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In the strict Majority Bootstrap Percolation process each passive vertex v becomes active if
at least � deg(v)+1

2 � of its neighbors are active (and thereafter never changes its state). We
address the problem of finding graphs for which a small proportion of initial active vertices
is likely to eventually make all vertices active. We study the problem on a ring of n vertices
augmented with a “central” vertex u. Each vertex in the ring, besides being connected to u,
is connected to its r closest neighbors to the left and to the right. We prove that if vertices
are initially active with probability p > 1/4 then, for large values of r, percolation occurs
with probability arbitrarily close to 1 as n → ∞. Also, if p < 1/4, then the probability of
percolation is bounded away from 1.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Consider the following deterministic process on a graph
G = (V , E). Initially, every vertex in V can be either ac-
tive or passive. A passive vertex v becomes active iff at
least k of its neighbors are already active; once active,
a vertex never changes its state. This process is known
as k-neighbor bootstrap percolation [4]. If at the end of the
process all vertices are active, then we say that the ini-
tial set of active vertices percolates. We wish to determine
the minimum ratio of initially active vertices needed to
achieve percolation with high probability. More precisely,
suppose that the elements of the initial set of active ver-
tices A ⊆ V are chosen independently with probability p.
The problem is finding the least p for which percolation of
A is likely to occur.

Since its introduction by Chalupa et al. [4], the boot-
strap percolation process has mainly been studied in the
d-dimensional grid [n]d = {1, . . . ,n}d [1]. The precise defi-
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nition of critical probability that has been used is the fol-
lowing:

pc
([n]d,k

)
= inf

{
p ∈ [0,1]: Pp

(
A percolates [n]d)� 1/2

}
.

In [1] it is proved that, for every d � k � 2, pc([n]d,k) =
(

λ(d,k)+o(1)
log(k−1) n )d−k+1, where λ(d,k) < ∞ are equal to the val-

ues of specific definite integrals for every d � k � 2. In the
(simple) Majority Bootstrap Percolation (simple MBP) process
(introduced in [2]) each passive vertex v becomes active iff
at least � deg(v)

2 � of its neighbors are active, where deg(v)

denotes the degree of vertex v in G . Note that for [n]d , the
critical probability for simple MBP percolation corresponds
to pc([n]d,d), which goes to 0 as n → ∞.

Here we introduce the strict Majority Bootstrap Percola-
tion (strict MBP) process: each passive vertex v becomes ac-
tive iff at least � deg(v)+1

2 � of its neighbors are active. Note
that if deg(v) is odd, then strict and simple MBP coincide.
For [n]d the critical probability in strict MBP pc([n]d,d + 1)

goes to 1. This holds because, in this case, any unit hyper-
cube starting with its 2d corners passive will stay passive
forever.

A natural problem is finding graphs for which the criti-
cal probability in the strict MBP is small. Results by Balogh
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and Pittel [3] imply that the critical probability of the
strict MBP for random 7-regular graphs is 0.269. In [6],
two families of graphs for which the critical probability is
also small (but higher than 0.269) are explored. The idea
behind these constructions is the following. Consider a reg-
ular graph of even degree G . Let G ∗ u denote the graph G
augmented with a single universal vertex u. The strict MBP
dynamics on G ∗ u has two phases. In the first phase, as-
suming that vertex u is not initially active, the dynamics
restricted to G corresponds to the strict MBP. If more than
half of the vertices of G become active, then the universal
vertex u also becomes active, and the second phase begins.
In this new phase, the dynamics restricted to G follows the
simple MBP (and full activation becomes much more likely
to occur).

The two augmented graphs studied in [6] were the
wheel WHn = u ∗ Rn and the toroidal grid plus a universal
vertex TWHn = u ∗ R2

n (where Rn is the ring on n vertices
and R2

n is the toroidal grid on n2 vertices). For a family of
graphs G = (Gn)n , the following parameter was defined (as
before, A denotes the initial set of active vertices):

p+
c (G) = inf

{
p ∈ [0,1]:

lim inf
n→∞ Pp(A percolates Gn in strict MBP ) = 1

}
.

