation,
that is, using strictly H + o(H) bits. Second, we show that some operations can be speeded up, taking less time when the
entropy of the matrix is higher.

4. A fast compressed representation with sublinear redundancy

We first describe a solution using n2 + o(n2) bits, and then convert it into one using H + o(n2) bits. Using this o(n2)-size
index on top of the compressed grid, we handle various operations in constant time.

4.1. Constant-time rank

The matrix is first subdivided into superblocks of size s × s, s = lg2 n. Each superblock is in turn subdivided into blocks

of size b × b, b =
√

lg n
2 . The n2 bits of the matrix will be stored block-wise, that is, the b2 = lg n

2 bits of each block will be
stored contiguously.

For each superblock in the matrix, we store the rank values at all the positions of the rightmost column and bottom row
of the superblock. In other words, we store all rank(i, s · js) and rank(s · is, j) values, for 1 � i, j � n and 1 � is, js � n/s.

This requires O(
n2 lg n
lg2 n

) = o(n2) bits. For each block within each superblock, we store the local (i.e., within its superblock)

rank values at all the positions of the rightmost column and bottom row of the block. If we call ranks those local rank
values, what we store are all ranks(i′,b · jb) and ranks(b · ib, j′) values, for 1 � i′, j′ � s and 1 � ib, jb � s/b. This requires

O(
n2 lg lg n√

lg n
) = o(n2) bits.

This gives enough information to compute rank(i, j) in constant time. Let i = s · is + irs and j = s · js + jrs , so that s · is

and s · js are the projections of i and j to the last superblock-aligned row and column, and 0 � irs, jrs < s are the local
positions within their superblock. Similarly, let irs = b · ib + irb and jrs = b · jb + jrb , with 0 � irb, jrb < b the projections into,
and local coordinates within, the blocks. Then it is easy to verify that

rank(i, j) = rankb(irb, jrb)
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+ ranks(i,b · jb) + ranks(b · ib, j) − ranks(b · ib,b · jb)

+ rank(i, s · js) + rank(s · is, j) − rank(s · is, s · js),

where rankb(irb, jrb) is the local rank value within its block. All the rank and ranks values in the formula are stored, whereas
rankb(irb, jrb) will be solved with a universal table: As there are only 2b2 = √

n different blocks, we can store all the answers
to all possible rankb queries within O(

√
n polylog(n)) = o(n) bits. Since we can read at once the b2 = O(lg n) bits of the

block (stored contiguously as explained), we can look up a table entry in constant time.

4.2. Constant-time report

We first solve a subproblem that might have independent interest. Given a row range [i1, i2] and a column j,
nextCol(i1, i2, j) is the smallest column number j′ > j that is nonempty (i.e., contains a 1) in the range [i1, i2]. We now
show how to support this query in constant time and o(n2) extra bits.2

We divide the rows into chunks of r = lg1/4 n rows. For each column j, 1 � j � n, we compute array A j[1,n/r], so
that A j[ir] = nextCol(r · (ir − 1) + 1, r · ir, j) is the next nonempty column in the chunk ir . We do not store the arrays A j

themselves, but just a range minimum query (RMQ) data structure on each. Such queries find the position of the minimum
in any range of the array, and can be implemented to answer in constant time and taking 2n/r + o(n/r) bits each, without
the need to access A j [14]. Over the n columns, the space adds up to O(n2/r) = o(n2) bits.

Now consider a chunk-aligned query nextCol(r · (i1 − 1)+ 1, r · i2, j). We find the position ir of the minimum in A j[i1, i2],
and know that the answer is to be found within chunk ir . If, instead, the query is not chunk-aligned, then it can be
decomposed into a (possibly empty) chunk-aligned band, plus a within-chunk band above it and a within-chunk band
below it. Otherwise, the query is completely contained in a chunk. In all cases, since the RMQ structures narrow down the
search on the chunk-aligned band to a single chunk, the query is reduced to at most three within-chunk queries, to return
the minimum of their answers.

Now, confined within a chunk of r rows, we consider bit vectors B(i1, i2), 1 � i1 � i2 � r, such that B(i1, i2) is the or of
rows from i1 to i2, B(i1, i2)[ j] = M[i1, j] or M[i1 + 1, j] or . . . or M[i2, j] where M denotes the binary matrix. We cannot
explicitly store all these vectors, as the space would be ω(n2). However, we store the rank and select indexes for each
such bit vector. To simulate access to the virtual bit vector B(i1, i2), we use our b × b blocks of M stored contiguously, in
order to provide in constant time any Θ(

√
lg n ) consecutive bits of any B(i1, i2). This is done with a universal table of size

O(
√

n polylog(n)) = o(n) bits that, for each possible b × b block and values 1 � i1 � i2 � b, stores a bitmap or-ing rows i1
to i2 of the block.

