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Abstract. Let (Yt : t > 0) be a STIT tessellation process and a > 1. We prove that the
random sequence (anYan : n ∈ Z) is a non-anticipating factor of a Bernoulli shift. We
deduce that the continuous time process (at Yat : t ∈ R) is a Bernoulli flow. We use the
techniques and results in Martínez and Nagel [Ergodic description of STIT tessellations.
Stochastics 84(1) (2012), 113–134]. We also show that the filtration associated to the non-
anticipating factor is standard in Vershik’s sense.

1. Introduction and main results
1.1. Introduction. A STIT tessellation process Y = (Yt : t > 0) is a Markov process
taking values in the space of tessellations on R`, for some `≥ 1. The process Y is
assumed to be spatially stationary, and it was first constructed in [9]. In §1.5 we revisit
this construction and recall some of its main properties. In [6] it was shown that Y is
spatially mixing.

A polytope with non-empty interior W is called a window. The STIT process Y induces
a tessellation process on W denoted by Y ∧W = (Yt ∧W : t > 0), which is a pure jump
process.

Let a > 1. Define the renormalized process Z = (Zt := at Yat : t ∈ R) and the discrete
process along the integers Z d

= (Zn : n ∈ Z). In [7] it was shown that the renormalized
process Z is time stationary and that for any window W the induced discrete process
Z d
∧W = (Zn ∧W : n ∈ Z) is a non-anticipating factor of a (generalized) Bernoulli shift.

In [7] it was shown that Z d
∧W has infinite entropy. Ornstein theory implies that Z d

∧W
is isomorphic to a Bernoulli shift of infinite entropy and that the time continuous process
restricted to a window Z ∧W = (Zt ∧W : t ∈ R) is isomorphic to a Bernoulli flow.

Here we extend the above results from tessellations on windows to tessellations on the
whole Euclidean space. We show in Theorem 1.2 that the discrete time process Z d is a non-
anticipating factor of a Bernoulli shift and that the time continuous Z is a Bernoulli flow.
Let ϕ be the factor; the non-anticipating property implies that (ϕn : n ≤ m) is identically
distributed to (Zn : n ≤ m) for all m. We complete our description of the renormalized
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discrete process by proving in Theorem 1.3 that the filtration (σ (ϕn : n ≤ m) : m ≤ 0)
is standard non-atomic in Vershik’s sense; this means it is generated by a sequence of
independent and identically distributed Uniform[0, 1] random variables.

1.2. Notation and some basic facts. We begin by fixing notation. Z+ = {n ∈ Z : n ≥ 0}
is the set of non-negative integers, N= Z+\{0} the set of (strictly) positive integers and
Z− = Z\N=−Z+ the set of non-positive integers. For a set C ⊆ R` we denote by int C
its interior, by cl C its closure and by ∂C = cl C\int C its boundary. When dealing
with distributions or random elements we use ∼ to mean ‘identically distributed as’, or
‘distributed as’.

A metric space (X , d) is Polish if it is complete and separable. A countable product
space

∏
l∈N Xl of Polish spaces is itself Polish with respect to some metric, for instance

d(x, y)=
∑

l∈N 2−l min(dl(xl , yl), 1), where dl is the metric on Xl .
We will always consider completed probability spaces (X , B, ν) even if we do not say

so explicitly, and if X is a topological space we will reserve the notation B(X ) for the
Borel σ -field.

A Lebesgue probability space is isomorphic to the unit interval [0, 1] endowed with its
Borel σ -field and a probability measure which is a convex combination of the Lebesgue
measure and a pure atomic measure. Let (X , d) be a Polish space and ν be a probability
measure on (X , B(X )); then the probability space (X , B(X ), ν) is Lebesgue (see [2]).
Hence, if X ′ ∈ B(X ) is a non-empty Borel set and ν′ is a probability measure on
(X ′, B(X ′)) then (X ′, B(X ′), ν′) is a Lebesgue probability space.

Let (X , d) be a metric space and DX (R+) be the space of càdlàg (right continuous
with left limits) trajectories taking values in X , with time in R+ = [0,∞). The space
DX (R+) endowed with the Skorohod topology is metrizable (see [4, Corollary 5.5 in
Ch. 3]). We denote by d X

Sk the usual metric defining this topology. If (X , d) is separable
then (DX (R+), d X

Sk) is also separable and if (X , d) is a Polish space then (DX (R+), d X
Sk)

is also Polish (see [4, Theorem 5.6 in Ch. 3]). The Borel σ -field B(DX ) associated to
(DX (R+), d X

Sk) is generated by the class of cylinders (see [4, Proposition 7.1]). We can
replace the time set R+ by R in these definitions and properties.

1.3. The space of tessellations. Let us introduce the tessellations on R`, for some `≥ 1.
A polytope is the compact convex hull of a finite point set, and we will always assume that
it has non-empty interior. A locally finite covering of polytopes is a countable family of
polytopes whose union is R` and such that every bounded set can only intersect a finite
number of them. The polytopes of a covering are called cells.

A tessellation T is a locally finite covering of R` by cells having pairwise disjoint
interiors. By T we mean the space of tessellations of R`. We enumerate the family of
(infinite) countable cells of a tessellation T ∈ T as T = {C(T )l : l ∈ N}. If T ∈ T is such
that the origin 0 belongs to the interior of its cell, the first cell C(T )1 in the enumeration
is the one containing 0. The boundary of a tessellation ∂T is the union of the boundaries
of its cells, that is ∂T =

⋃
l∈N ∂C(T )l . Every tessellation T is determined by ∂T , in fact

(∂T )c is the countable union of its open connected bounded components, and their closures
define the family of cells of a unique tessellation.
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Let W ⊂ R` be a fixed polytope with non-empty interior, called a window. A
tessellation in W is a locally finite countable covering of W by polytopes with disjoint
interiors. Let TW be the space of tessellations of W . By compactness, each R ∈ TW

has a finite number of cells and this number is denoted by #R. The trivial tessellation is
R = {W } ∈ TW , which has boundary ∂W . A cell of R ∈ TW is said to be an interior cell
(in W ) if it does not intersect ∂W .

Let T ∈ T. For every non-empty set D ⊆ R` such that D = cl(int D), we define T ∧
D = {C ∩ D : C ∈ T, int(C ∩ D) 6= ∅}. When ET = (Tl : l ∈ L) is a family of tessellations
we put ET ∧ D = (Tl ∧ D : l ∈ L). Analogously, if T= ( ET j

: j ∈ J ) is a class of families
of tessellations we write T ∧ D = ( ET j

∧ D : j ∈ J ).
Let W be a window and T ∈ T. We have T ∧W ∈ TW . Take a pair of windows

W, W ′ such that W ′ ⊆W . Every Q ∈ TW defines in the same way as before a tessellation
Q ∧W ′ ∈ TW ′ . For each cell C ′ ∈ Q ∧W ′ there is a unique cell C ∈ Q containing it, and
C is called the extension of C ′ in Q (or in W ). Each a ∈ R\{0} defines the tessellation
aT = {aC : C ∈ T } where aC = {ax : x ∈ C}. Similarly, for a tessellation Q ∈ TW we
have aQ = {aC : C ∈ Q} ∈ TaW .

