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This paper considers the stability of moments of stochastic systems, such as stability of the
mean or mean-square stability. The exponential growth behavior of moments is compared
to almost sure exponential growth via Lyapunov exponents. We develop a series of indices
that are useful to describe system performance under random perturbations. The theory is
applied to two examples, including an electric power system.
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1. Introduction

Stability at operating points is one of the key requirements of engineering systems. As long as the system is given by
time-invariant dynamics, linearization at the operating point gives local stability information that can be extended through
incorporating some nonlinear features, e.g., via the use of normal forms, see [1]. If the system under consideration has time-
varying dynamics, the usual modal approach fails since for these systems eigenvalues do not describe the stability behavior
of the linearized system. Therefore, one has to approach (exponential) stability directly via the Lyapunov exponents of the
system at the operating point.

An important class of systems with time varying dynamics are those systems that are subject to sustained random per-
turbations, such as load behavior, environmental effects, or intermittent generation in power systems. The interaction be-
tween system dynamics and perturbation falls into two groups: (i) the random noise changes the operating point of the
system, or (ii) the equilibrium point persists under all perturbations. We have developed performance indices for case (i)
in [2], and analyzed one specific approach in case (ii) in [3] using almost sure Lyapunov exponents. This paper develops sev-
eral performance indices for case (ii), analyzes their relationships, and compares the results for several examples. The key
idea is the look at the sample (exponential) growth rates for trajectories and at the growth rates of moments of the trajec-
tories, such as the stability of the mean, or mean square stability involving the second moment. Both points of view result in
potentially useful performance criteria for power systems.

2. Mathematical background

2.1. The system model

We start from a nonlinear differential equation _yðtÞ ¼ f ðyðtÞ; nðt;xÞÞ in Rd with sustained random perturbation nðt;xÞ. In
order to analyze optimal parameter settings for stability at an operating point, we linearize the system equations at the equi-
librium point y�. Linearization (with respect to y) at the equilibrium results in the system
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_xðtÞ ¼ Aðnðt;xÞÞxðtÞ in Rd ð1Þ
where Aðnðt;xÞÞ is the Jacobian of f ðyðtÞ; nðt;xÞÞ at y�. We denote by uðt; x;xÞ the trajectories of (1) with initial value
uð0; x;xÞ ¼ x 2 Rd. We think of a given probability space ðX;F; PÞ under the usual conditions on which the Wiener process
in (2) is defined. We use the notation x 2 X, and all expectations Eð�Þ are with respect to the given probability measure P.

The random perturbation can be considered as white noise, leading to a stochastic differential equation for (1), or as a
colored, bounded noise. In this paper we discuss the latter situation since macroscopic perturbations in engineering systems
generally are non-white; but a similar theory also holds for the white noise case, see [4] for the basics. We start from a back-
ground noise g, given by a stochastic differential equation on a compact C1-manifold M
dg ¼ X0ðgÞdt þ
Xr

i¼1

XiðgÞ � dWi on M ð2Þ
where the vector fields X0; . . . ;Xr are C1, and ‘‘�’’ denotes the Stratonovic stochastic differential. We assume that (2) has a
unique stationary, ergodic solution g�ðt;xÞ which is guaranteed by the condition (compare [5])
dimLAfX1; . . . ;XrgðhÞ ¼ dimM for all h 2 M: ð3Þ
Here LAf�g denotes the Lie algebra generated by a set of vector fields. The background noise g�ðt;xÞ is mapped via a sur-
jective smooth function f : M ! U � Rm, f ðgÞ ¼ n, into the system perturbation nðt;xÞ. This setup allows great flexibility
when modeling the statistics of the system noise.