By Lemma 1, since we can simulate access to contiguous regions of B(i1, i2) of length Θ(
√

lg n ), we can achieve constant

time for rank and select using extra indexes of O(
n lg lg n√

lg n
) bits. With these operations any within-chunk query is solved in

constant time, as it is equivalent to finding the first 1 in B(i1, i2)[ j + 1,n], select(B(i1, i2), rank(B(i1, i2), j) + 1).
As there are O( n

lg1/4 n
) chunks, each storing O((lg1/4 n)2) indexes for B(i1, i2), the total space is O( n

lg1/4 n
· √lg n · n lg lg n√

lg n
) =

o(n2) bits.
Once nextCol is solved, it is easy to address report(i1, i2, j1, j2,k) queries. We store one-dimensional rank and select

indexes for every column of the matrix. As already explained, their extra space adds up to O(
n lg lg n√

lg n
) = o(n) bits per

column as we can access only Θ(
√

lg n ) contiguous bits of any column. The first points to report are at column j =
nextCol(i1, i2, j1 − 1). With one-dimensional rank and select on column j, we can report the points at rows [i1, i2] of that
column, each in constant time. We go on with j = nextCol(i1, i2, j), and so on, until either j > j2 or we have reported k
points. Thus the query takes time O(k + 1).

4.3. Select queries

For select(i1, i2,k) we binary search, using rank, the position of the kth point in O(lg n) time. We can do better for the
simpler select(i,k) query. We have already stored the rank values at the rightmost columns of the superblocks. Assume
these values are organized row-wise, and stored in one y-fast trie data structure [33] per row. This sums to O(

n lg n
lg2 n

) = o(n)

bits per row. The trie for row i permits finding the superblock column containing the kth point in [1, i]× [1,n], in O(lg lg n)

time (by finding the predecessor of k). Now a binary search over the s = lg2 n values rank(1, i,1, j) for the columns j inside
the superblock column found gives, in another O(lg lg n) time, the precise column. Finally, one-dimensional rank and select
on the column give the position of the kth point. Thus the time is O(lg lgn).

2 This is simplified from the conference version [13] thanks to an anonymous reviewer.
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4.4. Entropy-bounded space

We have assumed the b × b blocks are explicitly stored. Instead, we can replace them by a (c,o) pair, just as Pagh [27]
does for one-dimensional bit vectors. Let a block contain c 1s. Then its class is c and its offset o is an (arbitrary) identifier
of this particular b × b block among all the different blocks of class c. A universal table indexed by c and o storing the
contents of all the possible bit vectors of each class has

∑
0�c�b

(b
c

) = 2b = √
n entries and takes O(

√
n lg n) = o(n) bits, and

recovers any block content in constant time from its (c,o) code.

Each c value is stored in lg(b2 + 1) = O(lg lg n) bits, adding up to O(
n2 lg lg n

lg n ) = o(n2) bits in total. The number of bits

required for all the o fields, assuming the ith block contains mi bits set, is
∑

i�lg
(b2

mi

)� � lg
(n2

m

) + O( n2

lg n ) [27, Lem. 4.1].
Finally, we also need pointers to find an o field in constant time, as these have variable-length representations. These

pointers can also be represented within O(
n2 lg lg n

lg n ) bits [27].

Theorem 1. An n × n binary matrix with m 1s and entropy H = lg
(n2

m

)
can be represented within H +O(

n2 lg lg n
lg1/4 n

) bits, so that query

rank(i, j) is computed in O(1) time, report(i1, i2, j1, j2,k) performs in time O(k + 1), select(i1, i2,k) is supported in O(lg n) time,
and select(i,k) takes O(lg lg n) time.

4.5. Extensions

We can define the complementary queries, where 0s are considered instead of 1s. As explained, this is immediate for
rank but not for report nor select. However, it is not hard to see that we can support these complementary queries as
well, by adding other similar o(n2) bits of space corresponding to the complemented matrix, that is, asymptotically for free.
As explained, we can also support the select variants where rows and columns are exchanged, within o(n2) additional space.

In order to handle rectangular grids of size nr × nc , we can define square superblocks of side s = lg2(nrnc), square blocks
of side b = √

lg(nrnc)/2 and chunks of r = lg1/4(nrnc) rows. We obtain H +O(
nrnc lg lg(nrnc)

lg1/4(nrnc)
) = H + o(nrnc) bits of space, and

the same operation times of Theorem 1, replacing every n by
√

nrnc .
If the two sides of the rectangle are very different, say nr = o(s) = o(lg2 nc) (thus lg nr = O(lg lg nc) and lg(nrnc) =