Let β :�→ T be a function taking values in T and W be a window. We define the
function β ∧W by β ∧W (ω)= β(ω) ∧W . In a similar way, for a function β J

:�→ TJ

we define β J
∧W and for a function βW :�→ TW we define βW ∧W ′ for every window

W ′ ⊆W .

1.4. Measurability considerations. The family of closed sets F of R` endowed with the
Fell topology is a metrizable compact Hausdorff space; see [14, Ch. 12]. Let F′ = F\{∅}
and F(F′) be the family of closed sets of F′ endowed with the Fell topology and its
associated Borel σ -field B(F(F′)). Since a tessellation T ∈ T is a countable collection of
polytopes, it is an element of F(F′). In [14, Lemma 10.1.2] it is shown that T ∈ B(F(F′)).

We note that the space of boundaries of tessellations is a subset of F′ and is endowed
with the trace of the Fell topology and the Borel σ -field. The topological and measurable
structures are preserved when representing a tessellation by its boundary; in particular, all
sequences (Tn : n ∈ N)⊂ T and T ∈ T satisfy Tn→ T ⇔ ∂Tn→ ∂T .

Let FW be the family of closed subsets of W and F′W = FW \{∅}. The set F(F′W ) is
endowed with the Fell topology and its associated Borel σ -field. We have TW ∈ B(F(F′W )).
The σ -field B(TW ) will be identified with the sub-σ -field B(T) ∧W of B(T), defined by

B(T) ∧W := {B = {T ∈ T : T ∧W ∈ BW } : BW ∈ B(TW )}.

Since T is a Borel set in F(F′), for any probability measure ν defined on (T, B(T))
the completed probability space (T, B(T), ν) is Lebesgue. An analogous statement can be
made for the set of tessellations restricted to a window TW .

Let (Wl : l ∈ N) be a strictly increasing sequence of windows such that Wl ⊂ int Wl+1

and Wl ↗ R` as l↗∞. For m, l ∈ N, m > l, define γm,l : TWm → TWl , Tm→ γm,l(Tm)=

Tm ∧Wl . The projective space lim← TWl is the set of points (Tl : l ∈ N) ∈
∏

l∈N TWl

that satisfy γm,l(Tm)= Tl for m > l. We denote by γm : lim← TWl → TWm the projection
γm(Tl : l ∈ N)= Tm .
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Any tessellation T ∈ T defines a point (Tl : l ∈ N) ∈ lim← TWl by Tl = T ∧Wl for
l ∈ N. For the converse a certain condition must be satisfied. A sequence (Tl : l ∈ N) ∈
lim← TWl is said to satisfy the finite extension property if for all l ∈ N there exists m > l
such that the extensions in Tm of all the cells of Tl , are interior cells in Tm . This property
implies for all m′ ≥ m that the cells of Tm′ extending the cells of Tl are the same as
the cells of Tm extending the cells of Tl . Note that the finite extension property is
satisfied when Tl = T ∧Wl for all l ∈ N, for some tessellation T ∈ T. We claim that if
(Tl : l ∈ N) ∈ lim← TWl satisfies the finite extension property then there is a unique T ∈ T
such that Tl = T ∧Wl for all l ∈ N. Let us show that the tessellation T is characterized
by the set of cells T = {C(n0, Cn0) : n0 ∈ N, Cn0 ∈ Tn0}, where C(n0, Cn0) :=

⋃
n≥n0

Cn

and (Cn : n > n0) is uniquely defined by Cn ∈ Tn and Cn0 ⊆ Cn for all n > n0. From the
finite extension property there exists n′ ≥ n0 such that Cn = Cn′ for all n ≥ n′. Then every
cell C(n0, Cn0) is bounded. Also two such cells C(n0, Cn0), C(n∗, Cn∗) are either equal
or have disjoint interiors. Then T = {C(n0, Cn0) : n ∈ N, Cn0 ∈ Tn0} is a locally finite
covering of R` whose cells have pairwise disjoint interiors. So, T is a tessellation and
it is clear that Tl = T ∧Wl for all l ∈ N. Thus, the claim is shown. Hence, the set of
tessellations can be represented as a Borel part of the projective space.

Let us prove that the topology of the space of tessellations inherited from the projective
space is the same as that already imposed on T. Since these spaces are metric, it suffices
to show that

for all (Rk : k ∈ N)⊂ T, R ∈ T : Rk→ R⇔ for all l ∈ N : Rk ∧Wl → R ∧Wl . (1)

In the proof we represent tessellations by their boundaries and use [14, Theorem 12.2.2].
This theorem implies that ∂Rk→ ∂R if and only if the following two conditions are
satisfied:

(a) for all x ∈ ∂R, for all k there exists xk ∈ ∂Rk such that xk→ x;

(b) for all subsequences (k j ), if xk j ∈ ∂Rk j satisfies xk j → x, then x ∈ ∂R.

The same holds for the convergence of closed sets restricted to a window. Now let us
prove (1). The ⇒ part is straightforward because R→ R ∧Wl is continuous. Let us
prove the ⇐ part. We must show that (a) and (b) are satisfied. Let x ∈ ∂R. Since
x ∈ int Wl for some l ∈ N we deduce that x ∈ ∂(R ∧Wl). Then there exists a sequence
(xk) with xk ∈ ∂(Rk ∧Wl) and such that xk→ x . Since x /∈ ∂Wl , property (a) follows
because xk ∈ ∂Rk for all k except for a finite number. Let us prove (b). We can assume
that x ∈ int Wl for some l ∈ N, and that the subsequence (xk j ) is in ∂(Rk j ∧Wl). We get
x ∈ ∂(R ∧Wl) and from x /∈ ∂Wl we obtain x ∈ ∂R. Hence the equivalence (1) is shown.
From (1) we deduce the following property for the σ -fields:

B(T) ∧Wl ↗ B(T) as l↗∞.

It is well known that any sequence of probability measures (µl : l ∈ N), such that µl is
defined on TWl and µl = µm ◦ γ

−1
m,l for all m > l, defines a unique probability measure µ

on lim← TWl that satisfies µm = µ ◦ γ
−1
m for all m ∈ N. This result can be also retrieved

from [14, Theorem 2.3.1]. Note that µ(T)= 1 if and only if µ-almost surely (a.s.) the
sequences (Tn : n ∈ N) ∈ lim← TWl satisfy the finite extension property.
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1.5. The STIT tessellation process. Let us give some elements of the construction of
the STIT tessellation process Y = (Yt : t > 0) from [8, 9]. Y is a Markov process whose
marginals Yt take values in T. The law of the STIT process Y only depends on a (non-zero)
locally finite and translation invariant measure3 on the space of hyperplanes H in R`. The
set H is endowed with the trace of the Fell topology and with the associated Borel σ -field.