2.2. Lyapunov exponents

Exponential stability of the system (1) is described by Lyapunov exponents; in [6] we gave an overview of the almost sure
theory, with applications to power systems. Here we extend the analysis to moment Lyapunov exponents. The individual
Lyapunov exponents of the trajectories uðt; x;xÞ of (1) are given as
kðx;xÞ ¼ lim sup
t!1

1
t

log juðt; x;xÞj; ð4Þ
and for p 2 R the Lyapunov exponent of the pth moment is given by
gðp; xÞ ¼ lim sup
t!1

1
t

log Ejuðt; x;xÞjp: ð5Þ
This includes for p ¼ 1 the exponential growth behavior of the mean, and for p ¼ 2 the exponential mean square stability of
the system. We again need the projection of the linear system onto the sphere Sd�1 in Rd:
_sðtÞ ¼ hðnðt;xÞ; sðtÞÞ; hðn; sÞ ¼ ðAðnÞ � qðn; sÞÞs; qðn; sÞ ¼ sT AðnÞs; ð6Þ
where ‘‘�T ’’ denotes the transpose. via identification of s and �s Eq. (6) can be considered on the projective space Pd�1. The
Lyapunov exponents of all system states x 2 Rd n f0g can be analyzed together if the perturbation affects all states. This is
expressed in the condition
dimLA Xo;h;
@

@t

� �
; ðX1; 0;0Þ; . . . ; ðXr;0;0Þ

� �
ðh; s; tÞ ¼ dimM þ d ð7Þ
for all ðh; s; tÞ 2 M � Sd�1 � R. Another approach to condition (7) is as follows: Let I be the ideal in LA Xo þ h;X1; . . . ;Xrf g gen-
erated by fX1; . . . ;Xrg. Then, by [5], Condition (7) is equivalent to dimIðh; sÞ ¼ dimM þ d� 1. This condition, which is needed
for the analysis of moment Lyapunov exponents, is slightly stronger than Condition 7 in [6], but it is generally satisfied for
systems that appear in applications, compare, e.g., [5] or [10].

Theorem 2.1. Consider the stochastic system (1) under the conditions (3) and (7). Then

1. the moment Lyapunov exponents exist as a limit and they are independent of x 2 Rd n f0g, i.e., gðpÞ � gðp; xÞ ¼ limt!1
1
t log

Ejuðt; x;xÞjp for all p 2 R,
2. the trajectory-wise Lyapunov exponents are a.s. constant and independent of x 2 Rd n f0g, i.e., k � kðx;xÞ ¼

limt!1
1
t log juðt; x;xÞj.

The proof of Theorem 2.1 is given in [7], Theorem 1 for the first part, and in [10], Theorem 4.1 for the second part upon
noticing that Conditions (3) and (7) together imply Conditions (A) and (C) in [10]. With the results from Theorem 2.1 it was
shown by Arnold in [7] that the a.s. Lyapunov exponent is the derivative of the moment Lyapunov exponent function at 0:

Corollary 2.2. Consider the stochastic system (1) under the conditions (3) and (7). Then the function gðpÞ is analytic on R, convex,
and satisfies gð0Þ ¼ 0 and g0ð0Þ ¼ k.
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Remark 2.3. The information contained in Corollary 2.2 shows that

1. If the a.s. Lyapunov exponent of the system (1) is negative, i.e., if the system is almost surely exponentially stable, then
moments for small p > 0 are also exponentially stable. And vice versa, if moments for small p > 0 are exponentially sta-
ble, then the system is a.s. exponentially stable.

2. The moment exponent function gðpÞ has at most two zeros. Specifically, if the system is a.s. exponentially stable, i.e., if
k < 0, then gðpÞ has at most one zero besides gð0Þ ¼ 0, and this occurs for p > 0. Assume that such a second zero exists
at a > 0, then all pth moments are stable for 0 < p < a, and unstable for a < p <1.