Θ(lg nc)), we cannot use those superblock sizes anymore. Instead, we can use just one wavelet tree of Lemma 2 with nr la-
bels, which will answer rank queries in time O(lg nr/ lg lg(nrnc)) =O(1), report queries in time O((k + 1) lg nr/ lg lg(nrnc)) =
O(k + 1), and queries select in time O(lg nr) or O(lg2 nr/ lg lg(nrnc)), both O(lg lg nc). Thus the time complexities are re-
tained. The space of this wavelet tree is m lgnr + o(m lgnr) +O(m + nc). The last term is due to a bitmap of length m + nc ,
with m bits set, which is stored in plain form [3]. Instead, we use Raman et al.’s compressed representation [32], which
retains constant rank and select time and uses m lg m+nc

m + O(m + nc lg lg nc
lg nc

) = m lg nc
m + O(m + nc lg lg nc

lg nc
) bits. Added to the

space of the wavelet tree, we have m lg nrnc
m + o(m lg nrnc

m ) +O(m + nc lg lg nc
lg nc

) bits. This is H + o(nrnc).3

5. Towards a fully-compressed representation

Our compressed representation achieves entropy-bounded space for the matrix itself, but the extra space is o(n2). This
may dominate the entropy bound H . In this section we get much closer to using H + o(H) bits. The key to achieving
indexes sublinear in H is to adapt the partitioning into superblocks and blocks to the number of bits set in the matrix. As
now the blocks will be much larger, we cannot handle them with universal tables, but will make use of the wavelet trees
of Lemma 2. The price will be a superconstant time for all queries.

5.1. Rank query

We first divide the matrix into superblocks of size s × s, where now s = n2 lg m
m (assume for now m = Ω(n lgm); we

consider the other case in Section 5.4). The superblocks are further divided into blocks of size b × b, for b = n2 lg lg m
m . Just as

for Section 4.1, we store absolute ranks at the borders of superblocks and local ranks at the borders of blocks. As the former
require lgm bits to be represented, they add up to O(n2

s lg m) =O(m) bits. The latter require lg s2 bits per value, adding up

to O(n2

b · lg s2) =O( m
lg lg m · lg n2 lg m

m ) =O( m
lg lg m (lg n2

m + lg lg m)) = o(m lg n2

m ) +O(m).

As before, the problem is reduced to supporting local rank within a block of size b2. We store each whole column of
blocks [b · ( jb − 1) + 1,b · jb] × [1,n], for 1 � jb � n/b, using the wavelet tree of Lemma 2. This is regarded as having n
objects (the ith object represents row i) and b labels (the jth label represents column b · ( jb − 1) + j). Say that column

3 Moreover, it can be shown to be H + O(
nr nc lg lg(nr nc )

lg1/4(nr nc )
) for the range of values of m where Theorem 1 will be used, m = ω( nr nc

lg1/5(nr nc )
): In this range it

holds m lg nr nc
m = Ω(m lg lgnc) and the o(m lg nr) bits of the wavelet tree are o(m lg lg nc).
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of blocks jb contains m jb bits set, then its wavelet tree requires m jb lg b + o(m jb lg b) +O(m jb + n) bits. Added over all the

columns of blocks, this is m lg b + o(m lg b) +O(m + n2/b) = m lg n2

m + o(m lg n2

m ) +O(m lg lg lg m).

The wavelet tree answers rel_rnk queries in time O(lg b/ lg lg n) =O(lg n2

m / lg lg n). The local rankb(i, j) value within a
block is thus computed using two rel_rnk queries on the wavelet tree representing the column that contains the block:
Let i′ be the top row of the block of interest, then rankb(i, j) = rel_rnk( j, i′ − 1 + i) − rel_rnk( j, i′ − 1). The result is
analogous if we choose to represent rows of blocks with the wavelet trees.

5.2. Select queries

Let us first consider (horizontal) band queries, assuming that wavelet trees represent columns of blocks. As we have
stored all the values rank(i, s · js), rank(s · is, j), and ranks(i,b · jb), we can compute any rank(i1, i2,1,b · jb) in constant time.
Thus we can binary search for the column of blocks where the kth point of [i1, i2] × [1,n] lies. This takes time O(lg n

b ).
Let jb be the column of blocks found, then the local rank of the (globally) kth point, within block-column jb , is k′ =

k − rank(i1, i2,1,b · ( jb − 1)). Now we can use the wavelet tree of the jbth block of columns to find the k′th point, in
label-major order, between objects i1 and i2, with operation rel_sel_lab_maj, in O(lg b) time. Overall, the query takes
time O(lg n).

The situation is more complicated if wavelet trees represent rows of blocks (or, symmetrically, the query band is vertical,
but we are sticking to horizontal bands). After finding the column of blocks jb where the answer lies, we refine the search
to find its exact column. We binary search within columns [b · ( jb − 1) + 1,b · jb] using rank(i1, i2,1, j), for b · ( jb − 1) <

j � b · jb . This rank is not constant-time because we are not in borders of blocks. Hence the time rises to O(lg2 b/ lg lg n) =
O(lg2 n2

m / lg lg n).
Once we know the column j, we must find the k′′th point in it, within rows [i1, i2], for k′′ = k − rank(i1, i2,1, j − 1).