Let S`−1 be the set of unit vectors in R`−1 and S̃`−1
= S`−1/≡ be the set of equivalence

classes for the relation u ≡−u. A measure on S̃`−1 is defined by a measure on S`−1 that
is invariant under u→−u. Each hyperplane h ∈H can be represented by an element in
R× S̃`−1. The image of 3 under this representation is λ⊗ κ , where λ is the Lebesgue
measure on R and κ is a finite measure on S̃`−1 (see [14, Section 4.4 and Theorem 4.4.1]).
From local finiteness it follows that

3([B]) <∞ for all B bounded in B(R`) where [B] = {H ∈H : H ∩ B 6= ∅}. (2)

It is assumed that the linear space generated by the support of κ is R`; this is written as

〈Support κ〉 = R`. (3)

Let W be a window. From (2) we get 0<3([W ]) <∞. The translation invariance of 3
yields

3([cW ])= c3([W ]) for all c > 0 (4)

(see, for example, [14, Theorem 4.4.1]). Denote by 3W (•)=3([W ])−13(• ∩ [W ]) the
normalized probability measure on the set of hyperplanes intersecting W .

Let us construct Y W
= (Y W

t : t ≥ 0), which is a pure jump Markov process whose
marginals take values in TW . Let D = (dn,m : n ∈ Z+, m ∈ N) and τ = (τn,m : n ∈
Z+, m ∈ N) be two independent families of independent random variables with
distributions dn,m ∼3

W and τn,m ∼ Exponential(1). We will define an increasing
sequence of random times (Sn : n ∈ Z+) and a sequence of random tessellations (Y W

Sn
:

n ∈ Z+) with starting points S0 = 0 and Y W
0 = {W }. We will fix

Y W
t = Y W

Sn
, t ∈ [Sn, Sn+1). (5)

The sequences (Sn : n ≥ 0) and (Y W
Sn
: n ≥ 0) are defined by an inductive procedure. Let

{C1
n , . . . , C ln

n } be the cells of Y W
Sn

; we put

Sn+1 = Sn + τ(Y
W
Sn
), where τ(Y W

Sn
)=min{τn,l/3([C

l
n]) : l = 1, . . . , ln}.

Let l∗ be such that τn,l∗/3([C l∗
n ])= τ(Y

W
Sn
) (it is a.s. uniquely defined). We take m as the

first index such that dn,m ∈ [C l∗
n ], so dn,m ∼3

C l∗
n . The tessellation Y W

Sn+1
is the one whose

cells are {C l
n : l 6= l∗} ∪ {C ′1, C ′2}, where C ′1, C ′2 is the partition of C l∗

n by the hyperplane
dn,m .

The process Y W is a pure jump Markov process. This construction yields a law that is
consistent with respect to W , which means that if W and W ′ are windows and W ′ ⊆W ,
then Y W

∧W ′ ∼ Y W ′ . Moreover, as a consequence of (3), we get that a.s. for all W ′

there exists W (depending on the realization) containing W ′ such that the extensions in
Y W of all the cells of Y W ′ are interior cells in Y W . This is the finite extension property.
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From [14, Theorem 2.3.1] follows the existence of the marginals Yt with values in T and
such that Yt ∧W ∼ Y W

t for every window W and all t > 0. In [8] it was shown that
Y = (Yt : t > 0) is a well-defined Markov process, and this is a STIT tessellation process.

From this construction, and since S1 is exponentially distributed with parameter
3([W ]), we get

P(∂(Yt ∧W ) ∩ int W = ∅)= P(Yt ∧W = {W })= P(Yt ∧W = Y0 ∧W )= e−t3([W ]).

For t > 0 define the marginal distributions

ξ t (B)=P(Yt ∈ B) for all B ∈ B(T) and ξ t
W (D)=P(Yt ∧W ∈ D) for all D ∈ B(TW ).

Let us prove that

ξ t is non-atomic and ξ t
W has a unique atom {W }. (6)

Let us first show the statement for ξ t
W . Note that ξ t

W ({W })= e−t3([W ]) > 0, so {W } is
an atom. Let us prove that it is unique. Assume that for some tessellation Q0 ∈ TW ,
Q0 6= {W }, we have ξ t

W ({Q0}) > 0. From the construction there is a hyperface r of
Q0 contained in some hyperplane H ∈H. Since 3 is translation invariant and σ -finite,
3W ({H})= 0 for all H ∈H. Consequently ξ t

W ({Q0})= 0, so {W } is the unique atom
of ξ t

W . (This argument was given in [7].) Now let us prove that ξ t is non-atomic. If
there exists T0 such that ξ t ({T0}) > 0, we will necessarily have ξ t

W ({T0 ∧W }) > 0 and so
T0 ∧W = {W } for all windows W . We will deduce T0 = {Rd

}, which is in contradiction
to P(Yt = {Rd

})= 0.
From (5) it follows that Y ∧W is a pure jump Markov process with càdlàg trajectories.

Then a.s. there exists limh↘0+ Yt−h ∧W in TW and limh↘0+ Yt+h ∧W = Yt ∧W . From
(1) we deduce that also the STIT process Y has càdlàg trajectories. Then the trajectories
of Y ∧W belong to DTW (R+) and the trajectories of Y are in DT(R+).

Let dT
Sk be the usual metric defining the Skorohod topology on DT(R+) and let B(DT)

be the Borel σ -field. The space (DT(R+), dT
Sk) is separable. If the time set is R we

write DT(R), while dT
Sk and B(DT) continue to denote the metric and the Borel σ -field,

respectively. We use the same statements and notation for dTW
Sk , B(DTW ) and DTW (R).

Let us consider the closure T of T in F(F′). The space DT(R+) is endowed with

the Skorohod topology generated by a metric dT
Sk. Since (T, dT

Sk) is a Polish space

(DT(R+), dT
Sk) is also Polish. Then we can consider that the trajectories of Y take values

in the Polish space (DT(R+), dT
Sk). For DT(R), dT

Sk and B(DT) continue to denote the
metric and the Borel σ -field, respectively. This is also done for DTW

(R).
The following scaling property was shown in [9, Lemma 5]. It is further used to state

the renormalization in time and space:

for all t > 0, tYt ∼ Y1. (7)

1.6. Independent increments relation. Let T ∈ T be a tessellation and ER = (Rk
: k ∈

N) ∈ TN be a sequence of tessellations. We define the tessellation T � ER (also referred to
as iteration or nesting) by its set of cells

T � ER = {C(T )k ∩ C(Rk)l : k ∈ N, l ∈ N, int(C(T )k ∩ C(Rk)l) 6= ∅}.
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Thus, we restrict the tessellation Rk to the cell C(T )k , and this is done for all k ∈ N. The
same definition is made for tessellations and sequences of tessellations restricted to some
window.

Let us fix a copy of the random process Y and let EY ′ = (Y ′m : m ∈ N) be a sequence of
independent copies of Y , all of them being also independent of Y . In particular, Y ′m ∼ Y .
We put EY ′s = (Y ′s

m
: m ∈ N) for s > 0. From the construction of Y the following property

holds:
Yt+s ∼ Yt � EY

′
s for all t, s > 0.