Consider the families WH = (WHn)n and T WH =
(TWHn)n . It was proved in [6] that p+

c (WH) = 0.4030 . . . .
For the toroidal case it was shown that 0.35 � p+

c (T WH)

� 0.372. Computing the critical probability for the wheel
is trivial. Nevertheless, if we increase the radius of the ver-
tices, then the situation becomes much more complicated.
More precisely, let Rn(r) be the ring where every vertex
is connected to its r closest vertices to the left and to
its r closest vertices to the right. Here we study the strict
MBP process in a generalization of the wheel that we call
r-wheel WHn(r) = u ∗ Rn(r). Our main result is the follow-
ing:

Theorem 1. The limit of p+
c (WH(r)), as r → ∞, exists and

equals 1/4.

2. Preliminary results

We start by showing that we can reduce our problem to
the issue of whether a single fixed (non-universal) vertex
eventually becomes active.

Lemma 2. Let 0 < p < 1 be the probability for a vertex
to be initially active. Let r be a positive integer. Denote by
pW (n, r, p) the percolation probability of the r-wheel and de-
note by pR(n, r, p) the probability that the strict majority on
Rn(r) ends up with (strictly) more active than passive vertices.
Then,

lim inf
n→∞ pR(n, r, p) � lim inf

n→∞ pW (n, r, p),

lim sup
n→∞

pW (n, r, p) � p + (1 − p) · lim sup
n→∞

pR(n, r, p).
Proof. Note that for ε > 0 we can choose n large enough
so that the probability that at least one block of r consecu-
tive vertices is initially active is larger than 1 − ε , in which
case percolation occurs iff the universal vertex becomes
active during the evolution. We deduce the first inequality
by taking ε arbitrarily small. Note now that the universal
vertex is active when the dynamics stabilizes only if it was
either already active initially (probability p) or if it was ini-
tially passive and the dynamics on the ring Rn(r) produces
more than n/2 active vertices. �

The vertices of the ring Rn will be denoted as 0,1, . . . ,

n − 1, starting at some arbitrary vertex (arithmetic over
vertex indices will always be modulo n). The positive inte-
ger r will be called the radius.

Lemma 2 shows that we can study the ring Rn(r) and
its dynamics to derive results about the r-wheel. Now, con-
sider the 0–1 random variable Xi(n, r) giving the state of
vertex i after stabilization of the dynamics (Xi(n, r) = 0 if
the state is passive, and Xi(n, r) = 1 if it is active). Next, we
show how to bound pR(n, r, p) in terms of Ep(X0(n, r)).

Lemma 3. Let 0 < p < 1, n ∈ N
+ , and r be a fixed radius. Then,

2Ep
(

X0(n, r)
) − 1 � pR(n, r, p) � 2Ep

(
X0(n, r)

)
.

Proof. By definition pR(n, r, p) = Pp(
∑

i Xi(n, r) > n/2). By
Markov’s inequality we then have Pp(

∑
i Xi(n, r) > n/2) �

2
nEp(

∑
i Xi(n, r)). Using linearity of expectation and the

fact that all Xi(n, r) are equally distributed (symmetry of
the ring), we deduce pR(n, r, p) � 2Ep(X0(n, r)). The lower
bound is obtained in the same way considering again
Markov’s inequality but for the (again positive) random
variable n − ∑

i Xi(n, r). More precisely:

pR(n, r, p) = 1 − Pp

(
n −

∑
i

Xi(n, r) > n/2

)

� 1 − 2

n
Ep

(
n −

∑
i

Xi(n, r)

)
. �

3. Lower bound on p+
c (WH(r))

We will assume n > 2r + 1 and that the initial state
of the universal vertex u is passive. Let 0 < p < 1/2 and
q = 1 − p. The starting configuration σ = (σ0, . . . , σn−1),
where vertex j is initially active (respectively passive) if
and only if σ j = 1 (respectively σ j = 0), occurs with prob-

ability p
∑

j σ j qn−∑
j σ j . We write X0 instead of X0(n, r).