We first search the column for the block row ib where k′′ lies. This can be done in time O(lg n
b ) because the values

rank(b · ib, j) are precomputed.
Finally, when we are confined within a single column of a block, we report the correct point in O(lg b) time using

rel_sel_lab_maj on the wavelet tree of the column of blocks (note that the area is of width 1, so the query is correct
even if the wavelet tree orders points in column-major order). Overall, the query time is O(lg n + lg2 n2

m / lg lg n).
Now we consider the (horizontal) 1-sided select queries. We use the same procedure of band queries, but we do better

when searching for jb . For each row, we arrange the n/s superblock ranks in a y-fast trie, so as to pay O(lg lgm) time to
find the superblock (note that the trie stores values up to m), and then binary search for jb inside its superblock in time
O(lg s

b ) = O(lg lg m). This trie requires O(n2

s lg m) = O(m) bits of space. Therefore, in the easy case where the direction of

the query is perpendicular to that of wavelet trees, 1-sided queries require time O(lg lg m + lg n2

m ).
For the harder case, we also use a second set of y-fast tries to speed up the binary searches in the values rank(b · ib, j).

For each column j, we store the values rank(lg m · b · ib, j) in a y-fast trie. We first search the y-fast trie in time O(lg lg m),
and then binary search the area of lg m blocks found with the y-fast trie, again in time O(lg lg m). The n tries, one per

column, require O(
n2 lg m
b lg m ) = o(m) bits. Thus the time is O(lg lg m + lg n2

m + lg2 n2

m / lg lg n).

5.3. Range reporting

Let us assume that we have stored rows of blocks in wavelet trees (the other case is analogous because reporting queries
are 4-sided and we report in no particular order). We start considering report(i1, i2, j1, j2,k) queries that span an integral
number of rows of blocks. We first need to find the next column after j1 − 1 that is nonempty in the range [i1, i2]. We
use the same RMQ-based idea of Section 4.2, using blocks of height b instead of chunks of height r. We store the RMQ
structures of the arrays A j corresponding to blocks of rows, for a total space of O(n2/b) = o(m) bits. Instead of the virtual
bitmaps B(i1, i2) used for ranges [i1, i2] within a block of rows, to find the next 1 in the band [i1, i2] × [ j1,n] we use the
horizontally arranged wavelet trees. We find this 1 using rel_min_obj_maj, in O(lg b/ lg lg n) time.

Say such a query gives column j as the next one containing points. Now we must find all the 1s in column j before
proceeding to the next one. Those 1s within the first block from global row i1 are easily found with rel_acc in the
wavelet tree of the block, each in time O(lg b/ lg lg n). In order to find the next block downwards containing points in
column j, we store a signature bit vector B j[1,n/b] for each column j, so that B j[ib] = 1 iff there is a 1 in the range
[b · (ib − 1) + 1,b · ib] × [ j, j] of the matrix. Using rank and select on the B j vector, we find the next block downwards that
has a 1 in the current column, in constant time. All the points in column j mod b of that block are then reported using
rel_acc on the object j of the wavelet tree that represents that row. Bit vectors B j require O(n2/b) = o(m) bits in total.

Thus the total time to report k points is O((k + 1) lg b/ lg lgn) = O((k + 1) lg n2

m / lg lg n). If the query is not aligned to
rows of blocks, it may have one unaligned band above and one below the block-aligned part. Then, in addition to the points
reported by the procedure described, we use rel_acc on the wavelet trees of the (one or two) partially covered rows of
blocks. Similarly, if the query is totally contained in a block of rows, it is directly solved with a single wavelet tree. The time
complexity is maintained.



A. Farzan et al. / Computational Geometry 47 (2014) 1–14 9
5.4. The final result

A missing piece is to cover the case m = o(n lgm) = o(n lg n), where our partition into superblocks of size s and blocks of
size b does not work anymore because it requires s = ω(n). When the matrix is so sparse we have lg n2

m = Θ(lg n), and thus
we can just use the simple Lemma 4, whose times are within the general times we have obtained for denser matrices.

Summing up, the space is m lg n2

m + o(m lg n2

m ) +O(m lg lg lg m + lg n). By Eq. (1), it holds H = m lg n2

m + (n2 − m) lg n2

n2−m
+

O(lg n)� m lg n2

m , therefore the space can be written as H + o(H) +O(m lg lg lg m + lg n). The last term, lg n, is relevant only
if m = O(1), in which case we can just store the points in compressed form and solve all the queries in constant time by
traversing them all. Therefore, we can safely remove this term.