This relation was first stated in [9, Lemma 2]. The construction made in [9] to prove this
result also allows us to show the following relation stated in [7]. Let EY ′(i), i = 1, . . . , j ,
be a sequence of j independent copies of EY ′ and also independent of Y . Then, for all
0< s1 < · · ·< s j and all t > 0,

(Yt , Yt+s1 , . . . , Yt+s j )∼ (Yt , Yt � EY ′(1)s1
, . . . , (((Yt � EY ′(1)s1

)� · · · )� EY ′( j)
s j−s j−1

)). (8)

1.7. Elements of ergodic theory. An abstract dynamical system (�, B(�), µ, ψ) is
such that (�, B(�), µ) is a Lebesgue probability space and ψ :�→� is a measure-
preserving measurable transformation, that is, µ ◦ ψ−1

= µ. To avoid overburdening
our notation, instead of (�, B(�), µ, ψ) we simply put (�, µ, ψ). For two dynamical
systems (�, µ, ψ) and (�′, µ′, ψ ′), the measurable map ϕ :�→�′ is a factor map if
ϕ ◦ ψ = ψ ′ ◦ ϕ µ-a.s. and µ ◦ ϕ−1

= µ′. If a factor map ϕ is a.s. a one-to-one surjection,
then ϕ is an isomorphism.

Let (S, B(S)) be a measurable space, where S is a Polish space (with respect to some
metric) and B(S) is its Borel σ -field. Let L = Z+ or L = Z. The shift transformation
σS : S L

→ S L , x→ σS(x) with σS(x)n = xn+1 for n ∈ L , is measurable. A dynamical
system (S L , µ, σS) is called a shift system. Let Y d

= (Yn : n ∈ L) be a stationary sequence
with state space S and µY d

be the distribution of Y d on S L . The stationary property of Y d

means that µY d
is σS -invariant and so (S L , µY d

, σS) is a shift system. Let (S, B(S), νS)
be a Lebesgue probability space; the shift σS preserves the product probability measure
ν⊗L

S and (S L , ν⊗L
S , σS) is a Bernoulli shift. A dynamical system is said to be Bernoulli if

it is isomorphic to a Bernoulli shift. The Ornstein isomorphism theorem states that two-
sided Bernoulli shifts with the same entropy are isomorphic (see [10, 11]).

The inverse one-sided shift is given by σ−S : S Z−→ S Z− , (σ−S (x))n = xn−1 for n ∈ Z−.
We set σ−n

S := (σ−S )
n for n ∈ Z+. The one-sided Bernoulli shifts (S Z+ , ν⊗Z+ , σS) and

(S Z− , ν⊗Z− , σ−S ) are isomorphic.

Let (S Z, µ, σS) and (S ′Z, µ′, σS ′) be two shift systems. A factor map ϕ : S Z
→ S ′Z is

non-anticipating if µ-a.s. in x ∈ S Z the coordinate (ϕ(x))n only depends on (xm : m ≤ n).
By shift invariance it suffices that this condition is satisfied for some n ∈ Z.

A flow (or continuous time dynamical system) (�, µ, (ψ t
: t ∈ R)) is such that

(�, B(�), µ) is a Lebesgue probability space, µ ◦ (ψ t )−1
= µ for t ∈ R, ψ t+s

= ψ t
◦

ψ s µ-a.s. for t, s ∈ R, and the joint application [0,∞)×�→�, (t, ω)→ ψ t (ω) is
measurable. The entropy of the flow is by definition the entropy of (�, µ, ψ1). The shift
flows are defined with respect to the shift transformations σ t (xs : s ∈ R)= (xs+t : s ∈ R)
for t ∈ R. A stationary random process Y = (Yt : t ∈ R) with càdlàg trajectories, and
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whose marginals take values in a Polish space, defines a flow. In fact, for all x ∈ DS(R) the
trajectory (σ t (x) : t ∈ R) is right continuous in t ∈ R and so the joint application [0,∞)×
DS(R)→ DS(R), (t, ω)→ ψ t (ω), is measurable (see, for instance, [1, Theorem 6.11 of
Ch. I]).

A Bernoulli flow (�, µ, (ψ t
: t ∈ R)) is a flow such that (�, µ, ψ1) is isomorphic to

a Bernoulli shift. The isomorphism theorem for Bernoulli flows (see [13]) states that two
Bernoulli flows with the same entropy are isomorphic.

1.8. Standardness. Let us define standardness of filtrations in Vershik’s sense, as
introduced in [15]. We will restrict the discussion to Lebesgue probability spaces.

Let (�, B, ν) be a non-atomic Lebesgue probability space. A filtration of (complete) σ -
fields K = (Kn : n ∈ Z−) (contained in B) is said to be standard non-atomic if Kn = σ(θl :

l ≤ n) for all n ∈ Z−, for some sequence (θn : n ∈ Z−) of independent and identically
distributed Uniform[0, 1] random variables.

A filtration G = (Gn : n ∈ Z−) (contained in B) is standard if for some standard non-
atomic filtration K = (Kn : n ∈ Z−) the filtration G is immersible in K. This means
Gn ⊆Kn for all n ∈ Z− and every G-martingale is a K-martingale.

The equivalence between condition (i) of Theorem 1 and condition (v) of Theorem 2
stated in [3] implies that: if a filtration G = (Gn : n ∈ Z−) satisfies that G0 is separable,
Gn = σ(Gn−1, αn) with αn independent from Gn−1 for all n ∈ Z− and (αn : n ∈ Z−) is a
sequence of independent and identically distributed Uniform[0, 1] random variables; then

G is standard ⇔ G is standard non-atomic. (9)

In relation to this result, see the discussion following [3, Corollary 5]; other related results
can be found in [5, 15].

1.9. Renormalized process and previous results. Let Y be a STIT tessellation process.
Fix a > 1 and define the renormalized process Z = (Zs : s ∈ R) by

Zs = asYas , s ∈ R.

Note that Z0 = Y1. Since (Yt : t > 0) is a Markov process, so is (Zs : s ∈ R). From (7) all
one-dimensional distributions of (Zs : s ∈ R) are identical. In [7] it was shown that Z is a
stationary Markov process, that is, Z ∼ σ t

T ◦ Z for all t ∈ R, where (σ t
T ◦ Z)s = Zs+t for

s ∈ R.
The process Z inherits càdlàg trajectories from Y , so the trajectories of Z belong

to DT(R). Let µZ be the law of Z on DT(R). Since the process Z is stationary,
(DT(R), µZ , (σ t

T : t ∈ R)) is a shift flow. Similarly for the process Z ∧W = (Zs ∧W :
s ∈ R) restricted to a window W . Let µZ

W be the law of this process on DTW (R). In [7] it
was proved that (DTW (R), µZ

W , (σ
t
T : t ∈ R)) is a mixing shift flow.

Let Z d
= (Zn : n ∈ Z) be the restriction of Z to integer times. The law µZ d

of Z d on
TZ is σT-invariant. For a window W , the law µZ d

W of Z d
∧W = (Zn ∧W : n ∈ Z) on TZ

W
is σTW -invariant.

Let ξ = ξ1 be the law of Y1 = Z0 and ξW = ξ
1
W be the law of Y1 ∧W = Z0 ∧W . We

write
% = ξ⊗N and %W = ξ

⊗N
W .
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The following ergodic properties of Y were shown in [7].