Conditioning on σ0,

Pp(X0 = 1) � p + Pp(X0 = 1|σ0 = 0). (1)

We say there is a wall located � > 0 vertices to the left
of vertex 0 if σ−� = 1, σ−�−1 = σ−�−2 = · · · = σ−�−(r+1) =
0. Similarly, we say there is a wall located at � > 0 ver-
tices to the right of vertex 0 if σ� = 1, σ�+1 = σ�+2 = · · · =
σ�+(r+1) = 0. Let L (respectively R) be the smallest posi-
tive � such that there is a wall located � vertices to the
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left (respectively right) of vertex 0 (if a wall does not oc-
cur, let L = R = n). For 0 < � < n to be fixed later, and
since L and R are identically distributed, we have that:

Pp(X0 = 1|σ0 = 0)

� 2 · Pp(X0 = 1, R � �|σ0 = 0)

+ Pp(X0 = 1 ∧ L, R < �|σ0 = 0). (2)

Summarizing, to bound Ep(X0) = Pp(X0 = 1) we can
bound the two terms in the right hand side of (2).

Lemma 4. For 0 < p < 1 and positive integers a, r,

Ep(R|σ0 = σ1 = · · · = σa−1 = 0,σa = 1)

� q−r(aqr + 1/(pq)
)
.

Proof. Consider a Markov chain with states labeled 0,1,

. . . , r + 1 where for all s � r, the probability of going from
state s to 0 (respectively s to s + 1) is p (respectively q),
and once state r + 1 is reached, the Markov chain stays
there forever. For s ∈ {0, . . . , r + 1}, let Ns be the number
of steps it takes the Markov chain to reach state r +1 when
it starts at state s. Note that

E(R|σ0 = σ1 = · · · = σa−1 = 0,σa = 1) � a +E(N0).

Moreover, E(Nr+1) = 0, and E(Ns) = 1 + q · E(Ns+1) + p ·
E(N0) for all 0 < s � r. Thus, for all 0 � s � r + 1,

E(N0) =
s∑

j=1

1

q j
+E(Ns) =

r+1∑
j=1

1

q j
� 1

pqr+1
.

Putting everything together yields the result. �
Corollary 5. For 0 < p < 1 and positive integers r,�,

Pp(X0 = 1, R � �|σ0 = 0)� 1

�
· q−r(rqr + 1/(pq)

)
.

Proof. If vertex 0 eventually becomes active, it must be
the case that initially it did not belong to a block of r + 1
consecutive passive vertices. Thus, if X0 = 1 and σ0 = 0,
then there must exist a positive integer a such that a � r,
σ1 = σ2 = · · · = σa−1 = 0, and σa = 1. For brevity, we will
denote this particular array of outcomes for the σ ’s as Ca .
By Markov’s inequality,

Pp(X0 = 1, R � �|σ0 = 0)�
r∑

a=1

Pp(R � �|Ca)Pp(Ca)

� 1

�
max

a=1,...,r
Ep(R|Ca).

The desired conclusion follows from Lemma 4. �
Lemma 6. For 0 < p < 1/2 and positive integers r,�,

Pp(X0 = 1 ∧ L, R < �|σ0 = 0)� 2�(4pq)r .
Proof. Suppose the closest wall to the left (respectively
right) of vertex 0 is at vertex −a (respectively b). Further-
more, suppose vertex 0 is passive. Note that for vertex 0
to eventually become active, it must be the case that some
passive vertex i for −a < i < b must necessarily become
active the first time the strict majority dynamics is ap-
plied. Hence, if Si denotes the number of j’s, j 
= i and
i − r � j � i + r, for which vertex j initially takes the
value 1, then

Pp(X0 = 1 ∧ L, R < �|σ0 = 0)

� Pp(∃i,−� < i < � s.t. Si � r + 1)

� 2� max
i: −�<i<�

Pp(Si � r + 1).

However, a Chernoff bound tells us that, for t =
1/2 − p � (r + 1)/(2r) − p,

Pp(Si � r + 1)

� Pp
(

Si � (p + t) · 2r
)

�
((

p

p + t

)p+t( q

q − t

)q−t)2r

� (4pq)r .

Putting everything together yields the conclusion. �
Theorem 7. For all 0 < p < 1/4 there exists a large enough
integer r0 = r0(p) such that if r � r0 and n > 2r + 1, then
Ep(X0(n, r)) < 1/4.

Proof. Let r′
0 = r′

0(p) be such that r � r′
0 implies that rqr �

1/pq, and let C = 8r/(pq). By Corollary 5, Pp(X0 = 1, R �
Cq−r |σ0 = 0) � 2

Cpq = 1
4r . By (1), and fixing � = Cq−r

in (2), and Lemma 6, we obtain that:

Pp(X0 = 1) � p + 1

2r
+ 2Cq−r(4pq)r

= p + 1

2r
+ 2C(4p)r .