Theorem 2. An n × n binary matrix with m 1s can be stored in H + o(H) + O(m lg lg lgm) bits, so that query rank(i, j) is com-

puted in O(lg n2

m / lg lg n) time and report(i1, i2, j1, j2,k) in time O((k + 1) lg n2

m / lg lgn). In one direction (that can be chosen),

select(i1, i2,k) is computed in O(lg n) time, and select(i,k) in time O(lg lg m + lg n2

m ). In the other direction, select(i1, i2,k) requires

O(lg n + lg2 n2

m / lg lg n) time, and select(i,k) requires O(lg lgm + lg n2

m + lg2 n2

m / lg lgn) time.

In the final construction, we will make use of Theorem 2 for m = O( n2

lg1/5 n
). In this case, its time complexities are

considerably simplified because lg n2

m becomes Ω(lg lg n), and thus lg lg m is absorbed by O(lg n2

m ) and this term in turn is

absorbed by O(lg2 n2

m / lg lg n). The space is also simplified, because it holds m lg lg lgm = o(m lg n2

m ) = o(H), and thus the
total space becomes fully compressed, H + o(H).

5.5. Extensions

If we want to operate on 0s instead of on 1s, some queries become costlier. We need no further space nor time for rank,
as explained. For all band select queries we can essentially use the procedure described for band queries when the wavelet
trees are parallel to the band, as it is entirely based on binary searches on rank values. The only difference is that we
cannot use rel_sel_lab_maj, but must resort to binary search inside the block using rel_rnk. This does not change
the complexity O(lg n + lg2 n2

m / lg lg n). The 1-sided queries can be speeded up with y-fast tries counting 0s. Since these may

store values up to n2, they will answer in time O(lg lg n) and will be sampled every v = n2 lg n
m rows or columns, so that

they take O(
n2 lg n

v ) = O(m) bits. The y-fast trie on superblock columns will store one value every v/s = lg n
lg m superblocks,

and thus the total search time will be O(lg lgn). The second y-fast trie on block rows that are multiples of lg m will
store one value out of v

b lg m = lg n
lg m lg lg m , so the search time is the same. Overall, 1-sided select queries of 0s take time

O(lg lg n + lg2 n2

m / lg lg n). Under the assumption m =O( n2

lg1/5 n
), this simplifies to O(lg2 n2

m / lg lg n). Finally, report queries can

be solved via select queries, thus taking time O((k + 1) lg2 n2

m / lg lg n).

Let us consider the case of rectangular matrices of nr × nc . We obtain essentially the same results by using s = nrnc lg m
m

and b = nrnc lg lg m
m , so that any time complexity lg n2

m becomes lg nrnc
m , and any lg lg n divisors in time complexities be-

come lg lg(nrnc). When m = o(max(nr,nc) lg(nrnc)) we cannot use those superblock sizes anymore, but we can use just one
wavelet tree, which maintains the space and time complexities as before.

6. A fully compressed representation

We now have all the necessary pieces to prove our main result.

Theorem 3. An n × n grid with m points can be represented within H + o(H) bits of space, where H = lg
(n2

m

)
, so that range counting

takes O(lg n/ lg lg n) time, range reporting of k points requires time O((k + 1) lg2 n/ lg lg n), and point selection queries are solved in
O(lg2 n/ lg lg n) time.

Proof. We use our “almost fully compressed” solution (Theorem 2) when m = O( n2

lg1/5 n
), and our “compressed” solution

(Theorem 1) when m = ω( n2

lg1/5 n
) and n2 − m = ω( n2

lg1/5 n
). As shown at the end of Section 5.4, we obtain H + o(H) bits

in the first case. In the second case, because of the range of m values we consider, the redundancy is O(
n2 lg lg n
lg1/4 n

) = o(m),

and H � m lg n2

m � m for m � n2/2. If m � n2/2, we have that the redundancy is also O(
n2 lg lg n
lg1/4 n

) = o(n2 − m), and H �

(n2 − m) lg n2

2 � n2 − m. Therefore the redundancy is always o(H).

n −m
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We have not yet handled the case of large m = n2 −O( n2

lg1/4 n
). In this case, we complement the matrix and use Theorem 2

with queries on 0s instead of queries on 1s. This worsens some times, as shown in Section 5.5. Moreover, we must assume
the smallest possible values on m for query times that improve with m, because we are using the complemented matrix. �

Note that, although we give the worst cases in the theorem, for most values of m the times are indeed lower. Note also
that the times of the theorem are valid as well when querying for both 0s and 1s.

7. Higher dimensions

We now generalize our results of Section 4 to any dimension d. In principle, the only restriction on d is that the RAM
machine can handle coordinates up to lg(nd) in constant time, that is, w = Ω(d lg n). Our space usage, however, will become
Ω(nd) bits for relatively small d. Therefore, the d values of interest will be constant or very slightly superconstant.