THEOREM 1.1. Let W be a window. The dynamical system (TZ
W , µ

Z d

W , σTW ) is a
factor of the Bernoulli shift ((TN

W )
Z, %⊗Z

W , σTN
W
), that is, there exists ϕW : (TN

W )
Z
→ TZ

W ,

measurable and defined %⊗Z
W -a.s., satisfying

σTW ◦ ϕW = ϕW ◦ σTN
W

%⊗Z
W -a.s. (10)

and

%⊗Z
W ◦ ϕ

−1
W = µ

Z d

W . (11)

The factor map ϕW is non-anticipating. Moreover, for all m ∈ Z, %⊗Z
W -a.s. in RW

= ( ERW
n :

n ∈ Z) ∈ (TN
W )

Z, the coordinate ϕW (RW )m depends only on a finite set of coordinates
( ERW

n : n ∈ [m − N , m]) of the point RW .

Furthermore, the shift system (TZ
W , µ

Z d

W , σTW ) is isomorphic to a Bernoulli shift of
infinite entropy and (DTW

(R), µZ
W , (σ

t
TW
: t ∈ R)) is a Bernoulli flow of infinite entropy.

The last part of this theorem follows from Ornstein theory (see [12, 13]).

1.10. Main results. Let us extend the above result from the process on tessellations on
windows to the process on tessellations on the whole Euclidean space.

Let W be a window. The mapping 8W : DT(R)→ DTW (R), Z →8W (Z)= Z ∧W ,
is a factor from (DT(R), µZ , (σ t

T : t ∈ R)) onto (DTW (R), µZ
W , (σ

t
TW
: t ∈ R)). This

factor is obviously non-anticipating. Analogously in the discrete case, 8d
W : T

Z
→

TZ
W , 8W (Z d)= Z d

∧W , is a factor from (TZ, µZ , σT ) onto (TZ
W , µ

Z
W , σTW ). From

Theorem 1.1 we deduce that (TZ, µZ , σT ) has a Bernoulli factor with infinite entropy,
so it has infinite entropy. Hence, (DT(R), µZ , (σ t

T : t ∈ R)) also has infinite entropy.
Let R= ( ERn : n ∈ Z) be a random element distributed as R∼ %Z. Then the components
ERn = (Rm

n : m ∈ N), n ∈ N, are independent sequences of tessellations and the distribution
of each one of them is %. We also use R ∈ (TN)Z to denote a realization of the random
vector. We have R ∧W ∼ %Z

W , where R ∧W := ( ERn ∧W : n ∈ Z) ∈ (TN
W )

Z. By using
this representation we have (R ∧W ) ∧W ′ ∼ %Z

W ′ for every pair of windows W , W ′ such
that W ′ ⊆W .

In the next result ϕW refers to the factor in Theorem 1.1. We point out that this map is
%⊗Z-a.s. defined in the following sense: ϕW (R ∧W ) is well defined for points R ∈ (TN)Z

in a set of full %⊗Z-measure. In the following we shall identify the σ -field B((TN
W )

Z) with
the following sub-σ -field of B((TN)Z):

B((TN)Z) ∧W := {B = {R ∈ (TN)Z : R ∧W ∈ BW } : BW ∈ B((TN
W )

Z)}. (12)

In a similar way, for a pair of windows W , W ′ such that W ′ ⊆W , we identify B((TN
W ′)

Z)
with

B((TN
W )

Z) ∧W ′ := {B = {RW ∈ (TN
W )

Z
: RW ∧W ′ ∈ BW ′} : BW ′ ∈ B((TN

W ′)
Z)},

which is a sub-σ -field of B((TN
W )

Z).
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THEOREM 1.2. The shift system (TZ, µZ d
, σT) is a factor of the Bernoulli shift

((TN)Z, %⊗Z, σTN), that is, there exists ϕ : (TN)Z→ TZ, measurable and defined %⊗Z-
a.s., satisfying

σT ◦ ϕ = ϕ ◦ σTN %⊗Z-a.s.

and
%⊗Z
◦ ϕ−1

= µZ d
.

The factor map ϕ is non-anticipating: for all m ∈ Z, %⊗Z-a.s. in R= ( ERn : n ∈ Z) ∈
(TN

W )
Z, the coordinate ϕ(R)m only depends on ( ERn : n ≤ m).

Besides, ϕ ∧W = ϕW %⊗Z-a.s. and ϕW ∧W ′ = ϕW ′ %
⊗Z-a.s. for each pair of windows

W, W ′ such that W ′ ⊆W .
Finally, (DT(R), µ

Z , (σ t
T : t ∈ R)) is a Bernoulli flow of infinite entropy.

Since ϕ is non-anticipating, a consequence of this theorem is that (ϕn : n ≤ m)∼ (Zn :

n ≤ m) for all m ∈ Z. Concerning standardness we will prove the following result.

THEOREM 1.3. Let ϕ be the non-anticipating factor of Theorem 1.2, and define Gn =

σ(ϕk : k ≤ n). Then the filtration G = (Gn : n ∈ Z−) is standard non-atomic.

2. Proof of Theorem 1.2
We can assume that throughout the evolution of the STIT tessellation process Y , the origin
0 belongs to the interior of the cell containing it a.s. As stated, the first cell C(T )1 of a
tessellation T is the one containing 0. For b > 1, T ∈ T, we have already defined bT ∈ T.
When ER = (Rm

: m ∈ N) ∈ TN we put b ER = (bRm
: m ∈ N). We recall that a > 1.

Let ( EY ′(i)1 : i ∈ N) be independent copies of EY ′1. By using (8) we get

(Zn+k : k ∈ Z+)∼
(

ak Zn
k
�

i=1

ak+1−i

a − 1
EY ′(i)1 : k ∈ Z+

)
,

where M �k
i=1
EM ′(i) = (· · · (M � EM ′(1))� · · · )� EM ′(k), for a tessellation M and a family

of sequences of tessellations ( EM ′(i) : i ∈ N).
Let W be a window. Since the process is translation invariant we can assume that

W contains the origin in its interior. Let ER− = (Rk
: k ∈ Z−) be a random sequence of

independent copies of Y1, so ER− ∼ ξ⊗Z− . In [7, Lemma 2.1], equation (4) is used to show
that

P(∀k ∈ Z− : ∂Rk
∩ int(ak W )= ∅)= P(∂R0

∩ int(W )= ∅)a/(a−1) > 0,

and from the ergodic theorem it is deduced that

P(∃(ni ≥ 1 : i ∈ Z+)↗, ∀i ∈ Z+ ∀k ∈ Z− : ∂R−ni+k
∩ int(ak W )= ∅)= 1. (13)

Below we shall encounter the following evolution equation: for T 0, R0
∈ T and ( EQn :

n ∈ N) a family of sequences of tessellations,

for all n ∈ N, T n+1
=

(
aT n �

a

a − 1
EQn+1

)
∧W,

Rn+1
=

(
a Rn �

a

a − 1
EQn+1

)
∧W. (14)
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It is easily shown that these types of sequences satisfy

T 0
∧ a−nW = R0

∧ a−nW ⇒ T n
∧W = Rn

∧W (15)

(see [7, Lemma 2.2]). Let us prove that the functions ϕW in Theorem 1.1 can be constructed
in such a way that they satisfy the following projective property.