Hence, for p < 1/4 there exists a large enough positive
integer r0 = r0(p) � r′

0(p) so that if r � r0, then p + 1
2r +

2C(4p)r < p + 1
r < 1/4. �

Theorem 7, Lemma 3, and Lemma 2 yield the following:

Corollary 8. lim infr→∞ p+
c (WH(r)) � 1/4.

4. Upper bound on p+
c (WH(r))

Consider a simplified process with three states on the
one-dimensional integer lattice Z: (i) w , a wall, (ii) s,
a spreading state, and (iii) e, an empty lattice point. Let
sites in state w and s remain so forever, and in consecu-
tive rounds let sites in state e with at least one neighbor
in state s update to state s. Let pw , ps and pe be positive
initial probabilities of states w , s and e respectively, where
pw + ps + pe = 1. Each lattice point is initially assigned
a state, independent of the other lattice point states.
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Lemma 9. The probability that lattice point 0 is eventually in
state s is greater than 1/(1 + pw/ps).

Proof. Define sL (respectively sR ) to be state of the clos-
est lattice point on the left (respectively right) of 0 whose
state is not e. Since pe = 1 − pw − ps < 1, both sL and sR

are well-defined with probability 1. Let E be the event that
lattice point 0 is eventually in state s, and denote by P its
probability of occurring. Note that for E to occur, either
the lattice point 0 is initially in state s, or it is initially in
state e and at least one of the lattice points sL or sR is ini-
tially in state s. Hence, recalling that pe = 1 − pw − ps < 1,

P = ps + pe

∑
i�0, j�0

pi+ j
e

(
p2

s + 2pw ps
)

= ps + ps(ps + 2pw)pe

(1 − pe)2

� ps

(
1 + 1 − pw − ps

pw + ps

)
= 1

1 + pw/ps
. �

We now consider again the strict MBP process in the
ring Rn(r) and reduce it to the aforementioned three-state
model as follows: Fix some length � and partition the
vertices of Rn(r) into length � blocks (i.e., sets of � con-
secutive vertices, where n = t�). Let W�,r be the set of all
possible blocks of length � that contain r + 1 consecutive
passive vertices. Also, let S�,r be the set of all blocks of
length � that do not contain r + 1 consecutive passive ver-
tices and that, for any state configuration for vertices not
contained in the block, all the vertices belonging to the
block eventually become active when applying the strict
majority dynamics. Any block in W�,r is a wall in Rn(r)
and any block in S�,r is a spreading state. Any other block
is an empty state. Let μ(W�,r) (respectively μ(S�,r)) be
the probability r that an arbitrary block belongs to W�,r

(respectively S�,r ). The following lemma is not difficult to
prove:

Lemma 10. For 0 < p < 1 and positive integers r, �,

(i) lim infn→∞ Ep(X0(n, r)) � 1/(1 + μ(W�,r)/μ(S�,r)).
(ii) If � � r + 1, then μ(W�,r) � �qr+1 .

We will now find a lower bound for μ(S�,r). The goal

is to prove that μ(W�,r )

μ(S�,r)
goes to 0 when r → ∞. For that

purpose we denote, for any 0–1 word v , by |v|0 (re-
spectively |v|1) the number of occurrences of symbol 0
(respectively 1) in v , and denote the i-th character of v
by vi . We set � = 2r + 1 and consider the set Tr of bi-
nary words v of length � satisfying the following prop-
erties: (1) |v|1 = r + 1, |v|0 = r; (2) v0 = v2r = 1, vr = 0
and (3) the word w = w1 · · · wr−1 of length r − 1 over
alphabet {0,1}2 defined by wi = (vi, vi+r) is a gener-
alized Dyck word [5] associated to the weight function
ω(a,b) = +1 if (a,b) = (0,0), ω(a,b) = −1 if (a,b) = (1,1)

and ω(a,b) = 0 otherwise. I.e., ω satisfies the following
two conditions: (i)

∑ j
i=1 ω(wi) � 0 for all 1 � j � r − 1,

and (ii)
∑r−1 ω(wi) = 0.
i=1
Lemma 11. If r is a positive integer and � = 2r + 1, then |Tr | �
|S�,r |.