In light of Remark 2.3 the key question regarding the exponential stability of the moments of (1) is the existence of a sec-
ond zero of gðpÞ, i.e., the existence of a > 0 with gðaÞ ¼ 0. Such a point a does not always exist since gðpÞ ¼ kp is possible,
compare [9], Theorem 2.3, Case 2.1.2(a). A detailed analysis of this question involves the function c : R! R, given by
cð0Þ ¼ k; cðpÞ ¼ gðpÞ
p

for p – 0: ð8Þ
According to Corollary 2.2 this function is analytic on R and increasing. We define
cþ ¼ lim
p!1

cðpÞ ð9Þ
and note that either cþ ¼ k, in which case gðpÞ ¼ kp, or k ¼ cð0Þ < cþ, in which case cðpÞ is strictly increasing. Note that there
exists a > 0 with gðaÞ ¼ 0 if and only iff cþ > 0. For the following results see [9].

Remark 2.4. As it turns out, the quantity cþ does not depend on the statistics of the noise process nðt;xÞ, only on its range
U � Rm. More precisely, cþ is given by the exponential growth rate of the spectral radius of the (deterministic) semigroup
given by (1), see also [13], Chapter 7. Similarly we have

1. cþ ¼ supAðfÞstationary kðAðfÞÞ, where the supremum is taken over all stationary processes f with values in U � Rm;

2. cþ ¼ lim 1
t log kuðt; x;xÞk1, where k � k1 denotes the essential supremum.

In other words, if we have no information about the perturbation nðt;xÞ except for its range U � Rm, then cþ < 0 assures
exponential stability for all stochastic perturbations with values in U. This property is sometimes called ’universal stability’.
Remark 2.5. If there exists a second zero gðaÞ ¼ 0 for a > 0, then more can be said about the behavior of individual trajec-
tories of the system (1):

1. If we have k < 0 < cþ, then there exists a > 0 with gðaÞ ¼ 0. In this case there is a constant c P 1 such that for all R > 0
and all x 2 Rd with 0 < jxj < R it holds that
1
c
jxj
R

� �a

6 P sup
tP0
juðt; x;xÞjP R

� �
6 c

jxj
R

� �a

:

2. If we have k 6 cþ 	 0, then there is a constant c P 1 such that with P�probability 1 it holds that
sup
tP0
juðt; x;xÞj 6 cjxj:
In other words, if gðpÞ does not have a second zero, then the system response is almost surely bounded, while in case there
exists a second zero at a > 0 then the probability that the system response will exceed a safety threshold R > 0 behaves like
ðjxj=RÞa, which goes to zero for a!1. For these reasons, the point a > 0 is called the ’stability index’ of a linear stochastic
system in [8]. In [8,14] the authors investigate the ’robustness’ of the stability index under small nonlinear model
misspecifications.
3. Stability-based performance indices for stochastic systems

3.1. Performance indices

In this section we discuss performance indices for systems under stochastic perturbations. The goal is to identify system
parameters that allow for optimal (exponential) stability behavior of a system at a stable operating point. Since exponential
stability can be inferred from the system linearization, we consider systems as in (1), and we assume that the perturbation
can be modeled by a function of a Markov-diffusion process as in (2). More specifically, our goal is to guarantee stability of
the system under the largest possible perturbation range.
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The size of the random perturbation is described in the following way: We consider the noise range U � Rm to be convex,
compact with 0 2 intU, the interior of U. Introducing the size parameter q P 0 we consider Uq :¼ q � U together with the
maps f q : M ! Uq, f qðhÞ ¼ q � f ðhÞ. In this way we obtain a family fnqðt;xÞ;q P 0g of system perturbations with correspond-
ing dynamics (1)q. For q ¼ 0 this model corresponds to the unperturbed system.

To be precise, we analyze the family of systems
_xqðtÞ ¼ Aðnqðt;xÞ; bÞxqðtÞ; x 2 Rd; nqðt;xÞ 2 Uq � Rm; q P 0 ð10Þ
where b 2 B � Rk is a vector of parameters that are to be tuned in such a way that the system (10) is stable for q P 0 as large
as possible.