LEMMA 2.1. Let (Wl : l ∈ N) be a strictly increasing sequence of windows such that Wl ⊂

int Wl+1 for all l and Wl ↗ R`. Then there exists a sequence of functions (ϕWl : l ∈ N)
which satisfies (10) and (11) and the other properties mentioned in Theorem 1.1, and

for all l ≥ k, ϕWl ∧Wk = ϕWk %Z-a.s. (16)

Proof. Let us give an equivalent but slightly different construction of the factor map
ϕW : (TN

W )
Z
→ TZ

W , with respect to the one supplied in [7]. Property (13) applied
to the sequences (R1

n ∧W : n ∈ Z−) shows that %⊗Z-a.s. the set of n ∈ N that satisfy
∂(R1

k−n ∧W ) ∩ int(ak W )= ∅ for all k ∈ Z− is infinite. Then we can order them as an
increasing sequence N W

i = N W
i (R ∧W ), i ∈ N, and we get

for all i ∈ N, N W
i ≥ 1, N W

i ↗∞ and ∂(R1
k−N W

i
∧W ) ∩ int(ak W )= ∅ for all k ∈ Z−.

(17)

For i ∈ N we define the function ϕi
W (R ∧W ) by

for all n ≤ −N W
i , (ϕi

W (R ∧W ))n = {W },

for all n ≥ −N W
i , (ϕi

W (R ∧W ))n+1 =

(
a(ϕi

W (R ∧W ))n �
a

a − 1
ERn

)
∧W. (18)

This construction is done for all i ∈ N. Since the operation � depends on the enumeration
of the cells of the tessellations, we need to point out two facts. First, from (17) and since
the evolution equation (18) satisfies (14), we use (15) to obtain

for all j ≥ i ≥ 1, (ϕ
j
W (R ∧W ))N W

i
= {W }. (19)

This first property guarantees the following one. We can perform the construction in (18)
such that for j ≥ i the cells in the tessellations (ϕ j

W (R ∧W ))n are enumerated in the same
way as in (ϕi

W (R ∧W ))n , for the coordinates n ≥−N W
i . This ensures that

for all j ≥ i, for all n ≥−N W
i , (ϕ

j
W (R ∧W ))n = (ϕ

i
W (R ∧W ))n .

Therefore, there exists

ϕW (R ∧W )= lim
j→∞

ϕ
j
W (R ∧W ) %⊗Z-a.s.

which satisfies

for all i ∈ N, for all n ≥−N W
i , (ϕW (R ∧W ))n = (ϕ

i
W (R ∧W ))n . (20)

We will simply write ϕW = ϕW (R ∧W ), ϕi
W = ϕ

i
W (R ∧W ) and (ϕi

W )n = (ϕ
i
W (R ∧W ))n .

It is straightforward to show that ϕW satisfies the commuting property (10). Equalities
(20) and (18) also prove that the factor map ϕW is non-anticipating. The relation (11),
%⊗Z

W ◦ ϕ
−1
W = µ

Z d

W was shown in [7] by a coupling argument. Hence, ϕW = limN→∞ ϕ
i
W
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is pointwise defined %⊗Z-a.s. and is a non-anticipating factor satisfying the properties given
in Theorem 1.1.

The sequence (Wl : l ∈ N) is strictly increasing and satisfies Wl ↗ R`. We can assume
that 0 ∈ int W1. To simplify the notation, we put Rm

n;l = Rm
n ∧Wl , ERn;l = ERn ∧Wl ,

Rl = R ∧Wl , N Wl
i = N l

i , ϕl = ϕWl , ϕn;l = (ϕWl )n and ϕi
n;l = (ϕ

i
Wl
)n .

We apply property (13) to the sequence of independent random tessellations (R1
n;l : n ∈

Z−) to get that %⊗Z-a.s. for every l ∈ N there exists a sequence of points N l
i = N l

i (Rl),
i ∈ N, that satisfies property (17),

for all i ∈ N, N l
i ≥ 1, N l

i ↗∞ and ∂R1
m−N l

i ;l
∩ int(am Wl)= ∅ for all m ∈ Z−.

For l ≥ k we have Wk ⊂Wl and R1
n;k = R1

n;l ∧Wl . Then, for all s ≥ 1,

∂R1
m−s;l ∩ int(am Wl)= ∅ implies ∂R1

m−s;k ∩ int(am Wk)= ∅.

Hence,
l ≥ k implies {N l

i : i ∈ N} ⊆ {N k
i : i ∈ N}.

From (18) we deduce that the set of equalities

for all l ≥ k, for all n ≥−N k
i , ϕn;k = ϕn;l ∧Wk %⊗Z-a.s., (21)

will be satisfied once the enumerations of the cells in the tessellations ϕn;l(Rl) ∧Wk and
ϕn;k(Rk) use the same order. In fact, if this property is satisfied then

for all n ≥−N k
i ,

(
aϕn;l(Rl)�

a

a − 1
ERn;l

)
∧Wk =

(
aϕn;k(Rk)�

a

a − 1
ERn;k

)
.

So, we will be able to deduce that ϕn+1;l(Rl) ∧Wk = ϕn+1;k(Rk) for all n ≥−N k
i , and

then equality (21) will be satisfied. The same enumeration of ϕn;l(Rl) ∧Wk and ϕn;k(Rk),
for l ≥ k, can be achieved as described below.

Note that (19) implies that for all n ≥−N W
i the enumerations of the cells in ϕ j

n;k and

ϕi
n;k can be chosen to be the same for all j ≥ i . This will fix the order for ϕn;k .

Let us now introduce some useful notions for the proposed ordering. First, let ≺
be the lexicographical order on R` given by (a1, . . . , a`)≺ (b1, . . . , b`) if and only
if there exists some j ∈ {1, . . . , `} such that ai

= bi for i < j and a j < b j . Now, let
A1 = {x1, . . . , xr } and A2 = {y1, . . . , ys} be two non-empty finite subsets of R`, with no
inclusion relation (neither A1 ⊆ A2 nor A2 ⊆ A1 is satisfied). We enumerate its elements
by using the lexicographical order ≺, so x1 ≺ · · · ≺ xr and y1 ≺ · · · ≺ ys . We put A1@A2

if for some t <min{r, s} we have xi = yi for i = 1, . . . , t and xt+1 ≺ yt+1. Note that @ is
a total order relation in any family of non-empty finite sets of R` such that for all pairs of
them there is no inclusion relation.

Let E(C) be the (finite) set of extremal points of a cell C of a tessellation. Note that if
C and C ′ are two different cells of the same tessellation then there is no inclusion relation
between E(C) and E(C ′), and so either E(C)@E(C ′) or E(C ′)@E(C) is satisfied.

Let us enumerate the cells in a recursive way in k. Let k = 1. Take n ≤ 0. Let i ∈ N be
the first index such that −N 1

i ≤ n. The cells of the tessellations ϕi
n;1(R1) are enumerated
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as follows. The first is the cell containing 0, after we put the other cells enumerated by @.
This is the order chosen for ϕn;1.