Proof. Consider some v ∈ Tr and denote by w the word
of length r − 1 over the alphabet {0,1}2 as defined above.
We first consider successively each vertex i of Rn(r), for
i = r to i = 2r − 1, and apply the strict majority dynam-
ics to it. Initially, the state of vertex i is vi . During this
first sequence of updates, we denote by ni the number of
1s in the neighborhood of vertex i at the time this vertex
is considered (i.e., we take into account updates of ver-
tices j < i which possibly occurred before in the sequence).
Since v ∈ Tr , we have that |v|1 = r + 1, so at the beginning
of the process i = r and nr = r + 1. We claim that for all i
with r � i < 2r − 1, when we consider vertex i + 1 in the
process we have ni+1 − ni = ω(wi+1−r) and the state of
vertex i is 1. This claim is deduced by induction from the
fact that i − r is the only vertex of index less than i + 1
in the symmetric difference of the neighborhoods of ver-
tices i and i + 1, hence ni+1 − ni = δ+ − δ− where δ+ = 1
if vertex i was updated from 0 to 1 in the previous step
and 0 otherwise, and δ− = 1 if vi−r = 1 and 0 otherwise.
Using the induction hypothesis for all j � i, by the Dyck
property of w , we have ni = nr +∑i−r

j=1 ω(w j) � nr = r + 1.
Hence, if vertex i was 0 before being considered (vi = 0),
it updates to 1 when considered. In any case vertex i is 1
once considered in the process. Moreover, we have δ+ = 1
iff vi = 0 and we deduce that δ+ − δ− = ω(wi+1−r), thus
establishing the claim.

Now, from the claim, we deduce that all vertices from
i = r to i = 2r are active when the sequence of updates
ends. Then, we consider a new sequence of updates from
vertex i = r − 1 to vertex i = 1 (successively). Trivially,
when vertex i is considered, its neighborhood contains
at least r + 1 active vertices (because the neighborhood
of vertex i contains the active vertices 0 and vertices
i + 1, . . . , i + r). Hence, all vertices will be active at the
end of this second sequence of updates. This completes the
proof of the lemma. �
Theorem 12. If p > 1/4, then there is an r0 = r0(p) such that
for all r � r0 we have: limn→∞ Ep(X0(n, r)) = 1.

Proof. First, we claim that there is some positive ratio-
nal function φ(·) such that |Tr | � φ(r) · 4r for all r. To
prove this, choose r = 4k + 1 (this is without loss of gen-
erality since r → |Tr | is increasing). It is straightforward
to associate injectively a word v ∈ Tr to any word w of
length r − 1 = 4k over alphabet {0,1}2 which is a gener-
alized Dyck word associated to the weight function ω as
defined before. To obtain a lower bound on the number of
such generalized Dyck words, we consider the subset Uk
of words w of length 4k over the alphabet {0,1}2 and
such that |{i: ω(wi) = +1}| = |{i: ω(wi) = −1}| = k and
|{i: ω(wi) = 0}| = 2k. The set Uk can be generated, up to
a straightforward encoding, by considering classical Dyck
words of length 2k (weights +1/−1) interleaved by bi-
nary words of size 2k. Therefore, |Tr | � D2k · (4k

2k

)
22k . Using

classical results about Catalan numbers and Stirling’s for-
mula, for some positive rational functions φ1 and φ2 we
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have |D2k| ∼ φ1(k) · 4k and
(4k

2k

) ∼ φ2(k) · 42k . It follows
that there is some positive rational function φ such that
|Tr | � φ(r) · 4r . This establishes the claim.

By Lemma 11, for some positive rational function φ

it holds that μ(S�,r) � φ(r) · qr pr+14r . By Lemma 10(ii),
μ(W�,r )

μ(S�,r)
is asymptotically less than Φ(r) · (4p)−r , where

Φ(·) is another positive rational function. If p > 1/4 then
μ(W�,r)/μ(S�,r) goes to 0 when r → ∞. The theorem fol-
lows from Lemma 10(i). �

It follows that lim supr→∞ p+
c (WH(r)) � 1/4 and, in-

voking Corollary 8, we conclude that limr→∞ p+
c (WH(r))

= 1/4.
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