The almost sure stability radius
r ¼ inffq P 0; kðqÞ > 0g ð11Þ
was introduced in [12] and analyzed in detail in [3]. Here kðqÞ denotes the a.s. Lyapunov exponent of (10). In a similar way,
one can define the pth moment stability radius as
rðpÞ ¼ inffq P 0; gqðpÞ > 0g for each p 2 R ð12Þ
with gqðpÞ as defined in (5) for the system (10). This stability radius provides an appropriate performance index if emphasis
is placed on stability of specific moments of a system, such as the mean (p ¼ 1) or mean square stability (p ¼ 2). In both cases
the design problem can be written as
max
b2B

rðbÞ or max r
b2B
ðp; bÞ for a given p > 0:
Section 2.2 points at other performance indices that can be useful for the evaluation of stability: Specifically, the second zero
aðqÞ > 0 of the moment Lyapunov exponent function gqðpÞ of (10) not only describes the moments that are exponentially
stable (see Remark 2.3), but also the boundedness behavior of individual trajectories (see Remark 2.5). For a given stochastic
perturbation with given range Uq the design problem reads in this case
max
b2B

aðq; bÞ for a given q > 0: ð13Þ
Following [8] we call (13) the stability index problem. Note that under our conditions kðqÞ ¼ 0 is equivalent to gðp;qÞ > 0 for
all p > 0 which in turn is equivalent to the stability index a being zero.

Finally, Remark 2.4 shows that the analysis of the limit cþ of the function cðpÞ contains important information about the
stability of the randomly perturbed systems (10): this number describes the worst case exponential stability behavior for
any process with values in Uq. This idea leads to the deterministic stability radius
rdet ¼ inffq P 0; cþðqÞ > 0g:
This radius turns out to be described by the maximal Bohl exponent, or the maximum of the Morse spectrum of a determin-
istic perturbation (or control) system associated with (10), see [13], Chapter 7 for a detailed discussion of these concepts.

In the following sections, we will analyze the moment stability radius and the stability index problem together with their
relationships to the a.s. stability radius.

3.2. Computation of indices

While the computation of a.s. Lyapunov exponents has attracted great interest (see, e.g., [6,11,16], or [17] and the refer-
ences therein), the computation of moment Lyapunov exponents seems relatively unexplored. One way is to write gðpÞ as the
maximal eigenvalue of a certain second order partial differential operator (see, e.g., [7] for the white noise, and [9] for the
general case). This idea has been followed, e.g., in [21], in some examples of Chapter 9 in [20], or in [18], but generalizations
to high dimensional systems appear more than cumbersome.

The other approach is to follow the definition (5), i.e., simulate trajectories of the system (1), compute the moments and
their exponential growth rate, see e.g., [19] or [20], Chapter 9.2 for an idea in this direction. Our experiences from [6] suggest
to simulate solutions directly from the linear differential equation, using renormalization at regular time intervals since the
trajectories grow or decay exponentially. This leads to the following approach:

We fix a time interval ½0; T
; T 2 N, and a step size h ¼ 1
k > 0; k 2 N, for the simulation of the background process gt in (2),

resulting in b time series gtðiÞ; i ¼ 1; . . . ; b of length Tk. We pick a initial conditions xj
0 ¼ sj

0 2 Sd�1; j ¼ 1; . . . ;a. For each initial

condition the linear system (1) is solved on the time interval ½0;1
, resulting in b time series xj
ðnÞðiÞ with n ¼ 0; . . . ; k. We de-

fine xj
1ðiÞ :¼ xj

ðkÞðiÞ and use sj
1ðiÞ :¼ xj

1ðiÞ=kx
j
1ðiÞk 2 S

d�1 to be the starting point for the time interval ½1;2
. Denote by xj
2ðiÞ the

approximated solution at time t ¼ 2; and renormalize as sj
2ðiÞ :¼ xj

2ðiÞ=kx
j
2ðiÞk 2 Sd�1 to obtain the starting point for the time

interval ½2;3
. We continue in this way over the time interval ½0; T
 to obtain a � b approximate (and renormalized) solutions