Let k > 1 and assume that the order has been defined up to k − 1. The cells of the
tessellations ϕn;k(Rk) in the kth window are enumerated as follows: the cells of the
tessellation ϕn;k(Rk) in Wk that are extensions of cells of ϕn;k−1(Rk−1) preserve their
previous order; the remaining cells of the tessellation ϕn;k(Rk) in Wk are enumerated
according to @ and are put immediately after the previous ones. This enumeration gives
the same order to the cells in ϕn;l(Rl) ∧Wk and in ϕn;k(Rk), for all l ≥ k. Then equality
(21) is satisfied. This shows relation (16). 2

Let us finish the proof of Theorem 1.2. From (16) and [14, Theorem 2.3.1] we get that
there exists a function ϕ taking values in TZ, defined %Z-a.s. and such that ϕ ∧Wk = ϕk

for all k ∈ N %Z-a.s. Let us verify that it is a non-anticipating factor. Let us first show that
it is a factor. From (10) and (16),

σTWk
◦ (ϕ ∧Wk)= (ϕ ∧Wk) ◦ σTN

Wk
%Z-a.s.

From TWk = T ∧Wk we find that (σT ◦ ϕ) ∧Wk = σTWk
◦ (ϕ ∧Wk) %

Z-a.s. and (ϕ ◦

σTN) ∧Wk = (ϕ ∧Wk) ◦ σTN
Wk

%Z-a.s. Then (σT ◦ ϕ) ∧Wk = (ϕ ◦ σTN) ∧Wk %
Z-a.s.,

and by taking k→∞ we get σT ◦ ϕ = ϕ ◦ σTN %Z-a.s.
On the other hand, equality (11) states that

for all k ∈ N, %⊗Z
Wk
◦ ϕ−1

Wk
= µZ d

Wk
. (22)

By using the identification between the σ -field B((TN
W )

Z) and B((TN)Z) ∧W defined in
(12), we can write

ϕ−1
Wk
|B((TN

Wk
)Z) = ϕ

−1
|B((TN)Z)∧Wk

and µZ d

Wk
|B((TN

Wk
)Z) = µ

Z d
|B((TN)Z)∧Wk

. (23)

Hence
%⊗Z

Wk
◦ ϕ−1

Wk
|B((TN

Wk
)Z) = %

⊗Z
◦ ϕ−1

|B((TN)Z)∧Wk )
. (24)

From (22)–(24) we get the equality

for all k ∈ N, %⊗Z
◦ ϕ−1

|B((TN)Z)∧Wk
= µZ d

|B((TN)Z)∧Wk
.

Since B((TN)Z) ∧Wk ↗ B((TN)Z) we deduce the measure equality %⊗Z
◦ ϕ−1

= µZ d
.

Then ϕ is a factor.
By definition (ϕ(R))n only depends on (R j : j ≤ n), then ϕ is non-anticipating. The

proof of Theorem 1.2 for the discrete sequence Z d is complete.
Let us show the last part of Theorem 1.2 for the time continuous process Z . Since

(TZ, µZ d
, σT) is a factor of a Bernoulli shift we get from Ornstein theory that it is

also Bernoulli (see [12, 13]). Since (DT(R), B(DT), µ
Z ) is a Lebesgue space and

(TZ, µZ d
, σT) is a Bernoulli shift of infinite entropy, we can apply [13, Theorem 4 in

§12, part 2] to get that (DT(R), µ
Z , (σ t

T : t ∈ R)) is a Bernoulli flow of infinite entropy.
The proof of Theorem 1.2 is complete.

888 S. Martı́nez



3. Proof of Theorem 1.3
We shall first state a general result on non-anticipating functions.

3.1. Immersions and non-anticipating functions. Let (A, A) be a measurable space,
with A a Polish space (with respect to some metric) endowed with its Borel σ -field A.
We set Al = A and Al =A for all l ∈ Z−. For n ∈ Z− we denote by A×n

=
∏

l≤n Al ,
4A

n : A×0
→ A the nth coordinate function and by A⊗n

= σ(4A
l : l ≤ n) the σ -field in

A×0 generated by all the coordinates up to the nth.
Let ν be a non-atomic probability measure on (A, A), so (A, A, ν) is a non-atomic

Lebesgue space. Let ν⊗0 be the product probability measure on (A×0, A⊗0). There exists
a family of one-to-one surjective measurable functions θl : Al → [0, 1] for l ∈ Z−, such
that ν ◦ θ−1

l is the Lebesgue measure. We have Al = σ(θl), A⊗n
= σ(θl : l ≤ n), and then

the filtration (A⊗n
: n ∈ Z−) is standard non-atomic.

The probability measure space (A×0, A⊗n, ν⊗0
|A⊗n ) is identified with the product

measure space (A×n,
⊗

l≤n Al , ν
⊗n), where ν⊗n is the product measure on

(A×n,
⊗

l≤n Al). We put xn
= (xl : l ≤ n) ∈ A×n for all x ∈ A×0 and n ∈ Z−. We will

also denote by xn a generic element of A×n . We will identify (a.s.) a function f : A×0
→ R

A⊗n-measurable with a function f : A×n
→ R

⊗
l≤n Al -measurable. Then, when f is

also bounded, we write
∫

A×0 f dν⊗0
=
∫

A×n f dν⊗n .
Let (B, B) be another measurable space, B a Polish space and B its Borel σ -field.

We consider the notions B×n , 4B
n , B⊗n defined on it. Let η : A×0

→ B×0 be a non-
anticipating shift invariant measurable function. This means that for all n ∈ Z− the function
ηn =4

B
n ◦ η is such that ηn(x) only depends on xn

∈ A×n and ηn(x)= η0(σ
n x), where

σ n
: A×0

→ A×0 is given by (σ n x)l = xl+n for all l ∈ Z−. We put ηn
:= (ηm : m ≤ n).

The measurable space (B×0, B⊗0) is endowed with the probability measure ν⊗0
◦ η−1.

Since
⊗

l≤n Bl and B⊗n are identified, we can also identify (ηn)−1
|
⊗

l≤n Bl and η−1
|B⊗n .

Hence,

for all n ∈ Z−, η−1(B⊗n)= σ(ηn).

LEMMA 3.1. The filtration of σ -fields (σ (ηn) : n ∈ Z−) is immersed in the filtration
(A⊗n

: n ∈ Z−), with respect to ν⊗0.

Proof. Since η is a non-anticipating shift invariant function, xn
= yn implies that ηn(x)=

ηn(y). Then the fibers of A⊗n are contained in the fibers of σ(ηn), so σ(ηn)⊆A⊗n .
Now let ( fn : n ∈ Z−) be a (σ (ηn) : n ∈ Z−)-martingale with respect to ν⊗0. We must

show that it is a (A⊗n
: n ∈ Z−)-martingale.