In the literature d is generally considered constant. Multidimensional rank can be carried out using O(m(lg m/ lg lg m)d−2)

words of space and O((lg m/ lg lgm)d−1) time [23]. For reporting k points, the best current solutions require
O(m(lgm/ lg lg m)d−3) words of space and O((lg m/ lg lg m)d−2 + k) time [23], or O(m lgd−2+ε m) words of space and
O((lg m/ lg lg m)d−3 lg lg m + k) time [7]. When the lower coordinate of the query in every dimension is 1, one can obtain
O(m(lgm/ lg lg m)d−3) words of space and O((lg m/ lg lg m)d−3 lg lg m + k) time [8]. Chazelle [10] proved that any reporting
time of the form O( polylog(m) + k) requires Ω(m(lg m/ lg lgm)d−1) words of space on a pointer machine (note that the
upper bounds, which are on the RAM model, slightly break this lower bound).

Again, we obtain better times by using space H + o(nd), where now H = lg
(nd

m

)
. This space is H + o(H) when the matrix

is sufficiently dense, as before. We first consider rank and select queries, which are relatively simple, then report queries in
3 dimensions and, finally, report queries for d � 4.

7.1. Rank and select queries

It is not difficult to generalize our bounds for rank. To do this, we subdivide the matrix into superblocks of size sd with

each edge of length s = lg2 n. We further subdivide the superblocks into blocks of size bd with each edge of length b = d
√

lg n
2 .

As before, we store the rank values at the sides of the superblocks and the local rank values at the sides of the blocks.

We use the same encoding technique of Section 4.4. It is not hard to see that the space adds up to H + O(
nd lg(bd)

bd ) =
H + O(

nd lg lg n
lg n ) = H + o(nd). To this we must add the space required by the rank values stored along the sides of all the

sd-sized cubes. Since d-dimensional cubes have 2d faces, each containing sd−1 cells, and we must store numbers up to nd ,

we require in total O(nd

sd dsd−1 lg(nd)) = O( d2nd

lg n ) bits for the superblock counters. Similarly, for blocks, which require only

lg(sd) bits per counter, the space required is O(nd

bd dbd−1 lg(sd)) = O(
d2nd lg lg n

lg1/d n
). Finally, we must precompute answers to

every possible dominance query inside every possible block, which adds up to O(bd · 2bd · lg(bd)) = O(
√

n lg n lg lg n) bits.

Therefore the total space can be written as H +O(
d2nd lg lg n

lg1/d n
), which is H + o(nd) for d � lg lg n/(3 lg lg lg n).

The computation of rank takes constant time for constant d, by adding and subtracting counters at the sides of su-
perblocks and blocks, and finally using the universal tables over the bd = lg n

2 bits of a bd-sized cube to complete the
computation. To compute the time as a function of d, consider that we have to project the point into every face of the
superblock (i.e., we project one dimension, in

(d
1

)
ways). This counts more than once those points covered when projecting

any two dimensions, so we must project two dimensions, to subtract those ranks, in
(d

2

)
ways. Points covered by three

projections have been subtracted more than once, then we have to project three dimensions, in
(d

3

)
ways, to add back those

ranks, and so on. All those combinatorials add up to 2d computations we must perform. Thus the time for rank is O(2d).
We can also easily generalize our bounds for select. Suppose we are given an ordering on the dimensions and asked to

find the kth point in an arbitrary d-dimensional box. We can again use binary search with rank to find that point in O(lg n)

time, assuming d is constant. The cost as a function of n and d is O(2d lg(nd)) =O(2dd lg n).
Now suppose one corner of the box is at the origin, that is, the point whose coordinates are all 1. We start by considering

only the first dimension. For each beam of cells running along that dimension, we pick one value out of s, and store all

the rank values at those points in a y-fast trie data structure. This requires O(nd−1 n
s lg(nd)) = O( dnd

lg n ) extra bits. This trie
tells us, in O(lg lg n) time, the interval of length s where the select answer lies along a chosen beam. Then a binary search
using rank finds the precise point in time O(2d lg s) = O(2d lg lg n). This point determines the (d − 1)-dimensional plane,
perpendicular to the first dimension, that contains the kth point in the box. This leaves us with the same problem in d − 1
dimensions; when we reach 2 dimensions, we can apply Theorem 1. The space cost of the solution for the d dimensions is

O( d2nd

lg n ) bits, and the time is O(2dd lg lg n). This time is O(lg lg n) for constant d.
Finally, note that we may wish to choose any order of dimensions of select at query time. In such a case the space

overheads have to be added for each ordering of the dimensions, multiplying the space by a factor of d!. This yields space

O( d2d!nd
), which is o(nd) for d � lg lg n/ lg lg lg n.
lg n
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7.2. Report queries in 3 dimensions

It is not so easy to generalize report, the main difficulty being to generalize nextCol to nextPlane, which takes a range in
each of the first d−1 dimensions and a starting point j in the last dimension, and returns the smallest j′ > j such that there
is a point contained in the intersection of those ranges and the plane whose last coordinate is j′ . To apply the technique
of Section 4.2, we would need an extension of the one-dimensional RMQ techniques we used to multidimensional arrays.
Although there is a linear-bits space index solving RMQs in constant time for two dimensions [12] (which needs access to
the array, however), the best result for higher dimensions [34] takes linear-words space, which is too high for us. In addition,
the simple division into chunks and within-chunk bands becomes much more complicated in two and more dimensions,
as we see soon. Therefore, we develop a different technique, akin to a classical idea used for one-dimensional RMQs in the
past [4,5] (i.e., to consider any one-dimensional range as the union of at most two ranges whose sizes are powers of 2).