of (1): Note that for t ¼ 1; . . . ; T the starting points for each time interval ½t � 1; t
 are the sj
t�1ðiÞ 2 S

d�1, and the final points

xj
tðiÞ are used for the computation of the moment Lyapunov exponents as follows:
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Computing the expectation on each time interval ½t � 1; t
 for t ¼ 1; . . . ; T and j ¼ 1; . . . ;a we obtain
EjuðT; xj
0;xÞj

p ¼ EjuðT; xj
0;xÞj

p

Ejxj
0j

p ¼
YT

t¼1

Ejuðt; xj
0;xÞj

p

jEjuðt � 1; xj
0;xÞj

pj
�
YT

t¼1

Ejxj
tðiÞj

p

jEjsj
t�1ðiÞj

pj
ð14Þ
and hence
1
T

log EjuðT; xj
0;xÞj

p ¼ 1
T

XT

t¼1

log
Ejuðt; xj

0;xÞj
p

jEjuðt � 1; xj
0;xÞj

pj
� 1

T

XT

t¼1

log Ejxj
tðiÞj

p
: ð15Þ
We now note that Ejxj
tðiÞj

p ¼ 1
b

Pb
i¼1jx

j
tðiÞj

p by averaging over the realizations of the background process, and finally averaging

over all a initial values we obtain
gðp; xÞ ¼ lim
T!1

1
T

log EjuðT; x;xÞjp � 1
a

1
T

Xa

j¼1

XT

t¼1

log
1
b

Xb

i¼1

jxj
tðiÞj

p

 !
: ð16Þ
The numerical approximation of moment Lyapunov exponents given by Formula (16) uses only numerical solutions of (1) on
time intervals of length t � ðt � 1Þ ¼ 1 and hence avoids solutions growing or decreasing exponentially over a long period of
time. If time intervals of length 1 are too long to give reliable numerics for specific systems, this approach can easily be
adapted to smaller intervals. Of course, burn-in intervals and choice of initial values have to be considered carefully, see
[6] for a discussion of these issues for a.s. Lyapunov exponents; these considerations apply as well to the computation of
moment exponents.

The performance indices introduced in Section 3.1 depend on moment Lyapunov exponents, and they require optimiza-
tion with respect to the size q of the perturbation range and/or with respect to the tunable parameters b 2 B of the system.
Given the general setup we have provided in the previous sections, we do not expect analytical results on these optimization
problems. Therefore, optimization is performed numerically over a grid in the parameter spaces.

4. Examples

4.1. Three-dimensional linear oscillator

Consider the linear oscillator _x ¼ AðntÞx in dimension 3 given by
_x ¼ AðntÞx ¼
0 1 0
0 0 1

�cð1þ nðtÞÞ �b �a

0
B@

1
CAx with x 2 R3: ð17Þ
For the computations we have used the values a ¼ 1; bnom ¼ 2, and c ¼ 1. The stochastic perturbation is nqðtÞ ¼ q � sinðgðtÞÞ,
where gðt;xÞ is an Ornstein–Uhlenbeck process as in [6] and q P 0 is the size of perturbation.

For the following discussion we consider b to be the tunable parameter with values in B ¼ ½0:8bnom;1:2bnom
, and the size
of perturbation satisfies q 2 ½0;1:4
.

Fig. 1 shows the moment Lyapunov exponent curves for b ¼ 0:8bnom and q 2 ½0;1:4
.
Fig. 1. Moment Lyapunov exponents of the linear oscillator, b ¼ 0:8bnom .
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Fig. 1 allows to determine the pth moment stability radius as in (12): we have, e.g., rð4; b ¼ 0:8bnomÞ ¼ 1:2, or
rð5; b ¼ 0:8bnomÞ ¼ 0:95. Note that rðp; b ¼ 0:8bnomÞ > 1:4 for all p 2 ð0;3:5Þ. Furthermore, Fig. 1 shows the stability index pro-
posed in (13) which corresponds to the moment p, for a fixed q, where system will not remain stable. In this case if the size of
the perturbation is q ¼ 1:4, then all moments p P 3:5 of the system will be unstable.