Recall that a bounded measurable function f :A⊗0
→ R is η−1(B⊗n)-measurable

ν⊗0-a.s. if and only if there exists a B⊗n-measurable function f ′ : B⊗0
→ R such

that f = f ′ ◦ η. This function f ′ is ν⊗0
◦ η−1-a.s. defined. It is straightforward to show

that ( fn : n ∈ Z−) is a (η−1(B⊗n) : n ∈ Z−)-martingale with respect to ν⊗0 if and only if
( f ′n ◦ η : n ∈ Z−) is a (B⊗n

: n ∈ Z−)-martingale with respect to ν⊗0
◦ η−1. Therefore, this

last property is our hypothesis.
The probability measure ν⊗n

◦ η−1 is well defined on (B×0, B⊗n). Since
(ηn)−1

|
⊗

l≤n Bl=η
−1
|B⊗n , this probability measure is also well defined on (B×n,

⊗
l≤n Bl).
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The Lebesgue probability space (A×n,
⊗

l≤n A, ν⊗n) is partitioned by (η−1zn
: zn
∈

B×n). Then ν⊗n
◦ η−1-a.s. on zn

∈ B×n there exists a probability measure denoted by νz,n

and defined on the measurable subset η−1
{zn
} ⊆ A×n that satisfies the following property:

for all bounded A⊗n-measurable functions gn : A×0
→ R, the function given by

ĝn : B
×0
→ R, ĝn(z)= ĝn(z

n)=

∫
η−1{zn}

gn dνz,n,

is B⊗n-measurable and ν⊗0
◦ η−1-a.s. defined. Moreover, it satisfies∫

A×0
gn dν⊗0

=

∫
B×n

ĝn(z
n) dν⊗n

◦ η−1(zn). (25)

Since f ′n : B
×0
→ R is B⊗n-measurable, f ′n ◦ η(x) only depends on ηn(x). But ηn(x)

only depends on xn , so f ′n ◦ η(x) only depends on xn
∈ A×n . Let hn−1 : A×0

→ R be a
bounded A⊗(n−1)-measurable function, so hn−1(x) only depends on xn−1. By using (25)
we get∫

A×0
f ′n−1 ◦ ηhn−1 dν⊗0

=

∫
B×(n−1)

f ′n−1(z
n−1)̂hn−1(z

n−1) dν⊗(n−1)
◦ η−1(zn−1)

=

∫
B×0

f ′n−1ĥn−1dν⊗0
◦ η−1

=

∫
B×0

f ′n ĥn−1 dν⊗0
◦ η−1,

where in the last equality we used the fact that ( f ′n : n ∈ Z−) is a (B⊗n
: n ∈ Z−)-martingale

and that ĥn−1 is a bounded B⊗(n−1)-measurable function. Now, since ĥn−1 is B⊗(n−1)-
measurable we get that ĥn−1(η

n(x)) only depends on ηn−1(x) and by using an argument
entirely similar to that above we find that∫

B×0
f ′n ĥn−1 dν⊗0

◦ η−1
=

∫
B×n

f ′n(z
n )̂hn−1(z

n) dν⊗n
◦ η−1(zn)

=

∫
A×n

f ′n ◦ ηhn−1 dν⊗n
=

∫
A×0

f ′n ◦ ηhn−1 dν⊗0.

Then
∫

A×0 f ′n−1 ◦ ηhn−1 dν⊗0
=
∫

A×0 f ′n ◦ ηhn−1 dν⊗0. Since fn = f ′n ◦ η, we have
proved that ( fn : n ∈ Z−) is a (A⊗n

: n ∈ Z−)-martingale. 2

Since ν⊗0 is non-atomic, from the definitions made in §1.8, Lemma 3.1 can be written
as follows.

COROLLARY 3.2. The filtration (σ (ηn) : n ∈ Z−)= (η−1 B⊗n
: n ∈ Z−) is standard (with

respect to ν⊗0).

3.2. The proof. We will apply the construction described in the previous section to the
following setting: A = TN, ν = %, B = T and η : AZ−→ BZ− coincides with ϕ : AZ

→

BZ defined in §2 but restricted to the set of coordinates in Z−. That is,

for all z ∈ AZ, η(z0)= ϕ0(z) with ϕ0(z)= (ϕn(z) : n ∈ Z−) and z0
= (zn : n ∈ Z−).

This definition is valid because the factor map ϕ is non-anticipating. Then η : (TN)Z−→
TZ− satisfies

for all n ≤−1, ηn+1 =

(
aηn �

a

a − 1
ERn

)
.
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The mapping η inherits shift invariance and non-anticipation from ϕ. Then: for all m ∈
Z−, %⊗Z− -a.s. in R= ( ERn : n ∈ Z−) ∈ (TN)Z− , η(R)m depends only on ( ERn : n ≤ m).
Therefore, we are in the framework of the previous section and from Lemma 3.1 we get
that the filtration (σ (ηn) : n ∈ Z−) is standard. But since ϕ is non-anticipating we have
σ(ηn)= σ(ϕn) and, from Corollary 3.2, the filtration (σ (ϕn) : n ∈ Z−) is standard.

Let us show this filtration is standard non-atomic. This will be a straightforward
consequence of the following result.

LEMMA 3.3. There exists a sequence (αn : n ∈ Z−) of independent and identically
distributed Uniform[0, 1] random variables that satisfies σ(ϕn)= σ(σ(ϕn−1), αn) and αn

is independent of σ(ϕn−1) for all n ∈ Z−.

Proof. We claim that

for all n ∈ Z−, there exists αn ∼ Uniform[0, 1] such that

σ(ϕn)= σ(σ(ϕn−1), αn) and αn is independent of σ(ϕn−1). (26)

Note that these relations imply that the random variables (αn : n ∈ Z−) are independent.
In showing the claim we use [3, Proposition 5] together with the separability of σ(ϕn)

for all n ∈ Z−. The equivalence between properties (iii) and (iv) in the aforementioned
proposition implies that relation (26) is equivalent to

for all n ∈ Z−, every random variable Vn that satisfies

σ(ϕn−1, Vn)= σ(ϕ
n) has a diffusive law.

Let us show that the latter property holds. We can assume that Vn is a random variable
that takes values in T. We will prove this property by contradiction, so assume that
for some n ∈ Z−, σ(ϕn−1, Vn)= σ(ϕ

n) and Vn has an atomic part. Then there exists
A ∈ B(T) such that a := P(Vn ∈ A) > 0 and, for all C ∈ B(T) with C ⊆ A, P(Vn ∈ C)= 0
or P(Vn ∈ C)= a is satisfied. Let (Wl : l ∈ Z+) be a sequence of windows such that
Wl ⊂ int Wl+1 for all l and Wl ↗ R`. Since a.s. in the tessellation ϕn there exist cells
of ϕn−1 that have been broken into more than one piece and σ(ϕn)= σ(ϕn−1, Vn), we get
the existence of some l that satisfies

P(Vn ∈ Al) > 0 where Al = {T ∈ A : T ∧Wl 6= {Wl}}.

Since P(Vn ∈ Al) > 0, Al ⊆ A and A is an atom of Vn , we get that P(Vn ∈ Al)= a. An
analogous argument shows that there exists a fixed tessellation Q0 ∈ TWl with Q0 6= {Wl}

such that P(Vn ∧Wl = Q0)≥ a > 0. This implies that P(ϕn ∧Wl = Q0) > 0 and so
P(anYan ∧Wl = Q0) > 0. This is in contradiction to the fact that {W } is the unique atom
of Yan ∧W for every window W (see (6)).

We conclude that the random variable Vn cannot have an atomic part. 2

Since (T, B(T), %) is non-atomic, from Corollary 3.2 we get that the filtration (σ (ϕn) :

n ∈ Z−) is standard. From Lemma 3.3 the hypotheses for the equivalence (9) are satisfied.
This equivalence shows that (σ (ϕn) : n ∈ Z−) is standard non-atomic. Then Theorem 1.3
is satisfied.
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