Let us first consider the relatively simple case d = 3. We take the 2-dimensional submatrix obtained by ignoring the last
dimension, and divide it into 2-dimensional batches of size s × s, where again s = lg2 n.

For each rectangle of batches whose side lengths are both powers of 2 when measured in batches, we store a signature
bit vector indicating for which coordinates in the third dimension that rectangle contains at least one point. We call such
rectangles type 1 rectangles, and their signature bit vectors take a total of O(n(n

s )2 lg2 n) = o(n3) bits. We also store a
signature bit vector for each rectangular range [s · (is − 1)+ 1, s · (is + 2k1 − 1)]× [ j, j + 2k2 − 1] with 1 � is � n/s, 1 � j � n,
0 � k1 � lg(n/s) and 0 � k2 � lg s, and similarly in the other direction, [i, i + 2k2 − 1] × [s · ( js − 1) + 1, s · ( js + 2k1 − 1)]
for 1 � i � n and 1 � js � n/s. We call such rectangular ranges type 2 rectangles, and their signature bit vectors take a total
of O(n(n

s )n lg n lg s) = o(n3) bits (this space dominates that of type 1 rectangles). Notice that any 2-dimensional rectangular
range can be expressed as the union of at most 4 type 1 rectangles, at most 16 type 2 rectangles (4 at each of the 4 sides
of the main rectangle), and at most 4 rectangular ranges completely contained within single batches.

We deal with the ranges within single batches by dividing each batch into 2-dimensional chunks of size r × r, where
this time r = lg1/9 n. We use the same machinery for chunks as we did for batches. The extra space for all the chunk-level

bit vectors is O(n(n
r )n lg s lg r) = O(

n3(lg lg n)2

lg1/9 n
) = o(n3) bits. Finally, there are O((n/r)2r4) = O(n2 lg2/9 n) rectangular ranges

completely contained within single chunks. Applying Lemma 1, with our b3-sized matrix blocks and b = 3
√

lg n
2 , we store

indexes for them all in O(n2 lg2/9 n · n lg lg n
(lg(n)/2)1/3 ) = o(n3) bits. Once we have solved nextPlane in one dimension, we solve

nextCol as usual on the two remaining dimensions. The only difference is that we use this b value instead of the
√

lg n
2 value

used in Section 4, as we already have the b3-sized cubes encoded for three dimensions.

7.3. Report queries in higher dimensions

There are many more types than 1 and 2 in higher dimensions. Along each dimension (except the one we are eliminating)
we can choose to sample in the form [s · (is − 1) + 1, s · (is + 2k1 − 1)] or in the form [ j, j + 2k2 − 1]. The number of bits we
use at the batch level can thus be bounded by

O
(

n ·
∑

1���d−1

(
d − 1

�

)(
n

s

)�

nd−�−1 lg� n lgd−�−1 s

)

= O
(

n ·
((

n lgn

s
+ n lg s

)d−1

− (n lg s)d−1
))

= O
(

n · (d − 1)
n lgn

s
(n lg s)d−2

)

= O
(

dnd(lg lg n)d−2

lg n

)
,

which is o(nd) for d � lg lg n/ lg lg lgn.

We set the side length of each chunk to r = lg1/d2
n. The number of bits we use at the chunk level can be bounded,

analogously, by

O
(

n ·
∑

1���d−1

(
d − 1

�

)(
n

r

)�

nd−�−1 lg� s lgd−�−1 r

)

= O
(

n · (d − 1)
n lg s

r
(n lg r)d−2

)
= O

(
nd(lg lgn)d−1

d2d−5 lg1/d2
n

)
,

which is o(nd) for d < (3 lg lg n/ lg lg lgn)1/3.
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Finally, there are O((n
r )d−1r2(d−1)) rectangular ranges completely contained within single chunks, so applying Lemma 1

with b = d
√

lg n
2 , we store indexes for them all in

O
((

n

r

)d−1

r2(d−1) · n lg lg n

b

)
= O

(
nd lg lg n

lg1/d2
n

)

bits. This is o(nd) for d = o(
√

lg lg n/ lg lg lg n ). The number of operations is proportional to the number of rectangles needed
to cover the query. At the batch level, this is 6d−1, as we show in Appendix A. At the chunk level we have to consider that
there are 2d−1 vertices in the query rectangle, each of which is covered with chunks using the same technique. This rises
the total complexity to O(12d).