To compare the a.s. Lyapunov exponents with the derivative of the moment Lyapunov exponents at p ¼ 0 (compare Cor-
ollary 2.2), we also computed the a.s. exponent kðqÞ using the methodology described in [6]. The results are listed in Tables 1
and 2, showing a very good agreement between the two methods.

Fig. 2 shows the case where b ¼ 1:2bnom and the size of perturbation is q 2 ½0; 1:4
. Comparing the results to Fig. 1 we see
that increased damping, indicated by increasing b, leads to larger moment stability radii. For example, for b ¼ 1:2bnom we
have rð5; b ¼ 1:2bnomÞ ¼ 1:3.

In the case where b ¼ 1:2bnom, the stability index defined in (13) corresponds to p ¼ 4:8 when q ¼ 1:4.

4.2. One machine – infinite bus power system

In this section we present the application of the proposed methodology to the example of a power system consisting of
one machine connected to a infinite bus; see [15] for more information regarding this model.

Model of linearized system with noise
The state vector for the linearized system _x ¼ Ax, is
Table 1
Almost

q ¼

kðqÞ
cqð0

Table 2
Almost

q ¼

kðqÞ
cqð0
x ¼ ½Dx;Dd;DWfd;v1;v2;v3

sure Lyapunov exponents for q ¼ 0:8.

0:8 b ¼ 0:8bnom b ¼ 0:9bnom b ¼ 1:0bnom b ¼ 1:1bnom b ¼ 1:2bnom

�0.15831 �0.19362 �0.22268 �0.25087 �0.27052
Þ �0.15758 �0.19363 �0.22349 �0.25225 �0.27175

sure Lyapunov exponents for q ¼ 1:4.

1:4 b ¼ 0:8bnom b ¼ 0:9bnom b ¼ 1:0bnom b ¼ 1:1bnom b ¼ 1:2bnom

�0.13345 �0.16359 �0.19494 �0.22503 �0.24130
Þ �0.13071 �0.16141 �0.19348 �0.22415 �0.24039

Fig. 2. Moment Lyapunov exponents of the linear oscillator, b ¼ 1:2bnom .
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where v1;v2;v3 are variables of the power system stabilizer, using expressions defined in [15]. The matrix A has the
structure
A ¼

a11 a12 a13 0 0 0
a21 0 0 0 0 0
0 a32 a33 a34 0 a36

0 a42 a43 a44 0 0
a51 a52 a53 0 a55 0
a61 a62 a63 0 a65 a66

0
BBBBBBBB@

1
CCCCCCCCA
:

The model for the field circuit is
DWfd ¼
K3

1þ sT3
DEfd � K4Dd
� �
and the excitation system is given by
DEfd ¼ �KADv1;
where v1 is the output of voltage transductor. The perturbation has been introduced as an error in the reference signal. This
situation is described by changing the element a34 in the matrix A to
DEfd ¼ �KAð1þ ntÞDv1:
To be precise, we consider the (linearized) one machine – infinite bus system _x ¼ AðntÞx with system matrix
AðntÞ ¼

0 �0:11 �0:12 0 0 0
377 0 0 0 0 0

0 �0:19 �0:42 a34 0 27:4
0 �7:3 20:8 �50 0 0
0 �1 �1:1 0 �0:71 0
0 �4:8 �5:4 0 26:9 �30:3

0
BBBBBBBB@

1
CCCCCCCCA
;

where a34 ¼ a34 � ð1þ ntÞ is a stochastic perturbation in the excitation component of the system. The stochastic perturbation
is nt ¼ q � sinðgtÞ with gt an Ornstein–Uhlenbeck process as in [6] and q is the size of perturbation.

In the similar case of Example 4.1, the key parameter in this system is the gain of the PSS, KPSS, whose nominal value
KPSSnom was chosen as in [15]. In order to compute Performance Indices, we used gain values Kw :¼ w � KPSSnom , with
w 2 ½0:8;1:2
. For the range of the random perturbation we used q 2 ½0;0:5
, with a step size of 0.1.

Fig. 3 shows the moment Lyapunov exponents curves for Kw ¼ 0:8 � KPSSnom and q 2 ½0;0:5
.
Fig. 3 allows us to determine the pth moment stability radius as in (12): we have, e.g., rð2; Kw ¼ 0:8 � KPSSnom Þ ¼ 0:1, or

rð1:5; Kw ¼ 0:8 � KPSSnom Þ ¼ 0:19. Similar to the findings of Example 4.1, Fig. 3 shows the stability index proposed in (13) which
corresponds to the moment p, for a fixed q, where system will not remain stable. In this case if the size of the perturbation is
q ¼ 0:5, then all moments p P 1:2 of the system will be unstable.
Fig. 3. Moment Lyapunov exponents of the one machine system, Kw ¼ 0:8KPSSnom .
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Fig. 4 shows the moment Lyapunov exponents curves for Kw ¼ 1:2 � KPSSnom and q 2 ½0; 0:5
. Comparing the two cases
Kw ¼ 0:8 � KPSSnom in Fig. 3 and Kw ¼ 1:2 � KPSSnom in Fig. 4 we see that the second zeros of the moment Lyapunov exponents
curves are not monotone in Kw: we have að0:5;0:8 � KPSSnom Þ > að0:5;1:2 � KPSSnom Þ, while aðq;0:8 � KPSSnom Þ > aðq;1:2 � KPSSnom Þ
for all q 2 ½0:1;0:4
. This indicates that optimal parameter tuning relative to exponential moment stability cannot simply
be achieved by increasing PSS gains.

5. Conclusions

This paper proposes several performance indices for the stability of operating points in dynamical systems affected by
sustained random perturbations. These indices are based on moment Lyapunov exponents and they complement the almost
sure Lyapunov exponent and stability radius analyzed in [6,2]. The two sets of indices are related by the fact that the almost
sure Lyapunov exponent of a system is the derivative at p ¼ 0 of the pth moment Lyapunov exponent function gðpÞ. This
means, in particular, that for small moments p > 0 the pth moment Lyapunov exponents contain the ’same’ information
as the a.s. exponent, while for large moments p� 0 the pth moment Lyapunov exponents contain the ’same’ information
as the maximal deterministic (robust) exponent cþ, compare Remark 2.4. Hence for design purposes stability indices based
on moment Lyapunov exponents can be used to strike a balance between almost sure behavior based on specific random
perturbations, and behavior based on the range of the perturbation. Design issues surrounding moment stability indices
are the topic of a forthcoming paper.

Note that while we always have for the moment Lyapunov function gðpÞ that gð0Þ ¼ 0, for a stable operating point the
second zero of gðpÞ, i.e., the point a > 0 with gðaÞ ¼ 0 determines the moment stability behavior. In realistic systems, such
as the one machine – infinite bus power system, this second zero a may not depend in a monotone fashion on the size of the
random perturbation, and on the amount of damping in the system. This indicates that optimal parameter tuning relative to
exponential moment stability cannot simply be achieved by increasing system damping, such as PSS gains.

A key question then is to what extend system design that uses indices based on almost sure or moment Lyapunov expo-
nents, depends on the specific statistics of the system noise nðt;xÞ. Of course, if one wants to immunize a system against all
specific noise statistics, one will have to use the deterministic (robust) exponent cþ: this index depends only on the size of
the perturbation, not on its statistics, see the comments above. The robustness of the design indices presented in this paper
relative to noise statistics is the topic of ongoing research.
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