Once we find the (d − 1)-dimensional hyperplane where the next point lies, we have the same problem on d − 1 dimen-
sions. We proceed recursively, yet we maintain the r and b values we have used for the first problem (as we have the data
encoded according to them). The time complexities do not grow when adding over lower dimensions as they are already
exponential in d. This gives us our higher-dimensional generalization of Theorem 1.

Theorem 4. Consider a binary matrix with edge length n in d dimensions, on a RAM machine with words of Ω(d lg n) bits. Suppose

the matrix contains m 1s and thus has entropy H = lg
(nd

m

)
. Then it can be represented within H + O(

nd(lg lg n)d−1

d2d−5 lg1/d2
n
) bits, which is

H + o(nd) for d < (3 lg lg n/ lg lg lg n)1/3 , such that rank takes O(2d) time (i.e., O(1) for constant d), report takes O((k + 1)12d) time
(i.e., O(k + 1) for constant d), and select takes O(2dd lg n) time in general or O(2dd lg lgn) time when one corner is at the origin (i.e.,
O(lg n) and O(lg lg n) for constant d).

8. Conclusions

Although orthogonal range searching has received much attention, the interesting case where the structure achieves
entropy-bounded space has remained largely under-explored. This work completes a relevant portion of the picture, not
only reaching fully-compressed space but also uncovering interesting relations between the time complexities that can be
achieved and the entropy of the grid: We show that grids with higher entropy can be queried faster within fully-compressed
space. Previous work has been blind to this relation, focusing only on the relation between time and space in terms of the
number of points of the grid.

A natural question is what the lower bounds are when the entropy comes into play. While this issue has been studied
in the one-dimensional case [15–19,21,30,31], it is new in two and more dimensions (there are some lower bounds on
binary matrices, but considering one-dimensional operations like rank and select on rows or columns [16]). The fact that we
have presented various upper bounds that are patched to form a complete solution, where some patches have incomparable
complexities and there are some abrupt transitions from one patch to another (e.g., see Table 1 and the proof of Theorem 3),
suggest that there must be a more uniform complexity as a function of the entropy we have not yet reached.

The relation with the one-dimensional case is also intriguing in some aspects. For example, in one-dimensional bitmaps
operation select can be solved in constant time, and it is actually easier on sparser bitmaps, whereas in more dimensions we
have not achieved that. For rank, on the other hand, we have achieved constant time on dense matrices and entropy-related
time on sparse ones, much as in some one-dimensional solutions [26].

As for the space, H = lg
(n2

m

)
is a crude worst-case lower bound that does not account for regularities, such as clusters

of points, that arise in real life. Our actual space for storing the bitmaps can indeed be much better than H when such
regularities arise: It is the sum of local entropies of small blocks. Our o(H)-bits indexes on the data, however, reach this
space by design and do not improve if the data has regularities. An interesting challenge is to make the redundancy sensitive
to the data distribution as well.

Other natural directions for future work would be to consider further operations [3], achieving dynamic compressed
structures, and secondary-memory variants. Finally, note that we have extended to d dimensions the variant that uses
H + o(nd) bits, but the strongly 2-dimensional nature of wavelet trees prevented us extending the H + o(H) bit structures
analogously.
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Appendix A. Number of rectangles covering a batch

Assume the box crosses a batch boundary in some dimension. If it does not, then we handle it at the chunk level, and
the calculations are similar. Consider the (d − 1)-dimensional box as the product of d − 1 intervals, one in each dimension.
Each interval consists of (a) a part of length < s “to the left of” the first complete batch (i.e., whose coordinate along that
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dimension is smaller than the minimum value of the first batch), (b) a maximal part consisting of complete batches, and (c)
a part of length < s “to the right of” the last complete batch. The last two parts can be empty.

Let us first break the rectangle up into zones, where two points are in the same zone if they are in the same part of
each interval. We can count the number of zones as follows: (1) we sum over � from 0 to d − 1, where � is the number of
dimensions for which the zone is in the part consisting of complete batches; (2) there are

( d−1
d−1−�

) = (d−1
�

)
ways to choose

for which of the remaining dimensions the zone is to the left or right; (3) there are 2d−1−� ways to choose for which of
those remaining dimensions the zone is to the left and for which it is to the right.

Any zone is a (d−1)-dimensional box that is aligned with a batch boundary on at least one side and, in every dimension,
it is either aligned with batch boundaries on both sides or it is narrower than a batch. Therefore, we can cover it with 2d−1

boxes for which we have the vectors stored.
Thus the total number of rectangles we need is at most

2d−1 ·
d−1∑
�=1

(
d − 1

�

)
2d−1−� � 2d−1 · 3d−1 = 6d−1.
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